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Supplementary Text 

Text S1. Approach for filling the missing values in bulk density measurements 

Although we filtered soil sample data from multiple databases for ensuring all contain the soil 

organic content observation values at multiple soil layers. The measurements of bulk density 

(BD) were not always available for all soil layers of the profiles considered in our study. 

Following the approach provided in FAO - CMCC (2017), some pedotransfer functions were 

adopted to estimate BD if they are missing. In particular, for layers with a SOC content lower 

than 12%, according to Hiederer & Köchy (2011), an exponential function was used to calculate 

BD for global data either in the topsoil or subsoil. For soil layers with a SOC content higher 

than 12%, it was used the log-transformed function. The abovementioned pedotransfer 

functions used depending on the SOC content and the considered soil layer to estimate BD are 

summarized in the following equation. 

where 𝑎 = −0.034, 𝑏 = 0.100. 

 

Text S2. Non-extracted aboveground NPP in croplands 

When calculating the aboveground NPP (ANPP) in cropland areas, a decent fraction of ANPP 

is removed as the harvest products, and it should be additionally considered. The way for 

estimating the non-extracted ANPP in croplands is as follows. We first confirmed that, in the 

aboveground and belowground biomass carbon maps (Spawn et al., 2020), the crop’s yield and 

the harvest index (crop-specific) were used to estimate the maximum standing biomass of crops 

prior to harvest. Following the work of Spawn et al., we adopted the crop-specific harvest index 

provided by Wolf et al. (2015) and Spawn et al. (2020) to estimate the unharvested residue in 

croplands. First, we used the EARTHSTAT dataset (Monfreda et al., 2008) to extract the spatial 

coverage of different croplands with different crop types. Then, we considered the aboveground 

residue retention rate in areas with different developing levels. According to the published 

literature, the residue retention rates can be assumed as 30% in developing regions such as Asia 

and Africa (e.g., Erenstein, 2011; Jiang et al., 2012; Baudron et al., 2014), and 60% in other 

regions (e.g., Scarlat et al., 2010; Lokupitiya et al., 2012; Baudron et al., 2015). This way was 

also adopted in a previous study (Wang et al., 2016). In addition, the manure input is an extra 

carbon input in croplands. We used the global crop-specific nitrogen (N) fertilization dataset 

BD = {
  𝑒(𝑎∙SOC+𝑏)                                        𝑖𝑓 𝑆𝑂𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ≤ 12%                                                

−0.285 ∙ ln(SOC) + 1.456         𝑖𝑓 𝑆𝑂𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 > 12% 𝑎𝑛𝑑 𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ ≤ 30𝑐𝑚

−0.291 ∙ ln(SOC) + 1.389         𝑖𝑓 𝑆𝑂𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 > 12% 𝑎𝑛𝑑 𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ > 30𝑐𝑚

 

(S1) 
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from Adalibieke et al. (2023), to determine the consumption of N fertilizer input from manure 

application. The C:N ratio of farmyard manure provided by FAO (Roman et al., 2015) was 

adopted for converting the amount of N to the carbon. 

For the grassland and forest areas, we acknowledge that considering the human-induced 

decrease (e.g. grazing, deforestation) or increase (e.g. dung excretions during grazing, 

afforestation) of carbon input co-exist, and the available accurate global datasets that quantify 

these impacts are still not well developed, so these impacts were not included in our study for 

the limited observations and datasets. 

 

Text S3. Fraction of aboveground NPP transfers into topsoil 

When calculating carbon input flux for topsoil, apart from belowground NPP (BNPP), the 

carbon input also contains a portion of carbon from surface litterfall, which should be 

additionally considered. Although there are no spatially-explicit values of this proportion 

provided directly, we found currently available datasets and literatures that help us generate 

estimations as follows. 

 It should be noted here that the organic litter on the surface was not incorporated in the 

soil (White, 2006), therefore, we need to know the fraction of ANPP converted into litterfall. 

For having a biome-specific estimation on it, we collected datasets provided by Holland et al. 

(2015) and Jia et al. (2016), to get a total number of 813 geo-referenced observations with the 

values of litterfall (kg m-2 yr-1). Combining these observations with the ANPP values we 

processed before and the global biome map provided by (Dinerstein et al., 2017), we compiled 

a biome-specific estimated result of the fraction of litterfall in ANPP, which is shown in Table 

S6 as below. Considering the difference between tree species (needle-leaved, broadleaved, 

evergreen and deciduous), we further used MODIS land cover data product to divide the 

litterfall sample data by a more detailed classification. Table S7 shows the differences of this 

value in forests with different leaf types. 

Then, we need to know the fraction of litterfall allocated to topsoil. Such data are very 

limited so that we cannot be supported to get a spatially detailed estimation. Refer to 

Community Land Model (CLM) (Oleson et al., 2013), also some evidences from Millennial 

model (Abramoff et al., 2022) and MEMS 2.0 model (Zhang et al., 2021), we adopted a value 

of 0.5 as the respiration fraction (rf) for litter pool as suggested from CLM that based on a 

model structure used in Century model (Oleson et al., 2013). Therefore, it can be considered 

that approximately half of litterfall released as CO2 back to the atmosphere, thereby the left half 
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of it allocated into the topsoil. Finally, the fraction of ANPP that transferred as carbon input 

into the topsoil (denoted as fra), can be determined as the biome-specific value of the fraction 

of litterfall in ANPP multiplied by (1 – rf). For subsoil, fra was set to be zero. 

 

Text S4. Calculation of variable importance that contributes τ pattern 

The relative importance (RI) of each covariate (the contribution of each predictor) was 

calculated by using permutation-based feature importance. The permutation feature importance 

is defined to be the decrease in the model accuracy when a single feature (covariate) value is 

randomly shuffled. The feature importance can be computed on a held-out validation set. This 

approach can avoid the problem that the feature might be given high importance on the training 

set but not on the held-out validation set caused by the model overfitting. The RI of a certain 

covariate can be calculated as follows: 

𝑅𝐼𝑖 = 𝑠 −
1

𝐾
∑ 𝑠𝑘,𝑖

𝐾

𝑘=1

 

(S2) 

Where 𝑅𝐼𝑖 is the relative importance of the i-th covariate, s is the score of model performance 

fitted on the original data without permutation, 𝑠𝑘,𝑖 is the score of model fitted on the data 

with shuffled values of the i-th covariate in the k-th reputation, and K is the number of times to 

permute a covariate. The score of the model was set as the metric of R2 on the withheld 

validation set. 

The RI of each environmental covariate to the global variations of τ in top- and subsoil 

layers was quantified. To further reflect the difference in influences of the four variable 

categories on τ, we integrated the importance of variables in each category. The variable with 

the highest RI in each category was used to represent the importance of that category. Compared 

to taking the sum or mean of RI for each category, this way avoids to some extent over or 

underestimate of importance caused by the difference of variable importance within each 

category and the different number of variables included among categories. Then, the 

importance values of all categories were scaled to a sum of 1, and the percentage number 

represents the importance of each category. The same procedure of calculating variable 

importance was also conducted for data in different biomes (Fig. S23 and S24). 
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Text S5. Detecting interactive effects among climate and edaphic factors on τ 

Given the potentially non-significant effects of a variable (e.g. the global impact of precipitation) 

on τ in a global-level linear model, it does not necessarily imply that the respective variable has 

no influence on τ. Instead, this lack of significance may arise from its divergent effects when 

interacting with other factors. This led to an interest in exploring the reasons behind such 

nonlinear and uncoherent driving mechanisms. Considering the extrinsic climate effects on soil 

carbon turnover can be interacted by regionally intrinsic soil characteristics (Doetterl et al., 

2015), we used the following approach to exemplify the interactive effects of MAT and MAP 

on top- and subsoil τ in response to the changes of other factors (namely interactive factors). 

The variables of MAP/MAT, CLAY+SILT, C:N, CEC, and soil pH were selected 

(according to the analytical results of variable importance) as the important interactive factors 

for detect nonlinear MAT/MAP effect on τ. Each selected interactive factor was divided into 

ten intervals by using Jenks natural breaks classification method (Jenks, 1967), and all sample 

data were divided into ten subsets according the intervals that their interactive factors fall into. 

Then, the ten partial correlation coefficients between τ and two climatic variables within all 

intervals were connected to generate a line chart, which reveals how effects of temperature and 

water availability on τ strongly interact with edaphic factors (Fig. 3). 

 

Text S6. Local-level analysis of dominating factors 

In addition to the overall importance of covariates analyzed at the global level, the local-level 

importance for four categories of variables was also assessed. We quantified RI of covariates 

based on the RF model trained by sample data at local scales stratified by the global terrestrial 

ecoregions (Dinerstein et al., 2017). The same procedure of calculating importance of variables 

and categories mentioned in above was conducted in each ecoregion. This approach enables the 

globally geographical pattern of the regional importance of covariates yield. The global maps 

of the dominant factors (the category of covariate) influencing τ at top- and subsoil layers were 

generated by interpolating results in all windows. Additionally, since the sample sizes in 

different windows are not same (Fig. S26), the relative density of samples in each local window 

was considered. We determined the relative density to be the ratio of sample points fall within 

each window to a number of 200 which is considered as a sufficient size. All ratio that larger 

than 1 were controlled to be 1, so that the relative density value is between 0 and 1. The colors 

represent the local importance of the four categories of covariates in the maps was adjusted to 

display lighter proportionally to the lower the sample density. 
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Supplementary Figures 

Fig. S1 

 

Figure S1. Examples of the fitted variation of soil organic carbon content (SOC, g kg-1) with 

depth (m). The figure shows observed SOC values (black bars) and fitted splines (dashed lines) 

by using the equal-area smoothing spline algorithm referred to Bishop et al. (1999) and Malone et 

al. (2009) at four randomly selected sample sites. Orange and blue lines represent the estimated 

averages at top- (0-0.3 m) and subsoil (0.3-1 m) layers. 
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Fig. S2 

 

Figure S2. Kernel density estimates of soil organic carbon stock (SOCS, kgC m-2) in top- and 

subsoil by biome, based on data aggregated by soil profile observations. 
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Fig. S3 

 

Figure S3. Kernel density estimates of bulk density (g cm-3) in top- and subsoil by biome, 

based on data aggregated by soil profile observations. 
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Fig. S4 

 

Figure S4. Kernel density estimates of coarse fragments (> 2 mm) content (%) in top- and 

subsoil by biome, based on data aggregated by soil profile observations. 
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Fig. S5 

 

Figure S5. Kernel density estimates of belowground biomass carbon fraction (%) by biome, 

based on data aggregated by locations of soil profile observations. The root-to-shoot ratio at 

each sample location was collected from the harmonized global maps of above and belowground 

biomass carbon density provided by Spawn et al. (2020). 
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Fig. S6 

 

Figure S6. An illustration of the root distribution estimation through the information of 

belowground extents from the Root Systems of Individual Plants (RSIP) and global the 

global root traits (GRooT) databases. The cumulative root mass fraction along the depth was 

estimated by using a asymptotic nonlinear model (Eq. 6) considering the maximum rooting depth 

(Gale and Grigal, 1987; Zeng, 2001). 
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Fig. S7 

 

Figure S7. Global distribution of estimated fraction of root from 0 to 0.3 m (a) and from 0.3 

to 1 m (b) at available root profiles and root size observations. The observations with a total 

number of 1,732 geo-referenced measurements were collected from the root profiles with the root 

distribution information provided by Schenk & Jackson, (2002), the extended Root Systems of 

Individual Plants (RSIP) database provided by Tumber‐Dávila et al. (2022), and the global root 

traits (GRooT) database provided by Guerrero-Ramírez et al. (2021). 
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Fig. S8 

 

Figure S8. Kernel density estimates of root fraction in topsoil layer (fr0-30) (%) by biome, 

based on data aggregated by locations of all observations. 
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Fig. S9 

 

Figure S9. Kernel density estimates of root fraction in subsoil layer (fr30-100) (%) by biome, 

based on data aggregated by locations of all observations. 

  



 

 15 / 42 

 

Fig. S10 

 

Figure S10. Kernel density estimates of carbon input at top- and subsoil calculated by our 

method in different biomes, based on data aggregated by soil profile observations combined 

with multiple remote sensing derived data products. 
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Fig. S11 

 

Figure S11. Soil organic carbon (SOC) turnover times (τ) in top- (a) and subsoil (b) layers at 

sample locations. Values of τ at all sample locations were calculated as the ratio of the total size 

of SOC stock over the input flux of carbon at that soil layer (see “Materials and Methods” for 

details of calculations). 
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Fig. S12 

 

Figure S12. Schematic illustration of the geospatial predictive mapping process. With 

georeferenced observations of target variables at sample locations and environmental covariate 

maps as the input, the machine learning models are trained and tested for generating the 

relationship between the target variable and covariates. The resulting maps produced include the 

spatially explicit prediction of the target variable and the uncertainty associated with the 

prediction. Adapted from Hengl et al. (2018). 
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Fig. S13 

 

Figure S13. Kernel density estimates of fine particle-size fraction (CLAY+SILT) content (%) 

in top- and subsoil by biome, based on data aggregated by soil profile observations. 
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Fig. S14 

 

Figure S14. Kernel density estimates of C:N (organic carbon to total nitrogen ratio) in top- 

and subsoil by biome, based on data aggregated by soil profile observations. 
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Fig. S15 

 

Figure S15. Kernel density estimates of CEC (cation exchange capacity of the soil) in top- 

and subsoil by biome, based on data aggregated by soil profile observations. 
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Fig. S16 

 

Figure S16. Kernel density estimates of soil pH in top- and subsoil by biome, based on data 

aggregated by soil profile observations. 
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Fig. S17 

 

Figure S17. Kernel density estimates of mean annual temperature (°C) by biome, based on 

data aggregated by locations of soil profile observations. 
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Fig. S18 

 

Figure S18. Kernel density estimates of mean annual precipitation (mm) by biome, based on 

data aggregated by locations of soil profile observations. 
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Fig. S19 

 

Figure S19. The relationship between the estimated values of SOC turnover time and their 

estimation error (standard deviation) at sample locations. The error was determined by the 

cumulative uncertainty of the inputs that participate in calculation of SOC turnover time according 

to the error propagation theory. 
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Fig. S20 

 

Figure S20. Plots of measured versus predicted values of SOC turnover times (τ, yr) at 

topsoil (0–0.3 m) layer in different biomes. R2 values represent the coefficient of determination 

relative to the 1:1 line (solid diagonal lines) of the estimated τ values based on observed data and 

the predicted values for all validation samples using 10-fold cross-validation. Colors indicate the 

proportion (relative frequency) of data points at each pixel. Validation results show that biomes 

with a greater number of sample data generally have larger variability. 
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Fig. S21 

 

Figure S21. Plots of measured versus predicted values of SOC turnover times (τ, yr) at 

subsoil (0.3–1 m) layer in different biomes. R2 values represent the coefficient of determination 

relative to the 1:1 line (solid diagonal lines) of the estimated τ values based on observed data and 

the predicted values for all validation samples using 10-fold cross-validation. Colors indicate the 

proportion (relative frequency) of data points at each pixel. Validation results show that biomes 

with a greater number of sample data generally have larger variability. 
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Fig. S22 

 

Figure S22. Plots of the proportion of observed τ values at top- (a) and subsoil (b) layers in 

validation set falling within probability intervals [accuracy plot (Goovaerts, 2001)]. The 

values on x-axis represent a series of symmetric p-probability intervals (PI) bounded by the (1 −

𝑝)/2 and (1 + 𝑝)/2 quantiles. The values on y-axis represent the probability that the actual 

target values (the observed τ values in validation set) fall into each p-PI. A correct modelling of 

the prediction uncertainty would entail that the proportion of validation points covered in each 

prediction interval approximately equals the value of that PI, for all values of p. The plotted points 

substantially higher than the 1:1 line suggests that the uncertainty was overestimated, and the 

substantially lower values indicate that it was underestimated. 
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Fig. S23 

 

Figure S23. The influences of climate, soil physical and chemical properties, and topography 

factors on the topsoil organic carbon turnover time (τ). Variable importance metrics at the 

global scale and main biomes are calculated by using the random forest model for evaluating the 

effects of these environmental variables on τ at topsoil layer. 
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Fig. S24 

 

Figure S24. The influences of climate, soil physical and chemical properties, and topography 

factors on the subsoil organic carbon turnover time (τ). Variable importance metrics at the 

global scale and main biomes are calculated by using the random forest model for evaluating the 

effects of these environmental variables on τ at subsoil layer. 
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Fig. S25 

 

Figure S25. Relationships of SOC stock and NPP with temperature in tropical and 

extratropical regions. Points are the averaged SOC stock or NPP values at soil sample locations 

within each bin of mean annual temperature (MAT) values (MAT were divided into 20 discreate 

bins). Solid lines or curves (using 2nd order polynomial) represent the results of their regression 

fits. This reflects a uniquely tropical phenomenon contrasting to extratropical regions. The tropical 

plants are often near their thermal optimum for photosynthesis (related to the role of vapor 

pressure deficit [VPD]-induced stomatal closure), and the rising temperature can lead to higher 

respiration rates, thereby potentially reducing the net carbon gain in tropical ecosystems. Whereas 

in extratropical regions, it usually shows that temperature becomes a more critical limiting factor, 

with NPP generally increasing with temperature up to a certain point. 
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Fig. S26 

Figure S26. Sample size in each ecoregion across the globe. The global terrestrial ecoregions 

were classified according to the map provided by Dinerstein et al. (2017). The darkness of colors 

represents the number of samples fall in a certain ecoregion. 
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Fig. S27 

 

Figure S27. The global biome map used in this study. The nine biome types (a) were 

reclassified from the terrestrial biome map provided by Dinerstein et al. (2017). All forests, 

savannahs, grasslands and shrublands were reclassified according to latitude into tropical (-23°S ~ 

23°N), temperate (23° ~ 50°) or boreal (> 50°) categories. Cropland areas were extracted from 

MODIS Land Cover MCD12Q1 product (Friedl and Sulla-Menashe, 2019). Areas with low NPP 

(below 10 gC m-2 yr-1) were removed in this map. The global permafrost and non-permafrost areas 

were classified by using the Circum-Arctic permafrost and ground ice map provided by Brown et 

al. (2002). 
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Supplementary Tables 

Table S1. Overview of datasets used for the calculation of SOC turnover time at sample 

locations. 

Variable name Description Unit Source 

SOC Soil organic carbon content g kg-1 WoSIS (Batjes et al., 2020), NCSCD 

(Hugelius et al., 2013), China soil 

survey (Zhang et al., 2013; Liu et al., 

2022), and SoilGrids (Hengl et al., 

2017; Poggio et al., 2021) 

BD Bulk density g cm−3 

CF Coarse fragments content % 

NPP Net primary production kg m-2 yr-1 
The MOD17A3HGF Version 6.1 

product (Running and Zhao, 2019) 

RSR Root-shoot ratio % 

Harmonized global above and 

belowground biomass carbon density 

maps (Spawn et al., 2020) 

𝑓𝑟𝐷𝑢−𝐷𝑙
 

Fraction of root in a soil layer between 

upper (𝐷𝑢) and lower depth (𝐷𝑙) 
% 

Global root profile database (Schenk 

and Jackson, 2002), RSIP database 

(Tumber‐Dávila et al., 2022), and 

GRooT database (Guerrero-Ramírez 

et al., 2021) 

Note: WoSIS, standardized soil profile data from World Soil Information Service (WoSIS) registered in the ISRIC 

(World Soil Information) data repository; NCSCD, the Northern Circumpolar Soil Carbon Database. SoilGrids, the 

global gridded soil information that uses state-of-the-art machine learning methods to map the spatial distribution 

of soil properties across the globe. 
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Table S2. Details on four categories of environmental variables for predictive mapping of 

SOC turnover time (τ) and analyzing the driving mechanism of τ. 

Variable category Variable name Code Description Unit Source 

Climate Temperature MAT Mean annual temperature ℃ WorldClim (Fick and 

Hijmans, 2017)  Precipitation MAP Mean annual precipitation mm 

Soil physical property Clay CLAY Proportion of clay particles (< 0.002 

mm) in the fine earth fraction 

g kg-1 WoSIS (Batjes et al., 

2020), NCSCD 

(Hugelius et al., 

2013), SoilGrid 

(Hengl et al., 2017; 

Poggio et al., 2021) 

 Sand SAND Proportion of sand particles (> 0.05 mm) 

in the fine earth fraction 

g kg-1 

 Silt SILT Proportion of silt particles (> 0.002 mm 

and < 0.05 mm) in the fine earth fraction 

g kg-1 

Soil chemical property Cation exchange capacity CEC Cation Exchange Capacity of the soil cmolc kg-1 

 C N ratio C:N Organic carbon to total nitrogen ratio - 

 pH pH Soil pH - 

Topography Elevation ELEV Elevation m GTOPO30 (Gesch et 

al., 1999) 

 Slope SLP Slope ° Geomorpho90m 

(Amatulli et al., 

2020) 

 Compound topographic index CTI Compound topographic index - 

 Terrain ruggedness index TRI Terrain ruggedness index - 

 Vector ruggedness measure VRM Vector ruggedness measure - 

 Roughness ROUGH Roughness - 

 Topographic position index TPI Topographic position index - 

 Stream power index SPI Stream power index - 

Note: WorldClim, a database of high spatial resolution global weather and climate data. WoSIS, the standardised 

soil profile data from World Soil Information Service (WoSIS) registered in the ISRIC (World Soil Information) 

data repository; NCSCD, the Northern Circumpolar Soil Carbon Database. SoilGrid, the global gridded soil 

information that uses state-of-the-art machine learning methods to map the spatial distribution of soil properties 

across the globe; GTOPO30, a global digital elevation model (DEM) developed by the U.S. Geological Survey’s 

(USGS) Center for Earth Resources Observation and Science (EROS). Geomorpho90m, a global dataset 

comprising of different geomorphometric features derived from the high-resolution DEM. 
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Table S3. Global cross-validation results for top- and subsoil τ predictions. 

Variable to predict RMSE MAE R2 MEC 

Topsoil τ 14.60 5.72 0.87 0.93 

Subsoil τ 175.05 65.57 0.70 0.83 

Note: RMSE, root mean squared error; MAE, mean absolute error; R2, coefficient of determination; MEC, model 

efficiency coefficient. 
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Table S4. Differences of our data-derived SOC turnover time (τ) and τ from selected Earth 

system models from CMIP6. The values of τ difference report ratio of ESM-derived τ to our 

observation-derived τ in four statistical indices by aggregating the global estimates. 

Model 

τ difference Proportion of area on 

global land with the  

τ difference less than 1 P 2.5 Median P 97.5 SD 

ACCESS-ESM1-5 0.09 0.42 1.80 0.47 92% 

CESM2-WACCM 0.09 0.47 2.44 0.62 89% 

IPSL-CM6A-LR  0.02 0.25 1.15 0.37 97% 

NorESM2-LM 0.08 0.42 2.70 0.63 89% 

Average 0.07 0.39 2.02 0.52 92% 

Note: P 2.5, P 97.5 and SD represent the range of τ difference values between the 2.5th and 97.5th percentiles and 

standard deviation from the aggregation of all grid cells globally. 
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Table S5. Differences of our data-derived SOC turnover time (τ) and τ from selected Earth 

system models from CMIP6 in different biomes. The values of τ difference report ratio of ESM-

derived τ to our observation-derived τ in four statistical indices by aggregating the global 

estimates. 

Biome 

τ difference 

P 2.5 Median P 97.5 SD 

Tropical forests 0.12 0.29 0.70 0.20 

Temperate forests 0.22 0.53 0.90 0.23 

Boreal forests 0.15 0.54 1.71 0.61 

Tropical savannahs and grasslands 0.07 0.43 0.99 0.53 

Temperate grasslands and shrublands 0.20 0.50 1.32 0.43 

Deserts and xeric shrublands 0.06 0.53 3.15 0.96 

Tundra 0.07 0.41 2.39 0.80 

Croplands 0.16 0.46 1.03 0.30 

Wetlands 0.15 0.47 2.34 0.78 

Note: P 2.5, P 97.5 and SD represent the range of τ difference values between the 2.5th and 97.5th percentiles and 

standard deviation from the aggregation of all grid cells globally. 
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Table S6. The estimated mean of the fraction of litterfall in ANPP for each biome. 

Biome Fraction of litterfall in ANPP 

Boreal Forests/Taiga 0.59 

Deserts & Xeric Shrublands 0.90 

Flooded Grasslands & Savannas 0.50 

Mangroves 0.50 

Mediterranean Forests, Woodlands & Scrub 0.41 

Montane Grasslands & Shrublands 0.71 

Temperate Broadleaf & Mixed Forests 0.73 

Temperate Conifer Forests 0.70 

Temperate Grasslands, Savannas & Shrublands 0.65 

Tropical & Subtropical Coniferous Forests 0.70 

Tropical & Subtropical Dry Broadleaf Forests 0.68 

Tropical & Subtropical Grasslands, Savannas & Shrublands 0.59 

Tropical & Subtropical Moist Broadleaf Forests 0.65 

Tundra 0.56 
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Table S7. The estimated mean of the fraction of litterfall in ANPP for forest areas with 

different leaf types. 

Biome Leaf type Fraction of litterfall in ANPP 

Temperate forests Deciduous Broadleaf 0.70 

 Evergreen Broadleaf 0.55 

 Evergreen Needleleaf 0.71 

Tropical forests Deciduous Broadleaf 0.68 

 Evergreen Broadleaf 0.69 

 Evergreen Needleleaf 0.83 
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