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Abstract. The rapid growth of the aviation industry has resulted in aircraft emissions during landing and take-
off (LTO), which have direct and increasingly adverse impacts on air quality and human health. An accurate
and high-resolution LTO emission inventory is crucial for investigating these adverse effects, with the LTO
emission having unique three-dimensional (3D) spatial characteristics and typical hourly temporal variations.
This study integrated the emission calculation and flight trajectory recognition methods to establish a four-
dimensional (4D) aircraft emission inventory dataset of China’s LTO cycle (4D-LTO emission inventory dataset)
from 2019 to 2023. The dataset has a high spatial–temporal resolution (hourly, 0.03°× 0.03°× 34 height lay-
ers) and incorporates calculation emissions accurately. Moreover, the actual taxi-out/taxi-in time for each flight
was determined by a statistical model of taxi time and some aircraft in schedule based on 38 million flights.
Each flight’s climb/approach time was also obtained based on mixing layer height (MLH) and the height–time
nonlinear relationship. Additionally, we calculated the LTO emission for China’s flight, establishing the hourly
emission inventory based on each mode’s running time, emission index, and fuel flow. We obtained the flight
trajectory core of each airport based on measured flight trajectories and the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) to depict the spatial distribution. Then, each flight’s takeoff/landing di-
rection and trajectory were identified from the wind direction and relative departure/arrival airport position. The
findings indicate that during COVID-19, the LTO number in 2020–2022 was reduced to 73.1 %, 77.6 %, and
48.7 % of 2019 levels, respectively. However, by 2023, the LTO number has rapidly bounced back to 95.3 %
of 2019 levels. The recovery rate during daytime (06:00–23:00 UTC+8) was 41.6 % higher than during night-
time (00:00–05:00 UTC+8). The emissions of various pollutants were measured as follows: hydrocarbon (HC),
carbon monoxide (CO), nitrogen oxides (NOx), particular matter (PM), and sulfur dioxide (SO2) are 3.2, 46.1,
62.3, 1.1, and 18.4 Gg. LTO emissions’ horizontal characteristic is the distance along the runway and spread. This
elongated distribution will be hidden if a rough grid is used (e.g., 0.36°× 0.36°) and the emissions are evenly
distributed. Moreover, LTO emission height characteristic decreases with height, and the maximum height varies
with MLH. Emissions above the standard height set by the International Civil Aviation Organization standard
height (∼ 915 m) are not estimated. For example, NOx emissions above 915 m during various months make up
an average of 24.6 % (9.9 %–37.5 %) in the LTO cycle, indicating the emissions are significantly underestimated
when using the ICAO method. Compared with conventional spatial allocation methods, our dataset provides a
more accurate representation of the actual LTO situation in both the horizontal direction and height at different
times. Our 4D-LTO emission inventory dataset and its adaptable methodology are valuable resources for re-
searching temporal and spatial variations, air quality, and health impacts of aircraft emissions in the LTO cycle.
The dataset can be accessed via https://doi.org/10.5281/zenodo.13908440 (Lang et al., 2024).
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1 Introduction

The aviation industry has experienced rapid growth in recent
years. However, aircraft emit pollutants such as NOx , CO,
SO2, HC, and PM during operation; affect air quality; and
have adverse effects on human health and human life (Wang
et al., 2022; Dissanayaka et al., 2023; Pandey et al., 2024).
It has been estimated that 8000–58 000 premature mortalities
each year are attributable to aviation emissions (Barrett et al.,
2010; Eastham and Barrett, 2016; Quadros et al., 2020; East-
ham et al., 2024). Establishing an accurate aircraft pollutant
emission inventory is crucial to investigating the impact of
aircraft emissions on the environment and health.

According to the standard height (∼ 915 m) of the mixed
layer height (MLH), the International Civil Aviation Orga-
nization (ICAO) divides the flight process of the aircraft
into the landing-and-takeoff (LTO) cycle phase and climb–
cruise–descend phase (Kurniawan and Khardi, 2011; Bao et
al., 2023). The LTO cycle occurs near the ground and affects
the air quality near the airport and the health of the surround-
ing residents (Christodoulakis et al., 2022). Therefore, many
studies (Kurniawan and Khardi, 2011; Zhou et al., 2019; Cui
et al., 2022) focused on aircraft emissions during the LTO
cycle. Unlike road, rail, and sea transportation, the flight pro-
cess in the LTO cycle has prominent four-dimensional (4D)
characteristics. For example, aircraft emissions have typical
hourly temporal variations due to the impact of human activ-
ities. Moreover, the aircraft’s unique three-dimensional (3D)
flight trajectory (Koudis et al., 2017) makes it a distinctive
3D linear emission source. As a result, comprehensive spa-
tial and temporal consideration is crucial for accurately cal-
culating the pollutant emissions of aircraft in the LTO cycle.

For calculating pollutant emissions of aircraft in the LTO
cycle, most of the current research is based on the ICAO
standard method (Kurniawan and Khardi, 2011; Cui et al.,
2022). ICAO stipulates that the LTO cycle is divided into
four modes: take off, climb, approach, and taxi, reflecting
that the standard operation time of each mode is 0.7, 2.2, 4,
and 26 min, respectively (ICAO, 2011). However, unchanged
running time is inconsistent with the actual aircraft operation
process (Xu et al., 2020) because the running time of dif-
ferent modes in the LTO cycle is influenced by runway con-
gestion (Badrinath et al., 2020) and MLH variations (Peace
et al., 2006; Nahlik et al., 2016). Therefore, relying on the
ICAO method may lead to high uncertainties. An alterna-
tive approach is to use accurate flight data, such as ADS-B
data (Klenner et al., 2022; Zhang et al., 2022), which can
significantly improve the accuracy of pollutant emission cal-
culations. However, this method still has problems, such as
difficulty obtaining actual aircraft data and limited applica-
tion range. Therefore, multi-year hourly aircraft emission
datasets that accurately reflect reality are still lacking.

In air quality simulation, addressing the issue of pollu-
tant emission inventory in the LTO cycle of aircraft in the
spatial dimension is a significant challenge. Previous stud-
ies have primarily focused on the environmental impact of
pollutant emissions from aircraft during the LTO cycle (Yim
et al., 2015; Yang et al., 2018; Bo et al., 2019). However,
most of these studies have allocated these emissions to the
grid where the airports are without considering the altitude,
longitude, and latitude of the emission locations. While this
allocation method is suitable in rough-grid settings, using a
finer grid to reflect aircraft emissions’ environmental impact
more accurately leads to more significant errors (Kumar et
al., 1994; Arunachalam et al., 2011; Woody and Arunacha-
lam, 2013). Therefore, considering the actual flight charac-
teristics of aircraft is vital to obtaining more realistic spatial
characteristics of aircraft pollutant emissions and improve
the accuracy of air quality simulation. The impact of aircraft
emission heights and horizontal position distribution modes
on air quality varies widely, as demonstrated by various stud-
ies (Unal et al., 2005; Wolfe et al., 2016; Woody et al., 2016;
Lawal et al., 2022). Zhang et al. (2023) conducted air quality
simulations based on actual flight trajectories in the ADS-
B data for typical regions. However, this method is limited
by the availability of flights with ADS-B data and cannot be
widely applied (Quadros, 2022). Consequently, there is still
a lack of aircraft 4D emission inventory datasets in the LTO
cycle that accurately reflect actual 3D flight trajectories and
their dynamic nature over time.

As the world’s second-largest aviation market (CAAC,
2021b), China contributes 13 % of global flight operations
(Graver et al., 2020) and accounts for 7.8 % to 23.5 % of
global aviation-related pollutant and carbon emissions (Ma
et al., 2024; Teoh et al., 2024). Improving the accuracy of
aviation emission estimates and enhancing temporal–spatial
resolution in China can not only promote the green devel-
opment of the Chinese aviation industry but also exert a far-
reaching impact of global aircraft pollution mitigation. The
period 2019–2023 is a unique period of the COVID-19 out-
break. Therefore, we have developed a 4D aircraft emission
inventory (4D-LTO emission inventory dataset) for main-
land China’s takeoff and landing (LTO) cycle from 2019 to
2023. This inventory provides detailed and accurate emission
calculations and flight trajectory recognition. It offers high
spatial and temporal resolution, with a horizontal resolution
of 0.03°× 0.03° and 34 layers of height resolution from 0
to 15 668 m. Our dataset and methodology are valuable re-
sources for studying the temporal and spatial variations, air
quality, and health impacts of aircraft emissions during the
LTO cycle.
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2 Methodology and data

Figure 1 illustrates the process of establishing the 4D-LTO
emission inventory dataset, including the methods, the pri-
mary dataset, and the final output information. We developed
the 4D-LTO emission inventory dataset in four steps:

1. accurately estimating the pollutant emissions of aircraft
in the LTO cycle,

2. identifying the 3D flight trajectory of aircraft in the LTO
cycle,

3. applying the spatial and temporal allocation method of
the 4D-LTO emission inventory dataset,

4. comparing with the conventional spatial allocation
method.

The 4D-LTO emission inventory dataset is a grid emis-
sion inventory dataset established by combining the aircraft
emission calculation method and the flight trajectory iden-
tification method for the LTO cycle (described in Sect. 2.1
and 2.2.). The spatial–temporal allocation method is intro-
duced in Sect. 2.3, and the comparison method is described
in Sect. 2.4.

2.1 Aircraft LTO cycle emission calculation

The emission index, fuel flow, and running time of differ-
ent flight modes are used to estimate the civil aircraft emis-
sions in China based on the ICAO method (Kurniawan and
Khardi, 2011; Bao et al., 2023). The calculation method is as
in Eq. (1):

Ej =
∑
l

∑
m

EIl,m,j ×FFl,m× Tl,m, (1)

where Ej is the emission (g) of pollutant j (including NOx ,
HC, SO2, CO, and PM) and EIl,m is the emission index
(g kg−1) in m mode (take off, climb, approach, and taxi) of
LTO l. FFl,m,j is the fuel flow (kg s−1) of pollutant j in m
mode of LTO l, and Tl,m is the running time in m mode of
LTO l.

The actual parameters of each flight should be used to cal-
culate the emissions. However, complete data cannot be ob-
tained due to problems such as incomplete data recording and
recording errors. As a result, we have used different methods
to approach the emission index, fuel flow (Sect. 2.1.1), and
running time (Sect. 2.1.2 and 2.1.3) in Eq. (1) in the actual
situation and estimate more accurate emissions.

2.1.1 Aircraft–engine matching

The aircraft’s emission factor and fuel flow depend on its en-
gine type, and the same aircraft type can be equipped with

different types of engines. Thus, we collected as much de-
tailed engine configuration information as possible for vari-
ous aircraft types to improve the accuracy of the calculations.
The matching method is divided into three steps:

1. We counted all aircraft types departing from or arriving
in China from 2019 to 2023 using the flight information
dataset from VariFlight and querying the aircraft type
corresponding to each aircraft code.

2. We carefully counted China’s airlines, civil aviation
fleet in service information, point-type statistical engine
number, type, and proportion through a comprehensive
search in flight-associated dynamic query (VariFlight,
2024) and Civil Aviation Leisure Station (CALS, 2024).

3. We weighed the EI and FF of each aircraft type to obtain
the value (Yang et al., 2018) using the information of all
aircraft types and the proportion information of differ-
ent engine types for each aircraft type combined with
the emission index (EI) and fuel flow (FF) data of each
engine type given in the ICAO Aircraft Engine Emis-
sions Databank (EEDB, 2024).

The EI of an aircraft type in different modes was calculated
as Eq. (2):

EIi,m,j = ni ×
∑
k

EIk,m,j ×Pi,k, (2)

where EIi,m,j is the emission index of aircraft type i in mode
m (g kg−1) of pollutant j (NOx , HC, and CO), ni is the num-
ber of engines fitted to aircraft type i, EIk,m,j is the emission
index of engine k in modem of pollutant j (g kg−1), and Pi,k
is the proportion of aircraft type i equipped with engine k.

The FF of an aircraft type in different modes was estimated
as Eq. (3).

FFi,m = ni ×
∑
k

FFk,m×Pi,k, (3)

where FFi,m is the fuel flow of aircraft type i in mode m
(kg s−1), FFk,m is the fuel flow of engine k in mode m
(kg s−1), and definitions of other parameters are similar to
those used in Eq. (3).

In addition, the first-order approximation 3.0 (FOA3.0)
(Wayson et al., 2009) method was used to recalculate the EI
of PM, which is not included in EEDB. The emission factor
of SO2 is related to the sulfur content of jet fuel, so we used
3.868 g kg−1 as the emission factor of SO2 (GB6537, 2018).
In summary, the references for the EI for different pollutants
are shown in Table S1 in the Supplement.

2.1.2 Climb and approach time calculation

The daily maximum mixing layer height (MLH) serves as
a key parameter for determining climb and approach modes
of flight operations and varies with region and time. Given
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Figure 1. Schematic of the method used to develop a high-spatial- and high-temporal-resolution aircraft 4D emission inventory in the LTO
cycle. It includes a detailed pollutant emission calculation method, flight trajectory recognition method (the horizontal recognition method
takes the departure process as an example), and LTO cycle emission inventory allocation method. Publisher’s remark: please note that the
above figure contains disputed territories.

data accessibility constraints, we substituted daily maximum
MLH with the daily maximum planetary boundary layer
height (PBLH), which shares analogous dynamic character-
istics. The three steps for calculating climb and approach
times are as follows.

Different airport daily maximum PBLHs in 2019–2023
were obtained based on the Weather Research and Forecast-
ing (WRF) model. The model parameter settings were de-
scribed in our previous study (Wen et al., 2023).

The relationship between flight time and height was estab-
lished. In our previous study (Zhou et al., 2019), the relation-
ship between different airports in different months under the
approach and climb mode was built based on Aircraft Meteo-
rological Data Relay (AMDAR) data. AMDAR includes the
aircraft’s position (longitude, latitude, and altitude), speed,
and associated meteorological parameters, which were col-
lected by the aircraft navigation system. The recording inter-
vals are set at 6 s for the first 60 s of the climb phase followed
by once every 35 s thereafter and once every 60 s during the
descent phase. The form of the relationship for climb and ap-

proach mode can be found in Sect. S1 in the Supplement. The
R2 (p < 0.001) of the functional relationships of the climb
and approach mode was above 0.93.

Each flight’s actual climb and approach times from 2019
to 2023 were calculated based on the relationship between
climb and approach mode mentioned above and the daily
maximum PBLH at different airport.

2.1.3 Taxi-in and taxi-out time calculation

ICAO specifies the taxi mode’s running time (taxi out 19 min;
taxi in 7 min). However, the actual taxi time varies based
on airport flight schedules during actual operation, and us-
ing a fixed time can lead to emission calculation uncertainty.
Therefore, the actual taxi time data were used to calculate the
aircraft’s taxi emissions accurately. The actual taxi time data
were obtained from VariFlight based on the information of
the ADS-B system, which is recognized by researchers as a
reliable data source (Klenner et al., 2022; Zhang et al., 2022;
Teoh et al., 2024).

Earth Syst. Sci. Data, 17, 2489–2506, 2025 https://doi.org/10.5194/essd-17-2489-2025
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Since not all aircraft record the actual taxi time and the
actual taxi time is not publicly available (Table S2), this
study collects all available taxi time data, with coverage rates
ranging from 47.9 % to 67.0 % during 2019–2023, which are
summarized in Table S2. They can represent the taxiing con-
ditions of aircraft at different airports with different operat-
ing scales. The missing taxi time was supplemented based on
the hourly airport difference relationship model between taxi
time and aircraft number of schedules. The functional rela-
tionship between the number of aircraft on schedule and the
taxi time is as follows:

Ttaxi =1T ×Ns+ T0, (4)

1T = u · evN , (5)

T0 = o · e
dN , (6)

where Ttaxi is the taxi-out (in) time of each flight (s) and 1T
is an increase in taxi time per Ns (s per aircraft). T0 is the ini-
tial taxi time (s), andNs is the number of aircraft on schedule
in an hour. N is the annual average aircraft departure/arrival
number for each hour; u, v, o, and d are the airport-specific
constants.

The hourly airport difference relationship model between
Ttaxi and Ns at different airports was used to update the
database from 2019 to 2023. The performance of the taxi
time calculating model for different airports is shown in
Fig. S1 and Table S3, taking 2023 as an example. In addi-
tion, in this study, the Beijing Capital International Airport
(PEK) is chosen as a case to test the performance of taxi time
model (Fig. 2a and b) in diverse flight situations (e.g., high-
density scenarios), due to the centralized terminal layout and
relatively frequent ground congestion (Liu et al., 2024). Tak-
ing 12:00 UTC+8 from 2019 to 2023 for the Beijing Cap-
ital International Airport (PEK) as an example, Fig. 2a, b
represent the comparative verification of function relation-
ships for taxi-in and taxi-out modes in different years. We
observed a strong correlation between taxi time and the num-
ber of scheduled aircraft, regardless of whether it is taxi in or
taxi out. The significance level (p < 0.001) indicates a strong
relationship. The R2 for taxi-out mode ranges from 0.87 to
0.98, and for the taxi-in mode, it ranges from 0.96 to 0.99.
The model has a good effect on taxi-in or taxi-out mode at
different years, indicating that the model reflects the real taxi
time variation.

If the relationship between taxiing time and the number
of aircraft scheduled cannot be fitted to a certain time due
to lack of records, Table S4 presents the exponential rela-
tionship of 1T and T0 at different years. In addition, Fig. 2
also provides the 5-year exponential relationship of 1T and
T0, which could be a reference for the other study with no
fitting data. We also calculated the coefficient of variation
(CV; 30.4 % for taxi-out and 10.4 % for taxi-in operations)
between the 1T and T0 estimation result from the 5-year
model and the specific-year model for a representative flight
number of 20 (common across all study years). Compared

with the actual taxi time, the estimation error in the model re-
sult (11.4 % for taxi-in mode and 20.4 % for taxi-out mode)
is lower than the result based on the fixed ICAO standard
taxi time (27.8 % for taxi-in mode and 22.0 % for taxi-out
mode). 1T and T0 estimation models are only used in the
situation when the 1T and T0 cannot be counted due to a
lack of records.

2.2 Aircraft emission 3D trajectory identification

This study is divided into two steps to identify the 3D spatial
location of aircraft emissions in China during 2019–2023:
(1) the flight altitude identification (Sect. 2.1.1) and (2) each
flight’s horizontal trajectory identification (Sect. 2.1.2).

2.2.1 Flight altitude identification

The relationship between flight height and time (Zhou et al.,
2019), which is introduced in Sect. 2.1.2, was used to iden-
tify the altitude at different times for each LTO cycle. The
daily maximum PBLH was used to identify the maximum
height of each LTO cycle at different airports. When the taxi
in and out are 0 m, the takeoff is from 0 to 152 m (ICAO).
The climb is from 152 m to PBLH, and the approach is from
PBLH to 0 m. By integrating the altitude information with
the emission inventory data established in Sect. 2.1, we were
able to further vertically stratify the pollutant emission in-
ventory during the LTO cycle.

2.2.2 Flight horizontal trajectory identification

We established the flight trajectory database of each airport
in China based on the density-based spatial clustering of ap-
plications with noise (DBSCAN) algorithm. Moreover, each
flight’s trajectory was identified based on the relative posi-
tion of the departure airport, the arrival airport, and the wind
direction. The clustering method is used to screen out flight
trajectories with similar characteristics from a large amount
of actual flight data. This approach helps determine the grid
location of aircraft emissions (Gariel et al., 2011; Bombelli et
al., 2017). DBSCAN is a density-based clustering algorithm
widely used in machine learning and data mining (Chen et
al., 2021b; Tekin and Sarı, 2024). For the transportation in-
dustry, it is used for the identification research of road traf-
fic, ship, and aircraft trajectories (Gui et al., 2021; Deng et
al., 2023; Li et al., 2023). The DBSCAN algorithm belongs
to unsupervised learning, and the initial value setting does
not significantly affect the clustering results (Ventorim et al.,
2021). As a result, the DBSCAN algorithm is well suited for
flight trajectory clustering processing with unclear informa-
tion, such as the number of clusters and distribution charac-
teristics (Murça et al., 2018; Giovanni et al., 2024).

Before clustering, flight trajectory data belonging to the
LTO cycle should be extracted from a vast amount of infor-
mation in AMDAR. First, the climb and approach modes in
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Figure 2. The linear function relationship between taxi time (T ) and the number of aircraft on the schedule at each hour (Ns), the exponential
function relationship between 1T and T0, and the annual average departure aircraft number for each hour (N ). (a) Taxi out. (b) Taxi in.

the LTO cycle are screened according to the ascending and
descending symbols in AMDAR information. Second, each
flight trajectory is divided based on airport ownership ac-
cording to the airport’s location. Finally, the horizontal posi-
tion information (time, longitude, and latitude) of each flight
trajectory in the climb and approach modes of different air-
ports is obtained as the input information for flight trajectory
clustering.

The DBSCAN algorithm relies on two input parameters,
the minimum number of samples (MinPts) and the distance
threshold (ε), to cluster the data space based on three basic
concepts: directly density-reachable, density-reachable, and
density-connected (Sander et al., 1998). MinPts determines
the minimum number of points required to form a dense re-
gion, while ε specifies the maximum distance between two
points to be considered to be within the same neighborhood.

DBSCAN is good at calculating the distance between
points, but it is difficult for DBSCAN to process the flight
trajectory with the time attribute in this study (Chen et al.,
2021a). Therefore, we use the Euclidean norm to compute
the distance between the two sets of flight trajectories. The
premise of using the Euclidean norm is to keep the time in-
tervals of each set of flight trajectories the same. However,
the time interval of each flight trajectory sequence is not
the same because of each flight’s trajectory difference and
recording delay. As a result, we conducted unified process-
ing of each departure and arrival trajectory using the resam-
pling method. Sampling points that are too low and too high
make the location feature information unclear and increase
the computational complexity of clustering processing, re-
spectively. Based on all actual flight data from 2019–2023,
during the LTO cycle, departure was within 480 s and arrival
was within 1200 s. To comprehensively consider the record-
ing intervals of AMDAR data, the uniformity across depar-

ture and arrival phases, and computational complexity, we set
the sampling points of each trajectory to 25.

MinPts selection was performed as follows: since the aver-
age number of sample trajectories varies in different airports,
the MinPts must be determined separately for various air-
ports. For each airport, the MinPts values are, respectively,
taken to be in the range of 6 to 10, and the clustering effect is
observed, from which the appropriate MinPts values are se-
lected. ε selection was performed as follows: the method k-
distance (Garg et al., 2020) graph method was used to select
the appropriate ε. The k-distance curve first calculates the
distance between each trajectory in the data and the trajectory
with the nearest k and then arranges the k-distances of all tra-
jectories in descending order and draws the curve. Moreover,
k values for different airports are the same as MinPts, and
the ε values are based on the apparent inflection point in the
k-distance curve.

Figure S2 shows the overall performance of the trajectory
clustering model for different airports. In addition, in this
study, the Shanghai Pudong International Airport (PVG) is
chosen as a case study to test the performance of trajectory
cluster (Fig. 3) under the normal flight trajectory scenario as
well as the deviations in flight trajectories due to the cross-
winds and typhoons, which is the challenge for the robust-
ness of the trajectory cluster algorithm (Wang et al., 2017;
Xu et al., 2020). This study evaluates the core flight trajec-
tory of departure and arrival since the flight trajectory is a
series of latitude and longitude information with time series
characteristics. This approach uses the DBSCAN clustering
method by splitting the flight trajectory of departure and ar-
rival into two directions, latitude and longitude, considering
the three indices of R and MAE. In longitude, the correla-
tion between identified core trajectories and actual trajecto-
ries is more significant than 0.80 (0.865–0.992 for departure;
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0.811–0.997 for arrival). In latitude, the correlation between
identified core trajectories and actual trajectories is more sig-
nificant than 0.94 (0.947–0.995 for departure; 0.941–0.992
for arrival). The identified core trajectory is consistent with
the actual flight trajectory, indicating that the core trajectory
can reflect the actual flight situation. In longitude, the MAE
between identified core trajectories and actual trajectories is
less than 0.05° (0.01–0.02° for departure; 0.02–0.05° for ar-
rival). In latitude, the MAE between identified core trajecto-
ries and actual trajectories is less than 0.05° (0.01–0.02° for
departure; 0.02–0.05° for arrival). Although the clustering re-
sults are uncertain, they can still provide vital information for
the 3D grid location of aircraft emissions.

The airports with multiple runways assign a suitable run-
way for each flight based on the relative location of the depar-
ture and arrival airport (Yin et al., 2022; Sekine et al., 2023).
This decision is made considering the need for aircraft to op-
erate against the wind (CMA, 2015; CAACNEWS, 2019)
as per the Chinese Meteorological Administration. There-
fore, these flight characteristics were combined to identify
the horizontal trajectory of each flight in the LTO cycle (hor-
izontal position recognition in Fig. 1). First, all the flight tra-
jectory clusters corresponding to the departure/arrival airport
are selected from the flight trajectory database obtained by
the DBSCAN method. Second, trajectories from the runway
are chosen to be close to the target airport. Third, the aircraft
takes off against the wind principle, selecting trajectories and
the side of the runway based on the wind direction informa-
tion at the moment of the departure from/arrival at the airport.
Finally, the final trajectory is selected by the target direction
being the opposite of or the same as the takeoff direction.

2.3 Temporal and spatial identification of 4D emission
inventory

Gridded emission information is often required for air qual-
ity and climate simulation models or refined prevention and
control of pollutants. Therefore, the obtained aircraft pol-
lutant emission inventory of the LTO cycle in China dur-
ing 2019–2023 was processed into hourly 3D-grid pollutant
emission data with a horizontal resolution of 0.03°× 0.03°
and a height resolution of 34 layers from 0 to 15 668 m.

2.3.1 Aircraft emission temporal allocation

The 4D-LTO emission inventory dataset has an hourly tem-
poral resolution. According to Eq. (1), the emissions of each
pollutant in different modes of each LTO cycle are calcu-
lated separately, and the emission for each hour of the LTO
cycle at different airports is the sum of the pollutant emis-
sions generated by all departure and arrival at that airport
during that hour. In addition, the daily, monthly, and yearly
total emissions are the sum of all LTO cycles of that day,
month, and year to further analyze the temporal variation in
pollutant emission.

2.3.2 Aircraft emission spatial allocation

For the horizontal resolution, most airport runways are ap-
proximately 3–4 km (CAAC, 2021a) in length, and certain
pollutants (such as CO) are predominantly emitted during
taxiing, i.e., on the runway. Overall, 0.03°× 0.03° is capa-
ble of reflecting the horizontal distribution characteristics
of aircraft emissions. In addition, 0.03°× 0.03° is also a
common resolution for air quality models. Therefore, the
horizontal resolution of the 4D-LTO emission inventory is
0.03°× 0.03°, with a latitude and longitude range of 3.40–
53.56° N and 73.44–135.09° E, respectively.

For the altitude resolution, while ICAO defines the LTO
cycle with a fixed mixing layer height (915 m), in real-
ity, the mixing layer height varies significantly with re-
gion and time, leading to variations in the altitude range
of the LTO cycle. Therefore, to better reflect the ver-
tical distribution of aircraft emissions above 915 m dur-
ing the LTO cycle, this study sets the altitude range to
from 0 to 15 668 m. In addition, to ensure that the emis-
sion inventory can be effectively used in air quality mod-
els, this study uses the air quality model commonly used
35-layer sigma stratification strategy (Wolfe et al., 2016).
Therefore, the altitude resolution was divided into 34 lay-
ers from 0 to 15 668 m (0.0–38.3, 38.3–76.7, 76.7–115.3,
115.3–154, 154–231.8, 231.8–310.3, 310.3–389.3, 389.3–
469, 469–549.3, 549.3–630.3, 630.3–711.9, 711.9–794.2,
794.2–960.7, 960.7–1130.1, 1130.1–1302.3, 1302.3–1477.6,
1477.6–1656.0, 1656.0–1929.7, 1929.7–2211.1, 2211.1–
2599.3, 2599.3–3107.2, 3107.2–3643.1, 3643.1–4210.5,
4210.5–4813.9, 4813.9–5458.5, 5458.5–6151.2, 6151.2–
6900.4, 6900.4–7717.4, 7717.4–8617.3, 8617.3–9621.2,
9621.2–10 759.7, 10 759.7–12 080.6, 12 080.6–13 664.8, and
13 664.8–15 668 m).

The 4D-LTO emission inventory dataset was processed by
first identifying the emission information of each flight into
a 3D grid using latitude, longitude, and altitude information.
Then, the emissions of all flights within the same hour were
summarized.

2.4 Comparison of our dataset with the previous dataset

Our dataset was compared with the spatial allocation meth-
ods commonly used in previous studies. (1) Other studies
typically assign aircraft emissions in the LTO cycle accord-
ing to the standard altitude for each mode as defined by ICAO
(Mokalled et al., 2018; Bo et al., 2019; Wang et al., 2023;
Zhang et al., 2023). (2) The conventional horizontal distribu-
tion method for aircraft emissions in the LTO cycle assumes
that aircraft emissions are radially distributed (Lawal et al.,
2022). The Federal Aviation Administration (FAA, 2024)
recommended the standard climb rate of 200 ft per nautical
mile. Therefore, the standard climb rate and ICAO standard
altitude determine the horizontal distribution of aircraft emis-
sions around the airport. The running time, altitude, and hor-
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Figure 3. (a) Departure flight trajectories of different clusters. (b) Consistency in longitude of departure between the core and actual flight
trajectories. (c) Consistency in latitude of departure between the core and actual flight trajectories. (d) Arrival flight trajectories of different
clusters. (e) Consistency in the longitude of arrival between the core and actual flight trajectories. (f) Consistency in the latitude of arrival
between the core and actual flight trajectories.

Table 1. The running time and altitude range of each mode defined
by ICAO.

Mode Running Altitude Distance to
time (s) range (m) airport (km)

Takeoff 42 0–152 0–5
Climb 132 152–915 5–28
Approach 240 0–915 0–28
Taxi in 420 0 –
Taxi out 1140 0 –

izontal range of each mode defined by ICAO are shown in
Table 1.

2.5 Uncertainty calculation

The uncertainty of the 4D-LTO emission inventory dataset
is mainly divided into emission calculation uncertainty and
spatial location identification uncertainty. This study as-
sumes that the uncertainty in all input parameters follows a
normal distribution.

When calculating the emission uncertainty, this study
comprehensively considers the uncertainty in EI, FF, and T .
The EI and FF are weighted based on the engine data from
the EEDB and the engine proportion data for different air-
craft types. Therefore, the standard deviation of EI or FF was
calculated using Eq. (7):

σ =

√∑
k

(xk − x̄)2×Pk, (7)

where σ represents the standard deviation of EI or FF, k rep-
resents the engine type, xk represents the EI or FF value of
engine k, x̄ represents the weighted average of EF or FF, and
Pk represents the proportion of engine k.

The climb and approach time is obtained using the re-
lationship between flight time and flight height (Zhou et
al.,2019). Therefore, the standard deviation of the climb and
approach time is the combination of the standard deviation
of function fitting parameters a, b, and c. The taxi-in/taxi-
out time is calculated using Eq. (4). Therefore, the standard
deviation of the taxi-in and taxi-out time is the combination
of the standard deviation of a function fitting parameter 1T
and T0. This study uses the Monte Carlo sampling method to
obtain the 95 % prediction interval of the emission for differ-
ent pollutants with 20 000 samples.

The spatial uncertainty during the LTO cycle includes the
uncertainty in horizontal and altitude positions. The standard
deviation of the horizontal position is calculated by the error
distribution between the flight trajectory clustering result and
the actual flight trajectory. The standard deviation of the alti-
tude position is the combination of the standard deviation of
function fitting parameters a, b, and c. This study employs
the Monte Carlo method to quantitatively assess the uncer-
tainty of spatial location identification for each hour, with
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uncertainty ranges derived from 20 000 Monte Carlo simula-
tions at a 95 % prediction interval.

3 Results and discussion

3.1 Total aircraft emissions in the LTO cycle

In 2023, the total emissions of five types of pollutants in the
LTO cycle of aircraft in China are as follows: HC is 3.2 Gg,
CO is 46.1 Gg, NOx is 62.3 Gg, PM is 1.1 Gg, and SO2 is
18.4 Gg, as shown in Fig. 4a. The annual emission of dif-
ferent pollutants in 2023 was 82.9 % (HC)–94.1 % (NOx)
in 2019. However, before 2022 (the last year impacted by
COVID-19 and the most affected year), emissions of vari-
ous pollutants averaged 34.7 %–42.8 % of 2019. At the end
of COVID-19, the 2023 recovery in aircraft emissions shows
that the pandemic did not have an irreversible impact on air-
craft activities and that emissions from aircraft activity will
continue to grow (Teoh et al., 2024). Emissions of pollutants
from aircraft, such as NOx and PM2.5, are known to cause
respiratory and cardiovascular issues (Boningari and Smirni-
otis, 2016; Hu et al., 2022; Hou et al., 2024). Therefore, it is
essential to pay attention to the growing trend of aircraft ac-
tivities in order to anticipate and address their potential health
impacts.

Figure 4a shows the main emission contribution of HC
and CO came from taxi mode (94.6 % for HC; 91.5 % for
CO) because HC and CO are mainly produced by incom-
plete fuel combustion, taking 2023 as an example. A large
amount of HC and CO is created because the engine’s thrust
in taxi mode is minimal and the operation time is long (EPA,
1981). The climb is the main NOx emission stage (42.1 %).
The takeoff with the shortest running time contributes to
the second-largest NOx emission (25.7 %). The taxi with the
longest running time contributes the most minor NOx emis-
sion of 12.4 %, indicating that the emission factor of NOx
is highly correlated with the aircraft engine’s thrust (Stet-
tler et al., 2011). Although the engine runs for a long time,
the NOx emission during taxi mode with a slight thrust is
still lower than during the takeoff stage, with the engine run-
ning for a short time but at nearly full thrust. For PM and
SO2, the emission contribution ratio is similar to the running
time of each mode, and the taxi mode with the longest run-
ning time contributes 33.1 % of PM and 35.1 % of SO2. The
climb mode contributes 28.4 % of PM and 26.6 % of SO2,
the approach mode contributes 25.7 % of PM and 26.4 % of
SO2, and the takeoff mode with the shortest running time
contributes 12.7 % of PM and 11.9 % of SO2. From 2019 to
2023, among various aircraft types, B738, A320, and A321
were the top three pollutant emissions (Fig. 4b). The top three
aircraft types contributed 64.1 % of NOx emissions in 2019,
taking NOx emissions as an example. However, during the
COVID-19 period (2020–2022), the contribution of the top
three aircraft types reached 70.3 %–70.9 %. At the end of the
pandemic impact in 2023, the contribution of the top three

aircraft types reversed to the 2019 level (55.0 %). During the
COVID-19 pandemic, many aircraft types ceased operation,
including F50, E145, other regional aircraft, A306, A340,
and other wide-body aircraft types, increasing the proportion
of the first three types. As the impact of COVID-19 gradually
diminished, the discontinued models resumed operation, and
the emission proportion of the first three models returned to
normal.

3.2 Temporal variation in aircraft emissions in the LTO
cycle

Figure 5a shows the changes in aircraft emissions during the
LTO cycle from 2019 to 2023, encompassing the period be-
fore, during, and after the COVID-19 pandemic. The base-
line year for analysis is 2019, unaffected by COVID-19, and
represents regular aircraft activity.

As can be seen from Fig. 5a and Table S5, from 20 January
to 13 February 2020, aircraft activity rapidly dropped to the
lowest point owing to the impact of COVID-19, showing that
the number of LTO on 13 February 2020, was 84.8 % lower
than the same period in 2019. In the following months, air-
craft activity slowly recovered, returning to the 19-year level
in October. As the COVID-19 situation in China entered a re-
current period, from 2021 to the beginning of 2023, the activ-
ity of aircraft fluctuated, reflecting five low points (12 Febru-
ary 2021, 12 August 2021, 9 November 2021, 4 April 2022,
and 19 November 2022). As the effects of COVID-19 faded
from early 2023 on, aircraft activity gradually returned to
2019 levels. When the impact of COVID-19 ended, abnormal
growth is noted in aircraft activity. In May 2021, the num-
ber of aircraft LTO increased rapidly compared to the same
period in 2019. However, during the same period in 2019,
aircraft activity showed a downward trend. From July to Oc-
tober 2023, the number of LTOs exceeded the same period in
2019. This phenomenon occurs because people with unful-
filled travel needs are inclined to engage in revenge tourism
following prolonged COVID-19 lockdowns, resulting in in-
creased aircraft activity and a sudden increase in emissions
in the short term.

Based on Fig. 5b, the emission of various pollutants
in 2019–2023 varies slightly in hours, with higher day-
time (06:00–23:00 UTC+8) and low nighttime (00:00–
05:00 UTC+8) values, with the minimum at 04:00 UTC+8
and the maximum at 13:00 UTC+8. The most significant dif-
ference in the number of LTOs and the emission of pollutants
between each hour over the 5 years occurred at 04:00 and
13:00 UTC+8 in 2022 (251 % of LTO, 230 % of HC, 244 %
of CO, 229 % of NOx , 249 % of PM, and 234 % of SO2). The
difference in pollutant emissions between 2019 and 2023 at
each hour shows recovery in 2023. The proportion of LTO
numbers that recovered to 2019 levels in the nighttime was
34.1 % lower than during the daytime. Additionally, the re-
covery rate of the five pollutants’ emissions in the nighttime
was 39.1 %–44.4 % lower than in the daytime, indicating that
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Figure 4. (a) Total aircraft pollutant emissions of the LTO cycle from 2019 to 2023. (b) Proportion of NOx emissions in different aircraft
types from 2019 to 2023.

Figure 5. (a) Daily variation in pollutant emissions and the number of LTO cycles from 2019 to 2023. (b) Annual hourly variation in
pollutant emissions and the number of LTO cycles from 2019 to 2023.

resumed aircraft activity was significantly better during the
day than at night.

3.3 4D characteristics of aircraft emissions in the LTO
cycle

During the LTO cycle, HC and CO were predominantly emit-
ted during taxi mode (Yang et al., 2018). Consequently, HC
and CO emissions are distributed in the first layer of the grid
where the runway is located. NOx is an important contribu-
tor to overall aircraft emissions and has a significant impact
on air quality (Zhang et al., 2023). Furthermore, the spatial
distribution of PM and SO2 emissions from aircraft is similar
to that of NOx . In summary, this study mainly analyzes the
spatial distribution of NOx emissions.

This study calculates hourly aircraft emissions in LTO cy-
cles at various airports in China during 2019–2023 based on
the combining emission calculation method and flight tra-
jectory recognition method, establishing a 4D aircraft NOx
emission inventory (hourly, 0.03°× 0.03°× 34) of the LTO
cycle in China (Figs. 6 and 7).

Figure 6a signifies the horizontal distribution of yearly
NOx emissions in prefecture-level cities and airports dur-
ing 2019–2023. Compared with 2019, emissions in most re-
gions affected by COVID-19 decreased significantly during
2020–2022. Notably, aircraft emissions of prefecture-level
cities experienced an average reduction of 43.1 % in 2022. As
the COVID-19 impact ended in 2023, aircraft emissions of
prefecture-level cities recovered, with an average increase of
5.07 %. Although the aircraft emissions of the LTO cycle in
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prefecture-level cities fluctuated from 2019 to 2023, airport
emissions in Beijing, Shanghai, Guangzhou, and Chengdu
were the top four, accounting for 24.4 % (2022)–32.2 %
(2023) of national emissions.

Between 2019 and 2023, the number of airports in China
increased from 237 to 257 at an average annual growth of
5. However, the newly operated airports significantly in-
creased aircraft emissions in a prefecture-level cities. For
example, due to the operation of the Chengdu Tianfu Inter-
national Airport (TFU), aircraft NOx emissions in Chengdu
(4.2 Gg) were 32.3 % in 2023, which is higher than in 2019.
In addition, Chengdu’s aircraft NOx emissions were 8.4 %–
14.3 % higher than Guangzhou’s during 2021–2023, while
in 2019, Chengdu’s NOx emissions were 21.5 % lower than
Guangzhou’s when the TFU airport did not start operations.
The newly operated airports can also affect the original air-
port in a prefecture-level cities. Taking airports in Beijing
as an example, PEK airport’s annual aircraft NOx emis-
sions (8.1 Gg) were 101 %, ranked second in 2019, which
is higher than those of CAN airport (4.0 Gg). However, with
PKX airport’s operation, PEK airport emissions significantly
decreased. In 2023, PEK airport’s emissions recovered to
54.7 % of the original, while the total emissions of Beijing
recovered to 81.4 %. In addition, emissions from the PEK air-
port in 2023 were only 15.7 % higher than those from CAN,
indicating that the newly operated PKX airport has reduced
the emission pressure on PEK airport.

Taking airports in Beijing and surrounding areas in Jan-
uary 2023 as an example, Fig. 6b demonstrates the grid hor-
izontal distribution of aircraft NOx emissions in the LTO
cycle. The horizontal distribution characteristics of aircraft
emissions in the LTO cycle are influenced by the distance
along the runway and how they spread, indicating that emis-
sions are concentrated in the direction of the runway near
the airport. With the increase in flight distance, the emissions
caused by aircraft are dispersed. Aircraft emissions during
the LTO cycle are widely distributed around the airport and
not even represented by a rough grid (e.g., 0.36°× 0.36°).
The elongated distribution characteristics of aircraft emis-
sions indicate that evenly allocating emissions around the
airport will cause significant uncertainty. Figure 6c shows
the differences in aircraft emissions at various airports and
times between 00:00 and 20:00 UTC+8 on 3 January 2023 at
a 4 h interval. This phenomenon indicates that the horizontal
distribution characteristics of aircraft emissions vary signif-
icantly at different hours and airports. As a result, the re-
fined aircraft emission inventory on the LTO cycle conforms
to the time-by-hour spatial distribution characteristics of air-
craft, better reflecting the actual situation of aircraft emis-
sions, which is of great significance for accurately assessing
aircraft environmental impact in the LTO cycle.

Figure 7a uses the annual NOx emissions in 2023 to
demonstrate the height distribution of aircraft emissions in
the LTO cycle. In general, the NOx emission of aircraft in
the LTO cycle decreases with the increase in altitude. More-

over, the emission per unit altitude significantly decreases be-
tween layers 1 and 2 and between layers 4 and 5 due to the
different flight altitude ranges in various modes in the LTO
cycle. Emissions from layer 1 (0–38 m) include the entire
taxi mode as the takeoff mode and approach mode, with the
maximum unit height NOx emissions (0.32 Gg m−1). Emis-
sions from layers 2 to 4 (38–154 m) include a part of takeoff
mode and approach mode, with the unit height NOx emis-
sions of 0.11–0.12 Gg. From layer 5, each layer’s NOx emis-
sions (≤ 0.04 Gg m−1) include the part of the climb and ap-
proach modes. As the emission height increases, the emis-
sions of NOx gradually decrease. The reduction rate gradu-
ally increases before layer 14 and decreases after layer 14,
indicating that the unit height emissions of each layer above
the 14th layer have little difference. In addition, there are sig-
nificant differences in the height distribution characteristics
of emissions in the LTO cycle at different months. Figure 7b
shows that the maximum emission height in the LTO cycle
can reach the 23rd layer (3107–3643 m, November and De-
cember) and the 26th layer (5459–6151 m, June) of 34 lay-
ers (0–15 668 m). The maximum aircraft emission height in
the LTO cycle can reach 4544 m above the ICAO-defined
maximum altitude of 915 m due to MLH variation across
12 altitude levels. Figure 7c illustrates that the NOx emis-
sions above the ICAO standard height (∼ 915 m) in different
months accounts for an average of 24.6 % (9.9 %–37.5 %) in
the LTO cycle. This result indicates that the ICAO method
does not account for a significant portion of emissions dur-
ing the entire LTO cycle. Based on previous studies (Köh-
ler et al., 2008; Lee et al., 2013; Yim et al., 2015; Zhang
et al., 2023), high-altitude emissions can significantly im-
pact ground-level air quality through atmospheric transport
and chemical reactions. When assessing emissions during
the LTO cycle and their impact on air quality and health,
we must fully consider the contribution of emissions above
915 m. Therefore, using the ICAO fixed flight height intro-
duces considerable uncertainty when calculating the aircraft
emission during the LTO cycle and assessing its environmen-
tal impact.

3.4 Comparison with the previous allocation method

Figure 8 uses the NOx emissions in January 2023 to show
the differences between the 4D-LTO emission inventory and
the LTO emission divided in previous studies (Mokalled et
al., 2018; Bo et al., 2019; Lawal et al., 2022; Wang et al.,
2023; Zhang et al., 2023) in terms of height distribution
(Fig. 8a–b) and horizontal distribution (Fig. 8c–e). Figure 8a
and b represent noticeable differences in emissions at dif-
ferent layer heights. Two statistical measures, mean absolute
error (MAE) and mean absolute percentage error (MAPE),
were employed to quantify these differences. (1) The first of
two components of the allocation error of the ICAO method
is in the range of 154–961 m; the ICAO method overesti-
mates the emissions by 63.4 %, and the emission difference
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Figure 6. (a) Horizontal distribution of yearly NOx emissions in prefecture-level cities and airports during 2019–2023. (b) Horizontal
distribution of NOx emissions at airports in Beijing and surrounding areas in January 2023. (c) Horizontal distribution of NOx emissions at
airports in Beijing and surrounding areas for different hours in January 2023. Publisher’s remark: please note that the above figure contains
disputed territories.

between different layers is 65.7–219.3 Mg. The difference in-
creases with a rise in height. (2) The second component lies
within the range of 961–4211 m, the ICAO method missed
283.0 Mg of emissions, and the difference decreases with
an increase in height (0.0–125.7 Mg). Figure 8b uses PEK,
PVG, and CAN to demonstrate the emission height changes
between different airports. Different airports’ overestimation
and missing zones are similar to the height distribution of to-

tal NOx emissions. However, the ICAO method misses emis-
sions above 961 m differently for different airports (1.9 Mg
for CAN, 28.0 Mg for PEK, 5.4 Mg for PVG), and the ICAO
method overestimates emissions within 154–961 m differ-
ently at various airports (3.4–11.8 Mg for CAN, 3.4–10.2 Mg
for PEK, 1.5–10.1 Mg for PVG). Compared with the dataset
based on the ICAO method, our 4D-LTO emission inventory
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Figure 7. (a) Height distribution characteristics of NOx emissions in the LTO cycle. (b) The maximum altitude layer for different months
and the corresponding altitude range. (c) The emissions above and below the height of 915 m in different months and the proportion above
915 m. (d) Height distribution characteristics of NOx emissions from the LTO cycle at different months.

dataset can more accurately represent the height distribution
of actual aircraft emissions.

In the example of airports in Beijing and surrounding ar-
eas, Fig. 8c and d demonstrate that our 4D-LTO emission
inventory dataset outperforms the dataset based on the pre-
vious radial allocation method, showing an apparent misal-
location of emissions. Figure 8e quantifies the differences in
the horizontal distribution between two emission inventory
datasets. Based on the previous radial allocation method, the
dataset misallocated 242.7 Mg of emissions in the misalloca-
tion zone. Among them, 17.2 Mg of emissions were missing
(3.0 Mg for PEK, 13.5 Mg for PKX, 0.2 Mg for TSN, 0.5 Mg
for TVS), and 225.5 Mg of emissions were assigned to the

wrong grid (122.8 Mg for PEK, 73.7 Mg for PKX, 25.8 Mg
for TSN, 3.2 Mg for TVS). In the non-misallocation zone,
the dataset based on the previous radial allocation method
underestimates 41.9 % of emissions (46.5 % for PEK, 37.8 %
for PKX, 32.9 % for TSN, 60.6 % for TVS). Compared with
the dataset based on the previous radial allocation method,
our 4D-LTO emission inventory dataset can better reflect the
horizontal distribution of actual aircraft emissions.

3.5 Uncertainty analysis

Taking the year 2023 as an example, this study estimated
the hourly uncertainty ranges for different emissions in var-
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Figure 8. Comparison of horizontal and height distributions of NOx emissions in January 2023, (a) NOx emission differences at different
heights between two datasets (Mg), (b) NOx emission distribution at different layers between two datasets (Mg), (c) distribution of NOx
emissions based on previous radial allocation method, (d) distribution of NOx emissions in the 4D-LTO emission inventory dataset, and
(e) NOx emission differences at different horizontal grids between two emission inventory datasets.

ious airports throughout the year, with the average of the
uncertainty ranges for NOx , CO, HC, PM, and SO2 being
[−17 %, 17 %], [−16 %, 16 %], [−6 %, 6 %], [−8 %, 8 %],
and [−8 %, 8 %], respectively, and their standard deviations
being ±11 %, ±10 %, ±3 %, ±4 %, and ±4 %, respectively.

This study also estimated the hourly average 95 % predic-
tion intervals for latitude and longitude of departure and ar-
rival flights at various airports, with the average of [−0.02°,
0.02°] (longitude) and [−0.02°, 0.02°] (latitude) for depar-
ture and [−0.06°, 0.06°] (longitude) and [−0.05°, 0.05°] (lat-
itude) for arrival, respectively, and their standard deviations
being ±0.01°, ±0.01°, ±0.01°, and ±0.01°, respectively.
In addition, the result showed that the hourly 95 % predic-
tion intervals of climb and approach altitude at different air-
ports are within an average of [−78 m, 78 m] and [−134 m,
134 m], respectively, and that their standard deviations are
±49 m and ±95 m, respectively.

3.6 Advantage and limitation

The previous studies (e.g., Zhang et al., 2022, and Teoh et
al., 2024) contributed a lot to the improvement of the emis-
sion estimation using ADS-B data, laying a solid founda-
tion for further assessing the impact of aircraft emissions
on air quality. In percentages, the ADS-B data do not fully
cover all flights. It is hard to identify the flight trajectories
of those flights not covered by ADS-B. Furthermore, using
a fixed height range (915 m) for the LTO cycle introduces
errors in the calculation of pollutant emissions during the
LTO cycle. The other emission inventories (e.g., EDGAR,

EMEP, and AERO2k), are also important sources of aviation
emission data. These emission inventories mainly rely on the
flight schedule information, which mainly calculate the to-
tal emissions of countries, and does not reflect the detailed
four-dimensional emission characteristics.

Based on the emission index and activity level data of each
mode during the LTO cycle, we calculate the emissions of
each flight by the bottom-up method and give the hourly and
3D spatial distribution of aircraft emissions. It is important
information for further assessing aircraft emissions during
the LTO cycle and their impact on air quality.

Our 4D-LTO emission inventory dataset reflects the actual
spatial and temporal and can be used to accurately assess the
air quality impact of aircraft in the LTO cycle, but it has sev-
eral limitations due to data and technical restrictions. (1) Ac-
cording to our investigation (Airbus, 2025; Aircraft Com-
merce, 2025), most aircraft types do not update engine. Some
aircraft types (e.g., the aircraft A is allowed to be equipped
with engines A and B) may change engine configuration pro-
portion during 2019–2023. Given the unavailability of the an-
nual variation of engine configuration for each aircraft type
in the existing datasets, this study used the latest proportion
data of each aircraft type in different years. (2) The certi-
fied engine emission indices derived from the engine man-
ufacturers and reported in the ICAO failed to consider the
life expectancy of an aircraft and meteorological conditions.
This may result in errors between the fuel consumption and
emissions estimated using these recommend parameters and
real-world conditions. Therefore, future research should be
conducted on the dynamic emission factors based on the ma-
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chine age and flight conditions. (3) Our dataset was obtained
from a subset of available flight data and near-real flight data
based on a model built using real data. This may result in
errors between our dataset and real-world conditions. How-
ever, this issue will be addressed as real-world data become
more widely available.

4 Data availability

The 4D-LTO emission inventory dataset in China from
2019 to 2023 presented in this study is freely available
at https://doi.org/10.5281/zenodo.13908440 (Lang et al.,
2024).

5 Conclusions and implication

This study establishes China’s 4D-LTO aircraft emission in-
ventory dataset during 2019–2023 by combining accurate
and generalizable emission methods and flight trajectory
identification methods. The actual taxi time is used, and the
supplementary value is obtained through the 5-year valida-
tion (for PEK, R2

= 0.87–0.99) airport hourly difference re-
lationship between the taxi-in/taxi-out time and the number
of aircraft scheduled. Moreover, the climb and approach time
and the attitude of each flight are updated using the MLH
and the airport monthly difference relationship between the
flight altitude and time of the climb/approach mode. Finally,
the DBSCAN clustering method (for PVG,R = 0.865–0.995
and MAE = 0.01–0.02° in departure and R = 0.811–0.997
and MAE= 0.02–0.05° in arrival) is used to obtain the flight
trajectory database of each airport based on the massive num-
ber of actual flight trajectory data. Then, the flight trajectory
of each flight is identified by the wind direction and the rel-
ative position of the departure and arrival airport. The data
show that the impact of COVID-19 reduced the LTO num-
ber to 73.1 % in 2020, 77.6 % in 2021, and 48.7 % in 2022,
compared to 2019. However, in 2023, the emissions of dif-
ferent pollutants quickly bounced back to 82.9 %–94.1 % of
the 2019 levels, resulting in HC, CO, NOx , PM, and SO2
emissions of 3.2, 46.1, 62.3, 1.1, and 18.4 Gg, respectively.

Taxi is the most crucial emission stage of HC and CO
(94.6 % and 91.5 % of the emission of the entire LTO cycle),
and climb is the primary emission stage of NOx (42.1 %). We
also find that takeoff with the smallest operation time con-
tributes the second-largest emission of NOx (25.7 %). More-
over, B738, A320, and A321 are the top three aircraft types
that emit pollutants. During the COVID-19 period (2020–
2022), the contribution of the top three aircraft types reached
more than 70 %.

Due to the impact of COVID-19, aircraft emissions in the
LTO cycle fluctuate from 2019–2023. After COVID-19 is
over, aircraft activity has been abnormal in May 2021 and
from July to October 2023. We also find that the number
of LTO and pollutant emissions of aircraft slightly differ at

different hourly intervals, exhibiting a high rate in the day-
time (06:00–23:00 UTC+8) and a low rate in the nighttime
(00:00–05:00 UTC+8), with the minimum at 04:00 UTC+8
and the maximum at 13:00 UTC+8. In 2023, the aircraft ac-
tivity was significantly better during the daytime (95.6 % of
2019 in LTO cycle) than in the nighttime (61.5 % of 2019 in
LTO cycle).

In the LTO cycle, the horizontal distribution characteris-
tics of aircraft emissions are dispersed along the runway, and
the vertical distribution characteristics decrease as altitude
increases. We find that aircraft emissions during the LTO cy-
cle are so widely distributed around the airport that even a
rough grid (e.g., 0.36°× 0.36°) cannot fully represent them.
The elongated distribution characteristics of aircraft emis-
sions indicate that evenly allocating emissions around the
airport causes significant uncertainty. Due to variations in
the MLH, the height at which aircraft emit pollutants during
LTO can reach up to 4544 m above the maximum altitude of
915 m set by the ICAO. The NOx emissions above the 915 m
vary by month, accounting for an average of 24.6 % (9.9 %–
37.5 %) in the LTO cycle.

Our 4D-LTO emission inventory dataset reflects the actual
spatial and temporal and can be used to accurately assess the
air quality impact of aircraft in the LTO cycle. This dataset
and our methodology play a vital role in an in-depth study
of temporal and spatial variations in aircraft emissions and
their health and environmental impact. By conducting an in-
depth analysis of our refined dataset, we can quantify the avi-
ation industry’s contribution to climate change and explore
potential emission reduction pathways. Furthermore, by ad-
justments to accommodate regional differences, e.g., oper-
ational activity data, airport-specific emission factors, and
airport-specific flight trajectory datasets, our methodology
possesses broad applicability and flexibility. The application
of our methodology to other regions is fundamental to for-
mulating effective strategies and policies to achieve global
aviation emission reduction targets.
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