

Supplement of

Four-dimensional aircraft emission inventory dataset of the landing-and-takeoff cycle in China (2019–2023)

Jianlei Lang et al.

Correspondence to: Ying Zhou (y.zhou@bjut.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

S1. The modelling details of climb and approach time calculating model.

The relationship between height and time could be described as linear or quadratic functions. The general form of the functional relationships can be expressed in (S1).

 $H = aT^{2} + bT + c (a \ge 0, T \ge 0)$ (S1)

5 where H is aircraft height (m); T is duration of the aircraft traverse from ground to the given height (climb) or from that height to the ground (approach) (s); a, b and c are constants in the equation. For airports without AMDAR data, the functional relationship of the nearest airport was employed.

We assumed that the climb mode begins with the transition from takeoff to climb at 152m and continues until the aircraft ascends above the mixing layer height (MLH). The approach mode is that beginning with aircraft descent in the mixing layer

10 until landing. The climb and approach time can be calculated using the following (S2) and (S3).

$$T_{climb} = T_{H_m} - T_{H_0}$$
(S2)

$$T_{approach} = T_{H_m}$$
(S3)

where T_{climb} is the climb time (s); $T_{approach}$ is the approach time (s); H_0 is 152 m; T_{H_0} is time from the ground to 152 m; H_m is MLH; T_{H_m} is the time from the ground to the top of the mixing layer or the reverse.

15

Pollutant	Reference	
НС	EEDB	
СО	EEDB	
NOx	EEDB	
PM	EEDB; Wayson et al., 2009	
SO_2	GB6537	

Table S1: The reference of the emission index (EI) for different pollutants.

in mode Taxi out mode
48.4%
57.8%
3.8% 50.2%
8.6% 51.5%
9.3% 67.0%

Table S2: The proportion of flights with recorded taxi time.

Table S3: \mathbb{R}^2 of between N and ΔT or T_0 of taxi in and out mode for different airports.

	Taxi out			Taxi in					
Airport type	Δ]	ΔT		T_0		ΔT		T ₀	
	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.	
4F	0.86	0.09	0.58	0.19	0.59	0.20	0.74	0.15	
4E	0.57	0.24	0.38	0.18	0.44	0.22	0.63	0.23	
4D	0.41	0.20	0.35	0.11	0.34	0.17	0.45	0.21	
4C	0.41	0.19	0.39	0.20	0.28	0.18	0.30	0.14	

Table S4: The fitting parameters and performance between N and ΔT or T₀ at PEK in different years.

Taxi out					Taxi in			
Year	ΔT		T_0		ΔT		T_0	
	Relationship	\mathbb{R}^2	Relationship	\mathbb{R}^2	Relationship	\mathbb{R}^2	Relationship	\mathbb{R}^2
2019	$\Delta T = 66.07 e^{-0.027}$	0.96	$T_0 = 625.71e^{-0.011}$	0.59	$\Delta T = 21.01e^{-0.017}$	0.69	$T_0 = 418.49e^{-0.020}$	0.96
2020	$\Delta T = 49.43 e^{-0.043}$	0.62	$T_0 = 710.86e^{-0.023}$	0.83	$\Delta T = 16.69e^{-0.015}$	0.39	$T_0 = 422.65e^{-0.022}$	0.82
2021	$\Delta T = 55.63 e^{-0.049}$	0.89	$T_0 = 621.92e^{-0.031}$	0.84	$\Delta T = 25.88e^{-0.029}$	0.31	$T_0 = 363.97e^{-0.025}$	0.88
2022	$\Delta T = 36.58e^{-0.060}$	0.55	$T_0 = 576.79e^{-0.028}$	0.63	$\Delta T = 14.73 e^{-0.023}$	0.19	$T_0 = 380.45e^{-0.022}$	0.94
2023	$\Delta T = 61.27 e^{-0.039}$	0.78	$T_0 = 611.48e^{-0.020}$	0.80	$\Delta T = 18.39e^{-0.018}$	0.50	$T_0 = 417.40e^{-0.023}$	0.89

Date	ITO number (10^4)	LTO number for the same period in	LTO number change rate compared		
	LIO humber (10)	2019 (10 ⁴)	the same period in 2019		
2020.1.20	1.71	1.56	9.2%		
2020.2.13	0.24	1.61	-84.8%		
2021.2.12	0.28	1.65	-83.1%		
2021.8.12	0.67	1.70	-60.3%		
2021.11.9	0.63	1.55	-59.5%		
2022.4.4	0.19	1.57	-87.7%		
2022.11.29	0.30	1.53	-80.4%		
2023.4.6	1.45	1.45	-0.1%		

Table S5: The difference of LTO numbers before, during and after the epidemic compared with the same period in 2019.

Figure S1: Hourly R² of taxi in and out time calculating model for different airports.

Figure S2: The R and MAE for flight trajectories at different airports.