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Abstract. The surface shortwave cloud radiative effect (CRE) plays a critical role in modulating the Earth’s
energy balance and climate change. However, accurately quantifying the CRE remains challenging due to sig-
nificant uncertainties in downwelling surface shortwave radiation (DSSR) and cloud parameter estimates, espe-
cially in the Arctic. This paper introduces a novel approach that enhances the accuracy of CRE estimation by
constructing computationally efficient, long-term gridded surface cloud fraction radiative kernels (GCF-CRKs)
and integrating refined DSSR estimates and a high-precision cloud fraction (CF). By leveraging the correla-
tion between the top-of-atmosphere (TOA) shortwave radiative parameters and surface radiation, combined with
high-precision fused CF datasets from multiple satellite sources, we construct a CF-dependent model to refine
DSSR estimates. Based on this model, we construct GCF-CRKs using the CF as the sole perturbation param-
eter to isolate the CF CRE. Our results indicate that this method significantly improves the accuracy of DSSR
estimation under partially cloudy conditions (0 % <CF< 100 %), aligning more closely with ground-based ob-
servations. In Arctic-wide validation experiments, the root mean square error (RMSE) was decreased by approx-
imately 2.5 W m−2, and the bias was reduced by 1.23 W m−2, which was an improvement of 8.7 % (reduction
in RMSE) against the CERES EBAF (Clouds and the Earth’s Radiant Energy System Energy Balanced and
Filled). Even greater improvements were achieved at stations in Greenland (RMSE was reduced by 4.53 W m−2,
and bias was reduced by ∼ 6.89 W m−2, with an accuracy improvement of about 11.1 %). The GCF-CRKs ex-
hibit similar signs and patterns and enhanced stability compared to existing kernels. The sensitivity analysis
results reveal that seasonal and interannual variations introduce GCF-CRK uncertainties of approximately 1 and
0.1 W m−2 %−1, respectively, while spatial variations within the same latitude range can cause CRK uncertain-
ties of 0.2–1.2 W m−2 %−1. These uncertainties can result in CRE biases ranging from 5 to 50 W m−2, which
demonstrates the limitations of existing methods that utilize short-term, small-area parameter data to produce
global CRKs. Using these GCF-CRKs, we estimated the spatiotemporal properties of the surface shortwave
CRE in the Arctic over a 21-year period (2000–2020), and the trend result indicates that, despite the increasing
influence of the CF on the Arctic DSSR, the smaller magnitude and interannual trend of the annual average
surface shortwave CRE suggest that previous studies may have overestimated the magnitude and rate of the
cooling effect of clouds on the Arctic DSSR by up to 4 and 0.5 W m−2 per decade, particularly in Greenland.
This study provides a more accurate and efficient assessment of the CRE, and the results underscore the need for
more effective measures to mitigate the impact of Arctic amplification on the surface radiative energy balance,
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which is crucial for understanding and addressing regional and global climate change. The GCF-CRKs are freely
available to the public at https://doi.org/10.5281/zenodo.13907217 (Liu, 2024).

Highlights.

– A novel method was developed to quantify Arctic surface
shortwave cloud radiative effects (SWCREs) using long-term
gridded surface cloud fraction radiative kernels (GCF-CRKs).

– GCF-CRKs were directly estimated from observational data
and with the incorporation of spatiotemporal information.

– The consideration of cloud fraction (CF) improved down-
welling shortwave radiation (DSSR) estimate accuracy by
8.7 %–11.1 % under partially cloudy conditions.

– A stronger cloud-induced cooling effect over Greenland was
revealed, with a bias of about 4 W m−2.

– There was a slower cloud-cooling impact rate (1.131 W m−2

per decade) on Arctic surface shortwave (SW) radiation than
expected (1.64 W m−2 per decade).

1 Introduction

Clouds cover approximately two-thirds of the Earth’s surface
and play a critical role in the Earth’s energy balance and cli-
mate system. They can either reflect incoming solar radiation
back to space, cooling the Earth, or trap outgoing longwave
radiation, warming the Earth. The net effect of clouds on the
climate system is a complex interplay of these two processes.
As human activities intensify, the emission of anthropogenic
radiatively active substances has increased disturbances of
radiative processes, thereby affecting the radiative balance
of the climate system and leading to changes in the global
average surface temperature. Among these complex interac-
tions, clouds contribute the most to the uncertainty of cli-
mate change, accounting for approximately 70 % (Vial et al.,
2013). This impact primarily depends on changes in various
cloud parameters, such as cloud amount, cloud height, cloud
water content, and cloud optical thickness (Boucher et al.,
2013; Wang et al., 2025). Therefore, the cloud radiative effect
and its feedback processes on global and regional climates
have always been a focus in the field of climate research.
The importance and complexity of clouds also make them
the largest source of uncertainty in current climate modeling
and prediction studies (Stephens, 2005; Boucher et al., 2013)

The influence of clouds on the climate system is generally
represented by cloud radiative forcing (CRF), also known as
cloud radiative effect (CRE). CRE is defined as the difference
in terms of radiation flux at the top of the atmosphere (TOA),
within the atmosphere, or at the surface under cloudy and
clear-sky conditions. It can be divided into longwave cloud
radiative effect (LWCRE) and shortwave cloud radiative ef-
fect (SWCRE) based on the wavelength band (Ramanathan
et al., 1989). Changes in the CRE directly affect the radia-
tion balance of the Earth–atmosphere system and the closely

related temperature changes, which are of great scientific sig-
nificance for correctly understanding and accurately predict-
ing the trend of global warming. Previous studies have quan-
titatively estimated the CRE and the radiative effect caused
by a doubling of the CO2 concentration, finding that the ra-
diative effect caused by changes in clouds is a crucial com-
ponent of the overall cloud feedback mechanism. For exam-
ple, Randall et al. (1984) pointed out that a 4 % increase in
global low clouds is sufficient to offset the 2–3 °C global
warming caused by a doubling of the CO2 concentration.
Slingo (1990) confirmed, using a three-dimensional atmo-
spheric circulation model, that an increase of about 15 %–
20 % in low cloud cover can offset the change in TOA radia-
tive forcing caused by a doubling of the CO2 concentration.
Liu et al. (2007) found, using a one-dimensional radiative–
convective model, that a change of even a few percent in
cloud cover can produce a radiative forcing comparable to
that caused by a doubling of the CO2 concentration. Chen et
al. (2000) demonstrated that changes in cloud amount have
an impact on the radiation field of the Earth–atmosphere sys-
tem that is comparable to the effects of cloud type and opti-
cal thickness. Tang and Leng (2013) showed that total cloud
amount is an important factor affecting the summer daily
maximum near-surface temperature changes over northern
Eurasia and North America; in North America, a 10 % in-
crease in total cloud amount can lead to a decrease of 0.3–
0.9 °C in summer daily maximum near-surface temperature.

The Arctic, characterized by a high albedo surface, cold
temperatures, and a strong temperature inversion, is one
of the regions where cloud amount changes are most pro-
nounced. In recent decades, the Arctic region has experi-
enced some of the most rapid and severe impacts of climate
change, a phenomenon often referred to as Arctic amplifi-
cation (Baek et al., 2020). Studies have shown that changes
in cloud amount in the Arctic significantly influence the en-
ergy balance and temperature distribution by regulating the
surface energy fluxes, sea ice dynamics, and overall climate
feedback mechanisms in the Arctic (Yeo et al., 2022), mak-
ing substantial contributions to the Arctic amplification phe-
nomenon (Kay and L’Ecuyer, 2013). For instance, a decrease
in cloud amount has been linked to an increase in down-
welling surface shortwave radiation (DSSR) in the Arctic,
which can lead to more rapid ice melt and further warming
(Sledd and L’Ecuyer, 2019). Therefore, understanding and
accurately quantifying the CRE in the Arctic is crucial for re-
ducing uncertainties in climate feedback and for understand-
ing global and regional climate change.

Despite its critical importance, accurate estimation of the
CRE in the Arctic remains a significant challenge. DSSR,
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which is the primary source of surface energy, is strongly
influenced by cloud amount changes compared to radiative
parameters at the top of the atmosphere (TOA) because it
occurs beneath the atmosphere (Pinker et al., 2005; Letu et
al., 2020). Since the release of the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC)
(AR5), the accuracy of DSSR flux datasets has improved
continuously, but the uncertainty introduced by cloud pa-
rameters remains one of the most significant challenges in
climate model predictions (IPCC, 2022), thereby contribut-
ing to the uncertainty in CRE (Hahn et al., 2001; Liu et
al., 2011). Cloud amount is typically represented by cloud
fraction (CF), that is, the horizontal area of the Earth’s sur-
face covered by clouds. Compared to cloud-free conditions,
clouds reduce incoming solar radiation by 49 W m−2, ap-
proximately 14 % of the total incident solar radiation, and de-
viations in the CF can lead to DSSR differences ranging from
10 to 90 W m−2 (Wild et al., 2019). In high-latitude regions,
such as the Arctic, differences in terms of the DSSR caused
by significant CF deviations are even more pronounced (Liu
et al., 2022). Kay and L’Ecuyer (2013), using reanalysis data,
found that a decrease in CF has led to a significant increase in
DSSR in the Arctic. Sledd and L’Ecuyer (2019, 2021) studied
the interannual variability in the CF’s impact on Arctic sur-
face shortwave absorption trends and found that substantial
differences in terms of the CF between datasets can introduce
uncertainty into the lag effects of the response of the DSSR
trend. By comparing the relationship between the CF and
shortwave (SW) radiation in four reanalysis datasets, Walsh
et al. (2009) discovered that deviations in the coverage of
low-level clouds during the Arctic summer could cause sea-
sonal discrepancies of approximately 160 W m−2 (Walsh et
al., 2009). Other studies have used similar correlation meth-
ods to analyze parameters from satellite observations, model
simulations, and reanalysis data and have reached similar
conclusions, although the estimated values differ by approx-
imately 10–40 W m−2 (Hakuba et al., 2017; Huang et al.,
2017b; Kato et al., 2018). These values greatly exceed those
of the impact of cloud parameter differences on the annual
global DSSR (Kato et al., 2011).

However, the challenges in accurately estimating the
DSSR directly impact the accuracy of the CRE esti-
mation, complicating the understanding of Arctic radia-
tive processes. Currently, DSSR estimation methods of-
ten rely on mixed-model algorithms that primarily ad-
dress two extreme conditions: overcast skies (CF= 100 %)
and clear skies (CF= 0 %). For partially cloudy conditions
(0 %<CF< 100 %), these methods typically combine clear-
sky parameterization schemes with existing cloud products
and use empirical formulas to derive indirect estimates (Chen
et al., 2020). They do not delve deeply into the radiative
transfer mechanisms between cloud properties and DSSR,
leading to error accumulation and significant biases in DSSR
estimates. Consequently, these biases directly impact the ac-

curacy of CRE estimation, further complicating the under-
standing of Arctic radiative processes.

In addition to the inherent accuracy of the parameters, an-
swering the question of how to extract the corresponding
radiative contributions from complex perturbation factors is
also crucial for enhancing the precision of CRE estimation.
This need is more strongly driven by the necessity to assess
feedback processes in global climate models that may am-
plify or diminish the response to radiative forcing (Thorsen
et al., 2018). Currently, there are three main methods for
isolating the radiative contributions of individual influenc-
ing factors. The first is the data simulation method, such as
using radiative transfer models to simulate the transmission
of radiative parameters in the atmosphere and on the sur-
face and quantifying the radiative effect due to cloud proper-
ties by inputting additional atmospheric information (Kato et
al., 2012; Kim and Ramanathan, 2008). Alternatively, cloud
properties simulated using satellite simulators can be con-
verted into synthetic observations obtained from satellite ob-
servation systems to isolate the impact of cloud deviations
on surface radiative parameters in models. However, low-
accuracy CF information introduces significant estimation
errors. The second commonly used method is the partial-
perturbation algorithm, initially proposed by Wetherald and
Manabe (1988). This method separates TOA radiative flux
changes caused by specific variables by considering the dif-
ference between global climate model variation experiments
and perturbation experiments. While this method can directly
calculate various climate feedbacks, it requires rerunning the
global climate model for each slight parameter change, de-
manding high computational resources and resulting in a low
operational efficiency (Loeb et al., 2018b).

The current radiative kernel method, widely used in evalu-
ating climate feedbacks, constructs a radiative kernel by con-
straining the change in a single variable due to a small pertur-
bation. This kernel is used as a constant factor to calculate the
perturbation effects of the variable on the radiative flux over
different time periods and regions (Soden et al., 2008; Zhou
et al., 2022). This method requires significantly less overall
computation than the partial-perturbation algorithm and can
effectively reduce correlation errors between different influ-
encing factors. However, due to the vertical nonlinearity ef-
fect of cloud parameters, directly estimating the cloud radia-
tive kernel is challenging. Therefore, non-cloud radiative ker-
nels, such as those for temperature, water vapor, and surface
albedo, are often used to indirectly estimate the CRE (Vial
et al., 2013). This approach can confuse radiative uncertain-
ties caused by non-cloud parameters with the CRE, thereby
increasing the estimated radiative contribution of clouds.

To directly isolate the radiative contribution of the CF,
Thorsen et al. (2018) applied a partial-radiative-perturbation-
like calculation to observational datasets and proposed an
observation-based partial-perturbation method, namely, the
Clouds and the Earth’s Radiant Energy System–partial radia-
tive perturbation (CERES-PRP) (Thorsen et al., 2018). This
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method calculates radiative kernels by flexibly combining
perturbation variables to achieve flux perturbation calcula-
tions. It has been successfully applied to CERES Energy Bal-
anced and Filled (EBAF) surface radiative parameters (Kato
et al., 2018) and to long-term studies of Earth’s energy bud-
get changes (Loeb et al., 2018a). However, this method cal-
culates kernels using control operations from a single year
and neglects the spatiotemporal variability of the parameters,
which can lead to significant temporal and regional errors
(Kramer et al., 2019). Additionally, similarly to most current
radiative kernels, this method focuses on TOA radiative bud-
gets and pays insufficient attention to surface radiative bud-
gets and the associated radiative forcing contributions.

To achieve a higher CRE estimation accuracy, in this
study, we used improved DSSR and higher-precision CF data
to construct long-term, gridded surface cloud fraction ra-
diative kernels (GCF-CRKs). These new CRKs were then
used to accurately quantify the contribution of the CF to
the DSSR and to enable detailed estimation and analysis of
the spatiotemporal characteristics and long-term trends of
the surface shortwave CRE in the Arctic. This method sig-
nificantly enhances the accuracy of DSSR estimation, es-
pecially under partly cloudy conditions, with higher con-
sistency with ground-based observations, and directly esti-
mates GCF-CRKs from observational data and incorporates
spatiotemporal variability information. Compared to tradi-
tional radiative kernel methods, the approach used in this
study directly calculates the radiative kernels for the entire
cloud layer, avoiding biases from nonlinear effects in strati-
fied algorithms and improving computational efficiency and
accuracy. However, it should be noted that, although the op-
tical thickness (expressed using the uppercase English name
of τ , namely TAU), altitude, thickness, and phase of clouds
all have complex effects on the scattering and absorption of
shortwave radiation and although the uncertainties of these
factors directly impact the accuracy of radiative forcing esti-
mates and climate change predictions (Boucher et al., 2013),
this study focuses solely on extracting the radiative effects of
CF. This limitation may introduce uncertainties due to differ-
ences in terms of cloud type and location, which should be
carefully considered in practical applications.

The structure of this paper is as follows: Sect. 2 intro-
duces the observational data. Section 3 provides details of
the method for constructing CRKs. In Sect. 4, the corrected
DSSR and the CRE are estimated using the CF-CRKs, and
the accuracies are validated. Section 5 presents a discussion
and conclusions.

2 Data

2.1 Satellite observational datasets: CERES SYN1deg
and CERES EBAF

The CERES synoptic 1° (SYN1deg) dataset is recognized
as one of the most accurate global radiative energy bal-

ance products, particularly for mid-latitude regions. How-
ever, its accuracy in high-latitude areas remains highly un-
certain (Jia et al., 2016, 2018). Studies have shown that, in
high-latitude regions, the RMSE of the CERES SYN1deg ex-
ceeds 33.56 W m−2, and the bias is greater than 3.43 W m−2.
This reduced accuracy is likely to be caused by the signif-
icant errors in regions covered by ice and snow (Inamdar
and Guillevic, 2015). Moreover, several studies have demon-
strated that using more accurate cloud parameters can sig-
nificantly improve its accuracy, indicating that the inaccura-
cies in the cloud parameters contribute to the observed errors
(Kato et al., 2011; Thorsen et al., 2018).

The CERES EBAF datasets, including the CERES EBAF-
TOA and the CERES EBAF surface radiative fluxes, are also
highly accurate global monthly gridded (1°× 1°) datasets. In
the EBAF products, the CERES shortwave and longwave ra-
diative fluxes are adjusted within their measurement uncer-
tainties to ensure that the CERES’s long-term global annual
average net flux is consistent with long-term ocean heat stor-
age data (Loeb et al., 2019). The EBAF surface flux cal-
culation utilizes the National Aeronautics Space Adminis-
tration (NASA) Langley-adjusted Fu–Liou radiative transfer
model, which incorporates cloud properties retrieved from
the CERES–Moderate Resolution Imaging Spectroradiome-
ter (MODIS), meteorological data from reanalysis systems,
and aerosol data from the aerosol assimilation system, and
the calculation of the surface irradiance is constrained by the
CERES observed TOA irradiance. Christensen et al. (2016)
compared various radiative parameter products for the Arctic
and found that the CERES EBAF represents the average level
of these products, suggesting that this dataset should be con-
sidered to be a key benchmark for evaluating Arctic surface
radiative budgets (Christensen et al., 2016).

2.2 Ground-based observation datasets

Over the past few decades, globally distributed ground-based
radiative flux networks have provided extensive observation
validation datasets for satellite observations. Compared to
other global regions, the Arctic has a sparse distribution of
surface radiative flux stations, and most are located in terres-
trial areas (Fig. 1). Nevertheless, these ground stations offer
reliable reference data for Arctic radiative fluxes.

2.2.1 AmeriFlux

AmeriFlux is part of the US flux station network, which is
jointly managed by the US Department of Energy’s National
Energy Technology Laboratory (NETL) and the US Depart-
ment of Agriculture (USDA). It is an atmospheric-flux obser-
vation network that primarily monitors and quantifies carbon,
water, and energy fluxes in terrestrial ecosystems. This net-
work spans various geographical locations and ecosystems
in the US, including forests, grassland, wetlands, and crop-
land. AmeriFlux station data have been widely used to eval-
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Figure 1. Spatial distribution of 66 ground stations in four radiation
flux networks.

uate surface radiative fluxes (Chen et al., 2020). In this study,
we used data from 18 stations located above 60° N, primarily
in northern and western Alaska, covering diverse ecosystem
types such as tundra, wetlands, and forests.

2.2.2 FluxNet

FluxNet is one of the world’s largest networks for monitoring
and quantifying carbon, water, and energy fluxes in terrestrial
ecosystems. FluxNet includes several stations located above
60° N and shows some overlap with AmeriFlux. In this study,
DSSR data from 13 stations were selected.

2.2.3 GEBA

The Global Energy Balance Archive (GEBA) is a centralized
database that contains measurements of surface energy fluxes
worldwide. GEBA compiles monthly average data for vari-
ous radiative energy balance fluxes observed at the Earth’s
surface, including global radiation (total DSSR), diffuse and
direct shortwave radiation, surface albedo, reflected short-
wave radiation, downwelling and upwelling longwave radi-
ation, net radiation, sensible and latent heat fluxes, ground
heat flux, and latent heat of melting. In the Arctic re-
gion, GEBA includes numerous stations, including both
ocean buoys and land-based observation stations, providing
ground-truth data for surface radiation observations in this
region (Wild et al., 2017). In this study, data from 22 stations
collected during 2000–2020 were selected.

2.2.4 PROMICE

The Programme for Monitoring of the Greenland Ice Sheet
(PROMICE) is a project designed to monitor changes in the
Greenland Ice Sheet (GrIS). This network covers the west-

ern, central, and eastern parts of Greenland, and variables
such as surface height changes, snow depth, temperature, hu-
midity, and the impact of global climate change on the ice
sheet are monitored (Ahlstrom and PROMICE project team,
2011). The PROMICE stations are in a variety of ecosys-
tems, including alpine, glacier, and coastal areas, and use au-
tomated instruments and sensors to measure atmospheric and
surface variables at a high frequency (typically hourly), such
as the temperature, humidity, air pressure, wind speed, snow
depth, and surface height. In this study, data from 14 stations
collected during 2000–2020 were selected as the validation
data.

2.2.5 Data processing and quality control

FluxNet and GEBA directly provide monthly mean flux
data, while AmeriFlux provides observations every 30 min,
and PROMICE provides hourly data. To better validate the
monthly mean satellite data, a consistent resampling process
is required. The 30 min and hourly data are first averaged to
daily values, and then monthly averages are obtained, min-
imizing the impact of missing values (Roesch et al., 2011).
Before aggregating the data into monthly averages, rigorous
quality controlling must be performed (Jiang et al., 2015). In
this study, the data quality was first assessed, and the orig-
inal data with poor-quality marks were removed. The data
continuity was then checked, and the monthly shortwave ra-
diation values were calculated only when the daily valid data
exceeded 3 h and the monthly valid data exceeded 15 d.

2.3 Fusion CF Dataset

High-precision CF information is crucial for obtaining
accurate GCF-CRKs. However, existing CF datasets are
mostly based on single-satellite data, leading to a low ac-
curacy, discontinuous spatiotemporal coverage, and signif-
icant spatiotemporal differences between datasets. To ad-
dress this, we developed a spatiotemporal fusion frame-
work for multiple-satellite CF products, leveraging their
complementary strengths of spatiotemporal completeness
and accuracy. We produced a high-precision, spatiotempo-
rally complete, 1°× 1° monthly average CF dataset for the
Arctic region from 2000 to 2020 (Liu et al., 2023). This
method enhances the accuracy of passive sensor data us-
ing a cumulative distribution function matching algorithm
with a spatiotemporal extension, and then it employs a
Bayesian maximum entropy fusion algorithm to integrate
multiple observation datasets with uncertainties. The final
fused dataset yields a 10 %–20 % overall reduction in the in-
consistencies between active sensor data and ground obser-
vations and yields more significant improvements in snow-
and/or ice-covered regions. The fused product has a bet-
ter consistency with reanalysis and model data and main-
tains high spatiotemporal completeness within the study pe-

https://doi.org/10.5194/essd-17-2405-2025 Earth Syst. Sci. Data, 17, 2405–2435, 2025



2410 X. Liu et al.: Estimation of long-term gridded CRKs and CREs based on cloud fraction

riod and region. The specific data can be downloaded from
https://doi.org/10.5281/zenodo.7478918 (Liu and He, 2022).

3 Principles and methods

3.1 Cloud radiative effect and cloud radiative kernel

Clouds can regulate the radiation energy balance and water
cycle of the Earth–atmosphere system through the albedo ef-
fect and greenhouse effect, thereby exerting significant im-
pacts on the climate system. These impacts primarily depend
on the variations in various cloud parameters, such as CF,
cloud height, and TAU, and are generally represented by the
CRE. In this study, we focus solely on the SWCRE, which
is defined as the difference in terms of surface radiative flux
between all-sky and clear-sky conditions.

CRE= Fall_sky−Fclr = f (Fcld−Fclr) (1)

In the above, Fcld is the radiative flux for overcast cloudy
sky, Fall_sky is the all-sky radiative flux, Fclr is the clear-sky
radiative flux, and f is the CF. When the CF is 100 %,

CREcld = Fcld−Fclr =
CRE
f

. (2)

The sensitivity of the radiative flux is indicated by the cloud
radiative kernel (CRK), which is also an effective means
for quantitatively calculating climate feedback (Soden et al.,
2008). It is typically calculated as the perturbation of CRE
for a unit change in CF for each cloud type. Thus, the CRK
can be expressed as follows:

CRKSFC =
∂CRE
∂f
=
Fcld−Fclr

100%
. (3)

Here, CRKSFC represents the surface CRK, and CREcld de-
notes the radiative forcing effect under completely overcast
conditions. Therefore, the unit of the CRK is expressed in
W m−2 %−1, indicating a differential change in the overcast
CRE (Zhou et al., 2022; Zhang et al., 2021). CF is a key
variable affecting surface radiative forcing as it directly de-
termines the extent of cloud coverage and thus influences
the reflection, scattering, and absorption processes of DSSR.
Compared to other cloud parameters, CF has higher accu-
racy and spatiotemporal consistency in its acquisition. Some
satellite-based CF datasets have long time spans, covering
decades of global observational data, which provides robust
long-term data support for studies on CRE and helps an-
alyze trends in climate change and regional radiative forc-
ing. Therefore, in this study, we utilized a high-precision CF
dataset obtained from previous research (Liu et al., 2023) to
calculate the CRKs for each grid cell. In each grid unit, there
are significant differences in terms of cloud vertical structure
and microphysical or optical thickness parameters. Thus, we
treated different cloud parameters within each grid as distinct
cloud types and included them as non-perturbation variables
in the radiative transfer calculations, resulting in long-term,
grid-specific radiative kernels for each cloud type.

3.2 Single-layer cloud radiative transfer model

In remote sensing observations, satellites can directly mea-
sure the TOA radiative flux, but the DSSR must be retrieved
through inversion. Traditionally, to obtain surface radiative
parameters, TOA parameters are used to constrain the surface
parameter inversion (Kato et al., 2018; Loeb et al., 2018b).

For the shortwave radiative flux, the TOA albedo αA and
atmospheric absorption a are defined as follows:

αA =
F
↑

TOA,all

F
↓

TOA

, (4)

a =

(
F
↓

TOA−F
↑

TOA,all

)
−

(
F
↓

sfc,all−F
↑

sfc,all

)
F
↓

TOA

. (5)

Based on the principle of energy conservation,

αA+ a = 1−
F
↓

sfc,all−F
↑

sfc,all

F
↓

TOA

= 1− as, (6)

where αA is the ratio of the reflected energy at the TOA to
the total incident energy, and as is the surface absorption
rate, i.e., the ratio of the energy absorbed at the surface to
the total incident energy at the TOA. In this context, αA can
be expressed as a function of as, linking the TOA shortwave
flux to the surface shortwave flux. Assuming that the surface
albedo does not vary significantly with the seasons within a
1°× 1° grid, a strong linear relationship exists between αA
and as. The slope of this linear relationship depends on the
variation in the atmospheric absorption a relative to the sur-
face absorption as.

Analysis of the CERES SYN1deg 1°× 1° monthly aver-
age data for the Arctic region revealed that there is a strong
linear correlation between αA and as, with a correlation co-
efficient (R2) of 0.97 and a root mean square error (RMSE)
of 0.016 (Fig. 2). This linear relationship indicates that TOA
SW radiation parameters can effectively constrain DSSR es-
timation. If the TOA SW radiation and surface radiative pa-
rameters and cloud properties are known, the DSSR can be
estimated for a given region. For clear-sky conditions,R2 im-
proves to 0.984, and the bias is 0.04, whereas, for cloudy con-
ditions, R2 decreases slightly, and the bias increases to 0.22
(Fig. 2). This discrepancy is primarily due to the greater un-
certainty introduced by cloud parameter errors in estimating
the surface radiative parameters (Liu et al., 2022). Therefore,
we propose a method to estimate the DSSR using TOA obser-
vations and clear-sky radiative flux while incorporating CF
information into the radiative transfer calculations to isolate
the sensitivity of the DSSR to the CF among various cloud
parameters.

Assuming that the surface is a Lambertian reflector, the
DSSR can be calculated as follows:

F
↓

sfc,all = F0 (µi)+Fm (µi) , (7)
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Figure 2. Relationship between the albedo at the top of the atmosphere and the absorption ratio at the surface.

where F0(µi) is the DSSR in the absence of the surface con-
tribution, and the second term accounts for the multiple re-
flection effects between the atmosphere and the bright sur-
face. µi is the cosine of the solar zenith angle. When consid-
ering the impact of CF, F0(µi) is weighted by f :

F0 (µi)= fF
↓

sfc,cld+ (1− f )F↓sfc,clr, (8)

where F↓sfc,cld is the surface downward radiative flux under

cloudy conditions and zero surface albedo, and F↓sfc,clr is the
surface downward radiative flux under clear-sky conditions.
According to Liu et al. (2011) and Xie et al. (2014), F↓sfc,cld

can be expressed as a function of F↓sfc,clr (Liu et al., 2011;
Xie et al., 2014):

F
↓

sfc,cld = (1−α)F↓sfc,clr, (9)

α = αcld,0+ acld,0, (10)

where αcld,0 is the cloud albedo, and acld,0 is the cloud ab-
sorption rate. The subscript 0 indicates the case with zero
surface albedo. Typically, the cloud absorption rate is much
smaller than the cloud albedo (Gautier and Landsfeld, 1997;
Xie et al., 2014), and, thus, it can be neglected for simplifi-
cation. Consequently, F0(µi) can be expressed as

F0 (µi)=
(
1−αcld,0f

)
F
↓

sfc,clr. (11)

To the first order, the cloud albedo is the primary factor that
maintains the close relationship between the CF and plane-
tary albedo (or the reflected SW radiation at the TOA), which
has been demonstrated in various observation records (Nor-
ris and Evan, 2015). To further calculate the cloud albedo,
we introduce the concept of the effective cloud albedo (Betts
and Viterbo, 2005; Liu et al., 2010).

αSRF,cld =−
F
↓

sfc,all−F
↓

sfc,clr

F
↓

sfc,clr

= 1−
F
↓

sfc,all

F
↓

sfc,clr

(12)

The effective cloud albedo αSRF,cld is mathematically simi-
lar to the surface albedo but is a dimensionless value. Liu et

al. (2011) have shown that, when accounting for multiple re-
flection effects between clouds and the surface, αSRF,cld can
be approximated as the product of the cloud albedo, surface
albedo, and CF (Liu et al., 2011). Thus,

αSRF,cld =
[
(1− rs)αcld+ rsα

2
cld

]
f. (13)

For conditions with rs = 0,

αSRF,cld,0 = 1−
F0

F
↓

sfc,clr

= αcld,0f. (14)

To compute the effective cloud albedo, both the numerator
and denominator of Eq. (12) are multiplied by a function of
the surface albedo:

αSRF,cld = 1−
F
↓

sfc,all−F
↑

sfc,all

F
↓

sfc,clr(1− rs)
. (15)

Thus,

(1− rs)
(
1−αSRF,cld

)
F
↓

sfc,clr = F
↓

sfc,all−F
↑

sfc,all, (16)

which represents the net SW radiation at the surface. Based
on previous analyses, the surface absorption rate as can sim-
ilarly be expressed as a function of the surface net SW radi-
ation. Therefore, the effective cloud albedo can be expressed
as a function of the incident shortwave radiation at the TOA
and the surface absorption rate:

F
↓

TOAas = (1− rs)
(
1−αSRF,cld

)
F
↓

sfc,clr. (17)

Considering the fact that as can be modeled as a linear func-
tion of the TOA albedo, the corresponding cloud albedo can
be computed using TOA observations, the clear-sky surface
SW radiation, and the CF.

For a Lambertian surface, the influence of the cloud pa-
rameters on diffuse radiation is more pronounced under
cloudy conditions. When considering multiple reflection ef-
fects, the net SW radiation at a surface with a surface albedo
rs is

Fm = F0
rsαA,cldf T

2

1− rsαA,cldf T 2 , (18)
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where T is the transmissivity of the atmosphere to diffuse ra-
diation under cloudy conditions, which is dependent on var-
ious atmospheric factors such as aerosols, ozone, and water
vapor (Huang et al., 2018). For simplification, in this study,
we used empirical parameters combined with observational
data.

T =
Tall− (1− f )Tclr

f
=
F
↓

diff,all− (1− f )F↓diff,clr

fF
↓

TOA

(19)

Ultimately, the all-sky DSSR can be expressed as a function
of the satellite-observed TOA shortwave radiation, clear-sky
DSSR, and CF. In this study, we focused only on the CRE
related to CF perturbations. Therefore, based on the partial-
perturbation approach, CF is the sole user-defined variable
in Eq. (17), and the other unknown parameters are consistent
with the original CERES SYN1deg data.

3.3 Separation method for CF radiation contribution
based on observational data

To isolate the sensitivity of radiative flux changes to the CF
from observational data, we developed GCF-CRKs. In tradi-
tional CRK algorithms, it is assumed that the perturbation in
the flux is linearly related to the perturbation itself, and, thus,
it is necessary to calculate the CRKs for each atmospheric
layer individually, and these are then summed. In this study,
based on the plane-parallel approximation principle, we uti-
lized the full-layer CF. Within the finite-difference frame-
work and in conjunction with the CERES SYN1deg observa-
tional data, it is possible to compute the full-layer CF-CRKs.

According to Thorsen et al. (2018), the essence of the
partial-radiative-perturbation methods lies in different forms
of finite-difference approximations. In this study, the factor
influencing the radiative parameters is the CF (f ). When it
changes by 1f , according to the finite-difference principle,
the effect on the radiative flux δF is

δF
p
1f,C = F

(
f +1f,c1, . . .,cn

)
−F

(
f ,c1, . . .,cn

)
+∅p

C (1f ) , (20)

where F is the all-sky DSSR, and 1f is the perturbation of
the variable relative to its initial climate mean f , i.e., 1f =
f −f . The climate mean value refers to the average of all of
the data for a specific calendar month (April–September in
this study) within the time series. All of the other variables
related to the radiative transfer are represented as c1, . . .,cn.
∅p

C(1f ) is the truncation error of the forward finite differ-
ence. The subscript C indicates that the flux perturbation is
related to the climate monthly mean initial state. To minimize
the impacts of the temporal and spatial variabilities of the CF
on the results, we prefer to calculate the flux perturbations
related to the monthly mean values:

δF
p
1f,M = F (f +1f,c1, . . .,cn)−F (f,c1, . . .,cn)

+∅p
M (1f ) , (21)

where f is the monthly mean CF, and the subscript M indi-
cates that the flux perturbation is related to the monthly mean
baseline state. In this equation, the truncation error is of the
same order of magnitude as the perturbation variable itself,
meaning that the computed perturbation flux is influenced
not only by the perturbation variable but also by the potential
decorrelation between the perturbation and non-perturbation
variables. To minimize this, a central-finite-difference ap-
proach can be used to improve the magnitude of the order
of the accuracy. Thus, backward finite differences are intro-
duced.

δF b
1f,M = F (f,c1, . . .,cn)−F (f −1f,c1, . . .,cn)

+∅b
M (1f ) (22)

Averaging the perturbation values obtained from the two
finite-difference calculations yields

δF1f,M =

[
F (f +1f,c1, . . .,cn)−F (f,c1, . . .,cn)

]
+[

F (f,c1, . . .,cn)−F (f −1f,c1, . . .,c2)
]

2

+∅M

(
1f 2

)
. (23)

While central differences can reduce the impact of the decor-
relation between the related variables, the perturbation states
f +1f and f −1f may exceed the physical limits of
the parameters, making them impractical for radiative trans-
fer calculations. Therefore, a two-step alternative is pro-
posed: when the CF perturbation state is invalid, initially,
the monthly climate mean value is used in place of the cor-
responding monthly average. If the substituted value is still
non-physical, it is replaced with the nearest valid CF value
within the effective range. Finally, the central difference is
applied to compute the radiative perturbation.

To further simplify the quantification process of the CRE
due to CF perturbations, in this study, we used Thorsen et
al. (2018)’s method in the CERES model by replacing the
fixed perturbations with the observed variable anomalies.
This means normalizing the perturbation effects of the vari-
able on the radiative perturbation to calculate the CRKs. In
this concept, the resulting CF-CRKs are a byproduct of the
central-difference calculations, representing the contribution
of a 1 % CF change to the DSSR.

K1f =
δF1f

1f
(24)

Using the high-precision fused CF dataset and the CERES
observational data, GCF-CRKs can be obtained. The com-
puted full-layer CRK, in combination with the fused CF
dataset, allows for correction of the biases in the CERES
DSSR data.
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Figure 3. Scatterplot comparing the DSSR estimated using the
single-layer cloud radiative transfer model with the CERES
SYN1deg DSSR dataset.

4 Results and validation

4.1 DSSR estimated using the single-layer cloud
radiative transfer model

In this study, we used the single-layer cloud radiative trans-
fer model constructed in Sect. 3.1 to estimate the DSSR re-
ceived at the surface under partly cloudy conditions. To ver-
ify the accuracy and applicability of this model, we compared
the estimated results with the DSSR provided by the CERES
SYN1deg dataset.

Figure 3 displays a scatterplot comparing the grid-point
DSSR estimates with the CERES SYN1deg data for the Arc-
tic region. It is evident from the plot that the estimates ob-
tained using our single-layer cloud radiative transfer model
have a high degree of consistency with the CERES SYN1deg
DSSR data. Specifically, the R2 value between the esti-
mates and observations is 0.985, indicating a very strong
positive correlation. Moreover, the RMSE is approximately
9.69 W m−2, which is considered to be a small error in the
field of radiative estimation, further confirming the model’s
accuracy. Additionally, the bias is approximately 5 W m−2,
indicating that the average deviation between the estimated
and CERES SYN1deg DSSR values is relatively small,
which suggests that the model generally provides accurate
DSSR estimates. This result demonstrates that using TOA
observations, clear-sky surface shortwave radiation, and CF
information to estimate the DSSR under all-sky conditions is
highly feasible.

Using more accurate CF information, we corrected the
bias in the CERES DSSR data. Ground station observations
are often considered to be effective data for validating the ac-
curacy of satellite radiative parameter retrievals (Chen et al.,
2020). We compared the estimated DSSR with the CERES
EBAF DSSR and conducted a quantitative evaluation using
monthly mean DSSR observations from 66 Arctic ground
stations. The R2, RMSE, and bias were used as evaluation
metrics. Figure 4 shows scatterplots comparing the estimated
DSSR with the CERES EBAF DSSR and ground observa-

tions. In Fig. 4, each point represents a monthly mean DSSR
in a 1°× 1° grid bin. The plot shows that our estimated DSSR
is more consistent with the ground observations compared
to the CERES EBAF data. Specifically, for the entire Arc-
tic region, the data of the scatterplot of the estimated DSSR
versus ground observations (red) have an R2 value similar to
that of the CERES EBAF versus ground observations (blue).
However, the RMSE of the estimated DSSR is 26.3 W m−2,
which is approximately 2.5 W m−2 lower than the value of
28.79 W m−2 for the CERES EBAF data, which is an im-
provement of 8.7 %. The bias between the estimated DSSR
and ground observations is also reduced by 1.23 W m−2 com-
pared to that of the CERES EBAF data. This indicates that,
when using ground observations as a reference, our estimated
DSSR generally has smaller deviations and a better stability.
When focusing on GrIS, the R2 value of our estimated DSSR
is slightly higher than that of the CERES EBAF data, i.e., by
0.008, but the reductions in the RMSE and bias are more sig-
nificant, i.e., 4.53 and 6.89 W m−2, respectively. This means
the estimate accuracy improved by about 11.1 %. English
et al. (2015) and Christensen et al. (2016) found that the
CERES EBAF DSSR dataset overestimates the DSSR by ap-
proximately 8.86 to 13 W m−2 in the Arctic. The corrected
DSSR values obtained in this study significantly improve this
overestimation, with more notable improvements in the GrIS.

To further analyze the differences between the estimated
DSSR and the CERES EBAF DSSR, we conducted spa-
tiotemporal difference analysis of the two datasets (Fig. 5).
Temporally, we observed that the estimated DSSR and the
CERES EBAF DSSR exhibit a high degree of consistency in
terms of their trends and magnitudes. Specifically, the max-
imum area-weighted average DSSR in the Arctic region oc-
curred in June, with a value of approximately 250 W m−2,
while the minimum occurred in September, with a value of
approximately 78 W m−2. Further analysis revealed that, dur-
ing the spring (April–June), our estimated DSSR values are
generally lower than the CERES EBAF observations, and the
largest underestimation occurred in April, i.e., approximately
13 W m−2. However, from late summer to autumn (July–
September), the estimated DSSR was slightly higher than the
EBAF DSSR, and the maximum overestimation occurred in
August, with a value of approximately 5 W m−2. Spatially,
the bias between the estimated DSSR and the CERES EBAF
DSSR exhibits significant variation across the different geo-
graphic locations. In land areas, particularly along the land–
sea boundaries and in certain regions of Greenland, our es-
timated DSSR exhibits notable underestimation, with biases
exceeding 10 W m−2 from April to July. Conversely, in the
oceanic regions, especially the open sea, our estimated DSSR
is slightly higher than the CERES EBAF DSSR.

We performed bias attribution analysis using CF data and
calculated the spatiotemporal differences between the fused
CF dataset and the CERES Single Scanner Footprint (SSF)
CF data (Fig. 6). From the CF difference map, we observed
that there is a high degree of consistency between the re-
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Figure 4. Scatterplot comparing the estimated DSSR, the CERES EBAF DSSR, and ground observations.

Figure 5. Spatiotemporal distribution of the difference between the estimated DSSR and the CERES EBAF DSSR.

gions of underestimation of our estimated DSSR and the ar-
eas where the SSF CF is lower than the fused CF, particu-
larly along land edges and in the GrIS. This suggests that the
CERES series data underestimate the CF in these areas, lead-
ing to overestimation of the DSSR. However, in the ocean
areas that are not perennially covered by sea ice (perenni-
ally open waters), the SSF CF is significantly higher than
the fused CF (indicated by negative values of the fused CF
minus the SSF CF in Fig. 6), suggesting that the CERES
DSSR values in these regions are likely to be underestimated.
In contrast, in the central Arctic Ocean, the fused CF is no-
tably higher than the SSF CF. Given the negative correlation
between the CF and DSSR, the estimated DSSR should be
lower in this area, which is contrary to our previous findings.

Therefore, when using the estimated DSSR, careful consid-
eration should be given to the results for the central Arctic
Ocean.

4.2 Temporal and spatial characteristics of GCF-CRKs

Figure 7 presents the monthly mean GCF-CRK for the sur-
face SW radiation in different months. A positive value,
shown in red, corresponds to radiative heating within the sys-
tem, while a negative value, shown in blue, represents radia-
tive cooling. Notably, all of the grids of the GCF-CRKs in
the Arctic are uniformly negative from April to September,
but their magnitudes vary spatially and temporally. Tempo-
rally, the surface GCF-CRKs exhibit smaller negative val-
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Figure 6. Spatiotemporal distribution of the difference between the fused CF and the CERES SSF CF.

ues in April, August, and September, with monthly averages
of less than −1 W m−2 %−1. Conversely, in May, June, and
July, the overall mean values exceed −1.5 W m−2 %−1, in-
dicating that, during these summer months, a 1 % change
in the CF contributes more significantly to the cooling ef-
fect on the surface shortwave radiation. Spatially, the GCF-
CRK values over the oceanic regions are generally lower than
those over the land, suggesting that changes in the CF have
a greater radiative impact over the land. The most substan-
tial negative values are located over Greenland, particularly
in the northern region during May, where the kernel exceeds
−2.5 W m−2 %−1. This is associated with intense cyclonic
activity in the area.

Over the time series, the GCF-CRK displays a clear tem-
poral pattern, with its absolute value increasing from April
to June, peaking in June at −1.3 W m−2 %−1, followed by a
decline toward September (Fig. 8). However, the uncertainty
is also highest during this season, mainly due to the increased
solar radiation at lower latitudes of the Arctic during summer,
while higher latitudes still receive relatively low incoming ra-
diation. Additionally, parameters such as CF, TAU, and cloud
top pressure (CTP) exhibit significant spatial heterogeneity,
leading to considerable spatial variability in the radiative ker-
nel.

By September, the cloud radiative kernel diminishes to ap-
proximately −0.4 W m−2 %−1. This reduction is due to the
substantial decrease in the incoming solar radiation, which in
turn, lessens the absolute impact of the changes in the cloud

parameters. Nevertheless, throughout the time series, there is
a noticeable trend of increasing absolute GCF-CRK, partic-
ularly during the summer months, with a growth rate of ap-
proximately 0.03 W m−2 %−1 per decade. This indicates that
the influence of the CF on the surface shortwave radiation is
gradually increasing.

The magnitude of the GCF-CRKs primarily depends on
the intensity of the incoming SW radiation at the TOA that
is reflected, absorbed, and/or scattered by clouds. To further
understand the factors influencing the changes in the sur-
face SW radiation GCF-CRKs, we analyzed the temporal and
spatial correlation coefficients between the GCF-CRKs and
cloud parameters, such as the CF, TAU, cloud top and cloud
bottom pressure (CTP and CBP), and cloud top and cloud
bottom temperature (CTT and CBT). These coefficients mea-
sure the strength and direction of the linear relationship be-
tween the cloud parameters and the kernels (Table 1).

Table 1 reveals the occurrence of significant temporal and
spatial variabilities in terms of how the different cloud pa-
rameters impact the surface GCF-CRKs. Across the entire
Arctic region, the CBT plays a dominant role in influenc-
ing the kernels. From April to September, the CBT initially
increases and then decreases, mirroring the trend of the ab-
solute value of the surface GCF-CRKs. This correlation is
particularly strong in the oceanic regions, with a coefficient
of 0.5278, which is significantly higher than the correlations
with the other cloud parameters (Fig. A6 in the Appendix).
This suggests that the magnitude of the surface GCF-CRKs
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Figure 7. Monthly mean GCF-CRKs from April to September.

Figure 8. The monthly average of grid-based surface cloud radiative kernels (GCF-CRKs).

decreases slightly with increasing height. The positive corre-
lation between the kernels and CTP further supports this con-
clusion, indicating that, as the height increases and the CTP
decreases, the magnitude of the surface GCF-CRKs also de-
creases. This is because less of the SW radiation flux reaches
the surface due to minimal atmospheric absorption in the
cloud-free layers below the clouds.

The next most influential cloud parameter for the surface
GCF-CRKs is the TAU as thicker clouds scatter more solar
radiation back into space. Over the land, the TAU’s influence
is predominant among all of the cloud parameters, with a cor-
relation of 0.35, which is particularly noticeable in parts of
North America and Asia, while there is a slight negative cor-
relation in northern Europe (Fig. A2). In the oceanic regions,
this positive correlation is also evident as the range and tim-
ing of the changes in the surface GCF-CRK absolute value
closely match those of the TAU.

In Greenland, the surface GCF-CRKs are influenced by
both the CF and TAU. Specifically, in the northern region
of the GrIS during May, June, and July, when the TAU is
higher, the surface GCF-CRK absolute value is larger in ar-
eas with lower CFs, exceeding −2 W m−2 %−1. In months
with lower TAUs, the CF increases slightly , and the corre-
sponding surface GCF-CRK absolute value decreases. This
indicates the occurrence of positive correlations between the
TAU and CTP and the surface GCF-CRKs and a significant
negative correlation between the CF and the surface GCF-
CRKs. Additionally, the changes in the CBT exhibit a signif-
icant correlation with the surface GCF-CRKs in the oceanic
regions.
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Table 1. Temporal and spatial correlation coefficients between the cloud parameters and the surface GCF-CRKs (the absolute values are
used for clarity).

CF TAU CTP CBP CTT CBT

Arctic region 0.0435 0.3308 0.0275 −0.0573 0.2247 0.3396
Greenland region −0.166 0.1536 0.03 −0.0382 0.0253 0.0203
Land outside of Greenland 0.0618 0.3504 −0.109 −0.0636 0.0697 0.2108
Ocean region 0.2005 0.4193 0.1867 0.0759 0.4169 0.5278

4.3 Comparison with other surface SW radiative kernels

As discussed previously, most published CRK datasets are
focused on the TOA. To meaningfully evaluate our proposed
surface CRKs, we need a surface CRK dataset that covers
the Arctic region from April to September for direct compar-
ison. There is only a very limited number of such datasets
that satisfy the requirement, and we have found only two
other qualified surface CRK datasets: the International Satel-
lite Cloud Climatology Project H dataset CRK (ISCCP-FH
CRK) (Zhang et al., 2021) and the surface CTP and CBP
CRK provided by Zhou et al. (2022) (Zhou-CTP/CBP CRK).

In their CRK calculation, the ISCCP-H data are used to
produce radiative profile fluxes in 49 individual types of
clouds for SW radiation, longwave (LW) radiation, their
sum, and their net value at both the TOA and the sur-
face (SFC). The product only utilizes daytime observations,
and the cloud types are demarcated by seven cloud optical
depths and seven cloud effective pressure layer bins. The
difference between the overcast and clear-sky fluxes is the
overcast cloud radiative effect, and when it is divided by
100, it becomes the CRK (in W m−2 %−1). Both the TOA
and SFC CRKs are directly calculated at a 3 h resolution
on a 110 km equal-area map for 2007, as shown by the
49-bin histogram with the specified TAU, CTP, and cloud
amount. For the majority of uses relating to general circu-
lation models (GCMs), the SFC kernel data are averaged to
the monthly (and annual) mean values and regridded to a
2.0° latitude× 2.5° longitude equal-angle map. This ISCCP-
FH cloud radiative kernel dataset can be downloaded from
https://doi.org/10.5281/zenodo.4677580 (Zhang, 2021).

The surface Zhou-CBP CRKs were constructed using the
rapid radiative transfer model (RRTM). The standard ver-
sion of the surface CRKs is a function of the latitude, lon-
gitude, month, TAU, and CBP, and the TOA CRKs depend
on the latitude, longitude, month, TAU, and CTP. Consider-
ing the fact that, at present, the cloud property histograms
created using the climate models are functions of the CTP
rather than the CBP, the surface CRKs in the CBP–TAU his-
tograms were converted to CTP–TAU fields using the sta-
tistical relationship between the CTP, CBP, and TAU de-
rived from collocated CloudSat and MODIS observations.
These CRKs also contain seven TAU bin and seven CTP bin
cloud fraction histograms, which are divided according to
Zelinka et al. (2012)’s cloud layer classification. Addition-

ally, they considered the ice and liquid clouds separately so
that there are a total of 7× 7× 2 types of clouds for each
latitude, longitude, and month of the year. Furthermore, the
Zhou-CTP/CBP CRKs have been evaluated using indepen-
dent data sources, and they have a unique advantage in re-
producing the climatology and anomalies of cloud radiative
effects. These CRKs are available online from Zenodo (DOI:
https://doi.org/10.5281/zenodo.5176193, Zhou, 2021).

Since our calculated kernels are based on grid-level data
for all of the cloud layers, to compare our GCF-CRKs with
the ISCCP-FH CRKs and Zhou-CTP/CBP CRKs on a com-
mon basis, the two comparison CRKs were mapped on 2-D
global maps using the total TAU and CTP in the Arctic. Our
calculated CRKs were then resampled to match the spatial
resolution of the 2-D ISCCP-FH and Zhou-CTP/CBP CRKs.
The resulting analysis involved a total of 12 960 grid cells on
a 2.0° latitude× 2.5° longitude equal-angle map from April
to September. To minimize the uncertainties introduced by
the other cloud parameters in the CF kernel, the TAU and
CTP values used were consistent with those from the CERES
SYN1deg dataset used in this study.

Figure 9 shows the latitudinally weighted means of the
ISCCP-FH CRKs, the Zhou-CTP/CBP CRKs, and the GCF-
CRKs we calculated in this study. As can be seen from Fig. 9,
the latitudinal means of all three CRKs are negative, they
exhibit similar trends, and the magnitude of the kernels be-
comes less negative from low to high latitudes. This indi-
cates that the contribution of the clouds to the surface short-
wave radiation decreases with increasing latitude. This trend
is primarily due to the reduction in the solar shortwave ra-
diation at higher latitudes and the presence of high-altitude
ice clouds, which tend to trap energy, causing a warming ef-
fect that reduces the cooling impact of clouds on the surface
(IPCC, 2021).

In terms of the kernel’s magnitude, the SFC GCF-CRKs
range from −1.09 to −0.66 W m−2 %−1, i.e., a decrease
of 0.43 W m−2 %−1. The ISCCP-FH SFC CRKs vary from
−1.09 to −0.29 W m−2 %−1, i.e., a change in magnitude
of approximately 0.81 W m−2 %−1. The Zhou-CTP CRKs
range from −1.18 to −0.53 W m−2 %−1, i.e., a decrease
of 0.65 W m−2 %−1. The Zhou-CBP CRKs exhibit a larger
change of 0.74 W m−2 %−1, particularly in the low-latitude
regions where the Zhou-CBP CRKs have more negative val-
ues.
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Figure 9. Comparison of latitudinal weighted means for the ISCCP-FH CRKs, the Zhou-CTP/CBP CRKs, and our GCF-CRKs.

However, when considering the latitude-weighted mean
across the Arctic, our calculated kernels closely match the
ISCCP-FH SFC CRKs at lower latitudes (< 72° N), with a
nearly zero difference. This region is predominantly land,
characterized by low CFs and minimal seasonal variations
in the cloud parameters. At higher latitudes (> 72° N), our
calculated kernel resembles the Zhou-CTP CRKs, and the
difference between them increases with increasing latitude,
reaching a maximum of 0.21 W m−2 %−1. At high latitudes,
the ISCCP-FH SFC CRKs have a smaller negative magni-
tude than the Zhou-CTP/CBP CRKs and our GCF-CRKs,
and the difference between them and the other two types of
kernels increases with increasing latitude, ranging from ap-
proximately 0.1 to 0.44 W m−2 %−1. This difference is par-
ticularly notable in regions such as the sea ice melt zones,
perennial open waters, and the GrIS, where the spatial and
temporal variations in the terrain and climate lead to signifi-
cant CRK discrepancies. We also analyzed the temporal un-
certainties of the different CRKs. In lower-latitude regions,
our estimated kernels exhibit the least temporal uncertainty,
while, in the high-latitude sea ice regions, the temporal un-
certainty of our kernels is similar to those of the other types
of CRKs. This is largely due to the significant seasonal vari-
ations in the kernels.

The vertical structure of clouds plays a crucial role in ra-
diative processes. Both the ISCCP-FH SFC CRKs and the
Zhou-CTP/CBP CRKs consider the radiative properties of
the different cloud layers in their construction. To better com-
pare the vertical performances of the various SFC CRKs, we
stratified the gridded cloud properties into four pressure lay-
ers (surface to 700, 700–500, 500–300, and 300–50 hPa, rep-
resenting low, middle–low, middle–high, and high clouds, re-
spectively) based on the CERES SYN1deg stratification stan-
dard.

Figure 7 shows that, for the different cloud layers, all
three SFC CRKs display similar trends with latitude, and
the magnitude of the latitude-weighted mean decreases with
increasing latitude (negative values). The GCF-CRKs ex-
hibit little sensitivity to changes in the cloud layer height as

we used the monthly climatological averages for each cloud
layer in our calculations, which are relatively stable over
time. However, the ISCCP-FH SFC CRKs and the Zhou-
CTP/CBP CRKs exhibit some fluctuations with the cloud
layer height. The ISCCP-FH SFC CRKs change by approx-
imately 0.25 W m−2 %−1, while the Zhou-CTP/CBP CRKs
change by 0.51 W m−2 %−1. This variation is not monotonic.
For example, when the cloud level rises from the low layer
to the middle–low layer, the negative magnitude of the Zhou-
CTP/CBP CRKs increases, while it decreases when the cloud
height increases continually from the middle–low layer to
the middle–high layer, returning to a magnitude similar to
that of the low clouds. Therefore, compared to the latitudinal
changes, the cloud layer variations have a small impact on
the radiative kernel estimation.

We observed an intriguing phenomenon: the similarity be-
tween the ISCCP-FH SFC CRKs, the Zhou-CTP/CBP CRKs,
and our GCF-CRKs varies across the different cloud lay-
ers (Fig. 10). For example, in the low-level clouds, when
the latitude is below 75° N, the ISCCP-FH SFC CRKs
align closely with our GCF-CRKs, while the Zhou-CTP/CBP
CRKs deviate by approximately 0.05–0.12 W m−2 %−1. For
the middle–low-level clouds, the ISCCP-FH SFC CRKs are
only slightly different from our GCF-CRKs in the low-
latitude regions, whereas the discrepancies between our ker-
nels and the Zhou-estimated kernels are 0.1–0.2 W m−2 %−1.
However, at higher latitudes (> 78° N), the difference be-
tween our calculated kernels and the Zhou-CTP/CBP CRKs
becomes less than 0.01 W m−2 %−1, indicating that, even
with a 100 % CF discrepancy, the resulting radiative devia-
tion is approximately 1 W m−2. As the cloud layer continues
to rise to the middle–high level, our calculated kernels again
closely match the Zhou-CTP CRKs at latitudes below 76° N.
These findings suggest that there is significant uncertainty
in both the Zhou-CTP/CBP CRKs and the ISCCP-FH SFC
CRKs across the different cloud layers.

When examining high-level clouds, the differences be-
tween the GCF-CRKs and the other cloud radiative kernels
become most pronounced. In the Arctic, the high clouds are
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Figure 10. Comparison of latitudinally weighted means for the ISCCP-FH CRKs, the Zhou-CTP/CBP CRKs, and the GCF-CRKs in the
different cloud layers.

predominantly thin cirrus clouds, and the extremely low tem-
peratures and frequent surface inversions increase the error
in identifying high cirrus clouds across the different sen-
sors (Liu et al., 2022). The vertical cloud structure in the
ISCCP-FH SFC CRKs is based on a combination of raw-

insonde climatology and the CloudSat Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation (CALIPSO)
climatology, while the statistical relationships between the
CTP, CBP, and TAU in the Zhou-CTP/CBP CRKs are de-
rived from a collocated MODIS–CloudSat climatology. The
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CRKs in our study primarily consider the cloud properties
from the CERES SYN1deg, which are mainly observed us-
ing the MODIS sensor. The observational characteristics of
these sensors contribute to the estimation errors of radiative
kernels. However, it is important to note that the Arctic is
dominated by low clouds, which account for 50 %–60 % of
the total cloud cover, while high clouds account for only ap-
proximately 3 %. Therefore, the impact of high clouds on the
overall cloud radiative kernels is relatively small.

The differences between the ISCCP-FH SFC CRKs, the
Zhou-CTP/CBP CRKs, and our GCF-CRKs exhibit signifi-
cant spatiotemporal heterogeneity. In the sea ice regions, the
GCF-CRKs have a larger magnitude than the other kernels
(with negative differences), whereas the opposite is true for
the land and perennial open-water regions. However, Green-
land is an exception where our results indicate that the CF has
a more pronounced cooling effect on the surface shortwave
radiation. This can be attributed to Greenland’s year-round
ice and snow cover, high altitudes, extreme dryness and cold,
strong near-surface static stability, and persistent low-level
inversion layers, which prolong the cloud duration and thus
have a greater impact on the DSSR. Temporally, during the
months of April and September, when the solar insolation is
relatively low, the differences between these radiative ker-
nels are smaller. However, during the months with higher
solar insolation, the ISCCP-FH SFC CRKs and the Zhou-
CTP/CBP CRKs have larger magnitudes than our calculated
CRKs, with differences ranging from 0.3 to 0.5 W m−2 %−1

(positive values).
In summary, the overall trend shows that the ISCCP-FH

SFC CRKs and the Zhou-CTP/CBP CRKs have latitudinal
variation patterns similar to those of our calculated CRKs
in the Arctic region, and the differences between the vari-
ous radiative kernels are much smaller than the latitudinal
differences within each CRK dataset. This demonstrates that
latitude is a key factor influencing the surface cloud radiative
kernels. From a spatiotemporal distribution perspective, our
calculated CRKs are generally less negative than the ISCCP-
FH SFC CRKs and the Zhou-CTP/CBP CRKs in the land
regions and more negative in the ocean regions. However,
in Greenland, GCF-CRKs consistently have the largest mag-
nitude (in negative terms), indicating that the cloud cover
has a stronger cooling effect in this region. For the differ-
ent cloud layers, the various radiative kernels compared here
have a high consistency with our calculated kernels in spe-
cific cloud layers, demonstrating the stability of our proposed
kernels. As we cannot definitively determine which of the
four datasets represents the absolute truth, we treat them as
ensemble realizations of the actual climate, and their differ-
ences serve as an estimate of the uncertainty in their measure-
ments or datasets (Zhang et al., 2006). A more accurate val-
idation would require more precise experiments, which are
beyond the scope of this study.

4.4 Cloud shortwave radiative effects in the Arctic

The interaction between the clouds and surface radiative pa-
rameters, known as the CRE, directly impacts the radiation
budget of the atmosphere–surface system and the associated
temperature changes. This interaction plays a critical role in
regulating the annual onset of snowmelt and the yearly melt-
ing and formation of sea ice in the Arctic. The surface CRE
is defined as the difference in terms of the surface radiative
flux under cloudy and clear-sky conditions (Cess and Pot-
ter, 1987). Accurately quantifying the variations in the sur-
face CRE in the Arctic is of paramount scientific importance
for correctly understanding and predicting global warming
trends.

The role of clouds in the Arctic SW radiation budget varies
throughout the year due to the highly seasonal variability of
the surface albedo and atmospheric conditions. To more ac-
curately quantify the cloud radiative influences, we utilized
the GCF-CRKs, combined with CF products derived from
multi-source satellite data, to estimate the daytime CRE in
the Arctic. Additionally, we quantified the surface radiative
flux anomalies caused by changes in the CF. The surface
CRE can be calculated using the following equation:

FCRE,sfc =
∑
i

fiK1f,i, (25)

whereK1f,i is the climatological monthly mean GCF-CRKs
for the ith grid cell, and fi is the corresponding CF within
that grid cell.

Figure 11 illustrates the estimated CRE averaged from
April to September. As shown in Fig. 11, the CRE is con-
sistently negative across the Arctic during the entire study
period, confirming the cooling effect of the clouds in this re-
gion. This finding is consistent with the conclusions of Sledd
and L’Ecuyer (2021), who demonstrated through satellite ob-
servations that, compared to clear-sky conditions, clouds re-
duce the average solar absorption over the land and ocean,
thereby delaying the increasing trend of the surface solar
absorption under all-sky conditions by 20 %–40 %. Due to
the high latitudes of the Arctic region, the seasonal vari-
ation in the solar elevation angle is significant, leading to
considerable differences in terms of the intensity of the sur-
face shortwave radiation across the seasons. Consequently,
the CRE exhibits pronounced seasonal variability (Sedlar et
al., 2010). In months with lower solar insolation, such as
April and September, the CRE values are relatively low, with
monthly averages of 42.12 and 43.87 W m−2 (both negative),
respectively (latitudinally weighted averages). However, dur-
ing the months of June and July, when the solar insolation
is stronger, the monthly average CRE increases to approxi-
mately 95 W m−2 (negative), indicating that the clouds have
a stronger cooling effect on the Arctic surface during sum-
mer.

In terms of the spatial distribution, it was found that, in
addition to the solar zenith angle, the surface albedo is a cru-
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Figure 11. Climatological monthly mean Arctic CRE.

cial factor influencing the surface shortwave cloud radiative
effect (SWCRE). In perennial open-water regions, in which
the surface albedo is lower than that of sea-ice-covered and
land areas at the same latitude, the surface SWCRE remains
most strongly negative throughout the entire study period.
This effect is particularly pronounced in summer, in which
the CRE exceeds 144 W m−2 (negative). Conversely, the sur-
face albedo over the Greenland Ice Sheet remains high year-
round, resulting in smaller shortwave cloud radiative effect
values, a feature that becomes even more prominent in Au-
gust and September, in which the value decreases to approx-
imately −20 W m−2.

The surface SWCRE is influenced by several cloud pa-
rameters, such as the CF, TAU, CTP, and CTT. In peren-
nial open-water areas, the CF remains high throughout the
year (> 80 %), with an annual variation of approximately
5 %. However, during the summer months (June–August),
the TAU, CTP, and CBP increase, and both the CTT and CBT
are strongly correlated with the intensification of the negative
CRE trend.

In the central Arctic Ocean, the CF exhibits interannual
variability of greater than 30 %, and the CRE initially in-
creases and then decreases over the course of the year. This
trend is regulated not only by the solar elevation angle and
surface albedo but also by the TAU, CTP, and CTT. As the
duration and angle of the solar insolation increase, the Arc-
tic sea ice melts more extensively. Studies have reported that,
for every 106 km2 reduction in the sea ice area, the annual av-
erage absorbed solar radiation in the region above 75–90° N
increases by 2.5 to 6 W m−2 (Hartmann and Ceppi, 2016).
This is primarily due to the positive surface albedo feedback

induced by the substantial sea ice changes, which further am-
plifies the absorption of solar radiation. However, the melting
sea ice, along with the intensified atmospheric and oceanic
circulation, brings more warm and moist air into the Arctic,
enhancing cyclonic activity. This results in increased cloudi-
ness, thicker cloud layers, and lower cloud heights (Figs. A1–
A6). The presence of clouds can introduce a negative cloud
optical thickness feedback, thereby reducing the absorption
of solar radiation (Goosse et al., 2018).

4.5 Validation and comparison of CRE based on
GCF-CRKs

This study also compared the CRE estimated using the CRKs
with the actual surface CRE calculated from the CERES
EBAF; the latter is derived from the differences between
the all-sky DSSR and clear-sky DSSR. The two CRE values
had high consistency, with a spatial correlation of 0.84, an
RMSE of 12.22 W m−2, and a bias of 1.93 W m−2, suggest-
ing that the surface CRKs can effectively explain the spa-
tial distribution of the surface SWCRE observed in the Arc-
tic. The difference distribution map (Fig. 12) reveals that,
across most of the regions of the Arctic, the error between
the CRE estimated using the GCF-CRKs and that estimated
using the CERES EBAF data is within 5 W m−2, particularly
over land areas, excluding Greenland. However, in Green-
land, the CRE intensity estimated using the GCF-CRKs is
significantly higher (more negative) than the CRE derived
from the CERES EBAF data. This discrepancy is primarily
due to the higher CF in this region, in which our single-layer
cloud radiative transfer model yields a higher DSSR value,
resulting in more negative GCF-CRKs. This effect is espe-
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cially pronounced during months with stronger solar inso-
lation (May to July). Based on the accuracy validation con-
ducted earlier using ground station data, we have reason to
believe that the original CERES EBAF data underestimate
the sensitivity of the DSSR to the CF in Greenland.

Additionally, we observed that, in the open-ocean regions,
the CRE estimated using the GCF-CRKs is slightly lower
than the CRE derived from the CERES EBAF data. This
is mainly associated with the middle- and low-level clouds.
When large numbers of optically thick middle- and low-level
clouds are present, they can reflect more incoming solar ra-
diation, thereby reducing the DSSR that reaches the surface.
However, due to the limited observational data available for
the oceanic regions, further validation work in these areas
needs to be conducted in future studies.

To further verify the accuracy and applicability of the ra-
diative kernel method based on CF proposed in this study for
estimating surface shortwave cloud radiative effect (CRE),
we added a validation using independent datasets. Specifi-
cally, we calculated the surface CRE from the Atmospheric
Model Intercomparison Project (AMIP) within the Coupled
Model Intercomparison Project phase 6 (CMIP6) for the pe-
riod of 2000–2014. We selected the Community Earth Sys-
tem Model Version 2 (CESM2), which is extensively ap-
plied in climate research, to conduct the simulations (Zhou
et al., 2022). The comparison revealed a strong consistency
between the two datasets. Specifically, the CRE estimated
using our radiative kernel method exhibited a high linear
correlation with the CESM2-simulated CRE, with a coef-
ficient of determination (R2) of approximately 0.847. The
root mean square error (RMSE) between the two datasets
was about 14.5 W m−2, indicating a reasonable level of er-
ror. Additionally, the bias was approximately 11.19 W m−2,
suggesting that our method slightly overestimated the CRE
compared to CESM2. These results demonstrate the effec-
tiveness of our radiative kernel method in estimating the
radiative forcing effect caused by cloud fraction changes.
Moreover, the validation results are highly consistent with
those obtained using the CERES data directly (R2

= 0.9009,
RMSE= 9.762 W m−2, bias= 1.8916 W m−2; Fig. 13a), fur-
ther confirming the reliability of our approach.

Through this additional validation, the radiative kernel
method employed in this study not only demonstrated high
accuracy in the Arctic region but also exhibited good ap-
plicability in broader climate model simulations. This indi-
cates that the method can effectively isolate the contribution
of changes in cloud cover to surface shortwave radiation. It
thus provides a more reliable tool for understanding the role
of cloud radiative effects in the global climate system.

To obtain detailed information about the temporal varia-
tion in the surface CRE in the Arctic, we employed the Sen–
Mann–Kendall trend analysis method to calculate the long-
term trends. This method has been widely used in clima-
tology for evaluating changes in climate parameters as it is
more robust against individual noise than the least-squares

method, making it more suitable for analyzing long-term
trends (Cai and Yu, 2009; Karlsson and Devasthale, 2018).
We calculated the annual latitude-weighted average CRE for
both the CRE calculated using the GCF-CRK (red in Fig. 14)
and the CRE calculated using the CERES EBAF data (blue
in Fig. 14) from April to September and assessed the 21-
year trend at the 95 % significance level. The trend analysis
clearly shows that the interannual variations in the CRE ob-
tained using both methods exhibit a decreasing trend (nega-
tive), indicating that the cloud-induced surface radiative flux
anomalies in the Arctic are increasing year by year. However,
the magnitude of this influence differs slightly between the
two methods. The CRE calculated using the CERES EBAF
data exhibits a trend of −1.64 W m−2 per decade, while the
trend of the CRE calculated using the GCF-CRKs is gentler
at −1.131 W m−2 per decade. This suggests that the rate of
change in the clouds’ influence on the surface radiative fluxes
over time may not be as large as previously thought.

We also observed that the CRE calculated using the GCF-
CRKs generally exhibits smaller negative values than the
CRE calculated using the CERES EBAF data. This discrep-
ancy is primarily due to the detection of a lower CF in the
perennial open-water areas and many land areas, resulting
in higher DSSR values and a greater surface SWCRE. The
largest difference between the two (approximately 4 W m−2)
occurred in 2010, and the smallest difference (0.15 W m−2)
occurred in 2000.

In terms of the spatial distribution trends (Fig. A7), the
overall trend patterns of the CRE calculated using the GCF-
CRKs and the CERES EBAF data are consistent. Significant
decreasing trends occur in the oceanic regions, while signif-
icant increasing trends occur over Baffin Island and parts of
the Asian continent. The remaining regions do not exhibit
significant trends at the 95 % confidence level. We also no-
ticed that, in areas with significant trend changes, the CRE
calculated using the GCF-CRKs exhibits a much more grad-
ual change than that calculated using the CERES EBAF data,
suggesting that the cooling effect of the clouds on the Arctic
DSSR may be overestimated. To achieve the goal of limiting
the temperature rise to be within 1.5 °C above pre-industrial
levels, more robust emission reduction measures are neces-
sary to mitigate the impact of the Arctic amplification effect
on the surface radiative energy balance.

5 Discussion

During the estimation process, there are some uncertainties
that can impact the results. These uncertainties arise from
the establishment of the radiative transfer model and the spa-
tiotemporal sensitivity of the radiative kernels. In addition,
the role of CRE in modulating the Arctic surface energy bal-
ance and its influence on Arctic amplification and global cli-
mate feedback mechanisms also warrant further investiga-
tion.

Earth Syst. Sci. Data, 17, 2405–2435, 2025 https://doi.org/10.5194/essd-17-2405-2025



X. Liu et al.: Estimation of long-term gridded CRKs and CREs based on cloud fraction 2423

Figure 12. Spatiotemporal distribution for the surface SWCRE differences. The CRE calculated from the GCF-CRKs minus the CRE derived
from the CERES EBAF DSSR data.

Figure 13. Comparison of cloud radiative effect (CRE) estimated by GCF-CRKs with observed and model-estimated CRE.

5.1 Uncertainty due to surface albedo

The surface albedo, defined as the ratio of the solar radiation
reflected from the Earth’s surface to the solar radiation inci-
dent upon it, is a crucial parameter influencing the accuracy
of DSSR estimation from TOA observations. The land sur-
face albedo is highly variable both spatially and temporally,
making accurate surface albedo data essential for better char-
acterizing the DSSR. In this study, we used the ratio of the
outgoing shortwave radiation to the incident shortwave radi-
ation under clear-sky conditions as the surface albedo for the
Arctic region. To assess the reliability of this albedo infor-

mation, we compared it with albedo data from the CERES
EBAF dataset.

Figure 15 presents a comparison of the spatiotemporal dis-
tributions of the albedo derived using the clear-sky radia-
tion parameters and the CERES EBAF albedo data for the
Arctic region. The difference between these two albedo es-
timates is generally less than 0.1. However, this difference
can vary significantly with time and region. In areas with
low DSSR values (e.g., open ocean in April and Arctic ma-
rine regions in September, where the CERES EBAF DSSR is
less than 100 W m−2), the albedo estimated using the clear-
sky radiation parameters exhibits slight overestimation (ap-
proximately 3–6 W m−2). This overestimation is due to the
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Figure 14. Interannual variation trend of the cloud radiative effect (CRE) in the Arctic region (focusing only on daytime, April to September,
at the 95 % confidence level).

Figure 15. Difference between the surface albedo estimated using clear-sky radiation parameters and the CERES EBAF surface albedo.

higher albedo values calculated during months with lower
solar elevation angles, particularly in the oceanic regions.
Conversely, in the regions with high DSSR values (where
the CERES EBAF DSSR is greater than 250 W m−2), the
estimated albedo exhibits slight underestimation. This dis-
crepancy arises because the surface albedo computed under

clear-sky conditions is lower than the all-sky albedo during
high-radiation periods, such as in May to July.

In the Arctic region, extensive snow and sea ice cover re-
sult in high surface albedo values. Research conducted by
Laine (2004) and subsequent studies have demonstrated that
a high surface albedo increases the DSSR flux under cloudy
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Figure 16. Scatterplot comparing the DSSR estimated without
considering multiple reflection effects (MREs) and the CERES
SYN1deg DSSR.

conditions (Colman, 2015; Huang et al., 2018; Li et al.,
2022). This increase in the DSSR is attributed to multiple
reflections between the atmosphere (especially clouds) and
the highly reflective snow or ice surface. In this study, the
DSSR was divided into two components: one representing
the DSSR without surface contributions and another account-
ing for multiple reflections between the surface and the atmo-
sphere. In many studies, the first component is often used as
an approximation of the all-sky downward radiation flux (Liu
et al., 2011; Boeke and Taylor, 2016; He et al., 2019). Our re-
sults indicate that significant underestimation of the DSSR
occurs when multiple reflection effects are not considered
(Fig. 16). Compared to the CERES SYN1deg data, the R2

value is 0.966, a decrease of approximately 0.2; the RMSE
is 4.14 W m−2 higher, and the bias decreases from 4.93 to
−4.2 W m−2, i.e., a change of nearly 10 W m−2. This under-
estimation is more pronounced in regions with high DSSR
values, such as Greenland and sea ice areas where the surface
albedo is higher. Therefore, it is crucial to account for mul-
tiple reflection effects between clouds and the surface when
estimating surface radiation parameters in the Arctic region.

5.2 Temporal and spatial sensitivity of the surface SW
CF radiative kernels

In contrast to existing cloud radiative kernels that use radi-
ation parameters from 1-year or shorter periods, our study
developed a long-term monthly GCF-CRK using the estab-
lished radiative transfer function. To better understand the
temporal and spatial variability of the SFC GCF-CRK, we
conducted a detailed sensitivity analysis.

From the latitude-weighted average values of the GCF-
CRKs (Figs. 9 and 10) and the climate monthly average dis-
tribution maps (Fig. 7), it is evident that the SFC GCF-CRKs
become less negative with increasing latitude (a change of
approximately 0.43 W m−2 %−1). Additionally, there are sig-
nificant differences in terms of the SWCRE calculated using
the SFC GCF-CRKs across various spatial locations. For ex-

ample, in the sea ice areas and perennial open-water regions
at the same latitude, the difference in terms of the SFC GCF-
CRKs ranges from approximately 0.2 to 1.2 W m−2 %−1,
leading to CRE deviations of greater than 50 W m−2. This
highlights the significant impact of the spatial distribution on
the radiative kernels, suggesting that using CRKs and data
for only specific regions to represent global values can intro-
duce substantial errors.

Furthermore, regarding the uncertainty level, the time se-
ries uncertainty within the same latitude band can reach up
to 1 W m−2 %−1 . The regional distribution maps for differ-
ent months reveal the occurrence of considerable seasonal
variability in the GCF-CRKs, which is closely related to the
seasonal changes in the solar altitude and cloud parameters.
To mitigate the impact of seasonal variations, we calculated
the deseasonalized time series standard deviation (Fig. 17).
The standard deviation decreases significantly across dif-
ferent latitude bands, although it still exhibits an increas-
ing trend with latitude. Overall, the values remain below
0.1 W m−2 %−1, indicating that seasonality is a crucial factor
affecting the CRKs.

To further investigate the temporal sensitivity of the SFC
GCF-CRKs, we calculated the SWCRE using CRKs esti-
mated over varying time periods (Fig. 18). In this experiment,
we calculated the average SFC GCF-CRKs for 1-year to 21-
year cumulative periods with 1-year intervals and used these
kernels to compute the corresponding CRE. We then com-
pared these results with the CRE obtained from the differ-
ence between the all-sky DSSR and clear-sky DSSR.

The analysis revealed that, when using only 1 year of data
to estimate the SFC GCF-CRKs, the resulting CRKs are less
negative than the average CRKs calculated using data for
multiple years, leading to a larger CRE discrepancy (approx-
imately 2.5 W m−2). As the accumulation period increased,
particularly beyond 5 years, the annual average CRKs grad-
ually stabilized, and the difference in terms of the CRE de-
creased (close to zero). This temporal convergence indicates
that GCF-CRKs constructed based on sufficiently long obser-
vational records (≥ 5 years) can robustly represent the clima-
tological mean state and minimize uncertainties introduced
by interannual variability. Thus, we recommend using data
spanning at least 5 years to calculate the radiative kernels in
order to minimize errors caused by interannual variability.

Although our study has demonstrated the stability of GCF-
CRKs under current climate conditions, cloud properties
may change with global warming, which could render the
GCF-CRKs derived from the current climate less accurate
for future climate scenarios. For instance, as temperatures
rise, the transition of the cloud phase from ice-dominated
to liquid-water-dominated can lead to an increase in cloud
particle radius, resulting in a gradual increase in the opti-
cal thickness of low clouds, while the optical thickness of
high clouds may decrease (Hartmann and Ceppi, 2016). In-
fluenced by multiple factors such as sea ice changes, atmo-
spheric circulation, and ocean temperature variations, this
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Figure 17. Latitude-weighted mean of the deseasonalized grid-based surface cloud fraction cloud radiative kernels (SFC GCF-CRKs).

Figure 18. Differences in the grid-based surface cloud fraction radiative kernels (SFC GCF-CRKs and in the CRE) estimated using data
with varying time lengths.

trend is more complex in the Arctic region (Storelvmo et al.,
2015). Changes in cloud parameters may alter the relation-
ship between CF and DSSR, thereby reducing the representa-
tiveness of GCF-CRKs derived from historical data in future
cloud–radiation interactions. Moreover, the rapidly changing
surface conditions in the Arctic – such as the reduction in sea
ice extent and snow cover – may amplify the feedbacks be-
tween surface albedo, cloud properties, and radiative fluxes.
For example, open-ocean areas can enhance the formation
of low clouds, while the persistently high albedo surface of
Greenland can strengthen the cloud–surface reflection effect
(Huang et al., 2017a), thereby altering the sensitivity of sur-
face shortwave radiation to cloud fraction perturbations and
affecting the accuracy of GCF-CRKs.

To enhance the applicability of GCF-CRKs in future cli-
mate scenarios, we plan to use multiple climate models (such
as CMIP6 models) to simulate future changes in cloud prop-
erties, including CF, TAU, cloud phase, and cloud water con-
tent. By comparing these simulated results with current cli-
mate data, we aim to quantify the potential impacts of climate
change on GCF-CRKs.

5.3 Potential contributions of GCF-CRKs to
understanding climate feedback mechanisms

This study reveals the critical role of CRE in the Arctic sur-
face energy balance, which is of great significance for un-
derstanding the Arctic amplification effect and global cli-
mate feedback mechanisms. The Arctic amplification effect
is characterized by a warming rate that is 2 to 4 times the
global average, primarily driven by the complex interplay be-
tween sea ice loss, surface albedo feedback, and cloud radia-
tive dynamics (Cao and Liang, 2018). Our findings indicate
that the cooling effect of clouds on Arctic surface shortwave
radiation is stronger than previously estimated, especially in
Greenland, where the radiative cooling deviation caused by
clouds reaches approximately 4 W m−2. This suggests that
cloud plays a more important role in regulating the surface
energy balance, potentially offsetting some of the warming
effects caused by sea ice loss (Sledd and L’Ecuyer, 2021).

In terms of interannual variation, the CRE calculated
using GCF-CRKs exhibits a weaker interannual trend
(−1.131 W m−2 per decade compared to −1.64 W m−2 from
the CERES EBAF), indicating that the cooling rate of clouds
on Arctic surface shortwave radiation may have been overes-
timated in the past. This implies that the actual rate of Arctic
warming could be faster than previously predicted. During
the summer months, when solar radiation is strongest and
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sea ice melting is most active, the enhanced sensitivity of
DSSR to perturbations in CF (with GCF-CRKs exceeding
−2.5 W m−2 %−1 in northern Greenland) indicates that even
minor changes in cloud cover can significantly alter surface
energy absorption. Notably, the stronger cooling effect over
the Greenland Ice Sheet (GrIS) is consistent with its persis-
tently high surface albedo, where cloud–snow multiple re-
flection enhances shortwave scattering. These findings em-
phasize that cloud feedback is not just a passive responder but
an active regulator of Arctic amplification, potentially slow-
ing the rate of ice–albedo feedback during critical melting
seasons.

Current climate models face difficulties in accurately repli-
cating observed Arctic cloud properties, leading to signif-
icant uncertainties in predicting future warming scenarios.
The high-precision GCF-CRKs developed in this study ad-
dress the key limitations of traditional kernels that rely on
uniform cloud layers or short-term datasets, thereby improv-
ing the parameterization of cloud feedback processes in cli-
mate models and enhancing the accuracy of future Arc-
tic climate change predictions. By demonstrating that cloud
base temperature (CBT) and TAU dominate the variability
of GCF-CRKs over ocean and land, respectively (Table 1),
this study provides a framework for refining cloud parame-
terization in models. For instance, the underestimation of CF
by the CERES SSF in Greenland (Fig. 6) and its cascading
impact on CRE bias (Fig. 12) reveal systematic errors in rep-
resenting cloud–surface interactions over the ice sheet. Im-
proving model representation of these processes can enhance
predictions of the Greenland Ice Sheet meltwater contribu-
tion to global sea level rise.

However, several limitations of this study are noteworthy.
First, considering CF to be the sole perturbation variable ne-
glects the synergistic effects of cloud phase, vertical struc-
ture, and microphysical properties, which are crucial for ice
cloud feedback. Second, sparse validation data over the Arc-
tic Ocean – particularly in autumn, when sea ice forms –
introduce uncertainties into marine cloud radiative impacts.
Future work should integrate multi-sensor lidar and/or radar
observations (e.g., CloudSat or CALIPSO) to distinguish be-
tween contributions from cloud height and those from optical
thickness. Additionally, extending GCF-CRKs to longwave
radiation and coupling them with dynamic sea ice models
could elucidate cloud feedbacks throughout the annual cy-
cle. On the other hand, radiative kernels can help isolate the
individual contributions from each component of the atmo-
sphere and surface, which is essential for evaluating feed-
backs, improving models, and understanding global climate
change (Thorsen et al., 2018). The GCF-CRK method devel-
oped in this study treats cloud fraction (CF) as the sole pertur-
bation variable, while other cloud parameters and non-cloud
data are treated as non-perturbation variables. This approach
directly links radiative fluxes to cloud parameters. However,
cloud radiative effects are a multidimensional and complex
process involving multiple parameters, such as cloud optical

thickness (TAU), cloud droplet effective radius, and cloud
top height. Notably, this method is highly scalable and can
be used to separately analyze the independent effects of each
parameter (Thorsen et al., 2018). For example, the sensitiv-
ity of surface shortwave radiation to changes in TAU can be
calculated by varying TAU while holding CF and other pa-
rameters constant. However, the analysis of the impacts of
multiple cloud parameters on GCF-CRKs in the preceding
sections also indicates that different cloud parameters have
significant spatial and temporal differences in terms of their
effects on cloud radiative effects and even opposing signs.
How to couple the radiative effects of multiple cloud param-
eters to resolve their combined effects is an important direc-
tion for future research.

6 Data availability

The gridded surface cloud fraction radiative kernels
(GCF-CRKs) are available on the Zenodo repository at
https://doi.org/10.5281/zenodo.13907217 (Liu, 2024). The
data are provided in NetCDF format with five individual files
(54.5 MB) at 1° spatial resolution and monthly temporal res-
olution for only sunlit months from April to September dur-
ing 2000–2020. The latitude ranges from 60 to 90° N, and the
longitude ranges from 180° W to 180° E.

The fusion cloud fraction dataset can be downloaded from
https://doi.org/10.5281/zenodo.7478918 (Liu and He, 2022).
The International Satellite Cloud Climatology Project H
dataset CRK (ISCCP-FH CRK) can be downloaded from
https://doi.org/10.5281/zenodo.4677580 (Zhang, 2021) and
the Zhou-CTP/CBP CRKs are available online from
https://doi.org/10.5281/zenodo.5176193 (Zhou, 2021).

7 Conclusions

This paper presents a novel and more computationally ef-
ficient method for estimating the surface shortwave cloud
radiative effect (CRE) in the Arctic region by developing
grid-based surface cloud fraction cloud radiative kernels
(GCF-CRKs) that incorporate spatiotemporal variability and
integrate refined downwelling surface shortwave radiation
(DSSR) estimates and high-precision cloud fraction (CF)
data. The key contributions of this work are described below.

7.1 Enhanced DSSR accuracy

By leveraging the correlation between the top-of-atmosphere
(TOA) radiative parameters and incorporating the effect of
cloud fraction (CF) on surface shortwave radiation under var-
ious CF conditions, we derived the DSSR under all-sky con-
ditions as a function model related to the satellite-observed
TOA shortwave radiation, clear-sky DSSR, and CF. By in-
corporating CF information into the estimation process, this
method addresses the limitations of traditional approaches
which often rely on the radiative transfer calculated under
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clear (CF= 0) or overcast (CF= 100 %) conditions, thus en-
hancing the accuracy of the DSSR estimation under par-
tially cloudy conditions (0 %<CF< 100 %). For our Arctic-
wide validation experiments using data from stations, the
root mean square error (RMSE) of our estimated DSSR com-
pared to ground observations decreased by approximately
1.5 W m−2, and the bias decreased by 1.23 W m−2 compared
to the CERES EBAF data, showing an 8.7 % improvement
in the accuracy of the estimate. This accuracy improvement
is even more pronounced at the Greenland stations, with an
RMSE reduction of approximately 4.53 W m−2, representing
an improvement of about 11.1 %, and a bias reduction of ap-
proximately 6.89 W m−2.

7.2 Development of spatiotemporal grid-based CRKs

To quantify cloud-induced surface radiative anomalies more
accurately, we developed long-term gridded surface CF ra-
diative kernels (GCF-CRKs) based on the function model re-
lated to the CF. By embedding spatiotemporal characteris-
tics directly into the CRKs and using the observation param-
eters, this method significantly enhances the accuracy and
computational efficiency of CRE estimation in the Arctic.
Additionally, compared to existing methods, which decom-
pose cloud layers and potentially overlook nonlinear effects,
our approach directly calculates the radiative kernels for the
entire cloud layer. This avoids the bias associated with the
nonlinear effects in the layer-by-layer algorithm. Compar-
isons with other CRKs, including ISCCP-FH SFC CRKs and
Zhou-CTP/CBP CRKs, reveal that all of the kernels have
negative values with consistent spatiotemporal trends, and
the magnitude can be regulated by the cloud optical depth
(TAU) and cloud base pressure (CBP). The results confirm
that our estimated kernels have better stability and increase
the cooling effect of the CF in Greenland by approximately
0.5 W m−2 %−1.

7.3 Improved CRE estimation

By applying the developed GCF-CRKs and integrating high-
precision CF data, this study provides a more accurate esti-
mation of the CRE on the Arctic DSSR. We compared these
estimates with the surface SWCRE calculated directly from
the difference between the all-sky DSSR and clear-sky DSSR
in the CERES EBAF data. The results indicate that the CRE
is generally negative in the Arctic, and its intensity is strongly
regulated by the solar radiation intensity, surface albedo, and
cloud parameters (e.g., the CF, TAU, CTP, and CTT). The
spatial distribution of the CRE calculated using the GCF-
CRKs is consistent with that of the CRE obtained using the
CERES EBAF data, but there are important distinctions. The
original CERES EBAF data tend to underestimate the sensi-
tivity of the CF in Greenland and overestimate it in perennial
open waters and some land areas due to overestimation of
the CF. Furthermore, Sen–Mann–Kendall trend analysis of

the long-term data revealed that the surface SWCRE exhibits
an increasing trend in the Arctic, suggesting that previous
studies may have overestimated the cooling effect of clouds
on Arctic surface shortwave radiation by 0.15–4 W m−2 and
may have overestimated the cooling rate by 0.5 W m−2 per
decade.

In summary, this study successfully demonstrates the de-
velopment of a more computationally efficient and accu-
rate method for estimating surface shortwave CRE in the
Arctic by integrating high-precision CF data and improved
DSSR estimates into spatiotemporal grid-based CRKs. The
proposed approach provides significant advancements in our
understanding of cloud radiative effects in the Arctic. This
method has the potential to be extended to other regions with
complex cloud systems, such as the tropics and mid-latitudes,
where similar biases may exist in radiative kernel calcula-
tions. Moreover, the smaller interannual variation trend of the
cloud radiative effect in this study suggests that the cooling
effect of clouds in modulating Arctic warming has been over-
estimated in previous observations, implying that the actual
rate of warming in the Arctic may be faster than previously
thought. This has important implications for understanding
polar amplification and its effects on global climate patterns,
such as changes in sea ice extent, ocean circulation, and ex-
treme weather events.

Despite these advancements, the study also identifies sev-
eral limitations, including the coarse spatial and temporal
resolution of the data and limited validation in marine ar-
eas. Moreover, the current method considers CF to be the
sole perturbation variable, neglecting the synergistic effects
of other cloud parameters such as cloud phase, vertical struc-
ture, and microphysical properties, which are essential for
a comprehensive understanding of cloud radiative feedback
mechanisms. Investigating the independent effects of indi-
vidual cloud parameters, as well as the combined effects of
multiple cloud parameters, will be a crucial direction for
future research. Additionally, while this study has demon-
strated the temporal stability of the proposed GCF-CRKs
under current climate conditions, significant uncertainties re-
main regarding their stability in future climate scenarios. Uti-
lizing climate models, such as those from the CMIP6, to sim-
ulate future changes in cloud properties under various cli-
mate scenarios and to assess their impacts on GCF-CRKs
will be a key issue to address in future work.
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Appendix A: The spatiotemporal distribution of
cloud parameters

Figure A1. The average monthly cloud fraction (CF) in the Arctic from April to September, 2000–2020.

Figure A2. The average monthly cloud optical depth (TAU) in the Arctic from April to September, 2000–2020.
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Figure A3. The average monthly cloud top pressure (CTP) in the Arctic from April to September, 2000–2020.

Figure A4. The average monthly cloud base pressure (CBP) in the Arctic from April to September, 2000–2020.
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Figure A5. The average monthly cloud top temperature (CTT) in the Arctic from April to September, 2000–2020.

Figure A6. The average monthly cloud base temperature (CBT) in the Arctic from April to September, 2000–2020.
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Appendix B: The trend distribution of the shortwave
cloud radiative effect

Figure B1. The trend distribution of the shortwave cloud radiative effect (CRE) in the Arctic. Panel (a) is the CRE estimated by grid-specific
surface cloud fraction (CF) radiative kernels and CF, and panel (b) represents the CRE estimated by the CERES EBAF downwelling surface
shortwave radiation differences under all-sky and clear-sky conditions. The black area shows significance at the 95 % confidence level.
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