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Abstract. Forests in Europe are undergoing complex changes that require a comprehensive monitoring of dis-
turbance occurrence. Here, we present the European Forest Disturbance Atlas (EFDA), a Landsat-based approach
for mapping annual forest disturbances across continental Europe from 1985 onwards. We built a consistent
Landsat data cube of summer composites and compiled reference data on forest land use and forest disturbances.
A classification-based approach was developed to detect forest disturbances annually, therefore accounting for
multiple disturbance events per time series. The EFDA contains annual layers on disturbance occurrence, sever-
ity, and agent, as well as aggregated layers on the number of disturbances and the latest and greatest distur-
bance year. Based on the annual disturbance estimates (1985–2023), we quantified a total forest disturbed area
of 439 000 km2, which increases to 610 000 km2 when accounting for multiple overlapping disturbance events.
Map accuracies of the disturbance classification showed an overall F1 score of 0.89, with very low errors (< 1 %)
for the undisturbed class and with commission and omission errors for the disturbed class of 17.3 % and 22.5 %,
respectively. Further, temporal validation revealed that errors decreased over time, with commission errors de-
creasing substantially to 10.6 % after the year 2000. We designed and implemented our workflow to create annual
forest disturbance maps for easy updating when new data arrive and in an open-access framework to facilitate
reproducibility, thus paving the road for an operational forest disturbance system in Europe. EFDA products are
available at https://doi.org/10.5281/zenodo.13333034 (Viana-Soto and Senf, 2024).

1 Introduction

Europe’s forests cover more than one-third of the conti-
nent, and they provide essential ecosystem services to soci-
ety (FOREST EUROPE, 2020), spanning from timber pro-
duction and carbon storage (Lindner et al., 2010) and wa-
ter purification and regulation (Orsi et al., 2020) to recre-
ational and spiritual value (Saarikoski et al., 2015). Europe’s
forests are shaped by a long history of forest management,
with past management decisions driving their current struc-
ture and composition (Ciais et al., 2008; Sabatini et al., 2018;
Seidl and Senf, 2024). Past forest management has also fo-
cussed on increasing forest resistance to natural disturbances
(Seidl, 2014), sustaining a continuous provision of timber

and other ecosystem services (Thom and Seidl, 2016). In
recent years, however, evidence for changing natural distur-
bance regimes has been reported globally (McDowell et al.,
2020); additionally, in Europe, climate change and climate
extremes have led to increased natural disturbances (Patacca
et al., 2023; Senf et al., 2018; Senf and Seidl, 2021b). The
trend of increasing natural disturbances coincides with an in-
creasing demand for wood globally, with reported increases
in timber harvest rates across most of Europe (Breidenbach
et al., 2022; Ceccherini et al., 2020; Palahí et al., 2021; Seidl
and Senf, 2024). Forests in Europe are thus undergoing com-
plex changes that require a fundamental monitoring of where
and when disturbances occur, providing a basis for decision
making and forest planning.
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Remote sensing data can provide detailed and consistent
information on forests (Hirschmugl et al., 2017; Senf, 2022),
and the Landsat archive (Wulder et al., 2022) – covering
more than 4 decades – plays a key role in characterising
disturbances (Banskota et al., 2014). In particular, Land-
sat has contributed to a better understanding of the causes
and consequences of changing disturbance regimes in Eu-
rope (Grünig et al., 2022; Lecina-Diaz et al., 2024; Senf and
Seidl, 2018; Sommerfeld et al., 2018; Stritih et al., 2021)
and of disturbance interactions (Buma, 2015; Hermosilla et
al., 2019; Turner and Seidl, 2023). Since the opening of
the Landsat archive, different methodologies and algorithms
have emerged for monitoring forest cover change across
large areas (Zhu, 2017), with a regional focus on the forests
of the United States and Canada (Kennedy et al., 2010;
Verbesselt et al., 2010; Zhao et al., 2019; Zhu and Woodcock,
2014b). Such forest change detection algorithms can broadly
be grouped into four types: (1) trajectory segmentation ap-
proaches (Hughes et al., 2017; Kennedy et al., 2010; Moi-
sen et al., 2016), (2) time series decomposition approaches
(Verbesselt et al., 2010; Zhao et al., 2019), (3) threshold-
based methods (Huang et al., 2010), and (4) classification
approaches (Hansen et al., 2013; Hermosilla et al., 2015).
Time series segmentation or decomposition methods rely on
the detection of statistical breakpoints in a spectral time se-
ries to detect forest change. While easy to implement and
requiring little to no reference data, such approaches make
use of only a limited set of spectral characteristics (usu-
ally one spectral index), and they require re-calibration when
new observations are incorporated (Hermosilla et al., 2017).
Threshold-based methods, in turn, can be easily updated with
new data, but they rely on simple thresholds that might be
difficult to apply across different ecosystems because thresh-
olds will vary depending on forest composition and site con-
ditions (Cardille et al., 2022). Classification-based methods,
particularly machine-learning-based approaches (Belgiu and
Drãguþ, 2016), can capture complex patterns and adapt to
different types of disturbances and varying environmental
conditions (Cardille et al., 2022). This makes them more flex-
ible in relation to map changes across large areas (Hansen et
al., 2013). Classification-based approaches also apply a strict
definition of disturbances (i.e. according to a well-defined
classification label), and they can reliably reduce commission
errors resulting from noise in the time series (Cohen et al.,
2017; Hermosilla et al., 2015). Finally, annual classification
approaches can also facilitate the detection of more than one
disturbance per pixel time series, which can be challenging
with trajectory-based approaches (Hermosilla et al., 2015).

Due to the rapid development of new remote sensing ap-
proaches, there is growing interest in also developing op-
erational forest monitoring systems at the level of the Eu-
ropean Union (Fassnacht et al., 2024; Ferretti, 2024; Fer-
retti et al., 2024; Nabuurs et al., 2022) and, in particular,
systems for the monitoring of tree cover change and dis-
turbance (Dutrieux et al., 2023; European Commission et

al., 2023). As global tree cover change products contain
high uncertainty when analysed regionally (Ceccherini et
al., 2020; Breidenbach et al., 2022; Palahí et al., 2021), ef-
forts have been made to develop forest disturbance monitor-
ing approaches specifically for Europe (Francini et al., 2021;
Senf and Seidl, 2021a; Turubanova et al., 2023). Francini et
al. (2021) proposed an automated algorithm (3I3D) for map-
ping forest disturbances based on spectral change in three in-
dices within 3 consecutive years. The approach has shown
good results for harvest disturbance detection in Italy but
has yet to be applied at a continental scale. Shortly after,
Senf and Seidl (2021a) created the first pan-European char-
acterisation of forest disturbance by combining a trajectory
segmentation algorithm (LandTrendr; Kennedy et al., 2010)
with a random forest classification approach to filter out false
positives from the LandTrendr segmentation (Cohen et al.,
2018). While delivering spatially consistent data across Eu-
rope, this approach was constrained to the greatest change
event per pixel and thus cannot include multiple disturbances
per pixel. Turubanova et al. (2023) modelled changes in tree
crown height across Europe from 2001 to 2021 by inte-
grating Landsat imagery and lidar data (airborne laser scan-
ning (ALS) and Global Ecosystem Dynamics Investigation
(GEDI)). This constitutes the first attempt to analyse the evo-
lution of tree canopy height at the European scale, but it only
includes data from 2001 onwards and thus lacks a baseline
for understanding more recently observed changes and for
quantifying trends over time. As such, while there are a mul-
titude of different approaches and products mapping forest
disturbance across Europe, none of the existing approaches
fulfil all of the requirements for an operational monitoring of
forest change in Europe.

Here, we present the European Forest Disturbance Atlas
(EFDA), which is a Landsat-based approach for mapping an-
nual forest disturbances across continental Europe from 1985
onwards. The EFDA contains annual layers on disturbance
occurrence, severity, and agent, as well as aggregated layers
on the latest and greatest disturbance year and on the number
of disturbances. The aim of this paper is to (i) explain and
document the data and processing routines used for Landsat-
based disturbance mapping, (ii) quantify uncertainties and er-
rors in the disturbance maps, (iii) describe the individual map
products derived from the disturbance maps, and (iv) discuss
the use (and misuse) of the EFDA for forest monitoring.

2 Data and methods

The overall workflow behind the EFDA contains six process-
ing steps summarised in Fig. 1 and described in full detail in
the following sub-sections. First, we build a consistent Land-
sat data cube for Europe. Second, we compile a reference
dataset on forest land use and forest disturbances. Third, we
create a consistent forest land use mask. Fourth, we develop
a classification-based approach to detect disturbances annu-
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ally at the pixel level. Following this, we validate the forest
land use mask and disturbance maps based on an independent
reference sample. Fifth, we identify disturbance patches and
the likeliest agent of disturbance at the patch level. Lastly,
we create a set of summary layers on forest disturbances and
forest disturbance agents.

2.1 Landsat data cube

Our analysis area covers continental Europe, which was de-
fined as all European countries except for Russia, Malta,
Cyprus, and overseas territories and which covers a total of
5 749 424 km2 of land area. For the analysis area, we identi-
fied all level-1 images collected from Landsat 4 to Landsat 9
since 1984 with a cloud cover below 60 %. We only searched
for images within the growing season (1 June and 30 Septem-
ber) to prevent differences in reflectance caused by pheno-
logical variations and sun angle changes. This resulted in a
total of 115 663 images until 2023, which we downloaded
from the United States Geological Survey (Fig. 2a). The
level-1 Landsat images were further processed to surface re-
flectance (level 2) and were organised in a data cube structure
of non-overlapping tiles of 150× 150 km (Fig. 2b) using the
Framework for Operational Radiometric Correction for Envi-
ronmental monitoring (FORCE version 3.7.9, Frantz, 2019).
Processing steps included atmospheric corrections using a
pre-compiled water vapour database (Frantz et al., 2016), to-
pographic correction using the ASTER Global Digital Ele-
vation Model Version 3 (Abrams et al., 2020), bidirectional
reflectance distribution function corrections, and cloud and
cloud shadow masking (Frantz et al., 2016; Roy et al., 2016;
Zhu and Woodcock, 2012). We performed topographic nor-
malisation by applying a modified C correction (Kobayashi
and Sanga-Ngoie, 2008), which is a physically based correc-
tion of topography, amended by an empirically derived ex-
tra parameter C (Hantson and Chuvieco, 2011). We applied
cloud masking using a modified version of Fmask, with addi-
tional steps that enhance cloud and shadow detection (Frantz
et al., 2016). After detecting clouds and cloud shadows in
every Landsat image independently by using the Fmask al-
gorithm, we applied a time series algorithm to detect outliers
and remove additional clouds and shadows on a per-pixel ba-
sis (Frantz et al., 2015; Zhu and Woodcock, 2014a).

From the level-2 data cube, we created annual, cloud-
free best-available-pixel composites across the whole analy-
sis area. Best-available-pixel compositing has been demon-
strated to yield temporally and radiometrically consistent
data for large-area mapping (Hermosilla et al., 2022), and
recent research has shown its superiority in detecting dis-
turbances compared to other temporal aggregation methods
(Francini et al., 2023). For creating the best-available-pixel
composites, we selected for each pixel the best observations
based on a parametric weighting scheme established in pre-
vious research (Griffiths et al., 2013). Observations were
ranked per pixel according to distance to clouds and cloud

shadows, haze opacity, and proximity to a predefined target
date (1 August; Fig. A1 in Appendix A). The scoring al-
gorithm assigns each of these factors a specific weight and
considers only high-quality pixels, discarding observations
with very low cloud or haze scores. The observation with the
highest cumulative score is then selected as the best pixel for
each location, ensuring both spectral and temporal consis-
tency in the composites. As there were still remaining gaps in
the composites (i.e. areas where no high-quality observation
was found during the summer season, equating to 10.1 % of
the total area on average; see Fig. A2 for annual details), we
applied a linear gap-filling algorithm, extrapolating the previ-
ous year’s spectral values to fill the remaining gaps (Fig. 2c),
reducing data gaps to 4.9 % per year on average.

2.2 Reference data for disturbance mapping

We compiled reference data for both forest and non-forest
land use pixels, used to train a classifier that discriminates
between forest and other land uses, as well as for disturbance
and undisturbed pixels, used to train a classifier that detects
tree cover change within forest land use annually. For the lat-
ter, we used a previously established dataset of 20 084 man-
ually interpreted Landsat pixels for 35 countries, available
at https://doi.org/10.5281/zenodo.3561925 (Senf, 2019). The
dataset was built from two samples: the first one contains
24 000 randomly selected Landsat pixels for six countries for
all land uses, covering the period of 1985 to 2017 (central
Europe; Senf et al., 2018), and the second one contains 500
randomly selected Landsat pixels for 29 countries (exclud-
ing central Europe) for forest land use, covering the period of
1985 to 2018 (Senf et al., 2021). After removing non-forest
land use pixels from both samples, we were left with a to-
tal of 20 084 reference pixels for forest land use across Eu-
rope (Fig. A3). For each pixel, trained interpreters segmented
the spectral time series into linear segments of stable, distur-
bance, and recovery (Fig. 3) using an established interpre-
tation tool (Cohen et al., 2010). Using Landsat images and
high-resolution imagery available from Google Earth, the
interpreters can determine whether spectral changes corre-
spond to forest canopy changes or whether spectral changes
were caused by other artefacts, such as clouds, illumination
conditions, or phenological variations. The interpreters addi-
tionally recorded the land cover for each node of each seg-
ment (treed (>= 50 % tree cover) or non-treed (< 50 % tree
cover)), which allowed us to disentangle stand-replacing dis-
turbances (land cover changes from treed to non-treed) from
non-stand-replacing disturbances (land cover stays treed de-
spite disturbance). For full details on the interpretation, we
direct the reader to the original publications (Senf et al.,
2018, 2021). We converted the linear segments into annual
binary information on disturbance occurrence (Fig. 3), which
yielded 662 772 data points (pixel–year combinations) to
train an annual classification model.
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Figure 1. Overview of the workflow for creating the European Forest Disturbance Atlas.

For masking out all non-forest land use, we complemented
the above sample of forest land use with non-forest land use
reference points from the LUCAS database (Land Use and
Coverage Area frame Survey, Eurostat: https://ec.europa.eu/
eurostat/web/lucas, last access: 1 February 2025). The LU-
CAS database is a spatially explicit database using a strati-
fied random sampling design and trained field surveyors to
assess land use and land cover (among other parameters)
at 651 676 locations across Europe over the years 2006 to
2018 (d’Andrimont et al., 2020). LUCAS has been success-
fully used for land cover mapping (Pflugmacher et al., 2019)
and thus is an ideal database for generating reference infor-
mation for large-scale remote sensing analyses. From LU-
CAS, we extracted samples for the following categories: ar-
tificial land, croplands, grassland, bare land, water, and wet-
lands. We used only direct observations made at the plot in
the field or via photointerpretation for land cover areas of
> 1 ha, land cover proportions of > 80 %, and plots with a
field-observed GPS location < 15 m away from the LUCAS
point. We collected a total of 46 651 non-forest reference pix-
els in this way, matching the forest to non-forest land use ra-
tio per country following statistics available in the FAOSTAT
database (FOREST EUROPE, 2020). Doing so yields a ran-
dom sample per country; i.e. the share of samples within and
outside forest land use corresponds to the share of forest to
non-forest land use of the country.

From each sample, we retained a validation subsample of
2500 pixels for independent validation of the forest land use

and forest disturbance classification. The land use validation
sample was drawn proportionally to each country’s land area
and stratified by forest share within each country (see Ta-
ble 1), which emulates a random sample across Europe’s
land area. That said, due to the absence of LUCAS infor-
mation for 10 countries, the non-forest sample was slightly
smaller (2066 samples) than the planned 2500 samples (see
Table 1). The forest disturbance validation sample was drawn
proportionally to each country’s forest area, which emulates
a random sample across Europe’s forest area. Both samples
are thus independent, random draws from the full population
and allow for estimating unbiased map accuracies of the final
map products.

2.3 Forest land use mask

A forest land use mask was required to mask out any non-
forest land use areas, which often exhibit strong spectral
changes that could be confused with disturbances. Since
there is no consistent forest land use mask available across
all of continental Europe, we created our own forest land
use mask using a multi-temporal classification approach. We
broadly followed the FAO definition of forest land use, which
is any area that has or will reach tree cover greater than 10 %
in the near future, is larger than 0.5 ha and 20 m in width, and
is primarily not used for urban or agricultural land use (FAO,
2020). This definition thus includes young forests of lower
tree cover, areas of reforestation, and temporally unstocked
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Figure 2. (a) Number of images processed per year and per sensor (1984–2023). (b) Clear-sky observations across Europe for the entire
time series and tile system of the data cube. (c) Examples of best-available-pixel (BAP) composites (RGB: SWIR2, NIR, red) for Europe and
resulting composites after gap-filling.

areas (e.g. forestry roads). To match this definition, we clas-
sified each reference pixel (see Sect. 2.2) that has been treed
(even temporally) since 1985 as forest land use. All reference
pixels of other land uses (i.e. artificial, croplands, waterbod-
ies) were classified as non-forest land use. We use such a
broad land use definition, instead of a recent tree cover map,

to avoid masking recently disturbed areas that are temporally
unstocked but still considered to be forest land use. Using
the reference categories assigned to each pixel, we trained a
random forest model with a stack of all annual best-available-
pixel composites as input, comprising 34 years with six spec-
tral layers and six spectral indices (Table 1), resulting in 408

https://doi.org/10.5194/essd-17-2373-2025 Earth Syst. Sci. Data, 17, 2373–2404, 2025



2378 A. Viana-Soto and C. Senf: The European Forest Disturbance Atlas

Figure 3. Schematic representation of the original reference data from Senf et al. (2018, 2021): (a) image chips and corresponding segmenta-
tion labels of stable forest, disturbance, and recovery segments and corresponding treed (T) and non-treed (N) land cover, ultimately labelled
according to annual binary classes of undisturbed (U) and disturbed (D); (b) examples of undisturbed forest, a gradual non-stand-replacing
disturbance, multiple stand-replacing disturbances, and their corresponding binary labels.

features (see Fig. A4 for visualisation of the feature space
and Fig. A6 for further details on variable importance). We
then applied the model to the raster stack to yield one clas-
sification of forest and/or non-forest land use for our en-
tire study period. In accordance with the FAO definition, we
also defined a minimum mapping unit (MMU) consisting of
six Landsat pixels for the forest mask (0.54 ha), converting
smaller patches into non-forest. All non-forest land use pix-
els were excluded from subsequent analyses.

2.4 Annual disturbance mapping

For each forest land use pixel, we classify forest disturbances
on an annual basis from 1985 onwards. Disturbed and undis-
turbed forests have a distinctive spectral signal across a 2-
year period as spectral characteristics change significantly
during disturbance, while they remain constant for undis-
turbed forests (Kennedy et al., 2007). Hence, we calibrated
a random forest model to identify disturbed and undisturbed
pixels using the spectral information from a given year (tar-
get year t0) and the previous year (reference year, t−1) to
disentangle inter-annual stability and change. As the classi-
fication input, we used a set of spectral indices (normalised
difference vegetation index (NDVI), Tucker, 1979, and nor-

malised burn ratio (NBR), García and Caselles, 1991), the
tasseled-cap components (Baig et al., 2014; Crist, 1985), and
the Disturbance Index (Healey et al., 2005) (Table A1 and
Fig. A5; see Fig. A6 for further details on variable impor-
tance). As the reference, we used undisturbed and stand-
replacing disturbances (i.e. disturbances that lead to a change
in land cover; see Sect. 2.2), which indicate a clear opening
of the top canopy and thus allow the model to learn the dis-
tinct spectral differences between undisturbed and disturbed
pixels. The trained model was then applied annually, which
facilitates updating the map product as soon as images are
available for the next year.

Due to the imbalanced nature of the sample (disturbances
representing only 3 %), we applied the SMOTE method
(Chawla et al., 2002), which helps by lowering the overall
learning cost, assigning higher costs to misclassifying the mi-
nority class, and balancing the data through under-sampling
the majority and over-sampling the minority class. We fur-
ther used the module RandomizedSearchCV (Pedregosa et
al., 2011) to efficiently find the best set of hyperparame-
ters using cross-validation, selecting the combination that re-
sulted in the highest area under the receiver-operating charac-
teristic curve score. To classify the probability of disturbance
into the binary categories of disturbed and undisturbed, we
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Table 1. Sizes of the validation samples for the land use and disturbance classifications and the corresponding weights used for calculating
the sample size (missing samples in the LUCAS database indicated by “–”).

Country name Country area Forest area Land area Forest area Land use validation Disturbance validation
(km2) (km2) proportion proportion sample sample forest

Forest Non-forest

Albania (AL) 28 786.07 7716 0.00501 0.268 3 – 9
Austria (AT) 83 988.21 39 600 0.01461 0.471 17 20 47
Belarus (BY) 20 7575.27 80 334 0.03610 0.387 35 – 96
Belgium (BE) 30 587.77 6834 0.00532 0.223 3 10 8
Bosnia and Herzegovina (BA) 51 030.41 25 599 0.00888 0.502 11 – 31
Bulgaria (BG) 110 953.91 36 250 0.01930 0.327 16 32 43
Croatia (HR) 57 017.2 24 901 0.00992 0.437 11 14 30
Czechia (CZ) 78 842.74 26 000 0.01371 0.330 11 23 31
Denmark (DK) 43 501.59 6120 0.00757 0.141 3 16 7
Estonia (EE) 45 405.32 23 066 0.00790 0.508 10 10 27
Finland (FI) 338 434 233 320 0.05886 0.689 101 46 278
France (FR) 549 006.24 246 640 0.09549 0.449 107 132 294
Germany (DE) 357 454.99 114 190 0.06217 0.319 50 105 136
Greece (EL) 124 885.96 37 600 0.02172 0.301 16 38 45
Hungary (HU) 93 001.36 20 990 0.01618 0.226 9 31 25
Ireland (IE) 70 243.37 7540 0.01222 0.107 3 28 9
Italy (IT) 300 887.48 106 736 0.05233 0.355 46 85 127
Latvia (LV) 64 549.9 28 807 0.01123 0.446 12 16 34
Lithuania (LT) 64 941.46 21 223 0.01130 0.327 9 19 25
Moldova (MD) 33 847.27 3290 0.00589 0.097 1 – 4
Montenegro (ME) 13 764.39 6252 0.00239 0.454 3 – 7
The Netherlands (NL) 35 162.75 3650 0.00612 0.104 2 13 4
North Macedonia (MK) 25 438.31 10 285 0.00442 0.404 4 – 12
Norway (NO) 311 654.47 121 120 0.05421 0.389 53 – 145
Poland (PL) 311 759.97 90 000 0.05422 0.289 39 97 107
Portugal (PT) 88 700.69 31 820 0.01543 0.359 14 25 38
Romania (RO) 238 289.83 69 610 0.04145 0.292 30 74 83
Serbia (RS) 88 372.28 27 200 0.01537 0.308 12 – 32
Slovakia (SK) 49 036.66 20 006 0.00853 0.408 9 12 24
Slovenia (SI) 20 221.19 12 574 0.00352 0.622 6 3 15
Spain (ES) 498 518.52 184 180 0.08671 0.369 80 136 219
Sweden (SE) 450 040.79 280 730 0.07828 0.624 122 74 335
Switzerland (CH) 41 239.21 12 540 0.00717 0.304 5 – 15
Ukraine (UA) 597 120.26 105 000 0.10386 0.176 46 – 124
United Kingdom (UK) 245 164.44 28 650 0.04264 0.117 13 94 34

912 1154 2500

2066

optimised the probability cutoff using the F1 score derived
from cross-validation. The optimal threshold was 0.5, with
an overall F1 score of 91 %.

Finally, we applied several post-processing steps: first, an-
nual maps were masked according to the forest land use mask
(MMU= 0.54 ha), and a minimum mapping unit of three
Landsat pixels was assigned (0.27 ha), reducing the number
of single false-positive pixels (so-called salt-and-pepper ef-
fect, typical for pixel-based classification). Second, we ap-
plied a collapsing step in which multiple disturbances de-
tected in a time window of < 4 years since the last dis-

turbance were reduced to the first year the disturbance se-
quence was detected (Fig. 4). This was done to avoid illog-
ical changes (i.e. disturbance, no disturbance, disturbance)
and double counting of disturbances in consecutive years that
arise from the same disturbance event. That is, if a distur-
bance event extends over multiple, consecutive years, we will
map only the first year of the disturbance segment as dis-
turbed.
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Figure 4. Schematic view of collapsing step to relabel illogical and consecutive disturbance events.

2.5 Accuracy assessment

Robust estimation of map accuracies is important for map
uptake and subsequent analyses (Olofsson et al., 2014). We
quantified map accuracies of both the forest land use and
forest disturbance maps using the independent samples de-
scribed in Sect. 2.2 and standard confusion matrices, from
which we estimated omission errors or producer’s accuracies
(or recall), commission errors or user’s accuracies (or pre-
cision), and overall errors or accuracies and F1 scores (For-
man and Scholz, 2010). Uncertainties in each accuracy es-
timate were quantified using bootstrapping with 1000 rep-
etitions, which simulates sampling variability due to hypo-
thetical repeated sampling for each estimate. We further as-
sessed how accuracies of the disturbance map varied spa-
tially and temporally. For assessing spatial variability, we
computed confusion matrices per region (north – 7 countries,
central – 20 countries, and south – 11 countries) according to
FOREST EUROPE (2020) definitions. For assessing tempo-
ral variability, we computed confusion matrices and corre-
sponding accuracy estimates per year and for different peri-
ods. We also calculated confusion matrices using only stand-
replacing disturbances (i.e. pixels where the interpreter as-
signed a change in land cover) and both stand-replacing and
non-stand-replacing disturbances (i.e. pixels where the inter-
preter assigned no change in land cover). We did so to test the
sensitivity of our maps and map accuracies to low-severity
disturbances. Further, we compared the forest land use area
estimated from our map to national-level statistics on forest
land use area obtained from the FAOSTAT database (FOR-
EST EUROPE, 2020). We finally compared our disturbance
estimates to existing datasets for Europe (Hansen et al., 2013;
Senf and Seidl, 2021a; Turubanova et al., 2023).

2.6 Agent attribution

To identify the most likely agent of disturbances, we adapted
an existing attribution algorithm (Sebald et al., 2021; Seidl
and Senf, 2024; Senf and Seidl, 2021b) for the annual distur-
bance maps. The algorithm first detects disturbance patches
by grouping pixels disturbed in the same year that are con-
nected by an edge or corner using queen contiguity. That
is, the analysis is performed at the patch level and not at

the pixel level anymore, allowing us to derive patch-level
predictors that are important for disturbance agent attribu-
tion (Oeser et al., 2017; Sebald et al., 2021; Stahl et al.,
2023). To correct for timing errors in the disturbance map
(e.g. a fire mapped over 2 years might appear as two separate
fires), patches from consecutive years that share an edge are
merged, with the disturbance year being assigned based on
a majority vote (see Senf and Seidl, 2021b, for details). For
each patch, we generated a set of 18 predictors, including
size, shape, spectral characteristics, and surrounding land-
scape (see Table 2 for details and Fig. A6 for further details
on variable importance, as well as Seidl and Senf, 2024; Senf
and Seidl, 2021b).

As reference data, we used an extended reference database
of 12 571 points for fires, windthrows, and bark beetle dis-
turbances. This database builds upon an existing reference
database of 11 364 points of fires and windthrows devel-
oped in Senf and Seidl (2021b) and which was extended
to 12 571 points to also include bark beetle disturbances
(Seidl and Senf, 2024). This dataset was created by com-
bining visual interpretation of an existing disturbance map
(Senf and Seidl, 2021a), Landsat data, and high-resolution
imagery with different databases on storms (FORWIND,
Forzieri et al., 2020), insect outbreaks (DEFID2, Forzieri
et al., 2023), and fire-related disturbances (EFFIS, https:
//forest-fire.emergency.copernicus.eu/, last access: 2 Febru-
ary 2025). Additionally, papers documenting bark beetle out-
breaks in Europe were used to support the interpretation of
bark beetle patches (Hlásny et al., 2021). Each point in the
reference database was linked to a disturbance patch in our
disturbance map by means of a unique patch ID. In some
cases, two or more occurrence points fell within the same
disturbance patch (especially for large fires or windthrows),
which reduced the number of patches with an agent label
to 12 314 (10 114 for windthrow, 1085 for bark beetles, and
1115 for fire). The database thus covers the three most im-
portant natural disturbance agents in Europe (Patacca et al.,
2023). We note, however, that the focus of the attribution is
on the root cause of disturbance. That is, an area affected
by natural disturbances (e.g. wind) that is salvage logged
afterwards is considered to be a wind disturbance. We did
not have dedicated information on harvest in the reference
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Table 2. Predictors used in the agent attribution model.

Predictor group Predictor Description

Spectral characteristics Spectral change (NBR,
tasseled-cap brightness (TCB),
tasseled-cap greenness (TCG),
and tasseled-cap wetness
(TCW))

The mean, standard deviation, and maximum value in the respective
spectral index during the disturbance event.

Patch characteristics Patch size and perimeter The total size of the disturbance patch in ha and perimeter (total
number of boundary pixels for the patch).

Patch fractional dimension
index

The fractional dimension index, given an indication of patch
complexity, with larger values indicating more complex patches.

Landscape Pulse dynamics The proportion of disturbances in a 5 km radial buffer occurring in the
same year as the focal patch. The values range between 0 and 1, with 0
indicating no other disturbances in the same year in the 5 km
neighbourhood (high spatiotemporal segregation), whereas a value of 1
indicates that all other disturbances in the surrounding neighbourhood
occurred in the same year (high spatiotemporal clustering).

Number of patches Overall number of patches in the 5 km radial buffer.

database because there is no reliable spatially explicit infor-
mation on harvest activities, and interpreting harvest is dif-
ficult because harvest can happen in reaction to natural dis-
turbances (i.e. salvage logging). We thus used an approach
developed in Senf and Seidl (2021b) and selected a random
background sample from all disturbance patches to indicate
the absence of fire, windthrow, or bark beetle outbreaks in
the model. As harvest is assumed to be the major disturbance
agent in Europe (Patacca et al., 2023; Seidl and Senf, 2024),
this background sample will represent harvest conditions in
contrast to the agent information available in the existing
databases. In essence, this approach is similar to presence-
only species distribution models, where absence data are also
rare (Valavi et al., 2022). We drew a total of 12 314 random
patches to represent harvest, equating to the sum of wind,
fire, and bark beetle disturbances and resulting in a final ref-
erence database of 24 628 patches. We subsequently trained
a random forest model using the agent labels in the refer-
ence database and the predictors described above. We ini-
tially trained a model that classifies each patch into one of
the four agent categories (wind, fire, bark beetle, and har-
vest) but found high confusion between wind and bark bee-
tle disturbances. This was mostly due to bark beetle refer-
ence data being available mostly for very recent, large-scale
bark beetle outbreaks in central Europe that resemble past
windthrows in their form and shape. Since less historic in-
formation was available on bark beetle disturbances, which
could have improved the model skill, we decided to group
wind and bark beetle disturbances into one category. Ecolog-
ically, both disturbance agents form a disturbance complex,
with wind disturbances often triggering bark beetle distur-
bances and vice versa (Seidl and Rammer, 2017). That said,

as bark beetle was a less important natural disturbance agent
compared to wind and fire disturbances prior to the recent
central European drought event (Patacca et al., 2023), distur-
bances in the wind–bark beetle category prior to 2017 can be
considered to be mostly wind dominated, while disturbances
in the same class can be considered to be bark beetle domi-
nated after 2017. Finally, as there was no independent sample
of reference data available at the agent level, we were un-
able to provide map accuracies on the resulting agent maps.
We provide model accuracies derived from a 5-fold spatial
block cross-validation (Valavi et al., 2019), with class errors
for each class. Those model accuracies should be taken with
caution because they do not represent true map accuracies.

2.7 Summary layers

Using the annual maps of disturbances and the underlying
spectral information, we computed a series of layers that
compose the European Forest Disturbance Atlas (EFDA)
(Viana-Soto and Senf, 2024; see Table 3 for a detailed
summary). The resolution of all layers is 30 m, contain-
ing information from 1985 to 2023 (in the current version,
2.11). The data are distributed at the country level using the
ETRS89 coordinate reference system and the Lambert az-
imuthal equal-area projection (ETRS89-extended/LAEA Eu-
rope; EPSG:3035) and can be downloaded from https://doi.
org/10.5281/zenodo.13333034 (Viana-Soto and Senf, 2024).
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Table 3. Summary layers of the European Forest Disturbance Atlas.

Name Valid range Description

Forest land use mask forest_mask_{country} 1 Forest land use mask.

Annual disturbance annual_disturbances_1985_2023
_{country}

(0, 1) Stack of annual disturbances indicating
undisturbed (0) and disturbed (1).

Disturbance probability disturbance_probability_1985
_2023_{country}

(0, 100) Stack of annual disturbance probabilities within
forest areas.

Latest disturbance latest_disturbance_{country} (1985, 2023) Indicates the year of the most recent disturbance.

Greatest disturbance greatest_disturbance_{country} (1985, 2023) Indicates the year of the highest disturbance
severity (greatest spectral change).

Number of
disturbances

number_disturbances_{country} Categorical
(1, 2, 3, 4)

Indicates the number of disturbance events within
the time series (1, 2, 3, or more than 3 events (i.e.
4)).

Disturbance severity disturbance_severity_1985_2023
_{country}

(−10 000,
10 000)

Stack of spectral change in NBR for disturbance
patches (t − t−1).

Disturbance agent disturbance_agent_1985_2023
_{country}

Categorical
(1, 2, 3)

Annual classification of disturbance agents (1 –
wind–bark beetle, 2 – fire, 3 – harvest).

Aggregated
disturbance agent

disturbance_agent_aggregated
_{country}

Categorical
(1, 2, 3, 4)

Aggregated layer of agents that summarises the
dominant agent within the time series. In those
cases where a pixel has been disturbed more than
once and by multiple agents, the class mixed (4) is
assigned.

3 Results

3.1 Map products in the EFDA

Our newly created Forest Disturbance Atlas for Europe pro-
vides a set of variables at 30 m describing forest disturbances
annually from 1985 onwards (Fig. 5). By mapping distur-
bances annually, we capture multiple disturbance events to
obtain direct information on the number of disturbances, the
latest disturbance (most recent disturbance event), and the
greatest disturbance (event with the greatest spectral change).
The annual disturbance maps are coupled with the estimated
annual disturbance probabilities from random forest mod-
elling as a proxy of uncertainty in disturbance detection
(Fig. B1 in Appendix B). Maps are constrained to our for-
est land use mask, which includes areas that have been forest
at some point within the time series and thus avoids masking
recently disturbed areas.

The area affected by disturbances across Europe over the
last 4 decades is shown in Fig. 5. The individual layers show
the ability of our atlas to precisely retrieve disturbance char-
acteristics across different disturbance regimes, such as a re-
cent bark beetle outbreak interspersed with harvest activities
in the Thuringian Forest in Germany (Fig. 5a); interactions
between different agents in an intensively managed forest
plantation in the Gascony region in France (Fig. 5b), where a
windstorm was captured in 1990 and a recent fire occurred in

2023; and recurrent fires in planted forests in central Portugal
(Fig. 5c).

Based on the annual disturbance estimates (Fig. 6), we
quantified a total forest disturbed area of 439 000 km2 (22 %
of the total forest area) that increases to 610 000 km2 when
accounting for multiple disturbance events (i.e. considering
areas disturbed in multiple years, such as through reburns
or multiple harvests). From those disturbed areas, 72 % cor-
respond to areas with one disturbance event, while 18.9 %
(115 000 km2) have experienced two disturbance events, and
9.1 % (55 000 km2) experienced three or more disturbance
events. That is, a total of 28 % of all pixels disturbed in Eu-
rope in the past 4 decades experienced multiple disturbance
events. These multiple disturbances mostly occur in south-
ern Europe (e.g. Portugal, Spain), where multiple fires are
interspersed with harvesting activities, as well as in regions
characterised by short-rotation plantation systems, e.g. the
south of France, Hungary, Poland, or Sweden, with harvest
return periods of 15–20 years. Planned disturbances caused
by human land use (harvest) caused 79.2 % of the total dis-
turbed area, and natural agents were responsible for 20.8 %
of the disturbances found (12 % from wind and bark beetle
outbreaks and 8.8 % from wildfires).

Earth Syst. Sci. Data, 17, 2373–2404, 2025 https://doi.org/10.5194/essd-17-2373-2025



A. Viana-Soto and C. Senf: The European Forest Disturbance Atlas 2383

Figure 5. Forest disturbances in Europe (1985–2023). Details show (a) bark beetle outbreaks in central Germany, (b) a combination of a
windstorm event and a recent fire in a managed forest plantation in Gascony (France), and (c) recurrent fire disturbances in central Portugal.
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Figure 6. Number of hectares disturbed per year (a) and area disturbed per number of events (b).

3.2 Validation

The assessment of the land use mask, discriminating be-
tween non-forest and forest land use, yielded high accura-
cies, with an overall F1 score of 0.92 and with F1 scores of
0.93 for non-forest land use and 0.91 for forest land use (Ta-
ble 4). Commission and omission errors were thus low over-
all (< 10 %) and were well balanced, indicating that, on aver-
age, 7.5 % of the pixels in the land use mask will be wrongly
classified. Further, comparison of the estimated forest area at
the national level with forest land use area from FAOSTAT
showed a high agreement (R2

= 0.98; MAE= 6019 km2,
16.9 %; Fig. 7), with a slight tendency towards overestimat-
ing forest area.

Map accuracies of the disturbance classification showed
an overall F1 score of 0.89, with F1 scores of 0.99 for undis-
turbed pixels and 0.80 for disturbed pixels (Table 5). Accu-
racies were thus less balanced between both classes, with
very low commission and omission errors (< 1 %) for the
undisturbed class (i.e. the map rarely misses disturbances or
falsely classifies something as undisturbed) but higher com-
mission and omission errors for the disturbed class (17.3 %
and 22.5 %, respectively). That is, for 17 % of all pixels
classified as disturbance, the classification will be wrong,
whereas 23 % of true disturbances will be missed in our map.
Those numbers changed significantly when only considering
reference points interpreted as stand-replacing disturbances
in the reference data (Table B1 in Appendix B), with a sub-
stantially reduced omission error (14.2 % vs. 22.5 %) and a
slightly increased commission error (22.7 % vs. 17.3 %). The
omission error of our map is thus driven by low-intensity
disturbances that only partially remove the tree canopy. We
found significant variation in accuracies among regions, with
higher commission errors in northern Europe compared to in
central and southern Europe, whereas omission errors were
lower in northern Europe compared to in central and south-
ern Europe (Table 6). In northern Europe, it is thus more
likely that a pixel falsely detected as a disturbance will be

randomly selected, but it is less likely that a true disturbance
will be missed, while, in central and southern Europe, it is
more likely to miss a true disturbance than to falsely iden-
tify a pixel as disturbed. In the temporal domain, overall, we
found high fluctuation between years but an overall decreas-
ing trend in commission error and no clear trend in omission
error (Fig. 8). That is, disturbances mapped before the year
2000 will have a 19.5 % chance of being falsely classified
as disturbance, whereas commission errors decrease substan-
tially to 10.6 % after the year 2000 (Table B2). The high com-
mission error prior to 2000 was driven significantly by the
very early years of our time series (< 1990), where the com-
mission error was, on average, 22.5 % (compared to 16.4 %
between 1990 and 1999), likely due to higher noise in the
underlying data. Omission errors showed a less clear pattern,
also with higher omission rates in the 1980s (23.3 %), likely
due to lower image availability, but less pronounced differ-
ences before and after the year 2000 (22.5 % and 20.5 %, re-
spectively). Finally, we found high agreement between es-
timated and manually interpreted disturbance years (R2

=

0.73; Fig. 9), with a mean absolute error of 1.91 years.
The model predicting the disturbance agent performed

well, having an overall error rate of 14.1 %, with com-
mission error rates (false occurrences) of 10.5 % for bark
beetle–windstorm disturbances, 5.7 % for fire disturbances,
and 17.4 % for harvest (Table 7). The omission error rates
(i.e. model missed a true occurrence) were 19.1 % for bark
beetle–windstorm disturbances, 25.5 % for fire-related dis-
turbances, and 8.7 % for harvest. We note again that the ac-
curacies reported here are model accuracies and not map ac-
curacies derived from an independent sample.

3.3 Comparison to other datasets

Comparison of EFDA disturbance maps with available
datasets for Europe (Hansen et al., 2013; Senf and Seidl,
2021a; Turubanova et al., 2023) revealed differences in terms
of annual estimates but also showed similarities in terms of
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Table 4. Confusion matrix of the forest land use map.

Reference data

Non-forest Forest N Commission errors (%) Confidence intervals

Non-forest 1025 61 1086 5.6 [90.1–99.9]
Forest 91 851 942 9.7 [87.1–93.9]
N 1116 912
Omission errors (%) 8.2 6.7
Confidence intervals [87.9–94.8] [89.9–98.2]

F1 score 0.93 0.91 Overall accuracy= 92.5 %|Overall error= 7.5 %

Table 5. Confusion matrix of disturbance detection assessment.

Reference data

Undisturbed Disturbed N Commission errors (%) Confidence intervals

Undisturbed 83 206 220 83 426 0.26 [99.70–99.89]
Disturbed 158 756 914 17.29 [77.30–87.78]
N 83 364 976
Omission errors (%) 0.18 22.54
Confidence intervals [99.65–99.83] [71.98–82.27]

F1 score 0.99 0.80 Overall accuracy= 89.9 %|Overall error= 10.1 %

Figure 7. Forest area according to FAOSTAT 2020 versus forest
land use estimated for the series for 1985–2023.

Figure 8. Omission and commission errors per year. Dashed hor-
izontal lines indicate the averages per period: 1985–1989, 1990–
1999, 2000–2018.

increasing disturbance area since 2001 (Fig. 10). Overall, the
EFDA’s average annual disturbance area (19 544 km2 yr−1)
was 30.2 % higher than the estimates in Turubanova et
al. (2023) (13 631 km2 yr−1), 33.2 % higher than the es-
timates in Senf and Seidl (2021a) (13 038 km2 yr−1), and
42.6 % higher than the estimates in Hansen et al. (2013)
(11 207 km2 yr−1). Using the EFDA’s latest disturbance map
(average annual disturbance area of 14 756 km2) instead
of the annual disturbance maps, however, improved agree-
ment with the other maps significantly, specifically by 7.6 %
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Table 6. Errors in disturbance detection per region.

North Central South

Commission Omission Commission Omission Commission Omission
errors (%) errors (%) errors (%) errors (%) errors (%) errors (%)

Undisturbed 0.14 0.2 0.2 0.1 0.13 0.1
Disturbed 23.32 18.1 13.62 26.96 16.99 22.97

Table 7. Confusion matrix of disturbance agent model assessment.

Reference data

Bark beetle–windstorms Fire Harvest N Commission errors (%)

Bark beetle–windstorms 9066 48 1019 10 133 10.53
Fire 3 831 47 881 5.68
Harvest 2130 236 11 248 13 614 17.38
N 11 199 1115 12 314
Omission errors (%) 19.05 25.47 8.66

Overall accuracy= 85.9 %|Overall error= 14.1 %

Figure 9. Validation of the disturbance year. Estimated disturbance
year versus manually interpreted year of disturbance for indepen-
dent reference pixels (colour bar indicates the number of points).

for Turubanova et al. (2023), by 11.6 % for Senf and
Seidl (2021a), and by 24 % for Hansen et al. (2013), indicat-
ing that multiple disturbances can increase disturbance esti-
mates substantially.

4 Discussion

Here, we presented the European Forest Disturbance At-
las (EFDA), providing spatially explicit information on dis-
turbances from 1985 onwards and demonstrating the im-
portance of long time series for understanding disturbance
change, disturbance regimes, and disturbance interactions.
While there are already several disturbance products for Eu-
rope (Senf and Seidl, 2021a; Turubanova et al., 2023), our
new dataset moves beyond existing products in at least three
important ways: first, annual disturbance mapping enables
the capturing of multiple disturbance events, providing di-
rect information on disturbance frequencies and temporal in-
teractions. Information on multiple overlapping disturbances
is often not assessed or simplified to the greatest or latest
disturbance of the analysis period. Without capturing distur-
bances on an annual basis, however, we lose valuable infor-
mation on forest dynamics (Buma, 2015; Hermosilla et al.,
2019), such as disturbance return times (Pugh et al., 2019),
and this might lead to underestimation of total disturbance
area (see Fig. 10). We found, for example, return times of
15–20 years for recurrent fires in the Mediterranean or in
short-rotation plantations across Europe (e.g. Hungary, Swe-
den, the Netherlands) and further temporal interactions be-
tween harvest and wind disturbances in the Gascony area
in France (i.e. wind disturbance following a harvest event).
Including multiple disturbances was thus an important im-
provement over past map products available for Europe. Sec-
ond, the long time frame of our map products offers a base-
line for understanding more recently observed changes and
for quantifying trends over time. Furthermore, we designed
the workflow to be operationally updated when new data ar-
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Figure 10. Annual disturbed-area estimates from currently available datasets for Europe.

rive and therefore enabled the creation of up-to-date maps
annually after the summer season. Third, our approach is
consistently applicable over all European forests with vari-
able forest types and forest disturbances. It is thus likely
to be adoptable and replicable in other regions. To facili-
tate user uptake and reproducibility, we provide a full open-
access framework that can be implemented on any computer
system, independently of commercial cloud environments,
data providers, or software tools. The European Forest Dis-
turbance Atlas thus contributes to a future operational forest
monitoring envisioned for Europe.

One of the aims of this paper was to provide a full
characterisation of map accuracies. Compared to the first
pan-European disturbance product developed by Senf and
Seidl (2021a), which reported a commission error of 17.1 %
and an omission error of 36.9 % for detecting disturbances,
we reduced omission errors considerably (22.5 %) while
maintaining low commission errors (17 %). That is, the
EFDA detects more true disturbances compared to past state-
of-the-art products while making similar errors in falsely de-
tecting disturbances. Disturbance areas derived from Senf
and Seidl (2021a) are thus likely to be conservative estimates
that underestimate true disturbance area (Fig. 10). A similar
improvement was found in the timing of disturbances, with
a mean absolute error of 3 years for Senf and Seidl (2021a)
compared to 1.9 years for our map, indicating that fewer dis-
turbances are attributed to a wrong year compared to man-
ually interpreted data. The disturbance detection accuracies
found here are, furthermore, consistent with more local ap-
proaches implemented in Europe, such as that of Francini
et al. (2021), who reported omission and commission errors

of 27 % and 30 % for clear-cut mapping in Italy with the
3I3D algorithm, or recently developed disturbance maps for
the European Alps (Morresi et al., 2024), with omission and
commission errors of 16.9 % and 16.5 %, and for continen-
tal Spain (Miguel et al., 2024), with omission and commis-
sion errors of 12.4 % and 18 %, respectively. Our map was of
slightly lower accuracy than a very recent pan-European for-
est disturbance map developed by Turubanova et al. (2023),
with omission and commission errors of ∼ 19 % and ∼ 7 %,
but their map only covers disturbances from 2001 onwards.
Comparing our map accuracies to Turubanova et al. (2023)
for the same period yields approximately similar accuracies
between both map products (see Fig. 8). Finally, our forest
land use mask yielded high accuracies, and the forest area
estimated per country aligned well with estimates provided
by FOREST EUROPE (2020). Remaining differences can
be explained by the different temporal reporting periods as
FOREST EUROPE reports the forest area in 2020, but we
provide a multi-temporal land use definition, comprising all
areas that have been classified as forest land use at some point
since 1985. Our forest land use map is also distinctly dif-
ferent from recent tree cover products (Liu et al., 2023; Tu-
rubanova et al., 2023) as it includes recently disturbed areas
that might be temporally unstocked but will return to closed-
canopy forests in the near future (Mandl et al., 2024) and
thus meets our forest land use definition. Using static tree
cover maps would mask out those areas based on the (arbi-
trary) year they were created for. We thus move away from a
static forest cover map to a forest land use map that reflects
the spatial and temporal dynamics of forests (Chazdon et al.,
2016).
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Beyond accuracies reported from different datasets, we
found dissimilarities in terms of annual disturbed-area esti-
mates from different maps, with the EFDA leading to+7.6 %
to up to +42 % higher estimates in terms of average an-
nual disturbance area. Several factors are likely to be re-
sponsible for those stark differences, including different map
accuracies, disturbance detection logics (i.e. definition of
disturbance and model calibration), and forest mask defini-
tions. First, the EFDA has a lower omission error than pre-
vious products (see previous paragraph), which must lead
to a higher disturbance area because fewer disturbances are
missed in our map than in previous maps. This becomes es-
pecially evident when comparing maps tailored for Europe
(Senf and Seidl, 2021a; Turubanova et al., 2023) to global
products (Hansen et al., 2013), which substantially underes-
timate disturbed area. Second, the EFDA allows for multiple
disturbances, which can increase disturbance area in com-
parison to summary products that only allow for one dis-
turbance per time series (i.e. Senf and Seidl, 2021a). We
show this impressively in Fig. 10, where our annual distur-
bance estimate is substantially higher than the annual val-
ues summarised in the latest disturbance product. Account-
ing for multiple disturbances (which we estimate for 28 % of
all pixels) thus makes a difference in terms of the total distur-
bance area estimates because more recent or higher-severity
disturbances can mask out older or less severe disturbances.
We found this to be especially prominent in systems domi-
nated by fire, where areas that burned in the mid-1990s or
mid-2000s burned again in the most recent years (e.g. Portu-
gal) or where plantation forests that had multiple harvests in
the past had now burned in more recent years (e.g. France).
Third, forest area definitions vary widely between map prod-
ucts and thus are likely to be a main factor explaining differ-
ences between disturbance estimates, especially when com-
paring our product to Turubanova et al. (2023) and Hansen et
al. (2013). Both apply a very strict tree cover definition that
will mask out any pixels that have not met the criteria. This
can lead to disturbance patches being fragmented into several
smaller disturbances. That is, while all map products detect
the disturbance event, the actual area disturbed can vary quite
significantly. Strict tree cover definitions, especially in terms
of tree height, can also lead to missing multiple disturbances
(i.e. re-burning fires), which might also explain some of the
differences compared to our annual disturbance maps (see
Fig. 11a). Further, image availability and observation gaps
(e.g. ETM+ SCL-off problems) can also contribute to miss-
ing disturbed areas in large disturbance patches. One stark
difference between the EFDA and the other datasets could be
detected in 2018 and 2022 (Fig. 10), driven by commission
errors in northern regions (see Table 6 and Fig. 11c). Both
years were particularly dry in Fennoscandia and central Eu-
rope (Knutzen et al., 2025), leading to strong spectral differ-
ences, especially in wetland areas (Fig. 11c). Yet, the distur-
bance peak in 2018 detected in the EFDA coincides with the
peak in natural disturbance activity reported earlier (Patacca

et al., 2023), attributed to large-scale bark beetle outbreaks in
central Europe (see Fig. 11b). Discrepancies between distur-
bance maps have also been reported for other regions (Cohen
et al., 2017), with even stronger disagreement. It is therefore
necessary to cautiously analyse and understand the method-
ological nuances of the different approaches to consider how
errors might influence use in a variety of contexts.

Despite the good accuracies compared to past and other
map products, there are several limitations and possible
sources of uncertainties that should be considered when us-
ing the EFDA. The higher omission error for the disturbed
class and the wider confidence intervals indicate a possi-
ble limitation of our approach when mapping low-severity
disturbances that do not produce a clear opening of the
canopy (e.g. canopy thinning). The effect of such non-stand-
replacing disturbances is clearly seen when redoing the accu-
racy assessment without them, which nearly halved the omis-
sion error (Table B1 in Appendix B). Non-stand-replacing
disturbances are quite widespread in central and southern
Europe, leading to higher omission errors in those regions
compared to in northern Europe, mostly characterised by
clear-cut harvesting. In northern Europe, however, a higher
frequency of missing data and noise (i.e. remaining clouds,
difficult illumination conditions, short summer season) led
to higher commission errors in comparison to central and
southern Europe, where data availability was higher overall
(see Fig. 2b). We further found that omission errors were
caused by a delayed detection of disturbances (i.e. distur-
bances detected 1 year after the reference). The detection
of disturbances with a delay of 1 year is a common prob-
lem when working with annual summer composites, where
disturbances can occur in the same year but after the com-
positing date (i.e. a pixel is selected from August, but the
disturbance occurs in November and will thus only be de-
tected the next summer). Finally, the use of a minimum map-
ping unit may contribute to the omission of small-scale dis-
turbances < 0.27 ha but reduces false positives from individ-
ual isolated pixels (Reinosch et al., 2024). We thus argue that
the loss of information imposed by the minimum mapping
unit outweighs the potential error introduced by including
many small-scale disturbances with high errors. The appli-
cation of a minimum mapping unit is also a common prac-
tice to facilitate the integration with different data sources
such as national forest inventories (Wulder et al., 2024) or
national land use products (Gómez et al., 2019). The tem-
poral validation revealed variability in the accuracy over the
time series, with the 1980s and 1990s having considerably
lower accuracies (especially in terms of commission error)
than disturbances detected after the 2000s (Fig. 8, Table B2).
This result highlights challenges with reliably estimating dis-
turbance trends from remote sensing data (see Olofsson et al.,
2014, for an in-depth discussion) as trends derived from dis-
turbance maps with variable accuracy will be biased (Palahí
et al., 2021). Quantification of disturbances and trends should
thus be based on a manually interpreted sample or should
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Figure 11. Examples of disturbance maps from different datasets for (a) fires in central Portugal, (b) bark beetle outbreaks in central
Germany, and (c) harvests in northern Sweden.
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based on models that take into account the variable accura-
cies over time (Francini et al., 2022; Olofsson et al., 2014).
Finally, despite careful processing and checking, there will
be errors remaining in the underlying remote sensing data,
and specific regions and years will have large errors resulting
from noise. For example, some peaks in terms of the higher
omission errors displayed in Fig. 8 coincide with years with
higher percentages of no-data pixels, as, for example, in the
1980s, 1998, 2008, or 2012 (Fig. A2). This limitation is in-
trinsic to the data used for producing the EFDA, but, so far,
there is no other consistent alternative to provide spatially
explicit and consistent information for monitoring Europe’s
forests over time.

We provide an agent attribution layer based on a previous
established model (Seidl and Senf, 2024), complementing
the disturbance layers of the EFDA described in this study.
Although comparison of estimates with existing databases
for fire and storms in Senf and Seidl (2021b) and for salvage
logging in Seidl and Senf (2024) showed high agreement of
the attribution model with external datasets, an independent
validation sample based on the actual occurrence of distur-
bance agents is still missing for robust reporting of uncer-
tainties. According to the random forest variable importance
(see Fig. A6), landscape pulse dynamics and patch size were
most important for disentangling disturbance agents, likely
because they typically occur in clusters and are characterised
by larger, more complex patch shapes. In contrast, harvests
tend to be more regular in space and time (Senf and Seidl,
2021b). However, the fact that management superimposes
most natural disturbances through salvage logging makes it
difficult to disentangle the root cause of disturbance. This is
especially true when natural disturbances are salvage logged
because the annual resolution of the EFDA does not allow
us to disentangle the initial natural disturbance and the sub-
sequent salvage logging. That is, most of the natural distur-
bances mapped in the EFDA will be a combination of an in-
citing natural factor (bark beetle or wind disturbance) and
subsequent salvage logging (Seidl and Senf, 2024). We also
miss less prevalent natural disturbance agents in our attri-
bution map (Stahl et al., 2023), such as drought and more
gradual non-stand-replacing disturbances that can also im-
pact forests globally (Coops et al., 2020; Hammond et al.,
2022). The agent attribution provided in the EFDA should
thus be taken with caution as reliable estimates of map ac-
curacies are absent, and making causal claims regarding the
importance of natural disturbances remains challenging (de-
spite our estimate of 20.8 % of natural disturbances matching
well with the findings of Patacca et al. (2023)). Novel data
collected across Europe might help with overcoming chal-
lenges with agent attribution (Forzieri et al., 2020, 2023; Pat-
acca et al., 2023), but most data do not cover the 1980s and
1990s, which are especially important for improving map
accuracy and quality. Further research should thus increas-
ingly focus on generating reference data that can be used
for remote sensing applications (e.g. Franquesa et al., 2020;

Senf, 2019), and we urge authors to make their reference data
openly available, ultimately leading to a better understanding
of forest change across Europe.

5 Code and data availability

The European Forest Disturbance Atlas data are freely ac-
cessible from https://doi.org/10.5281/zenodo.13333034
(Viana-Soto and Senf, 2024) code
https://doi.org/10.5281/zenodo.15579709 (Viana Soto,
2025), and summary layers are accessible through Google
Earth Engine in ee.Assets.latest_disturbance_v211,
ee.Assets.number_disturbances_v211, and
ee.Assets.disturbance_agent_v211. The maps can be also ex-
plored online: https://albaviana.users.earthengine.app/view/
european-forest-disturbance-map (Viana-Soto and Senf,
2025). The code used for processing the Landsat data using
FORCE is available at https://github.com/davidfrantz/force
(Frantz, 2025). The code used for the subsequent processing
steps is available at Viana Soto (2025).

6 Conclusion

There is a pressing need for an operational forest monitor-
ing system at the European scale, and our newly developed
disturbance atlas (EFDA) constitutes a first step in this di-
rection by producing disturbance information in a standard-
ised way, with consistent quality across all of Europe’s for-
est. Our approach further relies on open-source data and tools
and is implemented in an open-access framework, which al-
lows full reproducibility and easy updating into the future
and thus paves the road for operationalisation. Our data al-
ready cover 40 years of forest disturbance dynamics, con-
stituting the longest remote-sensing-based disturbance prod-
uct available at the continental scale today. Covering such
long time series allows for a better characterisation of distur-
bance regimes, requiring several decades of data to reliably
quantify underlying distributions (Maroschek et al., 2024),
and can help to improve disturbance modelling by providing
empirical data on disturbance occurrence (e.g. Grünig et al.,
2022). Hence, the EFDA will improve our understanding of
European forest disturbance dynamics beyond simple moni-
toring of forest disturbances.
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Appendix A

Figure A1. Difference in days relative to the target date (1 August) per year (mean± standard deviation).

Figure A2. Annual percentage of no-data pixels for best-available-pixel composites and after linear gap-filling interpolation.

https://doi.org/10.5194/essd-17-2373-2025 Earth Syst. Sci. Data, 17, 2373–2404, 2025



2392 A. Viana-Soto and C. Senf: The European Forest Disturbance Atlas

Table A1. Spectral indices and tasseled-cap-component equations for Landsat.

Name Equation Reference

Normalised burn ratio
(NBR)

(NIR−SWIR2)
(NIR+SWIR2) García and Caselles (1991)

Normalised difference
vegetation index
(NDVI)

(NIR−Red)
(NIR+Red) Tucker (1979)

Tasseled-cap
brightness (TCB)

Blue× 0.3029+Green× 0.2786+Red× 0.4733+NIR× 0.5599
+SWIR1× 0.508+SWIR2× 0.1872

Baig et al. (2014)

Tasseled-cap greenness
(TCG)

Blue× (−0.2941)+Green× (−0.243)+Red× (−0.5424)+NIR× 0.7276
+SWIR1× 0.0713+SWIR2× (−0.1608)

Tasseled-cap wetness
(TCW)

Blue× 0.1511+Green× 0.1973+Red× 0.3283+NIR× 0.3407
+SWIR1× (−0.7117)+SWIR2× (−0.4559)

Disturbance Index
(DIn)

TCBn− (TCGn+TCWn),
where n indicates values that are normalised

Healey et al. (2005)
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Figure A3.
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Figure A3. Maps of annual reference data within forests for disturbance and undisturbed (treed and non-treed).
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Figure A4. Feature space of spectral bands and indices for forest and non-forest reference samples.
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Figure A5. Feature space of spectral indices for disturbed and undisturbed reference samples.
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Figure A6. Variable importance (as returned by the random forest algorithm) for (a) forest land use classification, (b) disturbance–no
disturbance classification, and (c) disturbance agent attribution model. Higher values indicate higher importance for discrimination.

https://doi.org/10.5194/essd-17-2373-2025 Earth Syst. Sci. Data, 17, 2373–2404, 2025



2398 A. Viana-Soto and C. Senf: The European Forest Disturbance Atlas

Appendix B

Figure B1. Examples of annual disturbances with correspondent probability of disturbance and summary of number of disturbance events
(underlying imagery © Google Earth). (a) Area affected by recent windstorm in northern Poland that overlaps with past and current harvest
activities. (b) Multiple fire events in eastern Spain.
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Table B1. Confusion matrix of disturbance detection assessment, leaving out non-stand-replacing disturbances.

Reference data

Undisturbed Disturbed N Commission errors (%) Confidence intervals

Undisturbed 83 233 74 83 307 0.1 % [99.83–99.97]
Disturbed 131 447 578 22.66 % [74.30–82.87]
N 83 364 521
Omission errors (%) 0.2 14.20
Confidence intervals [99.72–99.85] [79.98–88.27]

F1 score 0.99 0.81 Overall accuracy= 90.7 %|Overall error= 9.28 %

Table B2. Confusion matrix of disturbance detection assessment per period.

Reference data

Period 1985–1989 Undisturbed Disturbed N Commission errors (%)

Undisturbed 12 220 21 12 241 0.17
Disturbed 20 69 89 22.47
N 12 240 90
Omission errors (%) 0.16 23.33

F1 score 0.99 0.77

Period 1990–1999 Undisturbed Disturbed N Commission errors (%)

Undisturbed 24 627 52 24 679 0.21
Disturbed 35 179 214 16.35
N 24 662 231
Omission errors (%) 0.15 22.51

F1 score 0.99 0.80

Period 2000–2018 Undisturbed Disturbed N Commission errors (%)

Undisturbed 46 404 134 46 538 0.28
Disturbed 62 521 583 10.63
N 46 466 651
Omission errors (%) 0.13 20.5

F1 score 0.99 0.84
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