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Abstract. The decline in Arctic sea ice in the global warming era has received much attention as a contributing
factor to the changes in the weather and climate in the Arctic and beyond. The coverage of Arctic sea ice (i.e. sea
ice concentration (SIC)) has been monitored since 1972 using satellite passive microwave (PMW) measurements
because of their extensive coverage and all-weather capability. However, the fundamental basis of algorithms for
estimating SIC has not improved much since the early days due to the lack of reference SIC data, leading to
discrepancies between existing PMW SIC algorithms. To overcome this issue, this study aims to construct data
records of reference SIC over Arctic sea ice using 30 m resolution imagery from the Operational Land Imager
(OLI) on board Landsat-8. In order to collect relatively bright and clear scenes, thresholds of solar elevation
>15° and cloud cover <10 % were applied in this study. Clouds in each Landsat-8 scene were masked using
the cloud-masking array provided in Landsat data. Due to the poor accuracy of the cloud-masking array over
ice-covered surface types, an additional step of visually inspecting the state of the cloud mask using the true-
colour image was designated in this study. Each Landsat-8 scene was sorted into four categories depending
on the state of the cloud mask. The normalized difference snow index and OLI band-5 reflectivity were used to
differentiate between ice and open water within each selected Landsat-8 pixel. The classified data were projected
onto a 6.25 km polar stereographic grid, and SIC for each grid cell was obtained by counting ice-classified pixels
within the grid. SIC was only computed for grid cells where more than 99 % of their area was covered with
Landsat-8 pixels to limit the uncertainty in SIC arising from grids that are not fully concentrated with Landsat-8
pixels. Uncertainty in the produced SIC was 1 %–4 %, inferred using the Gaussian error propagation method.
Out of 15 286 collected Landsat-8 images, 14 297 images were translated into SIC maps, and a total of 2 934 399
Landsat-8 SIC grid cells were generated. Evaluation of Landsat-8 SIC with SIC from ice charts revealed a good
linear relationship (correlation coefficient of 0.96) between the two products, as well as a mean negative bias
which fell within the uncertainty range of Landsat-8 SIC. SIC based on Landsat-8 can be used as reference
SIC to evaluate existing SIC products, and, thus, one can improve SIC products, as well as use the improved
SIC for other applications such as data assimilation and retrieval studies. The vast amount of Landsat-8 SIC
generated in this study may also be used to train deep-learning models for the estimation of Arctic SIC coverage.
The Landsat-8 SIC dataset can be publicly accessed at https://doi.org/10.5281/zenodo.10973297 (Jung et al.,
2024), and the Python codes for the production and evaluation of the Landsat-8 SIC dataset are accessible at
https://doi.org/10.5281/zenodo.12754602 (Jung, 2024).
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1 Introduction

Since space-borne multi-channel passive microwave (PMW)
observations have been available, areal information of Arc-
tic sea ice has been successfully monitored. During the past
4 decades, these observations have shown that sea ice extent
(SIE), which is defined as the area of ocean where sea ice
concentration (SIC) is greater than 15 %, has been rapidly de-
clining at a statistically significant negative trend of−12.7 %
per decade, as observed in September (Cavalieri and Parkin-
son, 2012; Meier et al., 2014; Meier and Stroeve, 2022). In
the global warming era, the change in Arctic sea ice area
is considered to be a key indicator of climate change, and
this is closely associated with the changes in the Arctic local
weather, as well as in the weather at mid-latitudes (Honda
et al., 2009; Jaiser et al., 2012; Kim et al., 2014; Trewin et
al., 2021; Shi et al., 2023). Therefore, obtaining precise ob-
servations of Arctic SIC is essential in order to identify the
influences of climate change on Arctic sea ice.

As mentioned above, the spatial coverage of Arctic sea ice
(i.e. SIC) has been monitored using satellite PMW measure-
ments, with their extensive spatial coverage over the Arc-
tic and all-weather capability. Beginning with the launch of
the Electrically Scanning Microwave Radiometer (ESMR)
on board Nimbus-5 in 1972 (Parkinson et al., 1987), suc-
cessive launches of PMW sensors have allowed for the con-
struction of comprehensive and continuous records of Arc-
tic SIC. The Scanning Multichannel Microwave Radiome-
ter (SMMR), launched in 1978, was equipped with five
channels (6.6, 10.7, 18.0, 21.0, and 37.0 GHz) in the first
two Stokes’ polarizations. The emergence of multi-channel
PMW radiometers has led to the development of various
SIC retrieval methods which were more accurate relative
to the previous methods used for the ESMR, which only
had a single channel at 19 GHz. The addition of the near-
90 GHz high-frequency channels into the PMW sensors fol-
lowing the SMMR, which include the Special Sensor Mi-
crowave Imager (SSM/I), the Special Sensor Microwave Im-
ager/Sounder (SSMIS), the Advanced Microwave Scanning
Radiometer – Earth Observing System (AMSR-E), and the
AMSR2, has allowed for spatially enhanced SIC retrievals.

Various PMW SIC algorithms have been developed which
estimate SIC based on combinations of brightness tempera-
tures (TBs) at various channels and empirically derived tie
points. One of the best-known algorithms is the bootstrap
(BT) algorithm first suggested by Comiso et al. (1984). In
the BT algorithm, vertically polarized TBs at 19 and 37 GHz
and horizontally polarized TB at 37 GHz are utilized to deter-
mine reference TBs (i.e. tie points) over open water and fully
concentrated ice, which can be used to convert the observed
TB to SIC with the following equation:

SIC=
TB− TO

TI− TO
, (1)

where TB is the satellite-measured TB, and TO and TI are
the empirically determined open-water and ice tie points, re-
spectively. Tie points in the BT algorithm are updated on a
daily basis and are acquired separately for the Arctic and
the Antarctic in order to accommodate the variation in TB
fields with respect to time and hemisphere (Comiso, 1995).
Another well-known algorithm is the NASA Team (NT) al-
gorithm, which utilizes horizontally polarized TB at 19 GHz
and vertically polarized TBs at 19 and 37 GHz to calculate
the polarization ratio (PR) and the spectral gradient ratio
(GR), which are used to determine a set of tie points to esti-
mate SIC and to determine the surface type from a combina-
tion of open water, first-year ice, and multi-year ice (Cav-
alieri et al., 1984). The other is the Arctic Radiation and
Turbulence Interaction Study (ARTIST) Sea Ice (ASI) al-
gorithm, which was developed by Kaleschke et al. (2001)
in order to exploit the high resolution of the near-90 GHz
channels. The ASI algorithm estimates SIC using the tie-
points derived from the polarization difference calculated in
the near-90 GHz channels. The high sensitivity of the near-
90 GHz channels to atmospheric effects is compensated for
by the usage of weather filters, which are applied using the
GR thresholds suggested by Gloersen and Cavalieri (1986)
and Cavalieri et al. (1995) and by setting SIC to zero in areas
where BT SIC values are zero (Spreen et al., 2008).

However, discrepancies exist among various PMW SIC
records retrieved from different algorithms owing to the dif-
ferent channel combinations, tie points, and weather filters
used in each algorithm (Comiso et al., 1997; Andersen et al.,
2007). Due to the lack of reference SIC data with satisfactory
temporal and spatial coverages, these disagreements have
been studied mainly through the intercomparison of differ-
ent PMW SIC values and ensemble methods which compare
individual SIC products to their averaged value. For instance,
Ivanova et al. (2014) reported that different PMW SIC prod-
ucts showed a maximum difference of up to 1.3× 106 km2 in
area and 0.6× 106 km2 in extent over the Arctic and larger
deviations during the summer due to the differing sensitiv-
ity of retrieval algorithms to the presence of melt ponds and
the associated emissivity change, as well as to a humid at-
mosphere (Ivanova et al., 2014; Comiso et al., 2017; Hor-
vat et al., 2023). Although these intercomparison approaches
can provide valuable assessments of the consistency of PMW
SIC products from sub-seasonal to climatological timescales,
it is noted that there is a limitation in providing a quantitative
assessment of PMW SIC products.

In order to make such quantitative assessments, it is essen-
tial to have independent SIC data that can be used as a refer-
ence. Spaceborne sensors with visible (VIS) to infrared (IR)
channels, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS) and the sensors on board the Land-
sat series, have been used to generate reference SIC due
to their finer spatial resolutions compared to PMW sensors
(Markus et al., 2002, Cavalieri et al., 2006, 2010; Rösel and
Kaleschke, 2011; Kern et al., 2022; Tanaka and Lu, 2023;
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Song and Minnett, 2024). However, validation attempts using
VIS- and/or IR-based SIC as a reference have been limited to
the usage of a small number of VIS and/or IR images, with
the exception of the dataset of Kern et al. (2022), which used
a relatively large number of Landsat scenes (386 scenes) to
generate a reference SIC. The dataset by Kern et al. (2022)
is also utilized in this study for validation of the produced
Landsat-8 SIC, and the results of the comparison are pre-
sented in Sect. 3.2. In addition to VIS and/or IR instruments,
SIC observations from synthetic aperture radar (SAR) have
also been used for PMW-based SIC validation purposes, but
difficulties in obtaining an accurate and automated SIC map
from SAR images result in the limited use of SAR images
for validation purposes (Andersen et al., 2007; Han and Kim,
2018; Park et al., 2020; Tanaka and Lu, 2023).

Recently, efforts to leverage the advantages of both VIS
and/or IR sensors and PMW sensors for retrieving SIC have
been explored through data-merging techniques. Ludwig et
al. (2020) used a combination of MODIS and AMSR2 mea-
surements to construct a high-resolution (1 km) and spatially
continuous SIC dataset over pan-Arctic areas. This approach
exploited the benefits of the 1 km resolution MODIS im-
agery while mitigating its inherent disadvantage of spatial
discontinuity due to clouds by introducing the AMSR2 mea-
surements. While the SIC dataset produced by Ludwig et
al. (2020) is both high-resolution and covers pan-Arctic ar-
eas, due to the retrievals being reliant on the AMSR2 mea-
surements, the product cannot be considered to be a fully in-
dependent reference dataset for PMW SIC validation. There-
fore, it is still necessary to construct a dataset of Arctic SIC
that is fully independent of PMW measurements.

In addition to this, recent applications of deep-learning
(DL) models for estimating SIC have shown promising
results. Karvonen (2017) trained a multi-layer perceptron
(MLP) model using various combinations of PMW signals
extracted from AMSR2 and SAR as the training inputs and
SIC fields derived from the Finish Meteorological Institute
ice charts as the reference. This MLP model produced im-
proved SIC compared to the high-resolution ASI SIC. How-
ever, the data used to train the DL model suggested by Kar-
vonen (2017) were limited to regions around the Baltic Sea
and were only acquired during the winter of 2015–2016. Chi
et al. (2019) proposed an estimation of Arctic SIC based on
an MLP model trained with raw AMSR2 TBs as the inputs
and SIC derived from 72 MODIS images during 2016 as the
reference, demonstrating that the DL-based SIC shows bet-
ter performance than the widely used BT and ASI SIC. Since
both studies used training datasets acquired during a limited
time period but showed promising results in terms of the use
of DL techniques for SIC production, it is also desirable to
construct a data record for reference SIC data with satisfac-
tory temporal and spatial coverages.

Therefore, this study aims to construct a reference SIC
dataset of satisfactory spatiotemporal extent that allows for
the validation of various SIC products over pan-Arctic ar-

eas and that can be used for DL training. To do this, a total
of 14 297 Landsat-8 images over 3 years (2020–2022) were
translated into SIC maps in a 6.25 km polar stereographic
grid and were catalogued into a region of the Arctic Ocean.

The remaining sections of this paper are organized as fol-
lows: Sect. 2 provides a detailed description of the Landsat-8
dataset, the land, the sea ice region, the coastal area masks,
and the reference datasets used to evaluate the Landsat-8 SIC
in this study. Section 3 describes the pipeline of processing
a Landsat-8 image into a SIC dataset, along with the un-
certainty estimation. The resultant SIC product and its un-
certainty are shown in Sect. 4. Possible errors in Landsat-8
SIC, evaluation of Landsat-8 SIC using existing SIC from
ice charts, evaluation of Landsat-8 SIC over melt ponds, and
qualitative assessment of two PMW SIC products using SIC
from Landsat-8 as a reference are discussed in Sect. 5. Sec-
tion 6 provides the data availability statement, and Sect. 7
presents the summary and conclusions of this research.

2 Used data

2.1 Landsat-8 OLI-TIRS Collection 2 Level 1 products

In this study, reflectivities measured by the Operational Land
Imager (OLI) on board Landsat-8, which is a polar-orbiting
satellite with an orbit inclination of 98.2° and a repeat cy-
cle of 16 d (Zanter, 2019), were used to retrieve SIC values
over pan-Arctic areas. The OLI sensor has a swath width
of 185 km, measuring radiances in eight bands from VIS to
shortwave IR (SWIR), with a spatial resolution of 30 m. It
should be noted that areas with a latitude higher than 82° N
in the Northern Hemisphere are not measured by Landsat-
8 (i.e. the hatched area in Fig. 1) due to the orbit inclina-
tion of Landsat-8 and the relatively narrow swath width of
the OLI. The Landsat-8 Collection 2 Level 1 product used
in this study contains 11 spectral-band images (nine bands
from the OLI and two bands from the Thermal Infrared Sen-
sor (TIRS), provided in GeoTIFF format, and two quality as-
sessment bands containing masking information for clouds,
cloud shadows, cirrus, fill values, and radiometric satura-
tion). To calculate the SIC, the OLI-measured reflectivities
at near-infrared (NIR) band 5 and SWIR band 6 (used in the
normalized difference snow index) were used in this study.
It is worth noting that the methods developed in this study
(described in Sect. 3) utilize the NIR and SWIR bands for
SIC retrieval and are therefore applicable to a wider range of
high-resolution sensors that observe at similar bands, includ-
ing the Multi-Spectral Instrument (MSI) on board Sentinel-2.
However, due to the more robust cloud-masking performance
of the Landsat-8 product, in this study, the Landsat-8 Collec-
tion 2 Level 1 product was selected to be used for the pro-
duction of reference SIC data (Zhu et al., 2015; Tarrio et al.,
2020).

For the period of January 2020–December 2022, the
Landsat-8 Collection 2 Level 1 product and the corre-
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Figure 1. Footprints of the collected Landsat-8 images over each
region of the pan-Arctic areas during the period of January 2020–
December 2022. The hatched region denotes the areas unmeasured
by Landsat-8 due to its orbital inclination (i.e. pole hole). The re-
gions of the pan-Arctic areas were distinguished using the region
mask provided by Meier and Stewart (2023a). The map projection
is the NSIDC Sea Ice Polar Stereographic North (EPSG: 3413), and
the map was plotted using Python.

sponding true-colour images were downloaded from the
United States Geological Survey Earth Explorer (https://
earthexplorer.usgs.gov/, last access: 16 March 2024). To cir-
cumvent the influences of cloud contamination and low solar
elevation angle on SIC calculation, which hamper accurate
classification of ice and open water, only Landsat-8 images
with less than 10 % cloud cover (based on fractional cloud-
masked area from the quality assessment band of Landsat-8)
during the daytime (solar elevation higher than 15°) were col-
lected. While the threshold of 0 % cloud cover would ensure
the acquisition of the least cloudy scenes, this also results
in the loss of a considerable number of Landsat-8 scenes
that contain clear-sky portions (see Fig. S1 and Table S1
in the Supplement for the number of available Landsat-8
scenes subject to different threshold values of cloud cover).
Therefore, the threshold value for cloud cover was relaxed to
10 % during the acquisition of Landsat-8 images. Since VIS
measurements are not available during polar nighttime, the
Landsat-8 data between early December to January were not
collected. A total of 15 286 images were collected and sorted
into 12 regions of the pan-Arctic area for the calculation of
SIC. In the case of a Landsat-8 image that was observed
across more than one region, the image was sampled repeat-
edly for each region. Footprints of the collected Landsat-8
images are displayed in Fig. 1, and the number and the tem-
poral availability of the collected images for each area are
listed in Table 1.

Figure 2. Geographic distribution of the designated regions of the
Arctic Ocean based on NSIDC Sea Ice Region Mask data (Meier
and Stewart, 2023a). The map projection is NSIDC Sea Ice Polar
Stereographic North (EPSG: 3413), and the map was plotted using
Python.

2.2 Land and sea ice region masks

Regions of the Arctic Ocean were distinguished using the
National Snow and Ice Data Center (NSIDC) “Arctic and
Antarctic Regional Masks for Sea Ice and Related Data Prod-
ucts, Version 1” data (Meier and Stewart, 2023a), which di-
vide the Arctic Ocean into 19 different regions with 6.25,
12.5, and 25 km resolution polar stereographic (PSR) grids.
In addition, this product provides surface-masking informa-
tion to differentiate between ocean areas and non-ocean ar-
eas such as land, freshwater, land ice, ice shelf, and discon-
nected ocean. The flag values for the Arctic Ocean regions
and the different surface types can be found in the prod-
uct user guide (Meier and Stewart, 2023b). Amongst the re-
gions, 12 regions (i.e. Baffin Bay, Barents Sea, Beaufort Sea,
Bering Sea, Canadian Archipelago, Central Arctic, Chukchi
Sea, East Greenland Sea, East Siberian Sea, Hudson Bay,
Kara Sea, and Laptev Sea; Fig. 2) were selected to gener-
ate Landsat-8-based SIC values because the above 12 regions
have climatologically meaningful sea ice extent.

2.3 Ice- or water-classified Landsat-8 images

In this study, the performance of ice and open-water clas-
sification (later described in Sect. 3.2) was evaluated using
ice–water classification data from the “Land surface type
over water from supervised classification of surface broad-
band albedo estimates” (Kern, 2021; Kern et al., 2022). This
dataset contains ice and water classification estimates us-
ing broadband albedo values from the Landsat series (i.e.
bandwidth-weighted mean albedo from Landsat-8-measured
reflectivities at bands 3, 4, and 5), where each pixel in a scene
is classified into open water, thin or bare ice, and thick or
snow-covered ice based on supervised classification. In our
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Table 1. The number of Landsat-8 images collected in this study and the available period for each region of the pan-Arctic areas.

Region Baffin Bay Barents Sea Beaufort Sea Bering Sea Canadian A. Central Arctic

Count 2476 672 451 699 3174 2343

2020 13 January–30 November 27 February–7 October 6 March–17 September 19 January–3 December 29 February–2 October 23 March–2 September
2021 16 February–26 November 22 February–5 October 7 March–30 September 13 January–3 December 1 March–28 September 24 March–11 September
2022 25 January–6 December 4 March–29 September 4 March–4 October 24 January–16 November 3 March–10 October 25 March–13 September

Region Chukchi Sea E Greenland E Siberian Hudson Bay Kara Sea Laptev Sea

Count 427 1468 546 1485 899 646

2020 27 February–10 October 18 February–31 October 4 March–21 September 13 January–14 November 6 March–16 September 10 March–27 September
2021 25 February–11 October 25 February–27 October 7 March–2 October 17 January–6 November 7 March–17 September 15 March–13 September
2022 6 March–14 October 4 March–30 October 10 March–7 September 18 January–29 October 5 March–29 September 12 March–6 September

study, the two ice categories (i.e. one for thin or bare ice and
the other for thick or snow-covered ice) were considered to
be the same ice category due to the higher ambiguities in the
discrimination among different ice types relative to the dis-
crimination between ice and open water (Kern et al., 2022).
In order to evaluate the classification method suggested by
our study, we processed Landsat-8 reflectance from six clear-
sky scenes that Kern (2021) had classified and then compared
results. The result of the comparison is presented in Sect. 3.2,
and the location and time of the Landsat-8 scenes that were
used in the evaluation are provided in Fig. S2 and Table S2
in the Supplement.

2.4 Ice chart data

Ice charts provide SIC intervals over the Arctic obtained by
means of manual interpretation of satellite images from var-
ious sensors such as SAR, MODIS, and the Advanced Very
High Resolution Radiometer (AVHRR). In this study, opera-
tional ice charts from the Norwegian Meteorological Institute
(MET Norway), which provide SIC maps in a PSR grid with
a nominal resolution of 1 km, were used to evaluate the per-
formance of the produced Landsat-8 SIC. Each grid in the ice
chart contains the six classified SIC values (5 %, 20 %, 50 %,
75 %, 95 %, and 100 %), which represent the ice concentra-
tion intervals defined by the World Meteorological Organi-
zation (WMO) (Table A1 in the Appendix). The ice charts
are provided on a daily basis and cover the spatial domain of
approximately 60–85° N, 80° W–80° E, which overlaps with
the regions of the Barents Sea, Central Arctic, East Green-
land Sea, and Kara Sea defined in Sect. 2.2. It is noted that
SIC values in ice charts are based on the interpretation of
multiple satellite images by ice analysts and therefore con-
tain high uncertainties, which are reflected by the wide ice
concentration intervals designated for each of the six SIC val-
ues (Table A1). Even with such high uncertainties, SIC val-
ues from ice charts have been widely selected as reference
data in SIC product validation studies because they can be
used to provide quantitative information about the observed
ice coverage (Agnew and Howell, 2010; Ivanova et al., 2015;
Karvonen, 2017).

In this study, 2 years (2021 and 2022) of ice charts were
collected; among these, 222 ice charts that presented a spa-
tial overlap with the coverage of Landsat-8 SIC and a time
difference of less than 1 h compared to the Landsat-8 scene
were used for the evaluation of the produced Landsat-8 SIC
(see Table S3 in the Supplement for the list of ice charts
and Landsat-8 files used in the evaluation of the produced
Landsat-8 SIC).

2.5 Melt pond fraction data

Melt ponds are formed from the surface melting of sea ice
and are known to exist in preponderance over the Arctic
during the melting season (Untersteiner, 1961; Fetterer and
Untersteiner, 1998; Rösel et al., 2012). In the VIS and IR
ranges, melt ponds typically exhibit lower spectral reflectiv-
ities relative to dry sea ice (Perovich, 1996; Malinka et al.,
2018) and therefore may introduce errors into SIC estimated
from VIS and/or IR observations because the optical charac-
teristics of melt ponds may not be differentiated from those
of open ocean. In order to test the sensitivity of Landsat-
8 SIC values to the existence of melt ponds, in this study,
a melt pond fraction (i.e. the fractional areal coverage of
melt ponds over sea ice; MPF) dataset estimated from clear-
sky Sentinel-2 satellite imagery was introduced (Niehaus and
Spreen, 2022; Niehaus et al., 2023). This dataset also con-
tains an open-water mask (OW mask), which is a binary clas-
sification mask of each pixel in a Sentinel-2 scene into ice
and open water. This dataset is available from 2017 to 2021
for the Arctic melting season (i.e. June, July, and August). In
this study, each MPF dataset was tested for spatiotemporal
overlap (time difference of less than 3 h) with the coverage
of Landsat-8 SIC. A total of six MPF datasets were found to
overlap with the coverage of Landsat-8 SIC and were thus
available for use in the evaluation. The list of available MPF
datasets and the corresponding Landsat-8 scenes can be seen
in Table S4 of the Supplement.

3 Method

Figure 3 shows the pipeline of processing a level-1 Landsat-8
image into an SIC product based on 6.25 km resolution PSR
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grid. The details of each process are explained in the follow-
ing subsections.

3.1 Removal of cloud pixels and cloud mask quality
assessment

Satellite observations of surface properties from the VIS and
NIR channels are hindered by the presence of clouds. There-
fore, it is important to filter the presence of clouds prior to the
SIC data production. In this study, clouds and cloud shadows
within each Landsat-8 scene were masked using the mask-
ing array constructed from the quality assessment band of
each Landsat-8 level-1 product, which is generated by the
C Function of Mask (CFMask) (Zhu and Woodcock, 2012).
CFMask is a cloud detection algorithm that provides mask-
ing information for clouds, cloud shadows, and cirrus. Confi-
dence scores are also given in three levels (i.e. low, medium,
and high) for clouds and two levels (i.e. low and high) for cir-
rus. A confidence score for cloud shadows is not provided be-
cause cloud shadows are only derived from high-confidence
cloud pixels by using the geometric relationship between the
position of the sun and high-confidence cloud pixels (Zhu
and Woodcock, 2012). Although the application of the lowest
confidence scores in the removal of clouds and cirrus would
ensure the lowest rate of false negatives (FNs; cloud pixels
that are mistaken as clear pixels) in cloud detection, the use
of the lowest confidence scores would also result in the re-
moval of a considerable number of sea ice pixels under clear-
sky conditions (Foga et al., 2017). Therefore, it is important
to select proper confidence scores to retain as many clear-
sky sea ice pixels as possible while minimizing the number
of FN cases. In this study, pixels with medium and high con-
fidence scores for clouds and for cirrus, respectively, were
discarded prior to Landsat-8 SIC production to avoid cloud
and cirrus contamination. In addition, as suggested in Foga et
al. (2017), dilated cloud pixels, which are clear pixels com-
pletely surrounded by cloud pixels, were also masked to pre-
vent contamination by cloud edges where cloud detection un-
certainty is high.

It is important to note that CFMask over ice-covered sur-
face types has lower accuracy than other surface types (Foga
et al., 2017; Qiu et al., 2019). Therefore, an additional step
for cloud-masking quality assessment is designated in this
study. In this step, a visual inspection was performed by
comparing the cloud mask array, which is constructed by
masking cloud, cirrus, cloud shadow, and dilated cloud pix-
els, from each Landsat-8 image with the corresponding true-
colour image to identify the cases of FN, false-positive (FP;
clear pixels that are mistaken as cloud pixels), true-negative
(TN; clear pixels correctly detected as clear pixels), and true-
positive (TP; cloud pixels correctly detected as cloud pix-
els) pixels in the Landsat-8 image. From this additional step,
Landsat-8 images were sorted into four categories depending
on the assessed quality of cloud masking. Images with the
existence of FN cloud pixels in the cloud mask array, which

indicate underestimated cloud cover, were labelled as cate-
gory 1 (C1). Images dominated by FP cloud pixels, which
occur in cases of overestimated cloud cover, were tagged as
C2. Images dominated by TP cloud pixels, which correspond
to correctly estimated cloud cover for cloudy-sky conditions,
were labelled as C3. Images dominated by TN cloud pixels,
which correctly estimate clear sky, were labelled as C4. For
images under C2 (i.e. overestimated cloud coverages with
medium confidence scores for clouds and high confidence
scores for cirrus), the cloud mask array was regenerated with
a higher confidence score (high-confidence clouds and cir-
rus) and was visually inspected against the true-colour im-
age to determine the adequacy of the higher-confidence-score
cloud mask as follows: if any FN cloud pixels were present
in the higher-confidence cloud mask, the original confidence
score (i.e. medium for clouds and high for cirrus) was used to
mask the clouds. Further details of the visual screening step
are provided in Appendix B.

In this study, for Landsat-8 images that were labelled as
C2, C3, and C4, Landsat-8 pixels that remain after the ap-
plication of CFMask were assumed to be clear-sky pixels
(i.e. “clear-pixel assumption”). However, for Landsat-8 im-
ages labelled as C1, the clear-pixel assumption is not valid
because the C1 category underestimates clouds through CF-
Mask according to the visual inspection step, which implies
that the associated error due to the underestimated cloud
cover in SIC calculation is expected. Therefore, possible er-
ror from the presence of unmasked cloud pixels in C1 is fur-
ther evaluated in Sect. 5.1. The number of Landsat-8 images
under the four categories over the 12 regions is provided in
Table 2, and the assessed cloud mask quality (i.e. C1, C2,
C3, and C4) for each Landsat-8 image is provided in the vari-
able under the name “cloud_contamination_category” in the
produced Landsat-8 SIC dataset in order to allow for quality-
controlling of the data in its usage.

3.2 Ice and open-water classification

Classification of a Landsat-8 pixel as ice or open water was
performed by applying thresholds to the top-of-atmosphere
(TOA) reflectivity at band 5 (NIR) and the normalized differ-
ence snow index (NDSI). To do this, first, the reflectivity of
a Landsat-8 pixel, which is stored as a 16 bit digital number
in the Landsat-8 Collection 2 Level 1 dataset, was scaled to
TOA reflectivity using the following equation (Zanter, 2019):

ρλ =
MρQDN+Aρ

sin(θSE)
, (2)

where Mρ and Aρ are the multiplicative and additive scale
factors, θSE is the solar elevation angle, and QDN is the TOA
reflectivity of the Landsat-8 pixel in a 16 bit digital number
format.
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Figure 3. Pipeline for the processing of level-1 Landsat-8 OLI images into SIC with 6.25 km resolution.

Table 2. The number of Landsat-8 images for the four cloud mask
categories (i.e. C1: underestimated cloud cover; C2: overestimated
cloud cover; C3: correctly estimated cloud cover for cloudy sky;
and C4: correctly estimated cloud cover for clear sky) over the 12
regions of the Arctic Ocean during the periods of January 2020–
December 2022.

Category C1a C2b C3c C4d

Baffin Bay 826 80 907 663
Barents Sea 271 10 265 126
Beaufort Sea 215 27 111 98
Bering Sea 209 24 264 202
Canadian A. 1573 176 854 571
Central Arctic 1165 42 705 431
Chukchi Sea 154 30 134 109
E Greenland 767 29 369 303
E Siberian 230 36 145 135
Hudson Bay 619 116 351 399
Kara Sea 490 34 245 130
Laptev Sea 328 23 165 130

a Underestimated cloud cover. b Overestimated cloud cover.
c Correctly estimated cloud cover for cloudy sky. d Correctly
estimated cloud cover for clear sky.

Then, the NDSI was calculated from the scaled reflectivi-
ties as follows:

NDSI=
ρ5− ρ6

ρ5+ ρ6
, (3)

where ρ5 and ρ6 are the TOA reflectivities at bands 5 (NIR)
and 6 (SWIR) of the OLI sensor, respectively.

The steps for differentiating ice and open-water pixels and
for removing possible cloud pixels are shown in Fig. 4. The

first entails using the ρ5 criterion to detect open-water pixels,
which have lower reflectivity at band 5 compared to that over
ice or cloud pixels. The next step is using the NDSI criterion
in order to detect ice pixels, which have a higher NDSI than
cloud pixels due to the higher reflectivity of ice at band 5 and
the lower reflectivity of ice at band 6 compared to the cloud
reflectivities (Hall et al., 1995; Riggs et al., 1996, 1999). The
NDSI criterion for the separation of ice and cloud pixels was
kept in order to reinforce the cloud removal process in ad-
dition to CFMask, as explained in Sect. 3.1. In this study,
the thresholds for ρ5 and NDSI were selected to be 0.08 and
0.45, respectively (Liu et al., 2016; Tanaka and Lu, 2023).

As mentioned in Sect. 3.1, the clear-pixel assumption was
applied during the classification of Landsat-8 images labelled
as C2, C3, and C4. Accordingly, the performance of the clas-
sification based on ρ5 and NDSI with the selected thresholds
was evaluated over clear-sky pixels using the surface classi-
fication data from Landsat-8 images (Kern, 2021) mentioned
in Sect. 2.3 as reference data. The values of ρ5 and NDSI
were collected separately over open-water and ice pixels in
the reference data, and classification over the collected pix-
els was performed following the procedure in Fig. 4. From
the distributions of ice and open-water pixels in the two-
dimensional histogram between NDSI (y axis) and ρ5 (x
axis) in Fig. C1, it can be seen that ice and open water are
well differentiated by the selected threshold values of ρ5 and
NDSI, respectively (Fig. C1). In addition, for quantitative as-
sessment of the performance of ice and open-water classifi-
cation, the recall was computed for the open-water and ice
categories using the classification result summarized in Ta-
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Table 3. The number of classified pixels for open water, ice, and
cloud from the suggested method and surface classification refer-
ence data (Kern, 2021). The original categories in the reference data
are shown in the rows, and the classified categories from the method
in Fig. 4 are shown in the columns. The values inside the parenthe-
ses indicate the percentage of pixels from the original category that
are classified into open water, ice, and cloud.

Classified

Reference Open water Ice Cloud

Open water 13 271 877 141 582 19
(98.94 %) (1.06 %) (0.00 %)

Ice 747 481 31 353 954 336
(2.33 %) (97.67 %) (0.00 %)

ble 3 and Eq. (4).

RCX as X =
NX as X

NX as X +NX as ∼X
(4)

In the above, NX as X and NX as ∼X are the number of pixels
in category X classified as X (TP) and the number of pix-
els in category X classified as not X (FN), respectively. With
the designated thresholds, the recall was found to be 98.94 %
for water and 97.67 % for ice. FN classifications of ice into
open water can cause negatively biased SIC. The bias due to
such classification error was estimated to be 2.33 % from the
percentage of the number of ice pixels that were classified as
open water in Table 3. Conversely, FN classification of open
water into ice can cause positively biased SIC, which was es-
timated to be 1.06 % from the value in Table 3. Misclassifi-
cation of ice or open-water pixels into cloud pixels from the
application of the NDSI threshold rarely occurred for both
the ice and open-water categories. Thus, it can be concluded
that the classification method used in this study is accurate
over clear-sky pixels. Furthermore, the error from ice and
water classification under clear-sky conditions is within the
uncertainty range of Landsat-8 SIC, which is discussed in
Sect. 4.3.

This classification result may not be applicable for
Landsat-8 images tagged as C1 (i.e. underestimated cloud
cover) because, as mentioned, in Sect. 3.1, such images do
not consist solely of clear-sky pixels but contain cloud pix-
els undetected by CFMask. Therefore, for Landsat-8 im-
ages labelled as C1, in order to understand possible errors
in SIC calculation from the designated classification method,
it is necessary to evaluate the performance of classification
over the undetected cloud pixels. This is discussed further in
Sect. 5.1.

3.3 Projection and computation of SIC

After the ice and open-water classification for the selected
Landsat-8 pixels, the classified pixels were projected onto

Figure 4. The process for separating ice, open water, and possi-
ble unmasked clouds using the ρ5 and NDSI criteria, where ρ5 and
NDSI are the TOA reflectivity at band 5 of the OLI sensor and the
normalized difference snow index, respectively.

the target grid system of the NSIDC Polar Stereographic grid
with 6.25 km resolution. The number of ice and open-water
pixels within each 6.25 km× 6.25 km grid cell was used to
compute SIC for the grid cell according to

SIC=
Nice

Nice+Nwater
× 100 (%), (5)

where Nice and Nwater are the number of Landsat-8 pix-
els classified as, respectively, ice and water within each
6.25 km× 6.25 km grid cell. It is noted that some of the
grid cells with 6.25 km resolution are not entirely filled by
Landsat-8 pixels at the edges of a Landsat-8 image and/or
near cloud-masked regions. In this study, this kind of grid
cell is referred to as a “partially covered grid cell”. Therefore,
SIC computed in such a grid cell is unlikely to be represen-
tative of the actual ice coverage over the area covered by the
grid cell. To avoid this caveat, a minimum threshold in the
number of Landsat-8 pixels for a single 6.25 km× 6.25 km
grid cell (Ncritical) was applied prior to the computation of
SIC. In this study, a specific value of Ncritical was introduced
as the minimum threshold, which is discussed in the follow-
ing subsection.
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3.4 Sensitivity test and uncertainty analysis

The sensitivity of Landsat-8 SIC to the prescribed thresholds
of ρ5 and NDSI was investigated for each cloud contamina-
tion category. In doing so, for each of the four cloud con-
tamination categories (i.e. C1, C2, C3, and C4), 10 scenes
were randomly sampled over all 12 regions (Fig. 2); thus,
120 scenes were used for each cloud contamination category
for the sensitivity test (see Table S5 in the Supplement for
the full list of scenes used for the sensitivity test). SIC val-
ues over the selected scenes were calculated using Eq. (5)
based on classification results with NDSI and ρ5 thresholds
perturbed by their uncertainties. Values of 0.015 and 0.016
were assigned as the uncertainties of ρ5 and ρ6, respectively,
following Pinto et al. (2020), which provides the root mean
squared differences of the Landsat-8 TOA reflectivities and
in situ observed reflectivities at bands 5 and 6. The uncer-
tainty of NDSI was calculated using the Gaussian error prop-
agation method, which can be written for NDSI as follows:

σ 2
NDSI =

(
∂NDSI
∂ρ5

)2

σ 2
ρ5
+

(
∂NDSI
∂ρ6

)2

σ 2
ρ6
, (6)

where σρ5 and σρ6 are the uncertainties of Landsat-8 TOA re-
flectivities at bands 5 and 6, respectively. Substituting Eq. (3)
for NDSI in Eq. (6), the analytical form of the uncertainty in
NDSI can be expressed as the following:

σ 2
NDSI =

4ρ2
6

(ρ5+ ρ6)4 σ
2
ρ5
+

4ρ2
5

(ρ5+ ρ6)4 σ
2
ρ6
. (7)

From Eq. (7), with σρ5 = 0.015 and σρ6 = 0.016, a value
of 0.05 was assigned as the uncertainty of NDSI, which is
the median value of σNDSI computed over 480 randomly se-
lected Landsat-8 scenes. For the four cloud contamination
categories, mean values of SIC calculated with the perturbed
thresholds of 0.45± 0.05 and 0.08± 0.015 for the NDSI and
ρ5, respectively, are provided in Fig. 5. With the perturbation
of ± 0.015 for the ρ5 threshold, mean SIC values from C1,
C2, C3, and C4 vary by ∓0.641 %, ∓0.495 %, ∓0.665 %,
and∓0.402 %, respectively (blue lines in Fig. 5). With a per-
turbation of ±0.05 for the NDSI threshold, mean SIC values
from C1, C2, C3, and C4 varied by ∓0.111 %, ∓0.002 %,
∓0.007 %, and ∓0.002 %, respectively (red lines in Fig. 5).
The calculated SIC values are more sensitive to the ρ5 thresh-
old relative to the NDSI threshold because the ρ5 threshold
is responsible for separating open water and ice. It is noted
that the sensitivity of SIC values to the NDSI threshold is 2
orders of magnitude higher for scenes labelled as C1 than for
C2, C3, and C4. The very low sensitivity of SIC values to the
NDSI threshold for scenes labelled as C2, C3, and C4 leads
us to infer that cloud pixels in such scenes had been success-
fully masked by CFMask prior to the ice or water classifi-
cation described in Sect. 3.2. However, the relatively higher
sensitivity of SIC values to the NDSI threshold for scenes la-
belled as C1 leads us to infer that undetected cloud pixels re-

mained after the application of CFMask and that such cloud
pixels had been further removed by the NDSI threshold.

Gaussian error propagation was also used to estimate the
uncertainty of Landsat-8 SIC according to the following:

σ 2
SIC =

(
∂SIC
∂NDSI

)2

σ 2
NDSI+

(
∂SIC
∂ρ5

)2

σ 2
ρ5

(%), (8)

where σx and ∂SIC
∂x

are the uncertainty of x and the sensitivity
of SIC to x, respectively. The sensitivities for the two vari-
ables (i.e. ρ5 and NDSI) were computed numerically from
the mean SIC variation observed in the sensitivity test (see
Tables S6, S7, S8, and S9 in the Supplement for the com-
puted values of sensitivity). In addition, in order to check
the relative contribution of each variable to the overall un-
certainty in SIC, a contribution factor (CFx) was defined and
calculated for the two variables as follows:

CFx =

(
∂SIC
∂x

)2
σ 2
x

σ 2
SIC

× 100 (%). (9)

The estimated uncertainty of Landsat-8 SIC (σSIC) produced
in this study was less than 1 %, on average, for all four cloud
contamination categories, and the ρ5 threshold contributes to
about 99 % of the uncertainty for C2, C3, and C4 and to about
97 % of the uncertainty for C1 in the SIC calculation. Further
discussion of the uncertainty of Landsat-8 SIC is presented
in Sect. 4.3.

As mentioned in Sect. 3.3, SIC computed from partially
covered grid cells may not be representative of actual ice
coverage over the entire grid cell, and the corresponding un-
certainty of SIC estimates in such grid cell can be as large
as the fraction of the uncovered areas. In order to circum-
vent such a problem, in this study, Ncritical was determined
to be 0.99×Nmax, where Nmax is the maximum number of
Landsat-8 pixels within a 6.25 km× 6.25 km grid cell.

3.5 Application of land and region masks

In order to circumvent potential contamination of land sig-
nals, in this study, SIC pixels generated over non-ocean
regions were masked using the surface mask described in
Sect. 2.2. The region mask was applied in addition to the sur-
face mask to obtain SIC products catalogued into the 12 re-
gions. If all SIC pixels in a Landsat-8 scene were masked by
the combination of land, region, and cloud masks, the scene
was removed from the SIC dataset.

4 Result

4.1 Landsat-8 SIC dataset

Out of 15 286 Landsat-8 level-1 images collected over pan-
Arctic areas during the study period, the numbers of Landsat-
8 images used for the calculation of SIC values for the cat-
egories of C1, C2, C3, and C4 were 6336 (41.4 %), 549
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Figure 5. Mean of Landsat-8 SIC values for (a) C1 (i.e. underestimated cloud cover), (b) C2 (i.e. overestimated cloud cover), (c) C3 (i.e.
correctly estimated cloud cover for cloudy sky), and (d) C4 (i.e. correctly estimated cloud cover for clear sky) derived from the selected
scenes under perturbed thresholds for NDSI (red) and ρ5 (blue), where ρ5 and NDSI are the TOA reflectivity at band 5 of the OLI sensor
and the normalized difference snow index, respectively.

(3.6 %), 4389 (28.1 %), and 3123 (20.4 %), respectively. The
remaining 989 images (6.5 %) were removed from the com-
bination of surface, region, and cloud masks. For each of the
12 regions, the number of Landsat-8 scenes generated into
Landsat-8 SIC (Nscene) and the number of produced Landsat-
8 SIC pixels (Npixel) for each cloud contamination category
during the study period are shown in Fig. 6, along with the
mean and standard deviation of SIC (see Table S10 in the
Supplement for values). The total number of Landsat-8 SIC
pixels produced during the study period was 2 934 399.

4.2 Qualitative evaluation for Landsat-8 SIC under four
cloud contamination categories

Figure 7 shows the Landsat-8 true-colour image (first col-
umn of Fig. 7); classification map of ice, open water, and re-
moved cloud pixels (second column of Fig. 7); and Landsat-

8 SIC at 6.25 km resolution (third column of Fig. 7) for the
four selected cases. Ice and open-water pixels, which were
differentiated following the methods explained in Sect. 3.2,
are shown as the white and blue pixels, respectively. Cloud
pixels removed in both CFMask and the NDSI criterion are
shown as the cyan pixels. Cloud pixels removed from CF-
Mask but undetected using the NDSI criterion are shown as
the purple pixels. Cloud pixels removed from the NDSI cri-
terion but undetected in CFMask are shown as the red pixels.
SIC values were only estimated over grid cells that satisfy
N>Ncritical; therefore, grid cells with more than 1 % of their
area covered with cloud pixels or grid cells located near the
edges of a Landsat-8 scene have no SIC values. In addition,
areas close to the coastline (within 6.25 km) are masked in
the Landsat-8 SIC maps presented in Fig. 7.
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Figure 6. (a) The mean SIC, (b) the standard deviation of SIC, (c) the number of Landsat-8 scenes used for SIC production (Nscene), and (d)
the number of Landsat-8 SIC pixels produced (Npixel) over the 12 regions. The black, red, blue, and green bars indicate values for categories
C1 (i.e. underestimated cloud cover), C2 (i.e. overestimated cloud cover), C3 (i.e. correctly estimated cloud cover for cloudy sky), and C4
(i.e. correctly estimated cloud cover for clear sky), respectively.

The first case is an example of the underestimated cloud
cover (i.e. C1) on 13 March 2022 over the Kara Sea (first
row of Fig. 7), where cloud pixels observed in the lower-left
area of Fig. 7a were not removed by CFMask (cyan and pur-
ple pixels in Fig. 7b). However, for this particular scene, most
of such undetected cloud pixels were removed from the ap-
plication of the NDSI criterion (red pixels in Fig. 7b), and,
therefore, the produced SIC was estimated only over clear-
sky area (Fig. 7c). The second case is an example of the
overestimated cloud cover (i.e. C2) on 17 March 2021 over
the Barents Sea (second row of Fig. 7), where FP cloud pix-
els are densely distributed in the upper-left area of Fig. 7e.
It is shown that SIC values were not estimated for grid cells
with such wrongly masked pixels (Fig. 7f). The third is an ex-
ample of correctly estimated cloud cover for cloudy sky (i.e.
C3) on 26 June 2022 over the Kara Sea (third row of Fig. 7),
where the position of cloud pixels removed from CFMask
(cyan and purple pixels in Fig. 7h) coincides well with the lo-
cation of cloud presented in the true-colour image (Fig. 7g).
The fourth case is an example of correctly estimated cloud
cover for clear sky (i.e. C4) on 15 June 2022 over the Beau-
fort Sea (fourth row of Fig. 7), where no clouds are observed
in both the true-colour image (Fig. 7j) and the classification
map (Fig. 7k).

For all four cases, over clear-sky pixels, discrimination be-
tween open-water pixels (blue pixels in Fig. 7b, e, h, and k)
and ice pixels (white pixels in Fig. 7b, e, h, and k) based on
the ρ5 thresholds coincided well with the locations of open
water and ice observed from the true-colour images (first col-
umn in Fig. 7). Therefore, it can be concluded that the ice–
water classification in this study is successfully done and that
the calculated SIC values correspond well to the classifica-
tion results (third column in Fig. 7). In addition, cloud pixels
only detected from the NDSI criterion (red pixels in second
column in Fig. 7) are rarely observable for the cases of C2,
C3, and C4, which further demonstrates the validity of the
assumption that all cloud pixels had been removed prior to
ice–water classification in Sect. 3.2 for the Landsat-8 scenes
under the three categories.

4.3 Uncertainty of Landsat-8 SIC

The estimated σSIC from all 480 selected scenes in Sect. 3.4
was less than 1 %, and the ρ5 threshold was found to be
responsible for more than 99 % of σSIC. The uncertainties
(i.e. σSIC) estimated separately for different regions or differ-
ent cloud contamination categories all remained within 1 %
and had similar contribution ratios, with the ρ5 threshold be-
ing the dominant factor contributing to σSIC (see Tables D1,

https://doi.org/10.5194/essd-17-233-2025 Earth Syst. Sci. Data, 17, 233–258, 2025



244 H.-S. Jung et al.: An Arctic SIC record from Landsat-8

Figure 7. Example of (a, d, g, j) original Landsat-8 true-colour image; (b, e, h, k) classification map of ice (white), open water (blue), and
cloud (cyan, purple, and red); and (c, f, i, l) Landsat-8 SIC values at 6.25 km resolution on (first row) 22 March 2022 over the Kara Sea,
(second row) 17 March 2021 over the Barents Sea, (third row) 26 June 2022 over the Kara Sea, and (fourth row) 15 June 2022 over the
Beaufort Sea. From top to bottom, the select cases correspond to the cloud contamination categories 1, 2, 3, and 4 respectively. SIC values
are not estimated over areas of cloud mask (cyan, purple, and red pixels in the middle column), and SIC values near the coastal area (6.25 km)
are masked in this figure. The true-colour images in (a, d, g, j) are courtesy of the US Geological Survey. © Authors for panels (b), (c), (e),
(f), (h), (i), (k), and (l). Distributed under the Creative Commons Attribution 4.0 License. Landsat-8 for panels (a), (d), (g), and (j).
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Figure 8. (a) Uncertainties in Landsat-8 SIC values (σSIC) and
(b) contributions of the ρ5 (blue) and the NDSI thresholds (red)
to the estimated uncertainties for different SIC ranges, where ρ5
and NDSI are the TOA reflectivity at band 5 of the OLI sensor and
the normalized difference snow index, respectively. Dark- and light-
coloured bars indicate the uncertainty and contributions computed
from all 480 scenes and separately for each SIC sub-range, respec-
tively.

D2, and D3 in Appendix D for the exact values). Thus, σSIC
seems to be independent of region or cloud contamination
label. However, σSIC was found to be dependent on the SIC
value itself. Figure 8 shows the variation in σSIC with re-
spect to the SIC range, illustrating that the lowest uncertainty
is ∼ 0.2 % in the SIC values ranging from 0 % to 10 % and
from 90 % to 100 %, while the highest uncertainty of 4.5 %
is observed in SIC values ranging from 50 % to 60 % (see Ta-
ble D4 for exact values). Still, the ρ5 threshold explains most
of the uncertainty regardless of the SIC values. In spite of the
relatively high uncertainty in Landsat-8 SIC between 20 %
and 80 %, the product can still be used for validation pur-
poses because most PMW SIC products exhibit much larger
uncertainties over such SIC ranges of up to±12 % in the win-
ter (Ivanova et al., 2014) and ±20 % in the summer (Meier
and Notz, 2010).

5 Discussion

5.1 Possible errors in SIC produced from Landsat-8
images labelled as C1

As mentioned in Sect. 3.1 and 3.2, the clear-pixel assump-
tion, which assumes that all cloud pixels in a Landsat-8 im-
age have been removed by the application of CFMask, is
not valid for Landsat-8 images labelled as C1 in Sect. 3.1.
Therefore, for Landsat-8 SIC associated with the C1 cate-
gory, it is necessary to evaluate the possible uncertainty in
SIC induced by unremoved cloud pixels (i.e. underestimated
cloud cover). The evaluation was performed as follows: from
Landsat-8 images under the C1 category, those having 100 %
cloud cover based on visual inspection but less than 100 %
cloud cover based on CFMask were selected. From these
images, the ρ5 and NDSI values were collected from pixels
that were not masked by CFMask (i.e. undetected cloud pix-
els). Classification following the process illustrated in Fig. 4
was performed over the collected undetected cloud pixels
to quantitatively assess the possible errors in SIC estimated
over such pixels. A total of 6 721 605 undetected cloud pixels
were used in this evaluation, and the name and location of the
Landsat-8 images used are shown in Fig. S3 and in Table S11
in the Supplement.

The classification result is summarized in Table 4 and
Fig. C2. From the distribution of the unmasked cloud pix-
els in the two-dimensional histogram between NDSI (y axis)
and ρ5 (x axis) in Fig. C2, it can be seen that the NDSI crite-
rion used in this study reinforces the cloud removal process
by filtering cloud pixels that were undetected by CFMask.
However, even with the additional procedure to remove re-
maining cloud signals (i.e. the NDSI criterion), 8.54 % of
the undetected cloud pixels are still classified as open wa-
ter and/or ice. It is noted that such cloud pixels (i.e. cloud
pixels undetected by both CFMask and the NDSI criterion)
were predominantly classified as ice (Table 4). Therefore, it
can be inferred that the undetected cloud pixels in a Landsat-
8 image can induce positively biased SIC, and, thus, for SIC
values produced from Landsat-8 images labelled as C1 over
which the clear-pixel assumption is invalid, the error from
ice–water classification is estimated to be large as 8.54 %
from the percentage of cloud pixels classified as ice in Ta-
ble 4. The possibility of such large uncertainties should be
taken into account when using Landsat-8 SIC labelled as C1.

5.2 Evaluation of Landsat-8 SIC using ice charts

The accuracy of Landsat-8 SIC produced in this study was
evaluated using ice charts provided by MET Norway as ref-
erence. For quantitative comparison, ice charts were collo-
cated into the grid system of Landsat-8 SIC (i.e. PSR grid
with 6.25 km resolution) as follows: data points on the ice
chart within each 6.25 km× 6.25 km grid cell were collected,
and the SIC mean value from the collected data points were

https://doi.org/10.5194/essd-17-233-2025 Earth Syst. Sci. Data, 17, 233–258, 2025



246 H.-S. Jung et al.: An Arctic SIC record from Landsat-8

Table 4. The number of cloud pixels that were undetected using the
C Function of Mask (CFMask) classified into open water, ice, and
cloud from the application of the procedure in Fig. 4. The scenes
used for the evaluation belong to the C1 (i.e. underestimated cloud
cover) category from the method described in Sect. 3.1. The values
inside the parentheses indicates the percentage of pixels that belong
to each category.

Classified (ρ5 and NDSI)

Reference Open water Ice Cloud

Undetected cloud 215 573 922 6 147 468
(by CFMask) (0.00 %) (8.54 %) (91.46 %)

taken as the representative SIC value of the ice chart for the
6.25 km× 6.25 km grid cell. It is important to note that SIC
values in the original ice charts are not normally defined SIC
values in satellite remote sensing but contain uncertainties
represented by the ice concentration range defined in Ta-
ble A1. Therefore, it is necessary to consider the propagation
of uncertainty in the collocation process. Uncertainty of the
collocated ice chart SIC was estimated by taking the aver-
age of the uncertainty in ice chart data points collected from
each 6.25 km× 6.25 km grid cell. To avoid the influence of
land contamination, a 6.25 km coastal area mask was applied
to both SIC values prior to the comparison. The number of
collocated data points used in the evaluation was 45 547.

From Fig. 9, a good linear relationship (i.e. correlation co-
efficient of 0.96) between Landsat-8 SIC and ice chart SIC
is observed. The spread (i.e. 20th and 80th percentiles) of
Landsat-8 SIC for ice chart SIC sub-ranges, which are shown
as vertical red lines in Fig. 9a, was larger in SIC ranging from
20 % to 80 % relative to other ranges, which is likely a con-
sequence of the wider concentration intervals assigned to the
20 %–80 % SIC values in the original ice chart (Table A1). In
addition, SIC from the ice charts tends to be higher than that
found from Landsat-8, and the bias is more pronounced in the
lower SIC range. This type of state-dependent overestima-
tion of SIC from ice charts has been reported in the previous
works of Tonboe et al. (2016) and Cheng et al. (2020), show-
ing that overestimation of SIC from ice charts is largest in the
lower SIC range due to the “better-safe-than-sorry” practices
of the ice-charting community. For quantitative comparison
of the bin-wise mean biases in Landsat-8 SIC relative to ice
chart SIC, bin-averaged SIC values from Landsat-8 (red tri-
angle in Fig. 9b) and from ice charts (blue circles in Fig. 9b)
were plotted, along with their respective uncertainties. Un-
certainties in Landsat-8 SIC values over the SIC sub-ranges
were taken as the values from Table D4. Except for the 70 %–
80 % SIC interval, Landsat-8 SIC values were negatively bi-
ased in relation to ice chart SIC values. However, the mean
biases for all SIC sub-ranges were found to be within the un-
certainty ranges estimated for each product.

5.3 Evaluation of Landsat-8 SIC over melt ponds

The evaluation of variation in Landsat-8 SIC values due to
melt pond presence was performed using the MPF dataset
(Niehaus and Spreen, 2022) described in Sect. 2.5 as refer-
ence data for melt ponds. As mentioned in Sect. 2.5, a total of
six Landsat-8 scenes obtained from the periods of July 2020,
August 2020, and July 2021 were used in the evaluation.
The evaluation was conducted as follows: first, the colloca-
tion of the MPF dataset into the grid system of Landsat-8
SIC was performed. This was done by collecting MPF data
points within each 6.25 km× 6.25 km grid cell and taking the
mean value of the collected MPF data points as the MPF val-
ues for each corresponding grid cell at 6.25 km resolution. In
addition, from the OW masks in the MPF dataset, SIC val-
ues (SICMPF) were computed in the grid system of Landsat-
8 SIC following the same method introduced in Sect. 3.3.
Second, in order to remove the effects of SIC variation from
the evaluation, the corresponding Landsat-8 SIC and MPF
data points were collected when the data points satisfied
SICMPF = 100 %. The number of collected data points is 98.
From the collected data points, the net ice surface fraction
(Cnet) was computed as follows:

Cnet = (1−MPF)×SICMPF, (10)

where MPF is the melt pond fraction, and SICMPF is the es-
timated SIC value from the MPF dataset. Since SICMPF was
fixed at 100 %, in this study, the variation in Cnet can be con-
sidered to be driven solely by the variation in MPF.

The robustness of the Landsat-8 SIC in relation to the pres-
ence of melt ponds is illustrated in Fig. 10, which is a scatter-
plot of the collected Cnet (x axis) and Landsat-8 SIC (y axis).
In this plot, the MPF varied from 0 % to 33 %, and, therefore,
the computed values of Cnet are ranged from 67 % to 100 %.
However, SIC values estimated from Landsat-8 are observed
to be nearly independent of the varying Cnet (statistically in-
significant correlation coefficient of 0.11) and, thus, nearly
independent of MPF. Although a few Landsat-8 SIC val-
ues are observed to be affected by melt pond presence (data
points highlighted in red in Fig. 10), which can be expected
because melt ponds are not easily distinguished from open
water, the number of such data points is very small (only 4
data points out of 98 data points). It is noted that, on average,
the deviation from 100 % ice concentration computed from
the data points shown in Fig. 10 was less than 1 %. There-
fore, it can be inferred that the impact of melt pond presence
in SIC calculation using Landsat-8 imagery is small and that
the proposed algorithm for SIC production in this study is
robust regardless of surface melting.

5.4 Possible applications of Landsat-8 SIC for
assessing PMW-based SIC values

Landsat-8 SIC produced from this study can be utilized to
assess the PMW-based SIC values. This section provides the

Earth Syst. Sci. Data, 17, 233–258, 2025 https://doi.org/10.5194/essd-17-233-2025



H.-S. Jung et al.: An Arctic SIC record from Landsat-8 247

Figure 9. (a) Scatterplot of bin-wise mean Landsat-8 SIC values and ice chart SIC sub-ranges. The bin-wise mean SIC values are shown
as red triangles, and the 20th and 80th percentiles are shown as the vertical red lines. The values for the number of data points (N ), root-
mean-square error (RMSE), bias, and Pearson correlation coefficient (R) are presented. (b) For the same SIC intervals as (a), the bin-wise
mean SIC values of Landsat-8 (red triangle) and ice charts (blue circle) and their respective uncertainties (vertical lines). The uncertainties
of Landsat-8 SIC are taken from the values in Table D4.

Figure 10. Scatterplot of net ice surface fraction (x axis) and
Landsat-8 SIC (y axis). The data points shown satisfy SICMPF =
100 % and have MPF values that vary from 0 % to 33 %. Data
points with Landsat-8 SIC values that deviate by more than 4 %
from 100 % ice concentration are highlighted in red. The values for
the number of data points (N ), the Pearson correlation coefficient
(R), and the p value for the correlation coefficient are presented.

possible application of the constructed Landsat-8 SIC for ex-
amining PMW-based SIC values. To do this, Landsat-8 SIC
was downscaled to 25 km resolution and compared against
SIC values estimated from BT and NT algorithms, both pro-
vided in the PSR grid with 25 km resolution and obtained
from NSIDC (Meier et al., 2021), for the two selected cases
of Landsat-8 scenes acquired during melting (21 July 2022
over the Laptev Sea) and freezing (4 March 2022 over the
Chukchi Sea) seasons, respectively. To avoid the influence
of land contamination, a coastal area mask, which was also
downscaled to 25 km resolution, was applied before the com-
parison.

Figure 11 illustrates the spatial distributions of the three
different SIC values, differences in SIC values of BT and
NT from Landsat-8, and scatterplots of BT and NT SIC
against Landsat-8. For the case of the melting season (top
two rows in Fig. 11), BT SIC showed a positive bias of
8.95 %, an RMSE of 16.30 %, and a correlation coefficient
of 0.92 (Fig. 11d) in relation to Landsat-8 SIC, while SIC re-
trieved from the NT algorithm is negatively biased in relation
to Landsat-8 SIC by−5.21 %, with an RMSE of 14.35 % and
a correlation coefficient of 0.94 (Fig. 11h). It is interesting to
note that BT SIC values are positively (negatively) biased in
relation to Landsat-8 SIC for lower (higher) concentrated ice
areas (Fig. 11c), while opposite patterns are observed for NT
SIC values (Fig. 11g). Both PMW-based SIC values show
the largest disagreement with Landsat-8 SIC near the edges
of pack ice (i.e. boundaries between sea ice and open water).

For the scene in the freezing season (bottom two rows in
Fig. 11), the BT and NT algorithms produced nearly 100 %
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SIC values for all grids in this case, while Landsat-8 shows
lower SIC values in regions coinciding with the leads in the
pack ice observed from the true-colour image. As a result,
positive biases were observed near the position of the lead
(Fig. 11k and o), and mean biases for the BT and NT algo-
rithms were 0.83 % and 0.53 %, respectively. RMSEs of BT
and NT SIC were calculated to be 1.35 % and 0.81 %, respec-
tively, which are lower than the RMSEs evaluated during the
melting season for the two SIC algorithms (Fig. 11i and p).

6 Code and data availability

The Landsat-8 SIC dataset can be downloaded at https:
//doi.org/10.5281/zenodo.10973297 (Jung et al., 2024).
Datasets generated for each Arctic region can be found in
sic_landsat08_{region name}.nc. The datasets are stored in
NetCDF format and can be accessed using software includ-
ing Python, MATLAB, and QGIS. Along with the SIC val-
ues, the N , coastal mask, and region mask are also provided
in a 1792× 1216 array format. The cloud contamination cat-
egories and names of the original Landsat-8 files are also pro-
vided for each scene. Variables in the NetCDF file are visu-
alized in Fig. 12. Fill values were assigned to grids outside
the coverage of a Landsat-8 scene, grids over land, or grids
masked by clouds (black grids in Fig. 12a, b). Descriptions
of each variable and the fill and flag values are summarized
in Table 5.

Datasets used to produce and validate the Landsat-8 SIC
are listed as follows:

– The Landsat-8 Collection 2 Level 1 product and the
corresponding true-colour images are accessible from
the United States Geological Survey Earth Explorer at
https://earthexplorer.usgs.gov/ (last access: 16 March
2024; DOI: https://doi.org/10.5066/P975CC9B, Earth
Resources Observation and Science (EROS) Center,
2020).

– The Arctic and Antarctic Regional Masks for Sea Ice
and Related Data Products version 1, used to mask
non-ocean areas and to distinguish regions, can be
accessed at https://doi.org/10.5067/CYW3O8ZUNIWC
(Meier and Stewart, 2023a).

– Landsat surface type over water from supervised clas-
sification of surface broadband albedo estimates (ver-
sion_2021_fv0.01), used to test the performance of the
ice and open-water classification, can be accessed at
https://doi.org/10.25592/uhhfdm.9181 (Kern, 2021).

– The Arctic Ocean – Sea Ice Concentration Charts –
Svalbard and Greenland ice charts used to evaluate the
produced Landsat-8 SIC can be accessed at https://doi.
org/10.48670/moi-00128 (E.U. Copernicus Marine Ser-
vice Information (CMEMS), 2024).

– Melt pond fraction on Arctic sea-ice from Sentinel-2
satellite optical imagery (2017–2021) used to test the
robustness of Landsat-8 SIC over melt ponds can be
accessed at https://doi.org/10.1594/PANGAEA.950885
(Niehaus and Spreen, 2022).

– NOAA/NSIDC Climate Data Record of Passive Mi-
crowave Sea Ice Concentration version 4, used to illus-
trate possible applications of the Landsat-8 SIC dataset,
can be accessed at https://doi.org/10.7265/efmz-2t65
(Meier et al., 2021).

The Python codes for Landsat-8 SIC production, sensitiv-
ity and uncertainty analysis, ice–water classification evalua-
tion, Landsat-8 SIC validation, and figure generation are ac-
cessible at https://doi.org/10.5281/zenodo.12754602 (Jung,
2024). Example data to check the functionalities of each
Python code are provided with the code repository.

7 Conclusion

In this study, 3 years (2020–2022) of Landsat-8 data were
collected and used to generate sea ice concentration (SIC)
datasets in the polar stereographic grid at 6.25 km resolution.
A total of 14 297 Landsat-8 images were used to calculate
2 934 399 SIC grid points. Each Landsat-8 SIC is catalogued
under a NetCDF file named after the 12 regions.

Each Landsat-8 image was labelled as one of four cloud
contamination categories (i.e. C1, C2, C3, and C4) accord-
ing to the overall quality of the cloud mask over the image.
The categories are provided in the variable under the name
cloud_contamination_category of the Landsat-8 SIC dataset
to allow for selection of SIC values calculated without the
interference of cloud signals.

The uncertainty of Landsat-8 SIC was estimated to range
from 1 % to 4 % based on the Gaussian error propagation
method. In addition, to regulate the potential uncertainty that
may arise from the use of partially covered grid cells, SIC
was only produced for grid cells with over 99 % of their area
covered by Landsat-8 pixels. Evaluation of Landsat-8 SIC
using SIC from ice charts shows good linear correlation be-
tween the two products and also reveals existence of a neg-
ative bias in Landsat-8 SIC. However, the bias was found
to be within the uncertainty range of the Landsat-8 and ice
chart SIC values. In addition, the production method used
for Landsat-8 SIC was found to be robust over melt ponds.
Thus, the Landsat-8 SIC values produced in this study can be
considered to be reliable estimates of SIC.

Comparison of Landsat-8 SIC against SIC retrievals from
the NASA Team (NT) and bootstrap (BT) algorithms for two
cases reveals an overall negative bias in NT and a positive
bias in BT SIC. The spatial distribution of the bias shows
that bias in NT and BT SIC may be related to the SIC values,
with NT SIC exhibiting a stronger negative bias in the high-
SIC regime and with BT SIC showing a stronger positive
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Figure 11. Geographical distributions of (a, i) original Landsat-8 true-colour image, (e, m) Landsat-8 SIC, (b, j) SIC from the bootstrap
(BT) algorithm, (f, n) SIC from the NASA Team (NT) algorithm, (c, k) difference in SIC values between BT and Landsat-8, (g, o) difference
in SIC values between NT and Landsat-8, and scatterplot (d, l) between Landsat-8 SIC and SIC from BT and (h, p) between Landsat-8
SIC and SIC from NT. The values of root-mean-square error (RMSE), bias, and Pearson correlation coefficient (R) are presented with the
scatterplots. Upper two panels for 21 July 2022 (melting season) over the Laptev Sea and for 4 March 2022 over the Chukchi Sea. The
true-colour images are courtesy of the US Geological Survey. The SIC retrievals from the BT and NT algorithms were obtained from Meier
et al. (2021).

bias in the low-SIC regime. This suggests that the Landsat-8
SIC can be used as the reference SIC to generate quantitative
error statistics of various passive microwave SIC retrievals
over different regions, seasons, and SIC values, which can be
used to develop an optimal combination of existing SIC al-

gorithms or to provide realistic observation errors to enhance
the performance of sea ice data assimilation.

Future works should aim to extend the temporal and spatial
coverage of the current Landsat-8 SIC dataset through the
addition of Landsat-8 images from the years 2018 and 2019.
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Figure 12. Variables in the Landsat-8 SIC NetCDF. The scene is from 12 June 2021 over the Canadian Archipelago. For the (d) sub-region
mask, “in” and “out” denote grid cells located inside and outside the designated region, respectively.

Table 5. Variables in the Landsat-8 SIC NetCDF file, the name of the variables, and the flag values for each variable.

Variable Long name Flag values

sea_ice_concentration Estimated fractional sea ice area from
Landsat-8 measurements

[−99: Fill value]

sample_size Number of Landsat-8 pixels used to es-
timate the sea ice concentration

[0: Fill value]

coastal_mask Open sea/coastal flag [0: Open_sea, 1: Coast]

sub_region_mask Sub-region flag [0: inside_sub_region, 1: outside_sub_region]

In addition, given the large number of Landsat-8 SIC data
points generated in this study, the obtained SIC values also
have the potential to be used to train deep-learning models in
order to retrieve optimal SIC estimates over the Arctic.
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Appendix A: SIC values in the MET Norway ice chart

Table A1. Concentration class, concentration interval, fixed concentration value, and concentration range of the operational ice chart pro-
duced by MET Norway.

Concentration class Concentration Fixed concentration Concentration
interval [%] value [%] range [%]

Fast ice 100 100 0
Very close drift ice 90–100 95 5
Close drift ice 70–80 75 5
Open drift ice 40–60 50 10
Very open drift ice 10–30 20 10
Open water 0–10 5 5

Appendix B: Visual inspection for cloud-masking
quality control

In this section, a step-by-step description of the process to
perform the visual inspection of Landsat-8 scenes is pre-
sented. As defined in Sect. 3.1, each pixel in a Landsat-8
scene can be sorted into the following four categories de-
pending on the state of the cloud mask for the pixel: false
negative (FN – cloud pixel mistaken as clear pixel), false pos-
itive (FP – clear pixel mistaken as cloud pixel), true negative
(TN – clear pixel identified as clear pixel), and true positive
(TP – cloud pixel identified as cloud pixel). It is noted that
the pixels with an FN are used to calculate SIC values, while
the pixels with an FP are not, indicating that the presence
of FN pixels can directly introduce errors into the calculated
SIC value. Therefore, visual inspection was performed very
strictly to detect FN pixels.

Figure B1 outlines the steps taken to perform the visual
inspection. The descriptions of each step are provided, along
with an example case of a Landsat-8 scene that is categorized
into C1 during the section-wise inspection stage.

– Step 1. Generate a portable network graphics (PNG) file
of the cloud mask (i.e. cloud mask image).

For each Landsat-8 scene, a false-colour image for each
pixel classified as ice (white pixels in Fig. B2b, d), open
water (blue pixels in Fig. B2b, d), cloud (grey pixels in
Fig. B2b, d), and fill value (black pixels in Fig. B2b,
d) is constructed using the OpenCV module in Python.
Ice and open-water pixels are differentiated using the
method described in Sect. 3.2. Cloud pixels are clas-
sified by masking the medium-confidence cloud, high-
confidence cirrus, cloud shadow, and dilated cloud pix-
els identified by the quality assessment band (i.e. the
cloud mask array produced by CFMask).

– Step 2. Conduct a comprehensive inspection of the
cloud mask quality.

The cloud mask image generated in step 1 is visually
inspected against the true-colour image to identify sec-
tions populated with FN, FP, TN, or TP pixels. This is
done in the following order: first, if no cloud pixels are
observed in both the cloud mask image and the true-
colour image (i.e. all pixels in the image are TN pixels),
the scene is labelled as C4. Second, if any cluster of FN
pixels is observed, the scene is labelled as C1. Third,
if any cluster of FP pixels is identified, the scene is la-
belled as C2 and passes on to step 3. If the clusters of
cloud pixels in the cloud mask image correspond with
the position of clouds observed in the true-colour im-
age (i.e. TP pixels) well, the scene is labelled as C3 and
passes on to Step 4 (Fig. B2a, b).

– Step 3. Conduct a comprehensive inspection of the
cloud mask quality of C2.

For the scenes passed on to this step (i.e. scenes labelled
C2 from step 2), the cloud mask image is recreated us-
ing a higher-confidence threshold (i.e. high-confidence
cloud, high-confidence cirrus, cloud shadow, and di-
lated cloud pixels) for the quality assessment band. The
new cloud mask image is visually inspected against the
true-colour image, and if any cluster of FN pixels is ob-
served, the confidence threshold for the quality assess-
ment band is returned to its initial value (i.e. medium-
confidence cloud, high-confidence cirrus, cloud shadow,
and dilated cloud pixels). If the observed clusters of
cloud pixels in the new cloud mask image correspond
with the position of clouds observed in the true-colour
image well, the higher-confidence threshold is kept, and
the scene passes on to step 4.
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– Step 4. Conduct a section-wise inspection of cloud mask
quality.

In this step, the identified clusters of TP pixels are in-
spected in more detail. For each cluster of TP pix-
els observed, we zoom in (i.e. to about 1000× 1000
pixels, with the full-size image being approximately
8000× 8000 pixels) to the section of the cluster to
check for the existence of FN pixels. If any FN pixels
are found within the cluster, the scene is labelled as C1
(Fig. B2c, d).

An example of how a Landsat-8 scene may be categorized
according to the process described in Fig. B1 is presented us-
ing the case of a Landsat-8 scene acquired on 25 March 2022
over the Barents Sea (Fig. B2). First, from step 2 (i.e.
the comprehensive-inspection step), visual inspection of the
cloud mask image (Fig. B2b) against the true-colour image
(Fig. B2a) shows that the position of clouds in the cloud
mask array generally corresponds with those observed in the
true-colour image well. Therefore, in this step, this scene is
labelled as C3 and passes on to step 4 as described above.
Next, the section-wise inspection of the cloud mask quality
is performed by zooming in on the cloud areas. This is il-
lustrated in Fig. B2c and d, which is a zoomed-in image of
the area enclosed by the red rectangle in Fig. B2a and b. In-
spection of this subsection shows the presence of unmasked
cloud shadow pixels, which results in the erroneous classifi-
cation of ice as open water. Therefore, during this step, the
label of this scene is changed to C1.

The visual inspection was done by the author Hee-Sung
Jung, and it took approximately 5–10 min to inspect one
Landsat-8 scene for cloud cover.
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Figure B1. Processing pipeline of the visual inspection step. Each Landsat-8 image is labelled as C1 (i.e. underestimated cloud cover), C2
(i.e. overestimated cloud cover), C3 (i.e. correctly estimated cloud cover for cloudy sky), or C4 (i.e. correctly estimated cloud cover for clear
sky) depending on the observed dominance of true-negative (TN – clear pixels identified as clear pixels), false-negative (FN – cloud pixels
mistaken as clear pixels), false-positive (FP – clear pixels mistaken as cloud pixels), and true-positive (TP – cloud pixels identified as cloud
pixels) pixels.

Figure B2. The case of a Landsat-8 scene classified as C1 (i.e. underestimated cloud cover) from the visual-inspection step. Shown in the
panels are (a) fully sized true-colour image, (b) fully sized cloud mask array, (c) true-colour image of the area enclosed by the red rectangle
in (a) and (b), and (d) cloud mask array of the area enclosed by the red rectangle in (a) and (b). The blue, white, grey, and black pixels in (b)
and (d) are open-water, ice, cloud, and fill value pixels, respectively. The scene is from 25 March 2022, over the Barents Sea. The true-colour
image is courtesy of the US Geological Survey.
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Appendix C: Validation of ice and open-water
classification

Figure C1. Scatterplot of NDSI and ρ5 for (a) ice and (b) open water. The values for ice and open-water pixels were collected using the
ice–water surface classification map (Kern, 2021) as reference data. The thresholds for NDSI and ρ5 used in this study are shown by the
dashed white lines. The colour bars denote the number of pixels.

Figure C2. Scatterplot of NDSI and ρ5 for cloud pixels that remain unmasked after the application of CFMask. The pixels are acquired from
10 select Landsat-8 images categorized as C1. The thresholds for NDSI and ρ5 used in this study are shown by the dashed white lines. The
colour bars denote the number of pixels.

Earth Syst. Sci. Data, 17, 233–258, 2025 https://doi.org/10.5194/essd-17-233-2025



H.-S. Jung et al.: An Arctic SIC record from Landsat-8 255

Appendix D: Uncertainty of Landsat-8 SIC with
respect to region, cloud contamination label, and SIC
sub-range

Table D1. Contributions of ρ5 (Cρ5 ) and NDSI (CNDSI) to the es-
timated uncertainty of SIC (σSIC) and σSIC over all 480 scenes.

Cρ5 [%] CNDSI [%] σSIC [%]

99.66 0.34 0.56

Table D2. Contributions of ρ5 (Cρ5 ) and NDSI (CNDSI) to the es-
timated uncertainty of SIC (σSIC) and σSIC for the 12 regions.

Region Cρ5 [%] CNDSI [%] σSIC [%]

Baffin Bay 99.74 0.26 0.80
Barents Sea 99.84 0.16 0.65
Beaufort Sea 99.33 0.67 0.30
Bering Sea 97.46 2.54 0.89
Canadian A. 99.93 0.07 0.25
Central Arctic 99.86 0.14 0.56
Chukchi Sea 99.97 0.03 0.45
E Greenland 99.58 0.42 0.65
E Siberian 100.00 0.00 0.53
Hudson Bay 98.48 1.52 0.54
Kara Sea 99.23 0.77 0.43
Laptev Sea 99.99 0.01 0.63

Table D3. Contributions of ρ5 (Cρ5 ) and NDSI (CNDSI) to the es-
timated uncertainty of SIC (σSIC) and σSIC for the four cloud con-
tamination categories.

Cloud contamination Cρ5 [%] CNDSI [%] σSIC [%]
category

C1 97.10 2.90 0.65
C2 100.00 0.00 0.50
C3 99.99 0.01 0.66
C4 100.00 0.00 0.40

Table D4. Contributions of ρ5 (Cρ5 ) and NDSI (CNDSI) to the es-
timated uncertainty of SIC (σSIC) and σSIC for varying SIC sub-
range.

SIC sub-range [%] Cρ5 [%] CNDSI [%] σSIC [%]

0–10 99.87 0.13 0.11
10–20 99.96 0.04 2.16
20–30 99.98 0.02 3.45
30–40 99.97 0.03 3.99
40–50 99.97 0.03 4.15
50–60 99.98 0.02 4.46
60–70 99.99 0.01 4.11
70–80 99.99 0.01 3.61
80–90 99.99 0.01 2.25
90–100 100.00 0.00 0.19
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