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Abstract. The United Kingdom Climate Projections 2018 (UKCP18) regional climate model (RCM) 12 km
regional perturbed physics ensemble (UKCP18-RCM-PPE) is one of the three strands of the latest set of UK na-
tional climate projections produced by the UK Met Office. It has been widely adopted in climate impact assess-
ment. In this study, we report biases in the raw UKCP18-RCM simulations that are significant and are likely to
deteriorate impact assessments if they are not adjusted. Two methods were used to bias-correct UKCP18-RCM:
non-parametric quantile mapping using empirical quantiles and a variant developed for the third phase of the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) designed to preserve the climate change signal.
Specifically, daily temperature and precipitation simulations for 1981 to 2080 were adjusted for the 12 ensemble
members. Potential evapotranspiration was also estimated over the same period using the Penman–Monteith for-
mulation and then bias-corrected using the latter method. Both methods successfully corrected biases in a range
of daily temperature, precipitation, and potential evapotranspiration metrics and reduced biases in multi-day
precipitation metrics to a lesser degree. An exploratory analysis of the projected future changes confirms the ex-
pectation of wetter, warmer winters and hotter, drier summers and shows uneven changes in different parts of the
distributions of both temperature and precipitation. Both bias-correction methods preserved the climate change
signal almost equally well, as well as the spread among the projected changes. The change factor method was
used as a benchmark for precipitation, and we show that it fails to capture changes in a range of variables, mak-
ing it inadequate for most impact assessments. By comparing the differences between the two bias-correction
methods and within the 12 ensemble members, we show that the uncertainty in future precipitation and temper-
ature changes stemming from the climate model parameterization far outweighs the uncertainty introduced by
selecting one of these two bias-correction methods. We conclude by providing guidance on the use of the bias-
corrected datasets. The datasets bias-adjusted with ISIMIP3BA are publicly available in the following repos-
itories: https://doi.org/10.5281/zenodo.6337381 for precipitation and temperature (Reyniers et al., 2022a) and
https://doi.org/10.5281/zenodo.6320707 for potential evapotranspiration (Reyniers et al., 2022b). The datasets,
bias-corrected using the quantile mapping method, are available at https://doi.org/10.5281/zenodo.8223024 (Zha
et al., 2023).
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1 Introduction

Climate model projections are essential to anticipate and
adapt to future climate change impacts. Continuous efforts
by the climate modelling community have led to major im-
provements in the realism of climate model simulations, yet
significant discrepancies (biases) between observations and
simulations of climatic variables remain (e.g. Kotlarski et al.,
2014; Vautard et al., 2021). Biases in climate projections re-
quire particular attention when the projections are used to
force impact models, for instance, to assess future impacts
on river streamflow, ecosystems, or agricultural yields. Cap-
turing the whole distribution of rainfall amounts is an essen-
tial prerequisite for hydrological modelling, but is still noto-
riously challenging for many climate models. The response
of impact models to forcing errors can be non-linear and am-
plify the severity of the biases; hence, biases are typically
adjusted before the climate projections are used in impact
models.

To this effect, a range of bias-correction (BC) methods
have been developed and compared (Wood et al., 2004;
Teutschbein and Seibert, 2012; Gutmann et al., 2014; Ma-
raun et al., 2019). Our purpose here is not to provide an
extensive review of alternative bias-correction methods, be-
cause such reviews are available elsewhere (see the intro-
ductory sections of Robertson et al. (2023) and Zhang et al.
(2024) and the literature they cite for recent examples). These
methods vary in complexity and scope from univariate ap-
proaches to more advanced multivariate methods. For exam-
ple, Cannon (2016) introduced a multivariate BC algorithm
designed to correct inter-variable correlations, and later Can-
non (2018) developed an n-dimensional multivariate quantile
mapping BC method for a more comprehensive correction
of multivariate dependence structures. Moreover, for com-
pleteness, we note that bias correction is not only used as
a processing step between climate model output and impact
model but is also sometimes applied to correct the global cli-
mate model-derived boundary conditions used for dynami-
cal downscaling with regional climate models (e.g. Bruyère
et al., 2014). For example, Kim et al. (2023a) (software from
Kim et al., 2023b) improved the simulation of diurnal pre-
cipitation cycles using their proposed sub-daily multivari-
ate BC method. Generally speaking, bias-adjustment meth-
ods transform the simulations so that some of their statistical
properties match those of the observations. This efficiently
reduces biases and, as a result, can considerably improve
impact simulations (Rojas et al., 2011; Hakala et al., 2018;
Pastén-Zapata et al., 2020). We note, however, that residual
biases remain after bias correction and can deteriorate the im-
pact simulations (Teng et al., 2015). This highlights that these
biases are not corrected and removed but rather adjusted; as
such, the term bias adjustment is more accurate and becom-
ing more widely used, but here we use BC to match how
these methods are more commonly described in the litera-
ture. In addition, the statistical nature of BC methods means

they only address the symptoms and not the origin of model
errors; i.e. they do not identify the causes of model biases nor
account for them (Addor et al., 2016; Maraun et al., 2017).

Furthermore, the reliability of BC can be questioned be-
cause of its reliance on the assumption that climate model
biases are stationary in time or in a changing climate state
(Maraun, 2012; Ehret et al., 2012; Teutschbein and Seibert,
2012; Chen et al., 2015; Hui et al., 2020). A related issue is
that BC can modify the simulated climate change trends. This
poses an issue if the origin of model errors in daily variability
in an evaluation period (to which BC is often calibrated) dif-
fers from the origin of potential errors in the model’s climate
change response (Maraun et al., 2017). These challenges are
difficult to overcome. However, when following the alter-
native approach of using unadjusted climate model output,
propagation of biases through impact models can severely
bias the resulting simulations and sometimes render them un-
usable (Hakala et al., 2020). As such, BC is usually necessary
and widely used to assess climate change impacts despite its
imperfections.

In the context of the UK, several recent studies have
been published on impact assessment using the UK Climate
Projections 2018 (UKCP18) regional climate model (RCM)
12 km regional perturbed physics ensemble (UKCP18-RCM-
PPE, referred to as UKCP18-RCM hereinafter; Met Of-
fice Hadley Centre, 2018; Lowe et al., 2018). The studies
span various sectors, including the impact assessment on
future river and groundwater flow (Kay et al., 2020; Han-
naford et al., 2023; Kay et al., 2023), extremes (Hanlon
et al., 2021) such as flooding (Griffin et al., 2024; Gudde
et al., 2024) and drought (Reyniers et al., 2023), heat stress
(Kennedy-Asser et al., 2022), and multi-sectoral analysis
(Arnell et al., 2021). Although the UKCP18 data have been
widely used, the UKCP18 project itself does not provide
bias-corrected climatic variables for impact assessment. The
aforementioned studies use different bias-correction methods
for their relevant climatic variables, which potentially make
the impact assessment less comparable due to methodolog-
ical differences in bias correction. The recently published
CHESS-SCAPE dataset (Robinson et al., 2023) also provides
UKCP18 bias-corrected data. It contains 11 near-surface me-
teorological variables, is downscaled to a 1 km spatial reso-
lution, and is provided at several temporal resolutions (from
daily to decadal means) for the time period of 1980–2080.
For the temperature in the CHESS-SCAPE dataset, the sea-
sonal (DJF, MAM, JJA, and SON) offsets were calculated for
each season and each 1 km grid cell as the difference between
CHESS-SCAPE and CHESS-met observations (Robinson
et al., 2020a). The offsets were then subtracted from the
CHESS-SCAPE data. For precipitation, the seasonal scal-
ing factors were calculated as the ratio of CHESS-SCAPE to
CHESS-met, and the CHESS-SCAPE precipitation was then
multiplied by these factors. In the CHESS-SCAPE dataset,
4 out of the 12 RCM-PPE members (01, 04, 05, and 15)
are provided. The bias-corrected CHESS-SCAPE data were
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shown to be consistent with the CHESS-met observations in
the historical period of 1980–2000. However, the simple lin-
ear scaling BC method used in CHESS-SCAPE does not take
into account changes in moments of higher order than the
mean.

Several studies have compared different BC methods in-
cluding linear scaling, delta change, local intensity scaling,
variance scaling, and quantile mapping (QM). These stud-
ies consistently find that QM outperforms other BC meth-
ods in effectively correcting higher-order statistical proper-
ties, such as standard deviation and percentiles (Azmat et al.,
2018; Teutschbein and Seibert, 2012; Worku et al., 2020).
Specifically, Fang et al. (2015) and Enayati et al. (2021) high-
lighted the strengths of empirical QM for effectively correct-
ing precipitation and temperature biases. The bias-corrected
regional UKCP18 data produced as part of the enhanced
Future Flows and Groundwater (eFLaG Hannaford et al.,
2023) project have also been made available (Lane and Kay,
2022). Unlike CHESS-SCAPE, they are based on the full 12-
member ensemble, but they only include one variable, avail-
able precipitation (the sum of rainfall and snowmelt derived
using a snow module). The inclusion of snowmelt means that
this is not directly comparable to the bias-corrected rainfall
data introduced here even though the raw rainfall data are
the same. But it is worth noting that eFLaG relies on bias-
correction factors computed from monthly means, i.e. based
on the assumption that the whole distribution is affected by
the same bias as the mean. We illustrate below that this as-
sumption is often violated; e.g. the bias in the 95th percentile
can be quite different from the bias in mean precipitation
(Fig. 1). Furthermore, our understanding is that eFLaG only
contains bias-corrected precipitation and not temperature or
potential evapotranspiration.

In this study, the precipitation and temperature of
UKCP18-RCM are evaluated and bias-corrected. The em-
pirical QM method and a change-preserving variant of the
QM method were applied to bias-correct the UKCP18-RCM
precipitation and temperature variables from all 12 RCM-
PPE members over the period of 1980–2080. In addition, po-
tential evapotranspiration (PET) was computed from these
UKCP18 simulations and bias-corrected using the trend-
preserving BC method. In comparison to some more sophis-
ticated proposed methods in literature (such as the exam-
ples discussed earlier in the introduction, which also rely
on quantile mapping), the bias-adjustment methods selected
for the production of the datasets in this study are relatively
straightforward as they are univariate and correct only on the
native daily timescale of the regional climate model simu-
lations. However, these established quantile-mapping-based
methods provide substantial added benefits over the simplest
bias-adjustment methods and strike a good balance for the
production of multi-purpose datasets from which the impact
modelling community can benefit. The raw precipitation and
temperature simulations and derived PET data were evalu-
ated before the two BC methods were applied. The result-

ing bias-corrected datasets are also evaluated and compared,
and finally, recommendations are made concerning the use of
the datasets. Specifically, the following questions are investi-
gated:

1. How biased are the UKCP18-RCM projections?

2. Can existing bias-correction methods successfully cor-
rect errors in simple and more challenging metrics?

3. What climatic changes do the UKCP18-RCM ensemble
members broadly project for the UK, and do the chosen
bias-correction techniques affect them?

An exploratory analysis of the changes projected by
UKCP18-RCM is discussed in Sect. 3.2 using metrics based
on daily precipitation and daily average temperature.

2 Data and methods

2.1 Data

2.1.1 The UKCP18 regional climate projections

The UK Climate Projections 2018 (UKCP18) are the cur-
rent generation of national climate projections for the UK,
developed by the Met Office Hadley Centre as part of their
Climate Programme (Met Office Hadley Centre, 2018). The
research presented in this study makes use of its third strand,
an ensemble of the 12km regional climate model projections
(UKCP18-RCM; Met Office Hadley Centre, 2018), available
from the Centre for Environmental Data Analysis (CEDA).
The RCM simulations were run over the EURO-CORDEX
rotated pole grid with a horizontal resolution of 0.11°, which
results in quasi-uniform 12 km spacing over the European
domain (Murphy et al., 2018) and made available for the UK
region with these coordinates along with the OSGB36 pro-
jection, which was used for the work presented in this paper.
Simulations of different variables are available from 1 De-
cember 1980 to 30 November 2080 at a daily time step (for
practical reasons, December 1980 was left out of our analy-
ses). The UKCP18-RCM simulations are a perturbed physics
ensemble (PPE), obtained by running the global climate
model (GCM) HadGEM3-GC3.05 with perturbations in 47
parameters from the convection, gravity wave drag, boundary
layer, cloud, large-scale precipitation, aerosols, and land sur-
face interaction schemes. The global simulations were then
downscaled by one-way nesting with a regional configura-
tion of this model using the same perturbed parameter sets as
its driving GCM ensemble member. The HadGEM3-GC3.05
parameter sets chosen for the global and regional UKCP18
PPE ensembles were selected in multiple stages based on dif-
ferent criteria, as summarized briefly below and explained in
Murphy et al. (2018) and references therein. The UKCP18-
RCM simulations were forced by the RCP8.5 scenario, a
very high emission scenario characterized by high popula-
tion growth and energy demand (Riahi et al., 2011).
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2.1.2 Observation data

As an observational reference for the evaluation and bias cor-
rection of UKCP18-RCM precipitation and temperature, the
Met Office’s 1 km HadUK-Grid dataset (Hollis et al., 2019)
was used after regridding to the UKCP18-RCM 12 km grid
by averaging all 1 km grid points that lay in each UKCP18-
RCM grid cell (consistent with Hollis et al., 2019). For the
bias correction and evaluation of PET, the CHESS-PE dataset
provided by the Centre for Ecology and Hydrology was used
(Robinson et al., 2020b), also after regridding by averaging
to the UKCP18-RCM 12 km grid. Daily data from 1981 to
2010 are used here (December 1980 is omitted for practical
reasons).

2.2 Potential evapotranspiration

Potential evapotranspiration (PET) is not provided by
UKCP18-RCM, but it is a necessary input variable for
some impact models and indicators, so it was calculated of-
fline here. While rising temperatures lead to PET increases,
changes in humidity, net radiation, and wind speed can also
play a significant role. Therefore, PET was calculated us-
ing the Penman–Monteith method, which includes the ef-
fect of all these variables and is recommended over sim-
pler temperature-based methods (e.g. Dewes et al., 2017), al-
though it is still subject to significant limitations (Milly and
Dunne, 2016; Greve et al., 2019). The calculation of PET for
the UKCP18-RCM used here relies on the same variant of the
Penman–Monteith method used by Robinson et al. (2017) to
ensure consistency with the CHESS-PE dataset. Specifically,
the following variables simulated by the UKCP18-RCM en-
semble were used: specific humidity, pressure at sea level,
net downwelling longwave radiation, net downwelling short-
wave radiation, wind speed at 10 m, and daily average sur-
face air temperature. PET was set to zero wherever a calcu-
lated value was negative (which occurred for less than 1 % of
the values overall and, when split by ensemble member and
month, also less than 1 % for all cases except December in
ensemble member 1 with 1.2 % of negative values). PET was
calculated from the uncorrected model variables, and then
it was bias-corrected against PET calculated from observed
variables (i.e. CHESS-PE). This was preferred to the alter-
native approach of bias-correcting the individual variables
and then calculating PET from the bias-corrected individ-
ual variables because that PET might still show biases com-
pared with observation-based PET, requiring a further bias-
correction step.

2.3 Evaluation and trend analysis

Biases in UKCP18-RCM precipitation and temperature met-
rics were assessed over the reference period of 1981–2010
(REF) using the 30-year temporal averages of a range of
metrics computed for each grid cell. For analysing projected

changes, the final 30-year period of the simulations was cho-
sen as the future period (2051–2080; FUT) for each ensemble
member.

Climate model errors are not necessarily homogeneous
across the range of the precipitation and temperature distribu-
tions. Therefore, the initial model evaluation metrics shown
consist of the errors in the mean, lower-tail metric (Q05 for
temperature and PET, dry-day frequency for precipitation),
and Q95 as an upper-tail metric. This is based on the results
of a preliminary analysis.

Changes in temperature and precipitation extremes are
generally of greater societal interest than changes in the mean
(although extreme impacts do not always need extreme me-
teorological conditions to arise; van der Wiel et al., 2020).
Therefore, a set of moderate and extreme climate indicators
was used to further evaluate the model error and analyse pro-
jected changes in simulated precipitation and temperature.
These metrics were drawn from or inspired by the list of
indices compiled by the Expert Team on Climate Change
Detection and Indices (ETCCDI; http://etccdi.pacificclimate.
org/list_27_indices.shtml, last access: 18 April 2024), which
has been extensively used in the literature, including in In-
tergovernmental Panel on Climate Change (IPCC) reports
(IPCC, 2021). Daily-mean temperature was used in this
study, so the ETCCDI temperature indicators (which typi-
cally use daily minimum and maximum temperatures) were
modified to use mean temperature. Table 1 gives an overview
of all indices used and their definitions.

2.4 Bias correction

Comparison to observations revealed significant biases in the
simulations of precipitation, temperature, and PET, so these
variables were statistically post-processed. Two closely re-
lated BC methods (quantile mapping and the ISIMIP3BA ap-
proach; see below) were used to bias-adjust UKCP18-RCM
to allow for exploring the sensitivity of the results to the dif-
ferences between the BC methods, including but not limited
to whether or not the BC method explicitly aims to preserve
the changes in the climate. Both BC methods were applied
to each grid cell, ensemble member, and calendar month
combination separately and were calibrated using simulated
and observed data for 1981–2010. For precipitation, we also
compared future projections from these BC methods with
the change factor method, which is not considered a bias-
correction method but consists of applying projected changes
in mean climate to observed time series. The change factor
method was applied using the same period as the BC meth-
ods.

2.4.1 Quantile mapping

Quantile mapping (QM; e.g. Piani et al., 2010) is a statisti-
cal transformation of the distribution of a modelled variable
such that it matches the distribution of the observed variable.
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Table 1. Climatic indices used to evaluate and examine trends in precipitation, temperature, and PET simulated by UKCP18 and derived
PET.

Index Description

Temperature

yMEAN Average annual (seasonal) mean daily-mean temperature (°C)
yMIN Average annual (seasonal) minimum daily-mean temperature (°C)
yMAX Average annual (seasonal) maximum daily-mean temperature (°C)
Qn Daily-mean temperature exceeded on average n% of days in a year (season) (°C)

Precipitation

prTOT Average annual (seasonal) total precipitation (mm)
SDII Simple precipitation intensity index: average annual (seasonal) mean wet-day precipitation intensity (mm)
DF Average annual (seasonal) dry-day fraction (%)
Qn Daily precipitation exceeded on average n% of days in a year (season) (mm)
Rx5day Average annual (seasonal) maximum 5-day total precipitation (mm)
CDD Average annual (seasonal) maximum number of consecutive dry days (d)
CWD Average annual (seasonal) maximum number of consecutive wet days (d)

Potential Evapotranspiration

Qn Daily PET exceeded on average n% of days in a year (season) (mm)
Mean Mean annual (seasonal) PET (mm)

By construction, the resulting distributions of the reference
period simulations and observations match closely, remov-
ing deviations from the observed data in the mean, variance,
and higher-order moments. The application of the mapping
to either the quantiles of an empirical cumulative distribution
function (CDF) or an assumed parametric CDF can result in
varying performance of the QMs depending on the transfor-
mation functions employed (Enayati et al., 2021). Switanek
et al. (2017) demonstrated that, where the parametric distri-
bution is known to be a perfect fit to the observed and sim-
ulated data (because, for example, it is synthetic data that
are drawn from that distribution), parametric QM then re-
duces the influence of sample size-induced noise that de-
grades the empirical CDFs of observed and simulated time
series. However, Gudmundsson et al. (2012) found that em-
pirical BC methods were more successful at bias-correcting
different precipitation quantiles than fitted distributions or
simpler parametric methods.

Here, the choice was made to use non-parametric QM with
an empirical distribution as a complement to the second BC
method which uses a parametric distribution. The resulting
dataset will be referred to as BCQM. To implement QM, the
R package qmap (Gudmundsson et al., 2012) was used, with
QM applied to 1000 empirical quantiles. The type of interpo-
lation used between the fitted transformed values is linear in-
terpolation. It is worth noting that Lafon et al. (2013) demon-
strated error reduction for the empirical distribution method
increases with the number of quantiles used. They have done
a cross-validation test of empirical QM with 25, 50, 75, and
100 quantiles, and 100 quantiles yielded the best results, ex-
cluding any cases with over 100 quantiles. Our study ex-

panded the number of quantiles to include 1000 for compar-
ison with the ISIMIP3BA BC method. However, it should
be acknowledged that increasing the number of quantiles
may potentially compromise the efficiency or lead to overfit-
ting issues. Our analysis shows that the differences between
this non-parametric method and the parametric method intro-
duced below are overall minor, implying that, in this case, the
climate signal is not particularly sensitive to any overfitting
that may have resulted from this, especially when compared
to other decisions, such as the climate model selection. QM
was not used to bias-adjust PET.

2.4.2 ISIMIP3b bias-correction method

The second method used in this study is the univari-
ate change-preserving bias-correction method developed for
phase 3b of the Inter-Sectoral Impact Model Intercomparison
Project (BCI3; Lange, 2019). A parametric quantile mapping
method which approximately preserves the climate change
signal in each quantile was applied to each variable indepen-
dently, with a different distribution used for each variable.
Here, we correct daily average temperature, precipitation,
and potential evapotranspiration using the normal, gamma,
and Weibull distributions, respectively.

The choices for temperature and precipitation here are mo-
tivated by their use in the literature and by Lange (2019)
combined with verifying the results. For PET, the Weibull,
gamma, and beta distributions were fitted to sample grid cells
representative of different climates across the UK. While all
three would have been adequate, the Weibull distribution was
used in the end due to slightly better performance in the sam-
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ple cells, and, using the Kolmogorov–Smirnov test statistic,
it showed a better fit than the beta distribution in most regions
of the UK in most months.

For precipitation and potential evapotranspiration, the
BCI3 option to apply a separate correction to the probability
of the occurrence of events beyond thresholds was used to ad-
just bias and preserve the projected change in the frequency
of dry days/no PET (< 0.1 mm d−1). For each combination
of ensemble member, month, and location, the change in the
distributions of precipitation, PET, and temperature between
present-day (calibration) and future periods was preserved by
computing the change for 50 quantiles and applying it to the
observed quantiles. This was done multiplicatively (but ad-
ditively if there are large negative biases in the model data to
avoid obtaining unrealistically large values; Lange, 2019) for
precipitation and PET and purely additively for temperature.
For PET and temperature, the transient trend was preserved
by removing it before bias correction and adding it back af-
terwards, as described in Lange (2019).

The code used for this bias correction is version 2.4.1 of
the Python code made available on Zenodo by Lange (2020).
Version 2.4.1 differs from the originally published method
(version 1.0; Lange, 2019) in the equation used for the cor-
rection of the frequency of events beyond thresholds (in this
case dry days) and code error fixes. The code was modified
for this study in minor ways: to allow it to be used when sim-
ulations and observations have different calendars (360-day
and Gregorian, respectively) and to suit the format of the data
used.

The BCI3 method was applied to, and preserves changes
between, two 30-year periods (the 1981–2010 reference pe-
riod and future application periods). This can introduce arte-
facts such as step changes between adjacent future 30-year
application periods and imperfect preservation of the trend
within each 30-year application period. In order to produce a
continuous, bias-corrected 100-year sequence (1981–2080),
the algorithm was applied to overlapping periods of 30 years
(same length as the reference time period), with the starting
point of the application period increasing in decadal steps.
Then, the central 10 years (as well as the first and last 10 for
the first and last 30-year period, respectively) of each run was
extracted and concatenated to obtain the final semi-transient
bias-corrected time series. Note that the climate change sig-
nal in the very first and last decades of the resulting concate-
nated bias-corrected time series may be slightly stronger or
weaker, respectively, because here, the beginning and end of
the application periods are used instead of the central decade.
To estimate the magnitude of the effect of this strategy, the
10-year overlaps of pairs of 30-year bias-corrected periods
separated by 20 years were used to examine differences in the
resulting distributions. The decades 2001–2010 and 2051–
2060 (i.e. the earliest and latest of the 6 decades that were
part of three 30-year chunks, respectively) were chosen for
making scatter plots and Q–Q plots for precipitation and tem-
perature in two grid cells representing different UK climates.

For each decade, the three sets of BC data are called tail,
middle, and head, depending on whether they are the first,
middle, or last decade of the 30-year bias-correction period,
respectively.

2.4.3 Change factor method

The change factor method is commonly used in impact stud-
ies (e.g. Prudhomme et al., 2012; Kay et al., 2020). It is in-
cluded here as a benchmark for precipitation only for the pur-
pose of demonstrating the limitations of basing impact stud-
ies on an observed time series perturbed only by a change in
mean climate and thus shows the added value of assessing
changes based instead on the RCM output itself. A multi-
plicative change factor (CF) was computed and applied to
the simulated precipitation time series for each month m as
follows:

CFm,p =
P raw,FUT,m,p

P raw,REF,m,p

, (1)

where (P ) is the mean precipitation from the raw UKCP18-
RCM data over the future (FUT) or calibration (REF), i.e.
reference) period for month m and ensemble member p.
Each monthly CF is then applied to the observed calibration
period time series to generate the CF precipitation values for
each time step i within month m:

PCF,i,p = CFm,pPobs,i . (2)

3 Results

3.1 Evaluation

3.1.1 Bias of raw simulations

The maps in Fig. 1 show the ensemble mean errors of the raw
UKCP18-RCM projections in the dry-day frequency, mean
daily precipitation, and Q95 of precipitation in the reference
period, expressed as a percentage of the observed value. In
general, the frequency of dry days in UKCP18-RCM is too
low (and therefore the wet-day frequency is too high), par-
ticularly in the winter and in regions of higher elevation. In
summer, the dry-day frequency bias is very small for most of
England. The precipitation mean and Q95 are strongly over-
estimated across the UK in winter, although in highly ele-
vated areas, this bias is smaller or even reversed in sign (es-
pecially for Q95). In summer, however, the mean and Q95 bi-
ases show a strong spatial variability, with underestimations
toward the south and at high elevation levels and a wet bias
in the north of the UK. These seasonal bias differences result
in an annual bias of too few dry days almost everywhere, too
wet of a mean precipitation in most regions, and more mixed
wet and dry Q95 relative biases.

The maps in Fig. 2 show the ensemble mean errors of the
raw UKCP18-RCM projections in the mean daily tempera-
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Figure 1. Precipitation biases in UKCP18-RCM for 1981–2010 ex-
pressed as a percentage of the observed values. The percentage bias
for each ensemble member was computed, and the mean across the
ensemble is shown. Dry-day frequency is the percentage of days
with P < 1 mm, mean daily precipitation is the precipitation av-
eraged over all days, and q95 is the 0.95 quantile of precipitation
across all days. Top, middle, and bottom rows are for annual, DJF
(December, January, February), and JJA (June, July, August), re-
spectively.

ture as well as the cold (Q05), and hot (Q95) tails of the dis-
tribution. At the annual scale, temperature tends to be under-
estimated in UKCP18 across its distribution, as reflected by
the mean, Q05 and Q95. Temperature biases in winter show
a gradient from north to south, with generally cold biases in
the north and warm in the south. Along the north–south axis,
biases are generally colder in the lower tail and warmer in the
upper tail of the distribution, indicating an overestimation of
temperature variability in winter. In the middle regions along
the north–south axis, the biases in the cold and hot tails of the
distribution have opposite signs. UKCP18-RCM underesti-
mates temperature on cold days (Q05) in the north especially
strongly. In summer, temperature is typically underestimated

Figure 2. Temperature biases (°C) in UKCP18-RCM for 1981–
2010. The bias for each ensemble member was computed, and the
mean across the ensemble is shown here. Q05 and Q95 are the 0.05
quantile and the 0.95 quantile across all days, respectively.

across the UK in all three indices considered. One exception
is the overestimation (or smaller cold bias) in Q95 in major
built up areas (e.g. London in south-east England). Biases in
the representation of urban heat islands were previously doc-
umented by Lo et al. (2020), who found that UKCP18-RCM
tends to overestimate the intensity of urban heat islands in
summer, more so for nighttime than daytime.

The maps in Fig. 3 show the absolute UKCP18-derived
PET biases in mm. Note that these maps do not show North-
ern Ireland, as this region is not included in the CHESS-PE
dataset which served as the observational reference. The pre-
dominantly cool bias in the UKCP18-RCM ensemble mean
(Fig. 2) contributes to the low PET bias in some regions and
seasons (Fig. 3). Interestingly, however, the regional and sea-
sonal variations in the PET biases do not closely follow the

https://doi.org/10.5194/essd-17-2113-2025 Earth Syst. Sci. Data, 17, 2113–2133, 2025



2120 N. Reyniers et al.: Two sets of bias-corrected regional UK Climate Projections 2018

temperature bias patterns, implying that the bias in PET is
not solely caused by errors in the daily average temperature.

Note that the strong positive temperature biases shown by
some grid cells along the coast in winter come from the use
of the regridded 1 km HadUK-Grid, which covers the land
only and contrary to UKCP18-RCM does not account for the
warmer sea temperature in winter, leading to “observed” grid
cell averages that are too low. The opposite but smaller effect
occurs in summer, and a similar effect can be observed in the
PET bias maps.

Figure 4 shows the UK average seasonal cycle of the raw
and bias-corrected precipitation and temperature. For precip-
itation, the raw UCKP18-RCM ensemble is too wet from
November to June, and its range does not encompass the ob-
servations during these months. The seasonal timing also ap-
pears to be shifted: the driest and wettest months are delayed
in the simulations (June and January) compared to the obser-
vations (May and October). The ensemble averaged daily-
mean temperature generally matches observations far more
closely than precipitation (although individual members can
contain biases of either sign). The largest mean temperature
biases over the UK occur from March to May, a period during
which almost all members are too cold.

3.1.2 Evaluation of bias correction

The biases of monthly-mean temperature and precipitation
are effectively corrected by both BCQM and BCI3, with
observations very closely matching the processed ensemble
members (Fig. 4). The remaining error in the statistics shown
in the maps in Figs. 1, 2, and 3 is small (and therefore not
shown here as it takes up a lot of space for so little informa-
tion).

Figures 5 and 6 show heatmaps of the spatially averaged
errors in precipitation and daily-mean temperature, respec-
tively, before and after bias correction. The value of each
metric was calculated for each RCM ensemble member and
for the observations at each grid cell for each year and then
averaged over 1981–2010. The heatmaps show the spatial av-
erage of the absolute values of the difference between ob-
servations and simulations (as a percentage of the observed
value for precipitation). For the metrics which are also shown
in the maps in Figs. 1 and 2, the UK-averaged errors are
strongly reduced for the full year as well as winter and sum-
mer for all ensemble members, resulting in a large decrease
in the ensemble mean errors. The standard deviation (sd; bot-
tom rows) of the errors decreases largely as well as the statis-
tics of the ensemble members converge toward those of the
observations for the reference period.

A close look at the figures in Figs. 5 and 6 reveals that
biases may be smaller in BCQM than in BCI3, which is not
surprising since empirical quantiles were fitted for BCQM,
while BCI3 relied on parametric distribution. This should not
be interpreted as an advantage of BCQM over BCI3, as the
slight edge conferred by the non-parametric fit is likely to be

lost when the bias correction is applied to a period not used
for calibration (Chen et al., 2019).

For precipitation, BCQM outperforms BCI3 for reducing
the bias in the total precipitation (prTOT) (Fig. 5). Since
both methods perform very well for correcting the DF and
Q95 bias, the difference in skill for prTOT may be related to
the wet end (> Q95) of the precipitation distribution: BCQM
(with 1000 quantiles) adjusts the simulated extremes more
precisely to fit the observed extremes, while the fit of the
gamma distribution used in BCI3 can deviate more from the
observations for those extremes. Note that this is not neces-
sarily a disadvantage in BCI3. BCQM may be overfitting to
the most extreme events occurring in the 30-year observa-
tions (Switanek et al., 2017). Due to the strongly skewed na-
ture of precipitation distributions, its extremes (in this case,
the upper tail beyond Q95) make a large contribution to the
mean (Pendergrass and Knutti, 2018). Evaluation based on
the mean may thus be influenced by how well these extreme
quantiles are reproduced. In reverse, this reasoning implies
that bias correction relying solely on errors and projected
changes in the precipitation mean could be sensitive to the
variability in observed and projected extreme events, includ-
ing relatively rare events that might be included or excluded
depending on the choice of calibration period.

Although biases in daily precipitation statistics (TOT, DF,
and SDII) are largely removed, biases in multi-day metrics
(CWD, CDD, and Rx5day) still remain, although reduced.
This is expected (Addor and Seibert, 2014), as both BC meth-
ods are designed to correct biases in daily values, but not the
temporal structure of the time series. For instance, although
the dry-day frequency is well corrected by both BC methods,
these methods fail to correct errors in the sequences of con-
secutive wet days in winter and on an annual basis. This is
due to an over-correction from mostly overestimated toward
the east to mostly underestimated toward the west, where the
observed CWD is longer. On the contrary, both methods re-
duced the summer CWD and the CDD in each time period
by about half on average.

For temperature, the biases in the mean are almost entirely
removed by both methods (Fig. 6). The ensemble mean, Q05,
and Q95 biases are strongly reduced, by a factor 7 to 18 for
the year and by a factor 3 to 7 for winter and summer. The
most persistent biases are found in the winter (and annual)
minimum daily temperature (computed for each season and
then averaged over the whole period). The remaining win-
ter maximum temperature bias is also markedly higher using
BCI3 (about half the raw bias on average) than using BCQM
(less than a quarter).

Importantly, across the metrics in Figs. 5 and 6, the dif-
ferences between BCQM and BCI3 are generally relatively
modest during the reference period. Both methods effectively
reduce biases in single-day metrics, and they mostly struggle
with the same metrics and, to some extent, with the same
ensemble members.
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Figure 3. As Fig. 2 but for PET (mm d−1).

To conclude this evaluation, Figs. 7 and 8 assess whether
errors were induced by concatenating the centre period of
30-year time series to make BCI3. These figures only show
the results for ensemble member 1 as the results were similar
across the ensemble. The middle daily values (and quantiles
for the Q–Q plots) are plotted on the x axis, and the corre-
sponding tail and head values (quantiles) are plotted on the
y axis. For temperature, the uncertainty introduced by differ-

ent periods for change preservation is very small. For precipi-
tation, the match between the quantiles is good (dark circles),
although there is some uncertainty introduced for the most
intense precipitation events (light circles). The precipitation
range covered by these dots in the upper-right corner of the
panels highlights the variability within the wettest quantiles,
highlighting that when fitting the upper tail of a 30-year pe-
riod distribution, it is unlikely to perfectly match the upper
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Figure 4. Comparison between observations and UKCP18-RCM simulations before and after bias correction for monthly precipitation (a,
mm d−1) and temperature (b, °C) averaged over the UK for 1980–2010. The grey shading shows the spread of the 12-member ensemble
prior to bias correction. The blue line lies underneath the red line in the temperature panel).

tail from another period, in particular in the presence of cli-
mate change. Since some large differences in extreme rainfall
can be introduced depending on the period used, the concate-
nated time series or the data from each 30-year period can be
used when the focus is on these events in order to capture
the influence of the bias correction. Overall, the differences
appear to be small enough to justify concatenation.

3.2 Projected changes before and after bias correction

This section analyses the climate change signal (CCS) pro-
jected by UKCP18-RCM in the evaluation metrics used
above (Sect. 3.1) and particularly considers whether BCQM
and the change-preserving BCI3 alter the CCS compared
to the raw simulations. Furthermore, for precipitation, these
changes are compared to those simulated using the change
factor approach. The CCS is defined as the relative or abso-
lute difference between metrics computed over 1981–2010
and 2051–2080. Maps of projected changes in the mean pre-
cipitation and temperature (Figs. 9 and 10) show the spatial
variability of the CCS in UKCP18-RCM mean, while the
CCS aggregated over the whole domain is summarized for
each member and index in heat maps (Figs. 11 and 12).

The CCS of mean precipitation and temperature in the
raw projections (left columns in Figs. 9 and 10) confirms the
conclusions of the UKCP18 headline findings: warmer, wet-
ter winters and hotter, drier summers. The precipitation CCS
shows substantial regional variation in all seasons, influenced
by topography. The summer drying signal is the strongest
toward south-west England, while the winter wetting signal
is the weakest in the north-east of Scotland and strongest
along the west and south coasts. The seasonally contrast-
ing changes result in an overall precipitation decrease over
most of the UK except along the west coast of north Eng-
land and Scotland. For temperature, the annual and winter
projections are more spatially homogeneous than the sum-

mer projections, which show an increasing gradient from the
north-west toward the south and south-east.

Overall, these regional variations in the projected changes
in mean annual, winter, and summer precipitation and tem-
perature over the UK are well preserved in both BCQM and
BCI3. In BCQM, the summer temperature increase contains
more local variation and is somewhat exacerbated over the
regions of higher elevation, and the winter precipitation in-
crease is slightly greater than in the original projections. Spa-
tial patterns in the local variations in the BCQM projected
summer temperature changes resemble those in the summer
temperature errors (Fig. 2). The raw changes are better pre-
served in BCI3, although the added value of this method in
terms of change preservation is limited.

The heatmaps in Figs. 11 and 12 summarize the UK-
averaged projected changes in precipitation and temperature
metrics and allow for the comparison between the contri-
butions of (i) the different ensemble members and (ii) the
two bias-correction techniques to the uncertainty in the pro-
jected changes. Before proceeding to a discussion of the ef-
fects of the different bias-correction techniques, the projected
changes are briefly discussed below (based on the columns
labelled RAW in the heatmaps).

More so than the mean, precipitation variability has a pro-
found influence on society, and how it is influenced by cli-
mate change is thus of great interest. In general, the wet pre-
cipitation metrics show wetter (or less dry) projected changes
than the total precipitation. The projected total precipitation
decrease for summer is the combined effect of an increasing
proportion of dry days (DFs), and slightly decreasing pre-
cipitation falling on wet days, marked by greater relative de-
creases in the Q95 than in the SDII. The longest summer
dry spell is projected to lengthen by a third on average (with
wide variation across the ensemble). In winter, the relative
increases in prTOT can be attributed to similar increases in
SDII Q95 and Rx5day rather than changes in the fraction of
wet days. Interestingly, this is paired with a slight shorten-
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Figure 5. Mean absolute relative error (MARE, %) for calibration period precipitation, for the UKCP18 RCM simulations before (RAW)
and after bias correction (BCQM and BCI3). Values shown are UK-wide averages for 1981–2010. prTOT: annual total precipitation, DF:
fraction of days that are dry (P < 1 mm), SDII: mean wet-day precipitation, Q95: 0.95 quantile of daily precipitation, Rx5day: maximum
5-consecutive-day precipitation, CDD (CWD): maximum number of consecutive dry (wet) days. The mean and standard deviation across the
12-member RCM ensemble are included at the bottom of each panel.

ing of the longest wet-day streak on average. Annually, these
seasonal changes combine into a slight projected prTOT de-
crease and a modest increase in the fraction of dry days,
combined with wetter wet days, including in the wet end
of the precipitation distribution. These findings are in agree-
ment with increases in moderate- and high-impact 1 d rainfall
threshold exceedances found by Hanlon et al. (2021).

The projected average temperature increases in the UK are
greater in summer than in winter. Projected changes in the
range of daily-mean temperatures are opposite between win-

ter and summer: in summer, the Q95 and maximum daily-
mean temperatures increase more than the Q05 and minimum
daily-mean temperature, whereas in winter, the colder end of
the tail is projected to warm more than the warmer end of
the tail. There exists a partial overlap between the ensemble
members with high summer CDD increases (6, 9, 11, and
13), and the ensemble members with the highest maximum
daily-mean temperature increases (5, 8, 9, 11, and 13). In
line with the projected increases in minimum temperatures,
Hanlon et al. (2021) found a continued decreasing number of
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Figure 6. As Fig. 5 but for temperature, showing the bias (mean absolute error, MAE; °C) of the mean (MEAN), minimum (MIN), maximum
(MAX), 0.05 quantile (Q05), and 0.95 quantile (Q95) of daily temperatures over each year (a), winter (b), or summer (c).

days with minimum and maximum temperatures below 0 °C
(frost and icing days, respectively). On the warm end of the
distribution, the larger increases in the expected maximum
mean daily temperatures match their findings of increasing
days with maximum temperatures exceeding 25 °C and in-
creasing nights with minimum temperatures over 20 °C. Sim-
ilarly, Arnell et al. (2021) found increases in the annual prob-
ability of experiencing at least one heat wave (based on re-
gionally varying thresholds).

The differences between the rows for the different met-
rics and columns for bias-correction methods in the heatmaps
(Figs. 11 and 12) show a wide range of projected changes
among the ensemble members, which usually exceeds the

differences from the BC method. In other words, at least
when aggregated over the UK, the differences between the
ensemble members are much greater than between the two
bias-correction methods. This is also summarized well by
the two last rows of each heat map panel for each metric: the
standard deviation (summarized by the sd row) across the en-
semble is typically much larger than the difference between
the BC methods in the mean row. While over the reference
period the BC significantly reduces the spread of the biases
among the ensemble members (see row sd in Figs. 5 and 6),
the spread in the projected changes is quite well retained by
both BC methods (same row in Figs. 11 and 12).
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Figure 7. Quantile–quantile plot (dark colours) and scatter plot
(light colours) of precipitation (pr) in 2 overlapping decades (a and
b showing 2001–2010, c and d showing 2051–2060) for UKCP18-
RCM ensemble member 1 for two example grid cells (columns).
Tail, middle, and head, respectively, refer to the first, middle, and
end 10 years of each 30-year period that overlaps in these decades.
The line y= x is shown for reference.

Figure 8. As Fig. 7 but for temperature.

Although the differences in CCS between the two BC
methods are relatively minor when compared to the differ-
ences between ensemble members for the same metric, there

is a subtle added value of BCI3 over BCQM for preserving
the changes, which is generally more visible looking at the
individual ensemble members than in the ensemble means.
It is worth noting that BCQM already largely preserves the
projected changes even though it was not explicitly designed
to do so, which limits the potential benefit of even a per-
fect change preservation over this method. For temperature,
the heatmaps in Fig. 12 show a limited added value of BCI3
compared to BCQM. This is in part due to the spatial av-
eraging that took place in order to produce the heatmaps.
Results for the climate change signal for each month and
ensemble member for different quantiles (not shown) and
Fig. 10 show that BCQM modifies the projected tempera-
ture climate change signal differently in different regions of
the UK, in particular over significant topographical variation;
this is not the case for BCI3, which better preserves the raw
CCS spatial patterns. Finally, the differences in the climate
change signal between both BC methods are the largest for
several precipitation indices in winter, where BCI3 slightly
improves the preservation of the projected change. Interest-
ingly, for many of the temperature indices and the winter
precipitation indices, the spread of projected changes is also
better preserved in BCI3 than in BCQM (compare the en-
semble sd values). For potential evapotranspiration, similar
analyses (figures not included here) show that BCI3 success-
fully reduced errors and conserved the climate change sig-
nal. Lastly, the heatmaps in Fig. 11 highlight the pitfalls of
the change factor (CF) approach for UKCP18-RCM. There
are large differences between the CF approach and the raw
(or bias-corrected) projections when looking at the CCS in
precipitation metrics beyond the seasonal or annual totals.
The projected lengthening of the longest annual or summer
dry-day sequences and shortening of the longest annual, win-
ter, or summer wet-day sequences in all ensemble members,
which is well preserved by both BC methods, is largely or
almost entirely disregarded using the CF approach. Most of
the projected changes in CDD and CWD can thus not simply
be attributed to changes in the mean. The smaller projected
decrease in the summer maximum 5 d accumulated precipi-
tation (Rx5day) compared to the total precipitation decrease
is not captured by the CF approach. What is worse, at the
annual scale, the CF approach projects a decrease in the Q95
(similarly to the prTOT changes), whereas the raw UKCP18-
RCM projects an increase on average. At the annual scale,
the CF approach is unable to capture the simulated change
toward fewer (DF increase) but wetter (SDII increase) wet
days, the combined effect of which is an overall decrease in
total precipitation. This inability of the CF approach to ac-
count for changes in the variability in precipitation severely
narrows its suitability for climate impact modelling studies
on, for example, floods or droughts, for which the temporal
variability and changes to the precipitation distribution are
highly relevant.
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Figure 9. Projected changes in annual or seasonal mean precipitation from the ensemble mean of UKCP18-RCM simulations before (RAW)
and after bias correction (BCQM and BCI3). Values shown are the percentage change from 1981–2010 to 2051–2080 under RCP8.5.

4 Code and data availability

This study produces bias-corrected UK Climate Projections
2018 (UKCP18) regional projections of temperature, pre-
cipitation, and potential evapotranspiration for 1981–2080.
All 12 members of the UKCP18 regional ensemble are bias-
corrected using the empirical quantile mapping method and
a change-preserving variant of the ISIMIP3BA method. The
access links for these datasets are provided below:

– Daily temperature and precipitation data, bias-corrected
by the empirical quantile mapping method, are available
at https://doi.org/10.5281/zenodo.8223024 (Zha et al.,
2023).

– Daily temperature and precipitation data, bias-corrected
using the ISIMIP3BA method, are accessible at version
1 https://doi.org/10.5281/zenodo.6337381 (Reyniers
et al., 2022a).
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Figure 10. As Fig. 9 but for the change in temperature expressed in °C.

– Bias-corrected daily potential evap-
otranspiration data can be found at
https://doi.org/10.5281/zenodo.6320707 (Reyniers
et al., 2022b).

The sources and links to the datasets used in this study:

– CHESS-PE data were obtained from the UK
CEH Environmental Information Data Centre

(https://doi.org/10.5285/9116e565-2c0a-455b-9c68-
558fdd9179ad) (Robinson et al., 2020b).

– HadUK-Grid data were obtained from the
Centre for Environmental Data Analysis
(https://doi.org/10.5285/d134335808894b2bb249e9
f222e2eca8) (Met Office et al., 2019).

– UKCP18-RCM simulations were acquired
from the Centre for Environmental Data
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Figure 11. Projected changes (climate change signal, CCS) in precipitation characteristics in the ensemble of UKCP18-RCM simulations
before (RAW) and after bias correction (BCQM and BCI3) and after applying a change factor (CF) to the observed time series. Each indicator
shows the spatial average (UK-mean) of the changes by 2051–2080 compared to 1981–2010 expressed as a percentage of the observed values
for 1981–2010. Statistics shown are the same as in Fig. 5.

Analysis (https://catalogue.ceda.ac.uk/uuid/
589211abeb844070a95d061c8cc7f604) (Met Office
Hadley Centre, 2018).

The ISIMIP3BA code by Lange (2019) used
in this study is accessible on Zenodo at
https://doi.org/10.5281/zenodo.3898426 (Lange, 2020).

5 Conclusions

5.1 General conclusions

Significant biases in temperature, potential evapotranspira-
tion, and precipitation statistics were found in the UKCP-
RCM simulations. To improve their usability for impact
modelling, two bias-correction methods were applied to all
ensemble members of the UKCP-RCM perturbed physics
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Figure 12. As Fig. 11 but for temperature characteristics, and actual (°C) rather than percentage changes are shown. Statistics shown are the
same as in Fig. 6.

ensemble: the widely used empirical quantile mapping
(BCQM) and the bias-correction method developed for
phase 3 of the ISIMIP project (BCI3), which is designed to
preserve the climate change signal. Both methods success-
fully reduced errors in daily temperature and precipitation
metrics, and reduced errors in multi-day precipitation metrics
to a lesser degree. Both methods also satisfactorily conserved
the climate change signal as well as the spread among the

projections, with a minor improvement in BCI3 compared
to BCQM. Analysis of projected changes in temperature and
precipitation metrics suggests a higher likelihood of extreme
weather (hot, dry, or wet) and confirms the headline findings
of projected hotter, drier summers and warmer, wetter win-
ters.
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5.2 Recommendations for users of the bias-corrected
datasets

Potential users of these bias-corrected simulations are en-
couraged to consider the following points.

1. Both bias-corrected datasets may be of interest for users
whose impact model is affected by the biases in the
UKCP18-RCM simulations and whose application re-
quires changes in the precipitation (and/or temperature
or potential evapotranspiration) distribution and tempo-
ral variability to be captured as well as the mean. Con-
versely, using the change factor method is discouraged
for applications where changes to the temporal variabil-
ity and full distribution are important.

2. Caution is needed with coastal grid cells as the 1 km
dataset used as reference for the bias correction only
covers the land, which results in biases in grid cell av-
erages along the coast (especially for temperature and
potential evapotranspiration). This should not be an is-
sue for users only interested in land temperature or po-
tential evapotranspiration, but we recommend that users
consider the fraction of each grid cell covered by land
before using the data.

3. At the regional scale, the climate change signal is
slightly better preserved by BCI3 (especially for tem-
perature). Although the differences between BCI3 and
BCQM are small, they might grow or shrink after prop-
agation in impact models, so it may be valuable to use
both as a limited way of sampling the uncertainty due to
statistical post-processing. However, the difference be-
tween BCQM and BCI3 is unlikely to be the greatest
source of uncertainty.

4. PET time series are only provided for BCI3, so if us-
ing them alongside of temperature and/or precipitation
time series, using BCI3 data only guarantees a consis-
tent treatment of projected changes across variables.

5. Potential users of these bias-corrected datasets should
also consult the UKCP18 user guidance published by
the Met Office, in particular guidance on bias correction
(e.g. Fung et al., 2018). Since the uncertainty among the
UCKP18-RCM ensemble members is large for changes
in the precipitation and temperature metrics studied
here, it is recommended to employ multiple ensemble
members to sample this uncertainty. Users are encour-
aged to perform their own evaluation of these datasets to
ensure that they are adequate for their planned use, for
example, if the correction of dependence structures of
multiple variables is required (since both of our meth-
ods are univariate, and we did not evaluate multivariate
metrics).

6. As discussed in the Introduction, all bias-correction
methods rely on strong assumptions about climate pro-

jections, which all users of any bias-corrected climate
projections should keep in mind when using the data
and interpreting the resulting impacts.
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