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Abstract. River discharge is a crucial measurement, indicating the volume of water flowing through a river
cross-section at any given time. However, the existing network of river discharge gauges faces significant issues,
largely due to the declining number of active gauges and temporal gaps. Remote sensing, especially radar-based
techniques, offers an effective means to this issue. This study introduces the Satellite Altimetry-based Exten-
sion of the global-scale in situ river discharge Measurements (SAEM) data set, which utilizes multiple satellite
altimetry missions and estimates discharge using the existing worldwide networks of national and international
gauges. In SAEM, we have explored 47 000 gauges and estimated height-based discharge for 8730 of them,
which is approximately 3 times the number of gauges of the largest existing remote-sensing-based data set.
These gauges cover approximately 88 % of the total gauged discharge volume. The height-based discharge es-
timates in SAEM demonstrate a median Kling–Gupta efficiency (KGE) of 0.48, outperforming current global
data sets. In addition to the river discharge time series, the SAEM data set comprises three more products, each
contributing a unique facet to better usage of our data. (1) A catalog of virtual stations (VSs) is defined by cer-
tain predefined criteria. In addition to each station’s coordinates, this catalog provides information on satellite
altimetry missions, distance to the discharge gauge, and relevant quality flags. (2) The altimetric water level
time series of those VSs are included, for which we ultimately obtained good-quality discharge data. These wa-
ter level time series are sourced from both existing Level-3 water level time series and newly generated ones
within this study. The Level-3 data are gathered from pre-existing data sets, including Hydroweb.Next (formerly
Hydroweb), the Database of Hydrological Time Series of Inland Waters (DAHITI), the Global River Radar Al-
timetry Time Series (GRRATS), and HydroSat. (3) SAEM’s third product is rating curves for the defined VSs,
which map water level values into discharge values, derived using a nonparametric stochastic quantile mapping
function approach. The SAEM data set can be used to improve hydrological models, inform water resource man-
agement, and address nonlinear water-related challenges under climate change. The SAEM data set is available
from https://doi.org/10.18419/darus-4475 (Saemian et al., 2024).
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1 Introduction

Freshwater is essential for sustaining life on Earth, serving
as a critical resource for drinking, agriculture, industry, and
ecosystems (e.g., Vörösmarty et al., 2005; Dudgeon et al.,
2006; Schewe et al., 2014). Accurate accounting of changes
in freshwater availability is vital for informed water resource
management, sustainable development, and addressing the
challenges posed by climate change (e.g., Bhaduri et al.,
2016; Döll et al., 2016; Garrick et al., 2017; Saemian et al.,
2022; Behling et al., 2022; Saemian et al., 2020). To under-
stand global freshwater dynamics, knowledge of river dis-
charge – the volumetric flow rate of water passing through
a river cross-section per unit of time – plays a major role
(Tarpanelli et al., 2023; Saemian, 2024). Monitoring river
discharge across various river systems relies on a global net-
work of national and international gauges. However, the ex-
isting network faces several challenges, particularly stem-
ming from the decreasing number of operational gauges. The
decline in monitoring capability is especially pronounced
in regions crucial for understanding global water dynam-
ics, such as Africa and Asia (Elmi et al., 2024; Do et al.,
2018). Moreover, existing data sets often suffer from delays
in accessibility, hampering real-time insights into river dis-
charge dynamics (Riggs et al., 2023). These challenges have
prompted the development of alternative methods for moni-
toring discharge on a large scale.

Unlike discharge, various hydrological and hydraulic vari-
ables, such as river water level, river width, and river slope,
can be measured through remote sensing data (e.g., Smith,
1997; Alsdorf et al., 2007; Tang et al., 2009; Birkinshaw
et al., 2010, 2014; Birkett, 1998). By utilizing these ob-
servable variables, one can estimate discharge beyond the
gauge records through the use of rating curves (Leopold and
Maddock, 1953), and even in ungauged locations, by apply-
ing algebraic flow laws or hydraulic models. Rating curves
are developed by correlating in situ discharge measurements
with these river parameters, for example, water levels derived
from satellite altimetry observations (elevation-based rating
curves) (Kouraev et al., 2004; Tourian et al., 2013, 2017;
Papa et al., 2012, 2010a; Frappart et al., 2015) or river width
from satellite imagery (width-based rating curves) (Smith,
1997; Pavelsky, 2014; Elmi et al., 2015; Tarpanelli et al.,
2018). These rating curves can subsequently be utilized to
estimate discharge solely from remote-sensing-based obser-
vations.

Several studies have used remote sensing techniques to es-
timate river discharge on a global scale. One such study by
Riggs et al. (2023) employs remote sensing width observa-
tions from Landsat and Sentinel-2 satellites to estimate river
discharge across a worldwide network of stations. However,
this study only generated rating curves for stations with si-
multaneous width–discharge data available, limiting the data
set to only 2168 gauges. Another notable effort is the Re-
mote Sensing-based Extension for the GRDC (RSEG) data

set, which extends river discharge records for the Global
Runoff Data Centre (GRDC) stations by incorporating river
width estimates from satellite imagery (Elmi and Tourian,
2023) and water level estimates from satellite altimetry (Elmi
et al., 2024). Similarly, Lin et al. (2023) presented a global
implementation of the Bayesian at-many-stations hydraulic
geometry (AMHG)–Manning (BAM) algorithm and its ge-
omorphologically enhanced variant (geoBAM) using multi-
temporal Landsat-derived river widths at over 3000 river
reaches. Additionally, Feng et al. (2021) estimated daily
streamflow in 486 493 pan-Arctic river reaches by assimilat-
ing over 9 million discharge estimates derived from 155 710
satellite images into hydrological model simulations, provid-
ing enhanced insights into the hydrology of the Arctic region
and its response to climate change. Despite the advantages
of RSEG in providing extensive spatial and temporal cover-
age, it still faces limitations with satellite imagery, encounter-
ing difficulties in accurately estimating discharge in narrower
rivers and regions with limited satellite data availability due
to cloud coverage. Additionally, the data set primarily relies
on GRDC stations, further restricting its applicability to ar-
eas not covered by the GRDC network.

The objective of this study is to expand and improve the
global river discharge records by employing satellite altime-
try measurements alongside a comprehensive network of na-
tional and international river discharge gauges. Our data set,
named the Satellite Altimetry-based Extension of global-
scale in situ river discharge Measurements (SAEM), includes
the following:

1. Altimetry-based river discharge estimates are provided
along with associated uncertainty and quality metrics.

2. Water level–discharge non-parametric mapping func-
tions for the defined VSs model the transformation
of water level time series into discharge data using a
nonparametric stochastic quantile mapping function ap-
proach.

3. Water level time series for VSs are where good-quality
discharge estimates were obtained. SAEM water lev-
els are provided alongside the dataset. For water level
time series from Level-3 databases, we include only
the specific IDs introduced by the respective database
providers.

4. A catalog of VSs for each gauge forms the foundation
of the SAEM dataset. These VSs are defined based on
specific criteria and include information on satellite al-
timetry missions, SWORD reach ID, distance to the dis-
charge gauge, and quality flags.

SAEM extends the temporal records of inactive stations by
combining satellite altimetry and river gauge data, enhancing
the availability of global river discharge measurements. This
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data set supports better water resource assessments and in-
formed decision-making in areas such as sustainable devel-
opment and climate change adaptation.

2 Data sources

2.1 SWORD

The SWOT a priori river database (SWORD) developed
by Altenau et al. (2021) includes reach boundaries, high-
resolution river centerlines, and fixed node locations for river
networks worldwide. SWORD contains a consistent topo-
logical system and includes crucial hydrological variables
such as average surface water elevation, river reach width,
and slope at mean river flow for rivers wider than 30 m. In
this study, we utilize the high-resolution river centerlines
and reach boundaries provided by SWORD v16. Referred
to hereafter as river reaches, these components serve as the
backbone of our investigation to locate the nearest satellite
altimetry’s VSs.

2.2 In situ river discharge

In this study, we use the daily gauge data curated by Riggs
et al. (2023), which include a comprehensive compilation
from both international and national organizations (Table 1).
The data set and software package (Riggs et al., 2024) form
a global gauge database (Fig. 1). In the data set, when mul-
tiple gauges are within approximately 100 m of each other,
the gauge with a longer data record is prioritized to avoid
redundancy. All gauge databases utilized in our analysis are
publicly accessible through the RivRetrieve software pack-
age (Riggs et al., 2024, 2023) except the Chinese Hydrol-
ogy Project gauge data, which constitute less than 1 % of the
gauges considered in this study. Figure 1 demonstrates the
number of gauges at each basin. The distribution reveals a
higher density of gauges in North America and Europe, while
regions such as Africa and parts of Asia have significantly
fewer gauges. While gauges can provide data at various tem-
poral resolutions, such as daily or monthly, in the SAEM data
set, we have exclusively used daily discharge data from the
gauges.

2.3 Satellite altimetry data

We utilize water level time series from two sources: (1) exist-
ing databases that provide Level-3 water level time series and
(2) we generate water levels from satellite altimetry measure-
ments for those stations without any time series in Level-3
databases, referred to as SAEM WL. Figure 2 illustrates the
distribution of VSs from various data providers. To generate
SAEM WL, we follow the methodology described in Tourian
et al. (2022) (also described in Sect. 3.2) and utilize Level-2
altimetry data described in Sect. 2.3.2. The following subsec-

tions describe the Level-2 and Level-3 altimetry data used in
the SAEM data set.

2.3.1 Level-3 satellite altimetric water level from existing
databases

Level-3 water level time series are gathered from various
databases (listed in Table 2):

1. The Hydroweb.Next (formerly Hydroweb) database, ac-
cessible at https://hydroweb.next.theia-land.fr/ (last ac-
cess: 1 February 2025), is specified by LEGOS and
computed by Collecte Localisation Satellites (CLS) on
behalf of Centre National d’Études Spatiales (CNES),
Theia, and Copernicus Global Land (Da Silva et al.,
2010; Normandin et al., 2018). It offers valuable wa-
ter level time series for more than 24 000 VSs glob-
ally. The database integrates measurements from satel-
lites including Envisat, Jason-2, Jason-3, Sentinel-3A,
Sentinel-3B, and Sentinel-6MF. Hydroweb’s processing
procedures, as outlined in Da Silva et al. (2010), involve
various data sources, including bathymetry maps, Land-
sat, China–Brazil Earth Resources Satellite-2 (CBERS-
2), Shuttle Radar Topography Mission (SRTM) data,
and ENVISAT radar images.

2. The Database of Hydrological Time Series of Inland
Waters (DAHITI) was developed by the German Geode-
tic Research Institute at the Technical University of
Munich (DGFI-TUM) (Schwatke et al., 2015). Em-
ploying an extended outlier rejection and Kalman fil-
ter approach, DAHITI integrates cross-calibrated al-
timeter data from Envisat, ERS-2, Jason-1, Jason-
2, TOPEX/Poseidon, SARAL/AltiKa, Sentinel-3, and
Sentinel-6MF, yielding comprehensive time series for
rivers and lakes globally. DAHITI, as a global database,
currently provides 10 758 water level time series dis-
tributed across all continents except Antarctica.

3. The Global River Radar Altimetry Time Series (GR-
RATS) database, spanning from 2002 to 2016, is a
globally distributed collection of radar altimeter data
from Envisat and Jason-2. This database focuses on
ocean-draining rivers with widths exceeding 900 m, en-
compassing 39 rivers and 1869 VSs. Utilizing an un-
supervised method at the virtual station level, GR-
RATS processed nearly 1.5 million altimeter measure-
ments after quality control. The latest version of GR-
RATS can be downloaded from https://doi.org/10.5067/
PSGRA-SA2V2 (Coss et al., 2019a).

4. The HydroSat database developed by the Institute of
Geodesy, University of Stuttgart, offers geometric quan-
tities of the global water cycle from geodetic satellites.
It includes time series and uncertainty estimates for wa-
ter level from satellite altimetry, surface water extent
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Table 1. Gauge data sources used in this analysis.

Data provider No. gauges Record start–end Date of access Reference

ArcticNet 116 1913–2003 May 2021 https://www.r-arcticnet.sr.unh.edu/v4.0/index.html

Australian Bureau of
Meteorology

4340 1899–2021 Sep 2021 https://www.bom.gov.au/waterdata/

Brazilian National
Water Agency

1342 1920–2021 Sep 2021 https://www.snirh.gov.br/hidroweb/serieshistoricas

Canadian National
Water Data Archive

6066 1860–2021 Oct 2021 https://www.canada.ca/en/
environment-climate-change/services/water-overview/
quantity/monitoring/survey/data-products-services

Chilean Center for
Climate and Resilience
Research

501 1913–2020 Sep 2021 https://explorador.cr2.cl/

Chinese Hydrology
Project

141 1953–1987 Sep 2021 Henck et al. (2010) and Schmidt et al. (2011)

The Global Runoff
Data Centre

6614 1806–2021 Sep 2021 https://portal.grdc.bafg.de/applications/public.html?
publicuser=PublicUser

India Water Resources
Information System

549 1960–2020 Jun 2021 https://indiawris.gov.in/wris/#/RiverMonitoring

Japanese Water
Information System

1023 1954–2019 Sep 2021 https://www.mlit.go.jp/en/

Spanish Anuario de
Aforos

1385 1912–2018 Sep 2021 http://datos.gob.es/es/catalogo/
e00125801-anuario-de-aforos/resource/
4836b826-e7fd-4a41-950c-89b4eaea0279

Thailand Royal
Irrigation Department

126 1980–1999 Sep 2021 http://hydro.iis.u-tokyo.ac.jp/GAME-T/GAIN-T/
routine/rid-river/disc_d.html

U.S. Geological Survey 23 634 1857–2021 Sep 2021 https://waterdata.usgs.gov/nwis/rt

Figure 1. Distribution of gauges by basin worldwide. The data set of gauges is sourced from various data centers listed in Table 1.
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from satellite imagery, terrestrial water storage anomaly
from satellite gravimetry, lake and reservoir water vol-
ume anomalies, and river discharge (Tourian et al.,
2022). The database is accessible via http://hydrosat.gis.
uni-stuttgart.de (last access: 1 February 2025).

5. For water levels over the Congo basin, Kitambo et al.
(2022) utilize a data set of historical and contempo-
rary river water stages (WSs) and discharge observa-
tions, obtained through collaboration with the Congo
Basin Water Resources Research Center (CRREBaC).
Specifically, the database includes detailed measure-
ments of water levels across the Congo River basin
(CRB). The study has developed a comprehensive wa-
ter level database, which includes water level records
for 1272 VSs. These VSs came from Hydroweb.Next
(former Hydroweb) or were processed manually using
AlTiS (Altimetry Time Series) software.

The primary aim of using these databases is to benefit
from the already available Level-3 products and reduce the
computational load of processing water level (WL) time se-
ries for virtual stations (VSs). In SAEM, we directly uti-
lize the quality-controlled WL time series provided by these
databases without any reprocessing or post-processing. Re-
garding accessibility, all databases are publicly available
or upon request. In terms of near-real-time (NRT) data,
Hydroweb.Next offers NRT data. When overlaps in VSs were
identified between databases, we retained all products in the
VS catalog for transparency. The product that passed quality
control and achieved better statistical metrics was selected
for the final discharge estimates.

2.3.2 Level-2 altimetry data

For each gauge and any orbit family, if Level-3 water level
data are unavailable in the existing databases, we gener-
ate water levels using available altimetry missions. To this
end, measurements are obtained from a range of satellite al-
timetry missions, including (1) Envisat, (2) SARAL/AltiKa,
(3) Jason-1, (4) Jason-2, (5) Jason-3, (6) Sentinel-3A, (7)
Sentinel-3B, and (8) Sentinel-6MF. The timeline of the afore-
mentioned satellite altimetry missions is presented in Fig. A1
in the Appendix.

3 Methodology

3.1 VS generation and selection

A VS in satellite altimetry refers to a specific geographical
point where the ground tracks of a satellite altimetry mis-
sion intersect with a water body, such as a river (Calmant and
Seyler, 2006; Frappart et al., 2006). The process of generat-
ing and selecting VSs for the SAEM data set involves inte-
grating multiple sources and several key steps (see Fig. 3).
Initially, various data sources such as SWORD v16 data,

satellite reference orbits, water occurrence from the Global
Surface Water (GSW) data set (Pekel et al., 2016), and the
geolocation of hydrological gauges are collected. VSs are
identified at points where the SWORD river location inter-
sects with the orbital tracks of satellites. After generating all
the possible VSs, we need to select the VSs for each gauge
located in the vicinity and hydraulically consistent with dis-
charge behavior. To this end, we have two types of gauges:
the ones located on the tributaries of a river system and the
ones over the main stem. For gauges located in tributaries,
VSs are selected within the same tributary if no dams or
reservoirs exist between the gauge and the VS. For gauges
on the main river stem, we select those in the mainstream
with no intervening dams or reservoirs in between. The pres-
ence of dams and reservoirs was determined based on the
reach-wise flags provided in the SWORD v16 data set. This
selection ensures that the VSs accurately represent the hy-
drological conditions at the gauge locations. The outcome of
this procedure is a set of VSs for each gauge, which is one of
the SAEM products and is referred to as the VS catalog.

To maximize temporal coverage, we include satellite mis-
sions from four different orbit families: Envisat series (in-
cluding ERS1, ERS2, Envisat, Envisat Extended, and SAR-
AL/AltiKa), TOPEX/Jason series (including TOPEX/Posei-
don, Jason-1, Jason-2, Jason-3, and Sentinel-6FM), Sentinel-
3A, and Sentinel-3B. It is important to note that after July
2016, SARAL/AltiKa entered a drifting orbit, which pro-
vided increased spatial coverage but reduced the temporal
consistency at specific locations. For each gauge, at least one
available VS is identified from the VS catalog within each or-
bit category. Next, the availability of water level time series
in Level-3 databases for each VS is checked (see Sect. 2.3.1
for details about Level-3 databases). If available, the data are
collected; if not, water level time series are generated from
Level-2 data. The details about the Level-2 data are described
in Sect. 2.3.2, and the methodology to generate the water
level is described in Sect. 3.2.

3.2 Generation of water level time series

We attempt to generate water level time series for those VSs
that lack in Level-3 databases. For this purpose, for each VS
we first crop all altimetry data with the VS boundaries de-
termined by a static 2 km radius. We then utilize the GSW
occurrence map and mask out all data with water occurrence
values below 75 %. The use of the GSW mask helps maintain
the quality of the extracted time series by excluding nonwater
reflections. Cases with fewer than two valid measurements
per epoch are rare (0.6 % of all data epochs) and are retained.

The altimetry-derived range measurements ρi are obtained
from a retracking algorithm. Instead of generating our own
retracking results, we use existing retrackers available in
the geophysical data record (GDR). For Envisat and SAR-
AL/AltiKa missions, we employ the Ice-1 retracker – a
model-free algorithm known for precisely locating the offset
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Table 2. Details of Level-3 water level databases used in SAEM.

Database Operated by No. VSs used in Source
this study

Hydroweb.Next CNES 24 042 https://hydroweb.next.theia-land.fr/

DAHITI Deutsches Geodätisches 9968 https://dahiti.dgfi.tum.de
Forschungsinstitut (DGFI) (last access: 1 February 2025)

HydroSat Institute of Geodesy, 2036 http://hydrosat.gis.uni-stuttgart.de
University of Stuttgart

GRRATS Copernicus, European commission 1869 https://doi.org/10.5067/PSGRA-DA2V2
ESA, USGS, Amazon Web Services (Coss et al., 2019b)

Congo basin database Kitambo et al. (2023) 1272 https://doi.org/10.5194/essd-15-2957-2023

Figure 2. Distribution of virtual stations from various data providers used for estimating discharge, including Hydroweb, DAHITI, GRRATS,
Congo Study, HydroSat, and SAEM WL.

center of gravity of the waveform. In the case of Jason-1 and
Jason-3, we utilize the Ice retracker, which employs a sim-
ilar retracking methodology as Ice-1. For Jason-2, we rely
on the results from the PISTACH project and use the Ice-3
retracker. For Sentinel-3A and Sentinel-3B missions, we uti-
lize the offset center of gravity (OCOG) retracker results ap-
plied to the synthetic aperture radar (SAR) waveforms, while
for Sentinel-6MF, we benefit from the maximum likelihood
estimator (MLE) retracking algorithm. These selections are
based on our experience and analysis of various retracking al-
gorithms across different missions over different inland water
bodies.

The range measurements undergo further refinement to
account for various geophysical effects. This refinement
includes corrections for solid-Earth tide δρsolid

i , pole tide
δρ

pole
i , and atmospheric path delays such as wet tropospheric

δρwet
i , dry tropospheric δρdry

i , and ionospheric corrections
δρiono
i . For the wet and dry tropospheric corrections, for all

missions, we consistently rely on the models provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF), and for the ionospheric correction, we use the
results from the Global Ionospheric Map (GIM) (Komjathy
and Born, 1999). For the pole tide for all missions, the model
by Wahr (1985) is used and for the solid-Earth tide the model
by Cartwright and Edden (1973).

The corrected range, along with the geoid heightN , is sub-
tracted from the satellite altitudeHi to derive the orthometric
surface water height hi :

hi =Hi−(ρi+δρ
dry
i +δρ

wet
i +δρ

iono
i +δρsolid

i +δρ
pole
i )−N.

The geoid height N is determined using static gravity field
models, specifically referencing XGM2019e (Pail et al.,
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Figure 3. Flowchart illustrating the generation of virtual stations (VSs), the selection of VSs for each gauge, and the extraction of water
level time series using both existing Level-3 databases and newly generated data for this study (SAEM WL).

2018), which has been shown to perform better in regions
with limited in situ gravity data (Zingerle et al., 2020).
Achieving uniformity across databases is not feasible, as dif-
ferent Level-3 water level databases, such as DAHITI and
Hydroweb.Next, already use different geoid models. How-
ever, since all these global models are freely available, users
can retrieve geoid heights for their preferred model using
latitude–longitude coordinates and adjust the orthometric
height accordingly.

Subsequently, for each time epoch, the representative sur-
face water height ĥ within a VS is computed as the median
of all M estimated height values hi :

ĥ=median
i∈1,...M

(hi). (1)

Accompanying this estimation is the calculation of the
standard deviation σ

ĥ
, which serves as a measure of uncer-

tainty for the estimated water height:

σ
ĥ
=

√√√√ 1
M − 1

M∑
i=1

(hi −h)2,

where h denotes the mean of water height estimates.
Once the water level time series is generated, we identify

and remove outliers through an automated, data-driven out-
lier identification methodology integrated within an iterative,
nonparametric adjustment scheme (Tourian et al., 2022). Fi-
nally, quality control is conducted on the generated water
level time series to select those with the best quality. This
evaluation includes assessing the length of the time series
in relation to the theoretical number of observations, which
is derived from the satellite’s repeat period and the obser-
vation duration. The time series are further checked for sta-
tistical characteristics, including the distribution of values,
skewness, and variability, to ensure they are representative
of water level changes. Outliers are identified and limited
to a maximum 10 % to maintain data reliability. Addition-
ally, bias control is implemented by verifying the consistency

of mean and median values across segments of the time se-
ries. The alignment of the time series with digital elevation
model (DEM) information is also assessed to ensure consis-
tency with expected elevations. In total, 3763 WL time series
were generated for 1702 gauges across various orbit families,
including 1598 from the Envisat orbit family, 990 from the
TOPEX/Jason orbit family, 561 from Sentinel-3A, and 614
from Sentinel-3B. During the quality control process, 632
WL time series were rejected, representing approximately
17 % of the total. Rejection rates varied across orbit fami-
lies, with 494 WL time series rejected from the Envisat orbit
family, 34 from TOPEX/Jason, 64 from Sentinel-3A, and 40
from Sentinel-3B. Those time series passing the quality con-
trol are referred to as SAEM WL. The SAEM WL time series,
together with water level time series from Level-3 databases,
are used as inputs to generate discharge estimates.

3.3 Nonparametric rating curve modeling and river
discharge estimation

Developing an empirical model between the ground- and
space-based measurements is the most straightforward ap-
proach for extending the discharge record of an inactive
gauge station using satellite data. Elmi et al. (2021) devel-
oped a nonparametric quantile mapping (NPQM) approach,
based on Monte Carlo simulation, for developing a map-
ping function that transforms remote-sensing-based river wa-
ter level or width time series into discharge estimates. The
NPQM method overcomes several limitations of conven-
tional linear regression techniques:

– It does not require simultaneous gauge-based and space-
based measurements since the algorithm determines the
water height–discharge model by matching the quantile
functions.

– It follows a data-driven, nonparametric approach rather
than relying on predefined linear or power-law relation-
ships to minimize the possibility of mismodeling.
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– It provides input-driven discharge uncertainty estimates
for each discharge percentile separately rather than re-
lying only on a variance–covariance matrix for model
parameters.

The flowchart in Fig. 4 describes the procedure of the al-
gorithm.

NPQM performs the following steps to develop the
stochastic quantile mapping function:

– It generates a stack of river discharge and altimetric wa-
ter height time series using a Monte Carlo simulation.

– It derives a collection of river water height–discharge
mapping functions by matching all possible permuta-
tions of the quantile functions of river discharge and
height.

– It estimates the mean river height–discharge mapping
function together with the uncertainty for each per-
centile.

– It evaluates the performance of the derived model by
comparing the estimated and measured discharge of the
evaluation sample performing a 3σ test. If available, the
evaluation sample consists of simultaneous gauge and
space measurements. Otherwise, measurements from
both data sets within the same quantile are included
in the evaluation sample. The 3σ test is a statistical
approach that assumes approximately 99.7 % of data
fall within 3 standard deviations of the mean in a nor-
mal distribution. In this algorithm, the test ensures that
the residuals (estimated−measured discharge) remain
within this range.

– It updates the measurement uncertainties with respect
to the result of the 3σ test, scaling them accordingly to
maintain consistency in the iterative process.

– It terminates the algorithm if the root mean square error
(RMSE) from the previous step does not change signifi-
cantly; otherwise, the algorithm returns to the first stage.

In the initial iteration, the algorithm considers a multi-
plicative uncertainty of 10 % of the signal for the input time
series. This decision is due to the lack of available uncer-
tainty estimates for the gauge discharge data set and the in-
consistent definitions of uncertainties across altimetric water
level databases. As the algorithm progresses, it refines its es-
timates by updating the measurement uncertainties at each
iteration. This iterative process continues until the termina-
tion condition is met; however, the maximum number of it-
erations is also set to ensure the algorithm converges within
a predefined limit.

Through the procedure, the algorithm generates a stack of
quantile mapping functions by propagating the input mea-
surements based on their respective uncertainties. The dis-
tortion observed in the collection of mapping functions il-

lustrates the model’s accuracy in estimating discharge at var-
ious percentiles. The discharge estimation model uncertain-
ties are later exploited to obtain the uncertainty of the remote-
sensing-based discharge estimates. Once the model is devel-
oped, the discharge value, along with its associated uncer-
tainty, can be estimated using solely the predictor variable.
A detailed discussion of the uncertainty propagation and the
robustness of the NPQM method can be found in Elmi et al.
(2021, 2024). These studies explore how uncertainties are
handled through the iterative quantile mapping process and
their implications for discharge estimates.

3.4 Quality control of the estimated discharge

After employing the NPQM to generate discharge estimates,
we implement a quality control process to ensure the reli-
ability of these estimates (Fig. 5). This process combines
statistical tests and visual inspections to identify and ex-
clude low-quality or anomalous data. We have two differ-
ent cases: (1) where simultaneous time series for discharge
and water level are available and (2) where simultaneous data
are not available. For case 1, the initial assessment involves
calculating the Kling–Gupta efficiency (KGE) (Kling et al.,
2012) between the in situ and the estimated height-based dis-
charge; KGE values range from−∞ to 1, where 1 represents
a perfect match between observed and estimated discharge,
while values below −0.4 indicate no skill beyond the mean
discharge. A KGE greater than 0 is considered acceptable,
as this threshold has been found to produce quality hydro-
graphs based on our experimental analysis. Additionally, the
Kolmogorov–Smirnov (KS) (Lopes et al., 2007) test com-
pares the distribution of estimated and measured discharges.
The KS test helps determine whether there is a significant
difference between these distributions. We expect that if the
distributions are similar, they would indicate that the height-
based estimates are comparable to the gauge measurements.
Only those data sets that pass the KS test are retained for
further analysis. In cases where simultaneous data are un-
available (case 2), first, we check that the KGE (between
the mean monthly discharge of in situ and estimated data)
is greater than −0.4, which indicates an improvement over
using the mean observed river discharge. We then assess us-
ing the Shapiro–Wilk (SW) test (Shapiro and Wilk, 1965)
to check the normality of the difference between the mean
monthly discharge of in situ and estimated, and only those
passing the tests are retained. Subsequently, the KS test deter-
mines whether the estimated and measured discharge values
follow the same distribution. Beyond these statistical tests, a
visual inspection is conducted to detect anomalies not cap-
tured by quantitative methods. This inspection focuses on
identifying unusual long-term patterns, significant variations
or anomalies (sudden spikes, drops, or erratic fluctuations),
and outliers or extreme values. In such a quality control pro-
cedure, about 21 860 cases are rejected, ensuring that only
reliable and accurate discharge estimates are included in the
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Figure 4. Flowchart of the stochastic quantile mapping function algorithm (adapted from Elmi et al., 2021, 2024).

final data set, thereby enhancing the robustness and credibil-
ity of our results.

4 Products

The SAEM data set offers a multi-faceted perspective on
river system dynamics, combining raw observational data
with carefully derived products. This section outlines the key
components of the data set, including the catalog of VSs, al-
timetric water level time series, river height–discharge map-
ping functions, and discharge estimates with uncertainty.

4.1 Catalog of virtual stations

This catalog comprises VSs selected based on predefined cri-
teria, as detailed in Sect. 3.1. Each VS is characterized by co-
ordinate information (latitude and longitude), a unique iden-
tifier, and the reach ID from the nearest reach in the SWORD
data set. Information related to satellite altimetry, such as the
satellite and ground track number, is also included. Two es-
sential flags (flag_wl, and flag_dis) denote the quality of the
water level and the feasibility of generating discharge from
each VS. This catalog serves as a foundation for subsequent
products.

4.2 Altimetric water level time series

For VSs with accepted discharge records, we provide the
water level time series generated specifically for this study
(SAEM WL). Moreover, for existing Level-3 water level
databases, we include the specific IDs introduced by the
database providers. The origin of water level data is explicitly
indicated in the “provider” attribute, differentiating between
externally sourced Level-3 products and internally generated
SAEM data. Although SAEM provides mono-mission dis-
charge estimates using nonparametric rating curves, it is im-

portant to acknowledge inter-mission biases that may arise
when comparing or combining water level time series (WL
TS) from different satellite missions. Such biases, resulting
from differences in satellite orbits, calibration, and instru-
ment characteristics, can impact the continuity and consis-
tency of long-term WL TS. Additionally, the use of differ-
ent retrackers can also introduce biases. In SAEM, the water
level time series are specific to the retrackers and processing
setups used for each mission. Users who aim to build long-
term WL TS by combining Level-3 data from multiple mis-
sions should account for these biases to ensure meaningful
comparisons.

4.3 Height–discharge mapping functions

The height–discharge mapping functions represent the inter-
mediary step in transforming water level time series into dis-
charge data. This product includes nonparametric quantile
mapping functions specifically for VSs where the final dis-
charge data achieved at least a minimum quality. The inclu-
sion of rating curves allows users to generate discharge using
their own water level time series. Additionally, users can es-
timate uncertainties for their discharge computations using
the uncertainty lookup tables provided alongside the rating
curves, which are derived from the standard deviation of the
Monte Carlo simulations.

4.4 Discharge with uncertainty

The main product in the SAEM data set is the discharge time
series together with the uncertainty estimates for gauges that
successfully passed the quality control assessments. Each
epoch of the time series is associated with a VS identifier
stored in a separate vector called VS_id. Additionally, infor-
mation from the quality control process is embedded in this
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Figure 5. Flowchart of the quality assessment procedure for SAEM discharge. We calculate the KGE for nonsimultaneous cases between
the long-term monthly mean of in situ data and estimated discharge. The KS test refers to the Kolmogorov–Smirnov test, and the SW test
refers to the Shapiro–Wilk test.

product, providing insights into the reliability and accuracy
of the derived discharge data.

5 Results and validation

In the SAEM data set, we have monitored around 47 000
gauges worldwide, of which 8730 gauges meet the require-
ments discussed in Sect. 3.4 and are included in the SAEM.
By implementing our height-based rating curve method
across 8 730 gauges, we contribute 1 048 303 day epoch dis-
charge observations to global records. Of these, 614 155 ob-
servations extend the gauge records beyond their original
periods, while 434 148 observations fill historical gaps in
the data. In total, we generated approximately 25 000 orbit-
family-based discharge cases, of which about 45 % were
from cases with simultaneous in situ discharge and water
level data available. Out of the 6310 gauges not included
in SAEM, approximately 22 % (1405 gauges) were within
12 km of a SWORD reach, with the remaining 78 % ex-
cluded primarily due to greater distances. Of the gauges
near SWORD reaches, 48 % (671 gauges) had water level
(WL) data either from Level-3 databases or SAEM WL. For
these gauges, the nonparametric quantile mapping (NPQM)
method failed to converge for any orbit family in 10 % of
cases (69 gauges), while it successfully converged for at least
one orbit family in 90 % of cases (602 gauges). Among the
602 cases ultimately rejected, 44 % were excluded during
visual inspection (263 gauges), and 56 % failed statistical
thresholds (339 gauges). Figure 6 shows the discharge net-
work across different continents. The gauges are divided into
four categories: those for which discharge was successfully
estimated and passed visual inspection (SAEM), those for
which discharge estimation did not pass our visual inspection
or the gauge was too far (> 12 km) from the nearest reach of
SWORD (rejected), those without sufficient water level data
or no VSs catalog (no WL data), and those with a mean daily
discharge below 10 m3 s−1. In each continent, the share of
each group of gauges is shown in rings and their associated
color. The outer ring represents the proportion of discharge

volume, while the inner ring indicates the proportion in terms
of the number of gauges.

The overall analysis shows that despite the selective nature
of the gauge inclusion process, which reduced the number
of gauges, the most significant gauges in terms of discharge
volume are retained. For instance, Africa, Asia, and South
America show that the selected gauges account for almost
100 % of the total discharge. Even continents with fewer se-
lected gauges, like Australia and North America, maintain
high coverage of total discharge volume (91 %, and 98 %,
respectively). The SAEM data set, which includes gauges
that passed visual inspection, still covers a substantial por-
tion of the total discharge, such as 72 % in Africa, 89 % in
Europe, and 85 % in North America. The highest percent-
age of the total discharge coverage is achieved over South
America (92 %), followed by Asia and Europe (each 89 %).
The minimum portion of the estimated discharge for the to-
tal discharge has happened in Australia (50 %), which is due
to the high level of rejection in the process of the SAEM
data set. Additionally, the majority of the gauges (83 %) in
Australia have a long-term mean monthly discharge below
10 m3 s−1, meaning they were not selected in the first round
of the SAEM data set.

Figure 7 compares the estimated discharge to in situ dis-
charge measurements across a selection of gauges that repre-
sent various continents and data centers. For the gauges with
simultaneous data in both SAEM and in situ records, scatter-
plots and the corresponding correlation coefficients are pro-
vided. In three selected cases where simultaneous data were
unavailable, the comparison is presented through monthly
mean discharge values. The selected gauges include cases
where in situ data ceased, but discharge estimation continued
in the SAEM data set (cases 1 to 10). Additionally, there are
cases with minimal to no recent in situ data, yet the SAEM
data set successfully estimates discharge for these periods (as
seen in cases 12 to 14). The results show a high correlation
between SAEM estimates and in situ measurements, with
correlation coefficients exceeding 0.76, indicating good per-
formance of the SAEM data set. In cases without simultane-
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ous data, the distribution of discharge shown by the gauge is
accurately captured and reflected in the estimated discharge.
The high levels of correlation demonstrate the reliability of
SAEM in estimating discharge accurately, even in the ab-
sence of continuous in situ data.

We have assessed the performance of the estimated dis-
charge in the SAEM data set against the gauged discharge.
Figure 8 presents a detailed comparison of SAEM discharge
estimates with in situ discharge measurements for gauges
with simultaneous data, covering approximately 57 % of the
SAEM data set. The first row showcases the spatial distri-
bution of the Kling–Gupta efficiency (KGE) and the cor-
relation coefficient (Corr.), with color gradients indicating
the performance of the SAEM estimates across various lo-
cations. The second row highlights the spatial distribution of
the normalized root mean square error (NRMSE) on the left
and a scatterplot of the mean daily discharge versus KGE
on the right. The NRMSE is normalized using the standard
deviation of the observed discharge to ensure comparability
across gauges. The bottom row provides cumulative distribu-
tion functions (CDFs) for KGE, Corr., and NRMSE metrics.

The spatial plots reveal notable regional patterns in the
performance of the SAEM estimates. High KGE and cor-
relation values are predominantly observed in North Amer-
ica, Europe, and parts of South America, indicating that the
SAEM model performs well in these regions. Conversely, re-
gions like parts of Africa and Asia show more variability in
performance, with some gauges exhibiting lower KGE and
higher NRMSE values. This pattern may be attributed to the
density and quality of the in situ data available in these re-
gions, as well as regional hydrological complexities that may
impact the accuracy of the SAEM estimates. The distribution
of gauges with simultaneous data is denser in North Amer-
ica, South America, and Europe while being more sparse in
regions like Africa and parts of Asia.

The overall good accuracy of the SAEM estimates is evi-
dent from the CDF plots. Our findings reveal median values
for the KGE, correlation coefficient, and NRMSE of 0.48,
0.64, and 18 %, respectively. Moreover, we have evaluated
the estimated discharge against in situ observation for each
orbit family (Fig. A2). Sentinel-3A stands out with the best
overall performance, achieving a median KGE of 0.44, fol-
lowed by the Envisat series with a median of 0.35. The KGE
distribution highlights Sentinel-3A’s consistent superiority,
particularly at higher performance levels. Meanwhile, the
correlation analysis further supports the strength of Sentinel-
3A and Envisat, which both show higher correlation coef-
ficients compared to Sentinel-3B (median KGE= 0.27) and
TOPEX/Jason (median KGE= 0.26). The NRMSE panel re-
veals that Sentinel-3A and Envisat not only have lower error
rates but also maintain tighter distributions, while TOPEX/-
Jason exhibits the widest spread in error, indicating less
consistency. Several factors influence the difference in per-
formance between Sentinel-3A and Sentinel-3B. Besides
the difference in their orbit, Sentinel-3A has been opera-

tional since 2016, providing a longer data record compared
to Sentinel-3B, which began in 2018. Additionally, there
are significantly more cases with simultaneous water level
and discharge data for Sentinel-3A compared to Sentinel-
3B (4483 vs. 2369). For the TOPEX/Jason orbit family, the
global quality is influenced by the older missions, which may
exhibit higher uncertainty due to differing sensor capabilities
and retracking algorithms. Based on Fig. A2, the TOPEX/Ja-
son orbit family shows a lower correlation compared to the
Envisat orbit family but performs better in terms of NRMSE.
This indicates that while the Jason series achieves smaller
errors in discharge magnitude, its ability to capture temporal
variability is slightly weaker.

5.1 Comparison of discharge time series with existing
data sets

We compare the SAEM discharge time series against four
existing data sets, namely the Remote Sensing-based Exten-
sion for the GRDC (RSEG) (Elmi et al., 2024), the data set
developed by Riggs et al. (2023), the global width-based
data set developed by Lin et al. (2023) (RSQ), and data
from ESA Climate Change Initiative (CCI) River Discharge
project (Gal et al., 2024) (hereafter simply CCI). The RSEG
data set includes monthly discharge time series for 3377
GRDC gauges worldwide, utilizing river water level estima-
tions from satellite altimetry observations, river width esti-
mations from satellite imagery applying the algorithm in-
troduced in Elmi and Tourian (2023), or a combination of
both in some gauges. Riggs et al. (2023) benefited from river
width observations from Landsat and Sentinel-2 satellites
and filled in the missing records at 2168 gauges worldwide.
The RSQ data set (Lin et al., 2023) includes 3078 gauges
globally, where river discharge was estimated using both the
Bayesian AMHG–Manning (BAM) algorithm and its geo-
morphologically enhanced variant (geoBAM). Finally, CCI
has developed parametric height-based rating curves for 46
gauges to extend the river discharge measurements. CCI aims
to create over 20-year climate data records of river discharge
for selected basins using satellite remote sensing (altime-
try and multispectral images) and supporting data. It also
serves as a proof of concept for a potential river discharge
essential climate variable (ECV) product to meet Global Cli-
mate Observing System requirements (for more informa-
tion visit https://climate.esa.int/en/projects/river-discharge/,
last access: 1 February 2025).

Figure 9 presents the results from the comparison of
SAEM with RSEG and Riggs et al. (2023). Between the
SAEM and RSEG data sets, there are 2259 gauges in com-
mon. We can divide these gauges into three categories based
on their input remote sensing data in RSEG: (1) 91 gauges
are based solely on height, (2) 1745 gauges are based solely
on width, and (3) 423 gauges use a combination of both
in the RSEG data set. The distribution of the RSEG (in
gray) gauges and the common gauges (in green) is shown
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Figure 6. Distribution of discharge gauges across different continents categorized based on data availability and discharge estimation status.
The outer rings represent the percentage of total discharge volume captured by each category, while the inner rings show the percentage
based on the number of gauges. Categories include gauges with successful discharge estimation (SAEM), rejected estimates, insufficient
water level data, and gauges with low mean daily discharge or insufficient data duration.

in Fig. 9a. To compare these common gauges with in situ
measurements, we first upscaled the SAEM time series to
a monthly timescale, as the RSEG data set provides only
monthly estimations. We then included only the periods
where at least 24 values were available for all three data
sources: SAEM, RSEG, and in situ. Finally, we ended up
with 938 gauges that met this condition. The CDF of the
KGE for these gauges from SAEM and RSEG data sets is
displayed in Fig. 9d. The results indicate a slightly better per-
formance of the SAEM data set for the common gauges, with
an average improvement of about 0.1 KGE. The slightly bet-
ter performance of the SAEM data set compared to RSEG

may be attributed to the superior sampling frequency of al-
timetry compared to satellite imagery, particularly in the
high-latitude regions, where cloud coverage often limits the
effectiveness of satellite imagery. Furthermore, as shown in
Fig. 9a, over 1100 gauges are included in the RSEG data set
that are not part of SAEM, particularly in Asia and Siberia.
This suggests that RSEG and SAEM can complement each
other, offering a more comprehensive data set with about
10 000 gauges for monitoring global river discharge.

With the data from Riggs et al. (2023), we have 1972
gauges (out of 2168) in common. The distribution of these
gauges is shown in Fig. 9b. All the input in Riggs et al.
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Figure 7. Comparison of estimated discharge from the SAEM data set with in situ discharge measurements across selected gauges from
various continents and data centers. For cases 1 to 11, where simultaneous data were available, the time series plots are shown alongside
scatterplots and their corresponding correlation coefficients (displayed to the right of each time series plot). For cases without simultaneous
data between SAEM and gauged discharge (cases 12, 13, and 14), the monthly means are compared. It should be noted that in the scatterplots,
the values are normalized by the maximum discharge value among the simultaneous gauge and SAEM data sets.

(2023) is based on the width estimation from satellite im-
agery (Landsat and Sentinel-2). To conduct the comparison,
we utilized the width-based discharge time series estimated
by Riggs et al. (2023). First, we upscaled both data sets to a
monthly scale. We then selected gauges that had at least 24
values across all three data sets: Riggs et al. (2023), SAEM,
and in situ measurements. Three metrics – namely correla-
tion coefficient, NRMSE, and KGE values – were calculated
for these gauges, resulting in a final set of 1362 gauges. The
CDF of the KGE for these 1362 gauges, comparing Riggs
et al. (2023) with in situ data and SAEM with in situ data, is
displayed in Fig. 9e. Overall, SAEM demonstrates a slightly
better performance, with an average improvement of approx-

imately 0.15 KGE (∼ 0.15 Corr and ∼ 5 % NRMSE). This
improvement can be attributed to SAEM’s use of altimetry
data, which offer more representative measurements with a
better sampling compared to satellite imagery, particularly in
regions where cloud cover impedes satellite measurements.

Among the 3078 gauges in the RSQ data set, 1580 are
in common with the SAEM data set, as shown in orange in
Fig. 9c. It is important to note that discrepancies in gauge
naming systems affected the matching process for approxi-
mately 1000 stations, making it difficult to identify common
gauges based solely on their coordinates. Therefore, only
gauges with matching names in both RSQ and SAEM data
sets were included in the comparison. Both data sets were
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Figure 8. Global performance of the SAEM discharge estimates compared to in situ measurements. Panels (a)–(c) display the spatial distri-
bution of the Kling–Gupta efficiency (KGE), correlation coefficients (Corr.), and normalized root mean square error (NRMSE) for gauges
with simultaneous data. Panel (d) shows a scatterplot of mean daily discharge versus KGE. Panels (e)–(f) present cumulative distribution
functions (CDFs) for KGE, Corr., and NRMSE, illustrating the overall accuracy and reliability of the SAEM dataset across different regions.

first upscaled to a monthly scale. For approximately 800 of
these common gauges, at least 24 simultaneous data points
were available from SAEM, RSQ (BAM and geoBAM), and
in situ observations, enabling a direct comparison of dis-
charge estimates. The CDF of the KGE values for these 800
gauges, comparing RSQ with in situ data and SAEM with
in situ data, is displayed in Fig. 9f. Overall, SAEM demon-
strates better performance, with an average improvement of
approximately 0.15 in KGE compared to RSQ-geoBAM (and
0.35 compared to RSQ-BAM). This improvement is pri-
marily attributed to a reduction in bias, as evidenced by a
20 % improvement in NRMSE for RSQ-geoBAM (∼ 60 %
for BAM), while the improvement in correlation was negli-
gible. The better performance of SAEM compared to RSQ
(both BAM and geoBAM) can similarly be attributed to its
use of altimetry data, which provide more representative and
reliable measurements with improved sampling, particularly
in regions with persistent cloud cover that limits the effec-
tiveness of satellite imagery. Notably, geoBAM outperforms
BAM slightly, consistent with findings in Lin et al. (2023).

Due to the thorough care given to obtaining rating curves
and river discharge time series within the CCI project (Gal

et al., 2024), we use its results as a benchmark for the quality
assurance of our product. Out of 46 gauges in CCI, 36 gauges
are in common with SAEM. Overall, our results agree well
with those of CCI. Figure 10 illustrates the comparison be-
tween the SAEM data set and the CCI project for the gauge
1134900 of GRDC over the Niger River. The bottom-left plot
compares the water level time series from the four mission
series in SAEM with those from the CCI River Discharge
project. The scatterplot in the bottom right shows a strong
correlation between the water levels in SAEM and CCI. This
high correlation is because, for most of the time series, both
data sets have used similar water level measurements to gen-
erate their respective discharge estimates.

The top-left plot compares discharge time series from four
mission series in SAEM with those obtained from the CCI
project and in situ measurements. The SAEM data include
contributions of water level from Sentinel-3A (DAHITI),
Sentinel-3B (Hydroweb), Envisat (DAHITI), and TOPEX/-
Jason (Hydroweb). The CCI, on the other hand, relies primar-
ily on hand-processed time series using the AlTiS software,
particularly for Niger time series. The gauged discharge is
also shown in green but only covers till 2001. The discharge
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Figure 9. Comparison of the developed SAEM data set with three existing data sets: RSEG, the data set from Riggs et al. (2023), and RSQ.
(a) Spatial distribution of the gauges in RSEG in gray and the gauges common with SAEM in green. (b) Same as (a) but between SAEM
and Riggs et al. (2023). (c) Same as (a) but between SAEM and RSQ. (d) CDF of the KGE values for the common gauges between SAEM
and RSEG with simultaneous in situ data. (e) Same as (c) but between SAEM and Riggs et al. (2023). (f) Same as (c) but between SAEM
and RSQ.

time series from both SAEM and CCI exhibit similar pat-
terns. As shown in the top-left plot with bar plots, the abso-
lute difference between CCI and SAEM is, on average, below
80 m3 s−1 (∼ 3 % of the range of discharge), with the maxi-
mum difference observed in the Sentinel-3A and Sentinel-3B
series and the minimum difference in the TOPEX/Jason se-
ries. In the top-right plot, the rating curves derived from each
of these time series are compared. SAEM uses a nonpara-
metric approach proposed by Elmi et al. (2021), whereas the
CCI employs a parametric approach and uses a global opti-
mization algorithm based on the Markov chain Monte Carlo
and Bayesian framework proposed by Paris et al. (2016) to
develop the rating curves. The nonparametric quantile map-
ping functions from SAEM align well with the rating curves
from CCI.

5.2 Applications

The products in the SAEM data set can be used in various
applications in water resource management, monitoring, and
climate change studies. For example, the rating curves pro-
duced by this study can be used together with operational
satellite altimetry missions (Sentinel-3 and Sentinel-6MF)
to improve access to near-real-time (NRT) discharge esti-
mates. Moreover, SAEM discharge estimates with high ac-
curacy (high KGE and very low RMSE) can serve as prior
estimates for the SWOT satellite mission, which aims to pro-
vide global discharge estimates. In SAEM, we provide a cat-
alog for each gauge that includes information such as the
distance to the gauge, availability of water level data in the
Level-3 databases, and a flag indicating its contribution to the
final discharge estimates. Such information can be used fur-
ther for optimizing the calibration and validation processes
of hydrological models, enhancing the quality of predictive
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Figure 10. Comparison of discharge and water level time series between SAEM and the CCI project for the Niger River. (a) Discharge time
series from SAEM’s four mission series and CCI, alongside in situ measurements, with the (CCI – SAEM) difference shown for each orbit
family in the top with bar plot. (b) Rating curves were derived from each time series using nonparametric (SAEM) and parametric (CCI)
approaches. (c) Water level time series from SAEM and CCI, with the shaded region representing the uncertainty of discharge for the SAEM
rating curves. (d) Scatterplot showing the correlation between water levels in SAEM and CCI data sets. The consistency across data sets
highlights the reliability of satellite-derived measurements for river discharge estimation.

analytics, and guiding targeted maintenance or upgrades to
existing monitoring infrastructure.

For many applications, such as drought characterization, a
continuous data set over a long period (more than 30 years)
is needed. SAEM includes extended discharge estimates for
354 gauges, which feature at least 30 years of data and gaps
of less than 3 years from 1991 to 2020 and have estimated
discharge for all months of the year 2021 over the continen-
tal United States (CONUS). Here, we use these gauges to ex-
plore climate change through continuous gauge records. Fig-
ure 11 shows the deviation of the mean annual discharge in
2021 from the mean annual discharge calculated for 1991–
2020 at the selected gauges. To better understand the re-
sults, we categorized the deviations into five groups: dis-
charge conditions for 2021 are classified as much below nor-
mal if they fall below the 10th percentile, below normal if
they are between the 10th and 25th percentiles, normal if
they fall between the 25th and 75th percentiles, above nor-
mal if they are between the 75th and 90th percentiles, and
much above normal if they are at or above the 90th per-
centile. The percentiles are calculated from the long-term an-
nual discharge time series (1991–2020). The analysis of 354
gauges across the CONUS for 2021 reveals diverse hydrolog-
ical responses to climate variability. Over half of the gauges
(about 55 %) showed normal discharge levels, indicating that

many regions maintained hydrological stability in 2021 com-
pared to the past 3 decades. However, approximately 15 % of
gauges fell into the much below normal category, and an-
other 18 % were below normal, pointing to significant areas
with lower-than-average water availability – likely linked to
drought or reduced water supply. Conversely, about 8 % of
gauges recorded above normal discharge, and 5 % were much
above normal, suggesting increased rainfall or other factors
driving higher runoff in those areas.

5.3 Discussion

While the SAEM data set offers a comprehensive suite of
products, including estimated discharge, a catalog of altime-
try VS, rating curves, and water levels at VSs, it is important
to address the inherent limitations of satellite altimetry, par-
ticularly when applied to riverine environments. Altimetry
can be challenging over narrow rivers due to the difficulty
in accurately detecting and tracking the water surface within
the confines of the riverbanks (Calmant and Seyler, 2006).
Such a challenge is exacerbated during the summer months
when reduced water levels and increased vegetation can fur-
ther complicate signal retrieval. Additionally, the challenges
posed by ice-covered river surfaces and the difficulty in de-
riving reliable time series limit the availability of altimetric
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Figure 11. Geographic distribution of 2021 discharge deviations among 354 SAEM gauges across the continental United States, each with
at least 30 years of data and minimal gaps from 1991 to 2020, showing variations from much below normal to much above normal relative
to the historical average.

water level data at high latitudes, resulting in sparse cover-
age in these regions (Berry et al., 2005). Despite these chal-
lenges, the inclusion of a catalog of virtual stations in the
SAEM data set holds significant value. This catalog provides
a foundation for developing dedicated retracking algorithms
tailored to specific riverine conditions, potentially mitigat-
ing some of the limitations. By refining these algorithms, it
is possible to enhance the accuracy of water level measure-
ments and discharge estimates, thereby improving the utility
of satellite altimetry for hydrological studies and water re-
source management (Papa et al., 2010b).

Another significant limitation of satellite altimetry is its
temporal sampling. Satellite altimetry missions often provide
coarse-sample measurements in time, which can be insuf-
ficient for capturing the dynamics of river discharge, espe-
cially during rapid hydrological events. Densification algo-
rithms, as demonstrated by Tourian et al. (2016), Boergens
et al. (2019), and Nielsen et al. (2022), can partially mitigate
this limitation by improving the temporal resolution of dis-
charge estimates. However, capturing rapid events on the or-
der of a few days remains challenging, as this would require
sampling frequencies significantly higher than those achiev-
able by current satellite altimetry missions (Cerbelaud et al.,
2024). Despite this, integrating densification methods with
the SAEM data set still provides a valuable pathway for gen-
erating dense discharge time series and addressing temporal
sampling limitations for broader hydrological applications.

Further, we acknowledge the assumption of stationarity
made in our discharge estimation method, which could lead
to extra uncertainty in discharge especially when simultane-
ous data of water level and discharge are not available. Such
an assumption implies that the statistical properties of the re-
lationship between water level and discharge do not change
over time, which may not always hold in dynamic river sys-

tems. Variations in climatic conditions, land use, and river
morphology can all influence this relationship, potentially in-
troducing errors into our discharge estimates (Tourian et al.,
2013). Recognizing this limitation is crucial for interpreting
our results and underscores the need for developing more ro-
bust methods that can account for nonstationary conditions
in hydrological studies. Future research should focus on in-
corporating adaptive algorithms and additional environmen-
tal variables to improve the accuracy and reliability of dis-
charge estimations.

While the nonparametric method for discharge estimation
faces challenges related to stationarity, it offers a useful alter-
native to traditional parametric rating curve models. Paramet-
ric models, which are grounded in hydraulic principles, often
rely on predefined functional forms. While this ensures phys-
ical interpretability, such models may underfit when these
functional forms fail to capture the inherent variability and
complexity of river channels (Elmi et al., 2021; Kirchner,
2006). In an ideal scenario, modeling such behavior would
require a full-dimensional process representation based on
a comprehensive understanding of the processes, their het-
erogeneity, and their spatiotemporal dependencies. However,
this is rarely feasible in practice, and missing dimensions or
physics often lead to mismodeling that propagates and re-
duces the accuracy of parametric approaches for obtaining
rating curves (Gharari and Razavi, 2018). In contrast, the
nonparametric method, used in this study, offers greater flex-
ibility by allowing the data itself to define the relationship
between water levels and discharge. This adaptability can re-
sult in more accurate and reliable estimations, particularly
in capturing localized and complex dynamics (Elmi et al.,
2021). However, nonparametric methods are not without lim-
itations. They can be prone to overfitting, especially in the
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presence of localized anomalies or when working with low-
quality input data.

6 Data availability

The SAEM data set is openly available on DaRUS, the data
repository of the University of Stuttgart (Saemian et al.,
2024, https://doi.org/10.18419/darus-4475). The following
gauge databases are publicly accessible: ArcticNet (https:
//www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html, Arc-
ticNET, 2021), the Australian Bureau of Meteorology
(https://www.bom.gov.au/waterdata/, Australian Bureau
of Meteorology, 2021), the Chilean Center for Climate
and Resilience Research (https://explorador.cr2.cl/,
Chile Center for Climate and Resilience Research,
2021), the Canadian National Water Data Archive
(https://www.canada.ca/en/environment-climate-change/
services/water-overview/quantity/monitoring/survey/
data-products-services/national-archive-hydat.html, Canada
National Water Data Archive, 2021), the Brazilian Na-
tional Water Agency (https://www.snirh.gov.br/hidroweb/
serieshistoricas, Brazil National Water Agency, 2021), the
Global Runoff Data Centre (https://portal.grdc.bafg.de/
applications/public.html?publicuser=PublicUser, GRDC,
2021), the India Water Resources Information System
(https://indiawris.gov.in/wris/#/RiverMonitoring, India-
WRIS, 2021), the Spanish Anuario de Aforos (http:
//datos.gob.es/es/catalogo/e00125801-anuario-de-aforos/
resource/4836b826-e7fd-4a41-950c-89b4eaea0279, Spain
Anuario de Aforos, 2021), the Thai Royal Irrigation De-
partment (http://hydro.iis.u-tokyo.ac.jp/GAME-T/GAIN-T/
routine/rid-river/disc_d.html, Thailand Royal Irrigation
Department, 2021), the Japanese Water Information
System (https://www.mlit.go.jp/en/, Japanese Water Infor-
mation System, 2021), and the U.S. Geological Survey
(https://waterdata.usgs.gov/nwis/rt, U.S. Geological Survey,
2021). The Chinese Hydrology Project data are not publicly
available and were provided by the authors of the data set
(Henck et al., 2010; Schmidt et al., 2011).

In our research, we utilized Level-3 databases of
water levels sourced from several key repositories.
The databases were acquired from Hydroweb.Next
operated by CNES, which provided 24 042 virtual sta-
tions (VSs) (see https://hydroweb.next.theia-land.fr/,
LEGOS/CTOH and CNES, 2025); DAHITI man-
aged by Deutsches Geodätisches Forschungsinsti-
tut (DGFI), contributing 9968 VSs (available at
https://dahiti.dgfi.tum.de/en/products/water-level-altimetry/,
DGFI-TUM, 2025); HydroSat from the Institute of Geodesy
at the University of Stuttgart, offering 2036 VSs (accessible
via https://hydrosat.gis.uni-stuttgart.de/php/index.php, Insti-
tute of Geodesy, University of Stuttgart, 2025); and GRRATS
supported by Copernicus, European Commission, ESA,
USGS, and Amazon Web Services, providing 1869 VSs (de-

tails at https://doi.org/10.5067/PSGRA-SA2V2, NASA JPL
PO.DAAC, 2025). Additionally, the Congo basin database,
described in Kitambo et al. (2022), contributed 1272 VSs
(found at https://doi.org/10.5194/hess-26-1857-2022).

7 Conclusions

River discharge serves as a vital metric, capturing the volume
of water passing through a river cross-section at any given
moment. However, existing river discharge data sets face sev-
eral challenges, particularly due to the decreasing number of
operational gauges. To address that, we have developed the
Satellite Altimetry-based Extension of global-scale in situ
river discharge Measurements (SAEM v1.1). We have as-
sessed 47 000 gauges worldwide and obtained discharge es-
timates for 8730 gauges, more than the existing data sets. In
the following, we summarize the benefits of the SAEM data
set:

1. SAEM utilizes the multi-satellite altimetry missions and
estimates the discharge using the existing global net-
work of national and international gauges.

2. In addition to providing extended river discharge mea-
surements and their uncertainties, SAEM delivers a cat-
alog of virtual stations (VSs) for each gauge. This cat-
alog forms the backbone of the SAEM data set. The
catalog, along with the gauge coordinates, provides in-
formation about the VSs around each gauge, including
their satellite mission, track number, distance to the dis-
charge gauge, and a flag indicating whether the VS is
used for estimating discharge.

3. Furthermore, SAEM includes water level time series
generated specifically for this study, as well as the ID
and information of water level time series from Level-
3 databases. The Level-3 data are sourced from pre-
existing databases (more than 40 000 VSs) including
Hydroweb, the Database of Hydrological Time Series
of Inland Waters (DAHITI), the Global River Radar Al-
timetry Time Series (GRRATS), HydroSat, and the data
set developed by Kitambo et al. (2022).

4. The transformation of water level time series into
discharge data is modeled through rating curves, de-
rived using a nonparametric stochastic quantile map-
ping function approach developed by Elmi et al. (2021).
SAEM delivers rating curves (∼ 22 700 rating curves)
for a selected set of VSs, tailored for each VS and mis-
sion separately.
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Validation against the in situ data shows that the ma-
jority of the KGE values are positive with more than
40 % of the cases exhibiting KGE> 0.4, Corr.> 0.5, and
NRMSE< 15 %. We also assessed the estimated discharge
for each orbit family by comparing it with in situ obser-
vations. Based on KGE values, the best performance be-
longs to Sentinel-3A (median= 0.44), followed by the En-
visat series (median= 0.35), Sentinel-3B (median= 0.27),
and TOPEX/Jason series (median= 0.26). Furthermore, the
SAEM discharge time series are compared with three other
global-scale discharge data sets, RSEG, Riggs et al. (2023),
and RSQ, along with the CCI project. SAEM generally per-
forms similarly to or better than RSEG across 2085 com-
mon gauges and shows higher accuracy than Riggs et al.
(2023) (in 1926 out of 2168 shared gauges) and RSQ (in
∼ 800 out of 1580 shared gauges). The comparison with
CCI further highlights the reliability of SAEM’s nonpara-
metric approach, which effectively captures the water level–
discharge relationship. Looking ahead, with the advent of the
SWOT mission as a new tool for discharge estimates glob-
ally, SAEM has the potential to serve as a benchmark prod-
uct for globally assessing discharge estimates, particularly as
it continues to be extended and refined.

Appendix A

Figure A1. The timeline depicts satellite altimetry missions, highlighting operational (in green) and nonoperational (in red) periods.
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Figure A2. Comparison of SAEM discharge estimates with in situ measurements across four orbit families – Envisat series (En), TOPEX/-
Jason series (TPJs), Sentinel-3A (S3A), and Sentinel-3B (S3B) – evaluated using the Kling–Gupta efficiency (KGE), correlation coefficient
(Corr.), and normalized root mean square error (NRMSE).
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