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Abstract. We present a 14-year, 12 km, hourly air quality dataset (https://doi.org/10.5065/cfya-4g50, Kumar
and He, 2023) created by assimilating satellite observations of aerosol optical depth (AOD) and carbon monox-
ide (CO) in an air quality model to fill gaps in the contiguous United States (CONUS) air quality monitoring
network and help air quality managers understand long-term changes in county-level air quality. Specifically,
we assimilate the Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and the Measurement of
Pollution in the Troposphere (MOPITT) CO observations in the Community Multiscale Air Quality Model
(CMAQ) every day from 1 January 2005 to 31 December 2018 to produce this dataset. Meteorological fields
simulated with the Weather Research and Forecasting (WRF) model are used to drive CMAQ offline and to gen-
erate meteorology-dependent anthropogenic emissions. Both the weather and air quality (surface fine particulate
matter (PM2.5) and ozone) simulations are subjected to a comprehensive evaluation against multi-platform ob-
servations to establish the credibility of our dataset and characterize its uncertainties. We show that our dataset
captures regional hourly, seasonal, and interannual variability in meteorology very well across the CONUS. The
correlation coefficient between the observed and simulated surface ozone and PM2.5 concentrations for different
regions defined by the Environmental Protection Agency (EPA) across the CONUS are 0.77–0.91 and 0.49–0.79,
respectively. The mean bias and root-mean-square error for modeled ozone are 3.7–6.8 and 7–9 ppbv, respec-
tively, while the corresponding values for PM2.5 are−0.9–5.6 and 3.0–8.3 µg m−3, respectively. We estimate that
the annual CONUS-averaged maximum daily 8 h average (MDA8) ozone and PM2.5 trends are −0.30 ppb yr−1

and−0.24 µg m−3 yr−1, respectively. Wintertime MDA8 ozone shows an increasing but statistically insignificant
trend at several sites. We also found a decreasing trend in the 95th percentile of MDA8 ozone but an increasing
trend in the 5th percentile. Most of the sites in the Pacific Northwest show an increasing but statistically insignif-
icant trend during summer. An ArcGIS air quality dashboard has been developed to enable easy visualization
and interpretation of county-level air quality measures and trends by stakeholders, and a Python-based Stream-
lit application has been developed to allow the download of the air quality data in simplified text and graphic
formats.
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1 Introduction

Air quality is one of the most important global environmental
concerns, as almost the entire global population (99 %) is es-
timated to breathe air that exceeds the air quality guidelines
defined by the World Health Organization (WHO, 2023).
Exposure to ambient air pollution causes about 4.2 million
premature mortalities every year (WHO, 2020). Air qual-
ity has improved substantially over the past 2 decades in
the US, with Environmental Protection Agency (EPA) obser-
vations showing that maximum daily 8 h average (MDA8)
surface ozone levels have decreased by 29 % over the pe-
riod from 1980 to 2021, and annual average concentra-
tions of particulate matter with an aerodynamic diameter
smaller than 2.5 µm (PM2.5) have decreased by 37 % over the
period from 2000 to 2021 (https://www.epa.gov/air-trends/
air-quality-national-summary, last access: 28 April 2025).
However, air pollution continues to violate the National Am-
bient Air Quality Standards (NAAQS) in many parts of the
US, such as the Colorado Front Range, California, the north-
eastern US, and nearly all of the national parks. A recent
study reported that 97 % of US national parks suffer from
significant or unsatisfactory levels of harm from air pollution
(Orozco et al., 2024). Poor air quality is reported to cause
about 160 000 premature deaths in the US, with a total eco-
nomic loss of about USD 175 billion (Im et al., 2018). Expo-
sure to air pollution levels even below the EPA NAAQS can
adversely affect human health (Di et al., 2017). To mitigate
the risks associated with air pollution and how air quality is
responding to emission control policies, it is, therefore, im-
perative to quantify past changes in air quality.

Numerous studies have revealed several key features of
long-term changes in surface ozone and PM2.5 over the US
using long-term observations from the EPA monitoring net-
works. First, both urban and rural sites in the eastern US
show negative ozone trends during the summer season (But-
ler et al., 2011; Cooper et al., 2012), but lower ozone levels at
some sites have an increasing trend during winter and early
spring (Bloomer et al., 2010; Cooper et al., 2012; Simon et
al., 2015). Second, surface and free-tropospheric ozone show
positive trends in all seasons at rural and remote sites in the
western US (Jaffe and Ray, 2007; Cooper et al., 2012). Third,
increasing ozone is observed in the inflow to the US west
coast (Jaffe et al., 2003), over the North Pacific (Parrish et
al., 2004), and in the west coast marine boundary layer (Par-
rish et al., 2009). The Tropospheric Ozone Assessment Re-
port (TOAR) showed that summertime surface ozone con-
tinues to decrease over the US, but the trend is less certain
at the urban sites (Chang et al., 2017; Fleming et al., 2018).
Similar regional and seasonal differences in the long-term
trends are also seen in PM2.5 and its components. For exam-
ple, carbonaceous aerosols (organic and black carbon) show
a widespread decrease over the period from 1990 to 2010
across the US in winter and spring and show positive but in-
significant trends over the western US (Hand et al., 2013).

PM2.5 levels continue to decrease over the majority of the
US except in the wildfire-prone areas (McClure and Jaffe,
2018).

In addition to the observation-based trend analysis, chem-
ical transport model (CTM) simulations have been employed
to interpret the observed trends. For example, the increase in
lower ozone values can be attributed to the increase in Asian
emissions from 1980 to 1995 (Fiore et al., 2002). The an-
thropogenic emissions and natural variability were found to
have competing effects on surface ozone over much of the
US over 1980–2005 (Pozzoli et al., 2011). Another study re-
produced negative summertime ozone trends over the east-
ern US but underestimated the positive trends in the west-
ern US, likely due to underestimation of Asian emission
trends or trans-Pacific transport or changes in stratosphere–
troposphere exchange (Koumoutsaris and Bey, 2012). Lin et
al. (2017) quantified the contributions of rising Asian emis-
sions, domestic US emission controls, wildfires, and climate
to changes in surface ozone from 1980 to 2014. Several
studies have also quantified the contributions of wildfires
to PM2.5 trends in the US (Xie et al., 2020; Burke et al.,
2023). While global models captured most of the observed
variability and trends in summertime ozone, the use of high-
resolution regional models is recommended to reproduce in-
terannual variability in winter and spring in the western US
(Strode et al., 2015).

Apart from the interpretation of observed trends, the
CTMs also provide information in areas with no observa-
tions. However, CTM simulations suffer from both system-
atic (i.e., biases) and random errors due to a number of fac-
tors, including numerical approximations, inadequate under-
standing of some processes that control the spatial and tem-
poral distribution of air pollutants, inaccuracies in the ini-
tialization of the physical and chemical atmospheric state,
and uncertainties in the emission inventories. While contin-
uous efforts are being made to improve the representation of
processes controlling PM2.5 and ozone (Appel et al., 2010,
2013, 2017; Nolte et al., 2015; Fahey et al., 2017) and emis-
sion inventories are updated by the EPA every 3 years, recent
developments have shown that the assimilation of the Na-
tional Aeronautics and Space Administration (NASA) satel-
lite retrievals of atmospheric composition in CTMs can sig-
nificantly improve air quality simulations (Gaubert et al.,
2016; Kumar et al., 2019; Liu et al., 2011; Pagowski et al.,
2014; Saide et al., 2013). NASA satellite retrievals of at-
mospheric constituents with a far greater spatial coverage
compared to ground-based monitoring networks presents a
unique opportunity to develop long-term high-resolution air
quality reanalysis, which can be useful for quantifying air
quality changes in unmonitored areas and assessing the im-
pacts of changes in air quality on human health and ecosys-
tems.

This paper describes the methodology and evaluation of
a long-term high-resolution regional air quality reanalysis
generated over the CONUS from 2005 to 2018 by assimi-
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lating the Moderate Resolution Imaging Spectroradiometer
(MODIS) aerosol optical depth (AOD) and the Measurement
of Pollution in the Troposphere (MOPITT) carbon monoxide
(CO) retrievals daily in the Community Multiscale Air Qual-
ity (CMAQ) model. Our regional reanalysis is based on the
3-D variational (3D-Var) approach, which is different from
the 4-D variational (4D-Var) approach (Inness et al., 2019)
and ensemble Kalman filter (EnKF) approaches (Gaubert et
al., 2017; Miyazaki et al., 2020; Kong et al., 2021) used in
recent long-term global and regional air quality reanalysis.
Among these, 3D-Var is computationally the most efficient
approach, as it uses only a single model simulation, but its ac-
curacy can be limited by the assumption of a constant back-
ground error covariance matrix that both 4D-Var and EnKF
address. An air quality dashboard developed to enable the use
of this dataset by a variety of stakeholders is also described.

2 Methodology

2.1 The chemical transport model

The CMAQ model (version 5.3.2) driven offline by the
Weather Research and Forecasting (WRF) model (version
4.1) is used to simulate air quality over the CONUS from
1 January 2005 to 31 December 2018. We employ the
“cb6r3_ae7_aq” chemical mechanism that uses Carbon Bond
6 version r3 for gas-phase chemistry and the AERO7 aerosol
module for representing aerosol processes, including sec-
ondary organic aerosols (Appel et al., 2021). Both the
WRF and CMAQ models use a horizontal grid spacing of
12× 12 km2, with the WRF (CMAQ) grid using 481 (442),
369 (265), and 36 (35) grid points in the longitudinal, latitu-
dinal, and vertical directions, respectively. The model top is
set to 50 hPa for both the models. The meteorological initial
and boundary conditions for WRF are based on the 6-hourly
ERA-Interim analyses at a grid spacing of 0.7°× 0.7°. We
follow Appel et al. (2017) for physical parameterizations,
4-D data assimilation, and soil moisture nudging settings in
WRF.

Emissions from several anthropogenic emissions sectors,
such as residential wood combustion, agricultural emis-
sions from livestock and fertilizer applications, and mobile
sources, depend on meteorological conditions. For exam-
ple, ambient temperature affects the heating demand, impacts
the volatilization of emissions from fertilizer use, drives air-
conditioning use, etc. The Sparse Matrix Operator Kernel
Emissions (SMOKE) modeling system allows us to simu-
late these relationships. To be consistent in the use of me-
teorological fields for both emission processing and driving
CMAQ, we generate meteorology-dependent anthropogenic
emissions for the EPA National Emissions Inventory (NEI)
base years of 2011, 2014, and 2017 by feeding the WRF
meteorological fields to SMOKE. The emissions for 2005–
2010 are derived by applying EPA-reported annual state-
wise trends to the NEIv2 2011 emissions. While NEI emis-

sions are available for 2005 and 2008, the emission process-
ing platform for 2005 and 2008 does not process emissions
for the “cb6r3_ae7_aq” chemical mechanism of CMAQ used
here. Similarly, NEIv2 2014 emissions are used to derive
emissions for 2012 and 2013, and the NEIv1 2017 emissions
are used to derive anthropogenic emissions for the rest of the
years. Fire emissions in CMAQ are represented using the Fire
Inventory from NCAR (FINN; version 2.2), which provides
daily varying global fire emissions at a 1× 1 km2 resolution
(Wiedinmyer et al., 2023). FINN emissions are processed
through SMOKE to enable the inline plume rise of fire emis-
sions within CMAQ. Biogenic emissions are calculated on-
line within the model using the Biogenic Emission Inventory
System (BEIS). The chemical boundary conditions are based
on 6-hourly Whole Atmosphere Community Climate Model
(WACCM) simulations (Marsh et al., 2013; Gettelman et al.,
2019). The WACCM output is mapped onto CMAQ grids us-
ing the Initial Conditions Processor (ICON) and Boundary
Conditions Processor (BCON).

2.2 Data assimilation system

We have used the 3-D variational (3D-Var) capability of the
community Gridpoint Statistical Interpolation (GSI) system
(version 3.5) to assimilate the Level-2 MODIS AOD re-
trievals and the Level-2 MOPITT CO retrievals in CMAQ.
The MODIS AOD assimilation framework is the same as
we developed previously (Kumar et al., 2019), and the MO-
PITT CO assimilation capability has been developed in this
work. We use total aerosol mass per mode (Aitken, accumu-
lation, and coarse) and CO mixing ratios as the control vari-
ables in GSI. The state variables include individual aerosol
components, total aerosol mass per mode, CO mixing ratios,
meteorological variables (temperature, pressure, and relative
humidity), and the CMAQ vertical grid. Daily MODIS and
MOPITT retrievals are converted into a format compatible
with GSI input modules.

A climatological background error covariance (BEC) ma-
trix is generated separately for winter (January) and sum-
mer (July) conditions using the GEN_BE tool, which reads
two different WRF-CMAQ runs driven by different meteo-
rological and emission inputs but valid at the satellite over-
pass time. As there are multiple overpasses of the Terra
and Aqua satellites that host the MOPITT and MODIS sen-
sors, we calculate the BEC at 15:00, 18:00, and 21:00Z.
The winter BEC is used when assimilating satellite retrievals
from November through March, whereas the summer BEC
is used for the rest of the months. Our BEC design considers
the uncertainties in meteorology, anthropogenic emissions,
and biomass burning emissions. Meteorological uncertain-
ties are represented by using two different sets of physical
parameterizations (Table A1) in two WRF runs to capture
errors in meteorology related to assumptions used in phys-
ical parameterizations. Species-dependent perturbation fac-
tors for anthropogenic and biomass burning emissions are
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estimated by comparing a number of available global/re-
gional anthropogenic and biomass burning emission inven-
tories over the CONUS (Tables A2 and A3.3). Among the
two WRF-CMAQ runs fed to GEN_BE for BEC estimation,
we used the default emissions in the first run and perturbed
the emissions in the second run. The BEC was then estimated
in terms of variances and length scales (both horizontal and
vertical) for total aerosol mass per mode and CO, and it was
used in GSI. We refer the reader to Kumar et al. (2019) for a
description of BEC parameters.

We have assimilated standard Level-2 Collection 6.1
MODIS AOD and version 8 MOPITT CO retrievals based
on the multispectral (thermal and near-infrared) algorithm
in CMAQ. This multispectral product is more sensitive to
near-surface CO over land compared to the thermal-infrared-
only retrievals. MOPITT retrievals agree with in situ mea-
surements within ±5 % at all vertical levels (Deeter et al.,
2019). The observation errors for MODIS AOD retrievals
are specified as (0.03+ 0.05 ·AOD) and (0.05+ 0.15 ·AOD)
over the ocean and the land, respectively (Remer et al., 2005).
The observation errors for CO profiles are used as reported
in the MOPITT retrieval product. A simple forward operator
and its adjoint based on the parameterization of Malm and
Hand (2007) is used to convert the CMAQ aerosol chemical
composition into AOD for a direct comparison with MODIS
AOD retrievals as described in Kumar et al. (2019). The for-
ward operator and its adjoint for MOPITT CO assimilation
are developed in this study and described in Appendix A1.

2.3 Reanalysis production workflow

Daily analyses of 3-D fields of aerosols and CO based on
the assimilation of MODIS AOD and MOPITT CO retrievals
in CMAQ using the GSI system has been performed us-
ing the workflow shown in Fig. 1. The first CMAQ simu-
lation on 1 January 2005 is initialized using the global model
simulations from WACCM, and all subsequent simulations
until 31 December 2018 are initialized from the previous
CMAQ simulations. Every day, we perform nine simulations
following the availability of new satellite observations ev-
ery 3 h owing to difference between Terra and Aqua over-
pass times. The first simulation runs CMAQ from 00:00 to
15:00Z, the second simulation assimilates MODIS Terra and
Aqua AOD retrievals at 15:00Z, and the third simulation as-
similates MOPITT CO retrievals at 15:00Z. The fourth sim-
ulation advances CMAQ from 15:00 to 18:00Z, with the fifth
and sixth simulations assimilating MODIS AOD and MO-
PITT CO at 18:00Z, respectively. The seventh simulation
advances CMAQ from 18:00 to 21:00Z, the eighth simu-
lation assimilates MODIS Aqua AOD retrievals at 21:00Z,
and the ninth simulation advances CMAQ from 21:00 to
00:00Z of the next day. This resulted in a total of 46 152
jobs being submitted to the NCAR Cheyenne supercomputer
(https://arc.ucar.edu/knowledge_base/70549542, last access:

28 April 2025). An automated script was developed to submit
and track successful completion of these jobs.

The assimilation times of 15:00, 18:00, and 21:00Z were
determined based on the analysis of overpass times of Terra
and Aqua satellites, which pass over the CONUS between
13:30 and 22:30Z. All of the satellite retrievals belonging to
a 3 h window are assumed to be available for assimilation at
the center of that window. For example, all of the satellite re-
trievals between 13:30 and 16:30Z are assimilated at 15:00Z.

Our previous work has shown that the assimilation of
MODIS AOD in CMAQ improved the correlation coeffi-
cient between CMAQ-simulated and independently observed
PM2.5 by ∼ 67 % and reduced the mean bias by ∼ 38 % over
the CONUS during July 2014. To understand whether GSI
pushes CMAQ towards MOPITT, we performed and com-
pared 1 month (July 2018) of CMAQ experiments with and
without assimilation of MOPITT CO profiles. We find that
the assimilation of MOPITT CO profiles substantially im-
proves the correlation coefficient and reduces the errors (both
mean bias and root-mean-square error) between CMAQ and
MOPITT CO at all of the pressure levels except at 100 hPa,
where the MOPITT sensitivity is the lowest (Appendix A2,
Fig. A1). This simple test confirms the ability of GSI to con-
strain the performance of CMAQ with satellite observations.
Other trace gas species (e.g., ozone and OH) are not affected
directly by the assimilation of AOD and CO, but the impact
of assimilation indirectly affects these species through pho-
tochemical processes in the model. For example, we found
instantaneous changes in surface ozone in the range of −1.3
to 3.2 ppbv, but monthly average changes are within the range
of ±0.3 ppbv during July 2018.

2.4 Output frequency and optimization

The production of a chemical reanalysis also poses the chal-
lenge of storing the model output. As our chemical reanalysis
focuses on air quality applications, we saved all of the chem-
ical variables together with relevant meteorological parame-
ters (2 m temperature and relative humidity, 10 m wind speed
and direction, planetary boundary layer height, precipitation,
and downward-reaching solar radiation) and deposition (both
dry and wet) fluxes every hour at the surface. The total size
of this output is 12 TB.

3 Ground-based observations and the trend
calculation method

We have obtained and processed hourly in situ measure-
ments of 2 m temperature (T2), 2 m relative humidity (RH),
10 m wind speed (WS10), 10 m wind direction (WD10), and
surface pressure from the METeorological Aerodrome Re-
ports (METAR) network, which is distributed by the Na-
tional Centers for Environmental Prediction’s Meteorolog-
ical Assimilation Data Ingest System (MADIS). METAR
data are surface weather observations and consist of mete-
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Figure 1. Architecture of the daily CMAQ- and GSI-based chemical data assimilation workflow.

orological data from airports (Automated Surface Observ-
ing Systems) and other permanent weather stations (Au-
tomated Weather Observing Systems) located throughout
the US. We used the Level-3 quality-controlled METAR
data over the CONUS to evaluate our modeled meteoro-
logical fields (https://doi.org/10.5065/cfya-4g50, Kumar and
He, 2023). Daily precipitation data from the 0.1° Integrated
Multi-satellitE Retrievals for Global precipitation measure-
ments (IMERG; https://gpm.nasa.gov/data/imerg, last ac-
cess: 28 April 2025) dataset is used to evaluate WRF-
simulated precipitation.

To evaluate the modeled surface PM2.5 and ozone
concentrations, we have obtained hourly PM2.5 and ozone
observations from the EPA Air Quality System (AQS), which
currently measures PM2.5 and ozone at more than 1000 sites
across the US. The AQS data also contain values below the
method detection limit (MDL). The MDLs are different for
ozone and PM2.5 and also vary as a function of site and
instrument type. For consistency, we assume MDL values
of 5 ppb for ozone and 2 µg m−3 for PM2.5 for all sites. All
of the data below the MDL were replaced by MDL/2 (https:
//www3.epa.gov/ttnamti1/files/ambient/airtox/workbook/
AirtoxWkbk4Preparingdataforanalysis.pdf, last access:
28 April 2025; https://pubs.acs.org/doi/10.1021/es071301c,
last access: 28 April 2025). At sites for which two simultane-
ous measurements (corresponding to two instruments) were
available, the mean value was taken for further calculation.

The trend calculations were performed using both the ob-
served and modeled ozone and PM2.5 values. The monthly
mean time series of observed and modeled maximum
daily 8 h (MDA8) ozone and 24 h average PM2.5 dur-
ing 2005–2018 is calculated over all measurement sites.
The daily MDA8 ozone over a site is calculated using
the EPA’s defined methodology (https://www.govinfo.gov/
content/pkg/FR-2015-10-26/pdf/2015-26594.pdf, last ac-
cess: 28 April 2025, 168 pp.). For each day, 8 h running aver-
ages are taken from 07:00 to 23:00 LST (local standard time),

which constitutes 17 valid 8 h running mean values per day.
If an 8 h window has less than 6 h of data and the mean value
of the remaining hours is less than 70 ppb, the data for that
window are discarded. If a site has fewer than 13 valid 8 h
mean values or the maximum value of the available 8 h aver-
age is less than 70 ppb, the value for that day is discarded.
For PM2.5, a daily 24 h average value is calculated in lo-
cal standard time only if at least 18 h of valid data per day
are available. Furthermore, we discarded (1) all sites with
< 50 % data per month, (2) all sites with < 50 % data during
each year, and (3) all sites for which the number of years with
≥ 50 % data was < 10 during 2005–2018. The number of
valid sites fulfilling the above criteria over the CONUS is es-
timated to be 1012 and 369 for MDA8 ozone and 24 h PM2.5,
respectively. Daily values of MDA8 ozone and 24 h PM2.5
are used to calculate the monthly 5th percentile, 50th per-
centile, 95th percentile, and mean time series during 2005–
2018 at each valid site. A similar criterion for the seasonal
mean and for the 5th, 50th, and 95th percentile time series
was also used. The number of valid sites reached a maximum
(1010 and 357 for MDA8 O3 and 24 h PM2.5, respectively)
during summer season, whereas it reached a minimum (501
and 337 for MDA8 O3 and 24 h PM2.5, respectively) during
the winter season. These annual and seasonal MDA8 ozone
and PM2.5 time series are then used to estimate annual and
seasonal trends, and the significance of trend values are also
tested.

4 Results and discussion

4.1 Meteorological evaluation

The WRF simulations for the entire period (2005–2018) pro-
cessed using the Meteorology–Chemistry Interface Proces-
sor (MCIP) are co-located with METAR observations of T2,
RH, WS10, and WD10 in space and time, and paired val-
ues are used for evaluating the model. The evaluation is per-
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formed at a regional scale, following the EPA regional clas-
sification of the CONUS, in 10 regions (see Appendix A2,
Fig. A2). The number of METAR sites during 2005–2018
was 1290, and the maximum percentage of available hourly
data during the study period was 33 %–68 % over 10 EPA re-
gions. Region 8 has the fewest data (∼ 33 %–37%), and other
regions have 47 %–68 % data during 2005–2018. Monthly
regionally averaged model and METAR observations time
series are compared over 10 EPA regions for T2 (Fig. 2), RH
(Fig. 3), WS10 (Fig. 4), and WD10 (Fig. 5). Three statisti-
cal metrics, namely, the correlation coefficient (r), mean bias
(MB), and root-mean-square error (RMSE), for each region
are also listed in Figs. 2–5.

Monthly regionally averaged T2 between the model and
observations (Fig. 2) shows excellent correlations of 0.8–
1.0, low mean biases of −0.3 to 0.4 °C, and an RMSE rang-
ing from 2.0 to 5.7 °C over the 10 EPA regions. The model
also performed well (r = 0.7–0.9) with respect to simulat-
ing RH (Fig. 3) over 10 EPA regions, with mean biases
of 0.9 %–3.6 % and an RMSE of 12.5 %–16.3 %. As RH is
estimated as a ratio of vapor pressure to saturation pres-
sure (es) and es depends on T2, the biases in T2 also con-
tribute to the biases in RH. For example, EPA Region 6
shows the highest T2 RMSE and the highest RH RMSE.
The model reproduces the variations in surface pressure very
well (r = 1.0) with a slight underestimation (MB=−8.1 to
0.2 hPa; RMSE= 0.3–8.1 hPa). The slight underestimation
in pressure is seen in 8 out of 10 EPA regions, with the largest
MB in regions 9 (−8.1 hPa) and 10 (−7.4 hPa). The errors in
surface pressure (plot not shown) over these regions could
also contribute to biases in T2 and RH.

Prior to the 10 m wind speed comparison, model wind
speeds are assigned a “zero value” if the hourly wind speed
at any site is less than 0.51 m s−1 (1 knot). This step was
needed to make the model output consistent with the METAR
wind speed data, which treats such wind speeds as calm
winds and assigns them a zero value. Our model simulation
slightly overestimates (MB= 0.1–0.8 m s−1) WS10 (Fig. 4)
over most of EPA regions with the exception of Region 8
(MB=−0.1 m s−1). Wind direction (Fig. 5) biases (abso-
lute) over these regions were 34–58°. The correlation coef-
ficients for both WS10 and WD10 are slightly lower in re-
gions 8–10, likely due to the complex topography in these
regions. The correlation coefficients for the 10 m wind speed
were lower than those for temperature and relative humidity,
indicating a slightly poorer model performance for winds.
The WRF model is known to overpredict the 10 m wind
speed at low to moderate wind speeds in all available plane-
tary boundary layer (PBL) schemes (Mass and Ovens, 2010).
This shortcoming of the model has been partly attributed to
unresolved topographical features by the default surface drag
parameterization, which in turn influences surface drag and
friction velocity, and partly to the use of coarse horizontal
and vertical resolutions of the domain (Cheng and Steen-
burgh, 2005). The WRF model also captures the seasonally

averaged diurnal variations in T2, RH, and 10 m wind speed
very well, but it overestimates the wind speed, particularly at
night (see Appendix A2, Fig. A3).

As WRF and IMERG precipitation have different
resolutions, we first mapped the WRF-simulated pre-
cipitation from a 12 km× 12 km grid on a Lambert
conformal projection to the IMERG rectilinear grid
of 0.1°× 0.1° using the “rcm2rgrid” functionality of
the NCAR command language (https://www.ncl.ucar.edu/
Document/Functions/Built-in/rcm2rgrid.shtml, last access:
28 April 2025). The seasonal mean WRF-simulated and
IMERG-derived precipitation values are then compared over
four seasons during 2005–2018 (Fig. 6). The model is able to
capture the spatial patterns in precipitation in different sea-
sons, with an underestimation of −0.1 to −0.9 mm d−1. The
highest underestimation is observed during the winter sea-
son. The eastern CONUS showed an underestimation during
the winter, spring, and autumn seasons; however, over the
western US, the model mostly overestimated the precipita-
tion, especially in the mountainous regions (Rockies, Cas-
cades, and Sierra Nevada). The model also showed larger bi-
ases over the lakes and oceanic regions. Despite the biases,
this comprehensive evaluation shows that our model simu-
lations captured the key features of the regional and tempo-
ral variability in the key meteorological parameters over the
CONUS fairly well.

4.2 Air quality evaluation

Hourly regionally averaged observed and CMAQ-simulated
surface ozone and PM2.5 are compared for all of the EPA re-
gions in Figs. 7 and 8, respectively. In all of the regions, the
model captures the seasonal cycle in surface ozone, charac-
terized by a summertime peak, and the observed interannual
variability very well, with correlation coefficients of 0.77–
0.91. The model also overestimates the nighttime ozone lev-
els in all of the regions (see Appendix A2, Fig. A4), but a
larger overestimation is seen in regions 8 and 9. The mean
bias and RMSE in modeled ozone are very similar across the
regions, with values ranging from 3.7 to 6.8 and from 7.0
to 9.0 ppbv, respectively. The model shows a slightly poorer
skill with respect to capturing the variability in PM2.5 rela-
tive to ozone, as reflected by smaller r values of 0.49–0.79,
but it captures long-term trends in most of the regions rea-
sonably well. The mean bias and RMSE in modeled PM2.5
are estimated to be −0.9 to 5.6 and 3.0 to 8.3 µg m−3, re-
spectively. The largest underestimation of PM2.5 is seen in
Region 8, particularly from 2005 to 2012, while the largest
overestimation is seen in Region 2.

In addition to the regional evaluation, we also evaluated
the model performance for different land use types and loca-
tion settings (see Fig. A5 in Appendix A2 for a classification
of the number of sites in these categories). This categoriza-
tion information by land use and location type was not avail-
able for a very small number of sites; thus, these sites were
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Figure 2. Time series of monthly averaged 2 m temperature over 10 EPA regions (R1–R10) from the WRF-CMAQ setup (red) and METAR
observations (black) during 2005–2018. Orange and gray lines represent the standard deviation for WRF-CMAQ and METAR, respectively.
The correlation coefficient (r), mean bias (MB), and root-mean-square error (RMSE) for each region are also shown.

excluded from the analysis (sites classified as “NONE” in
Fig. A2). As maximum daily averaged 8 h (MDA8) ozone
and daily averaged PM2.5 are policy-relevant metrics, we fo-
cus on the evaluation of these parameters on a monthly aver-
aged scale for this evaluation. We evaluate the monthly me-
dian (50th percentile) and the 5th and 95th percentile time
series of MDA8 ozone and daily averaged PM2.5 for differ-
ent land use categories and location settings (Appendix A2,
Figs. A2.6–A2.11).

Among the rural sites, all land use categories showed the
highest biases for the 5th percentile, followed by the median
and 95th percentile for MDA8 ozone, except for the “Oth-
ers” category, for which the median showed the lowest bias.
For suburban and urban site types, the 95th percentile MDA8

ozone consistently showed the lowest bias for all land use
types, followed by the median and 5th percentile. Further-
more, the Others land use category at rural and urban sites
shows the lowest bias for the 5th percentile and the median,
whereas the “Residential” land use type shows the lowest
bias for the suburban sites.

For PM2.5, the largest differences between the model and
observations are seen for the 95th percentile for the Others
land use category compared to the 5th percentile and me-
dian. The model generally captures the temporal variabil-
ity in PM2.5 across all land use types (except Others) and
location settings for all three percentile metrics analyzed
here, although some anomalies are also evident. For exam-
ple, residential and commercial sites in the urban category
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Figure 3. Same as Fig. 2 but for 2 m relative humidity (RH).

show a larger overestimation for the median and 95th per-
centiles during 2005–2006, indicating higher uncertainties in
anthropogenic emission estimates at these sites during these
years. While the model follows most of the observed peaks in
95th percentile, it substantially underestimates the observed
peaks.

The errors in air quality simulations can be attributed to the
uncertainties in the different types of emissions used to drive
air quality models, errors in the lateral boundary conditions
representing pollution inflow, uncertainties in meteorological
parameters (as quantified earlier in this section), and the poor
understanding of some of the physical and chemical pro-
cesses controlling the fate of those emissions. To quantify un-
certainties in anthropogenic and biomass burning emissions
over the CONUS, we compared all available anthropogenic
and biomass burning emission inventories over the region

and found that anthropogenic emission estimates across var-
ious emission inventories vary by a factor of 1.16–2.94 (Ta-
ble A2) and the corresponding fire emission estimates vary
by factor of 3.13–8.0 (Table A3). The extrapolation of the
NEI emissions to years other than the base years might have
also introduced some uncertainties in our simulations, as
EPA-reported state-level trends may not always represent lo-
cal (sub-state) changes in emissions and also do not provide
information about new emission sources appearing in the
CONUS between two NEI base emission inventory years. In
addition, the observation error (0.05+ 15 % of MODIS AOD
value over land; Remer et al., 2005) for MODIS AOD in-
creases with increases in the magnitude of the AOD which, in
turn, restricts the data assimilation system (GSI) in pushing
the modeled AOD towards the MODIS AOD. Furthermore,
the AOD retrievals do not contain any information about the
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Figure 4. Same as Fig. 2 but for 10 m wind speed.

vertical distribution of aerosols; thus, GSI simply scales the
modeled vertical profile to match the MODIS AOD within
the constraints of observation and model error. Therefore,
AOD assimilation is unable to correct for any errors in the
vertical distribution of aerosols resulting from errors in the
plume rise of fire emissions.

4.3 Trend analysis

To help air quality managers and the public determine the
confidence that they can put in using this reanalysis for
analyzing changes in air quality in their regions, we have
evaluated the trends in our CMAQ-simulated MDA8 ozone
and 24 h average PM2.5 against the AQS observations.
The spatial distribution of positive/negative trend values
in MDA8 ozone and 24 h average PM2.5 calculated using

monthly median values in AQS and CMAQ data during
2005–2018 are shown in Figs. 9 and 10, respectively.
Different symbols are used to represent urban, suburban,
and rural site types. Based on location, ∼ 42 % and 23 %
of sites were in rural areas, ∼ 41 % and 45 % of sites were
in suburban areas, and ∼ 17 % and 32 % of sites were in
urban or city centers for MDA8 ozone and 24 h average
PM2.5, respectively. Darker (lighter) red and blue colors
represent statistically significant (insignificant) increasing
and decreasing trends at the 2σ level. The 2σ rule is a
standard way of testing the statistical significance of trends.
In a normal distribution, ∼ 95 % of the data points lie within
2 standard deviations (±2σ ) of the mean. If the trend falls
outside this range, it is considered unlikely to have occurred
by chance (i.e., at a statistical significance in the probability
of less than 5 %). Over the study period, both the model and
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Figure 5. Same as Fig. 2 but for 10 m wind direction.

observations show decreasing trends in MDA8 ozone over
the majority of the CONUS. Most sites in the eastern US
show decreasing trends that were statistically significant,
with p values than 0.05. The sites located in the western or
northwestern US, however, showed mixed results, with some
sites showing increasing trends, most of which were not
statistically significant. Similar results were observed during
the summer season, with most sites showing statistically
significant decreasing trends over most locations. During
the autumn and winter seasons, several sites over California
and the eastern US showed decreasing but insignificant
trends. Some sites over the midwestern US also changed
their trend sign during these seasons. The trends in the
winter seasons were mostly positive over most sites in the
US (except for the coastal sites in the southeastern US).
About 55 % (278 of 501) of the sites showed positive trends

in both AQS and CMAQ data during winter, but only ∼ 3 %
(29 of 1012) of the sites showed positive trends in summer.
The seasonal changes in monthly median trends discussed
above were mostly consistent (67 %–86 %) between the
AQS and CMAQ data. A similar analysis with the 5th
and 95th percentile time series suggested that the higher
percentiles showed mostly decreasing trends, but the 5th
percentile dataset for the Midwestern US, Boston–New
York–DC, and central US sites showed increasing trends on
a seasonal and annual basis. The MDA8 ozone trend over
the CONUS (1012 sites) is estimated to be −0.53± 0.46
and −0.56± 0.45 ppb yr−1 (using summertime data) and
−0.31± 0.43 and −0.29± 0.39 ppb yr−1 (using data from
all seasons) for AQS and CMAQ data, respectively, with
most sites (∼ 70 %) showing negative trends. At the 2σ level
(p value< 0.05), the summertime mean ozone trends are
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Figure 6. Spatial distribution of mean daily precipitation and bias during four seasons in 2005–2018 (top to bottom: winter, spring, summer,
and autumn). The left-hand, center, and right-hand columns represent mean precipitation from WRF, mean precipitation from IMERG, and
the precipitation bias (WRF− IMERG), respectively.

−0.85± 0.36 and −0.75± 0.35 ppb yr−1 for 484 and 620
respective sites, whereas annual MDA8 ozone trends are
−0.52± 0.45 and −0.47± 0.42 ppb yr−1 for 554 and 562
respective sites for AQS and CMAQ data, respectively, over
the CONUS. This suggests decreases in monthly high-ozone
days but increases in monthly low-ozone days. On an annual
basis, MDA8 ozone showed the most decreasing trends (AQS
and CMAQ=−0.40± 0.37 and −0.34± 0.34 ppb yr−1, re-
spectively) at the 428 rural sites. The mean ozone trends
over urban (411 sites) and suburban (170) areas were
−0.28± 0.44 (AQS) and −0.29± 0.40 ppb yr−1 (CMAQ)
and −0.13± 0.48 (AQS) and −0.15± 0.48 ppb yr−1

(CMAQ), respectively. The ozone trends over high-altitude
sites (16 sites) are mostly negative in summer (AQS
and CMAQ=−0.43± 0.45 and −0.12± 0.36 ppb yr−1,
respectively) and on an annual basis (AQS and CMAQ,
=−0.39± 0.38 and −0.03± 0.29 ppb yr−1, respectively).

Similar MDA8 ozone trends were also reported in a previ-
ous study (Simon et al., 2015). Mousavinezhad et al. (2023)
reported that all regions except the Northern Rockies and the
southwestern US experienced decreasing trends in median

MDA8 ozone values during the warm season of 1991–2020,
with rural stations in the southwestern US and urban stations
in the northeastern US experiencing the greatest declines of
−1.29± 0.07 and −0.85± 0.08 ppb yr−1, respectively. They
also reported a large decrease in the MDA8 ozone 95th per-
centile in all regions. Similarities in ozone trends between
the AQS observations and CMAQ simulations over a longer
time period (1990–2015) have also been reported by He et
al. (2020).

On an annual basis, the 24 h average PM2.5 also showed
mostly decreasing trends (∼ 79 %) over most of the sites.
A majority of these trends were also statistically significant
at the 2σ level (AQS and CMAQ= 70 % and 75 %, respec-
tively). However, unlike MDA8 ozone, an increasing trend
(although insignificant) in summertime PM2.5 is observed
over the northwestern US (Fig. 10). The wintertime trends
were also mostly decreasing over most of the sites, except for
the northwestern US. During the summer season an approxi-
mate 5-fold increase (annual∼ 5 %; summer∼ 24 %) in pos-
itive trends is observed in high-PM2.5 days (95th percentile
time series), with most of these increases observed over the
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Figure 7. Time series of hourly averaged surface ozone over 10 EPA regions (R1–R10) from the WRF-CMAQ setup (red) and EPA AQS
observations (black) during 2005–2018. The correlation coefficient (r), mean bias (MB), and root-mean-square error (RMSE) for each region
are also shown.

Pacific Northwest. These summertime increases in PM2.5
trends are also evident from the 95th percentile time series,
where a sharp increase in PM2.5 is observed during 2017–
2018 over all sites except industrial locations (see Fig. A11).
In recent years, these changes could be even stronger, as
wildfire activity over the western US has increased in the last
decade. Dramatic decreasing trends in PM2.5 in the eastern
US have also been reported in previous studies (Zhang et al.,
2018; Gan et al., 2015; Xing et al., 2015) (Gan et al., 2015;
Xing et al., 2015; Zhang et al., 2018) due to emission re-
ductions. The increasing trend in the western central area of
the US is due, in part, to frequent wildfires (Dennison et al.,

2014; McClure and Jaffe, 2018). For PM2.5, the overall mean
trends are −0.24± 0.21 and −0.24± 0.24 µg m−3 yr−1 (369
sites) in the AQS and CMAQ datasets, respectively. Unlike
MDA8 ozone, the number of sites remained almost the same
(337–357 sites in the four seasons and 369 on an annual ba-
sis) during seasons, and an overall negative trend is also ob-
served (−0.18± 0.25 to −0.30± 0.35 µg m−3 yr−1). At the
2σ level, the number of sites that showed negative trends in
both the datasets was 69 %–80 %.

On an annual basis, the mean PM2.5 trends for the re-
spective AQS and CMAQ datasets are −0.17± 0.22 and
−0.18± 0.15 µg m−3 yr−1 over urban sites, −0.28± 0.22
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Figure 8. Same as Fig. 7 but for daily averaged surface fine particulate matter (PM2.5).

and −0.24± 0.26 µg m−3 yr−1 over suburban sites, and
−0.23± 0.21 and −0.30± 0.27 µg m−3 yr−1 over urban and
city center sites. The only high-altitude site for PM2.5 showed
an increase in the annual trend (0.07 and 0.06 µg m−3 yr−1

for AQS and CMAQ data, respectively) and the summertime
trend (0.13 and 0.13 µg m−3 yr−1 for AQS and CMAQ data,
respectively). During other seasons, mostly low negative
trends were observed. The ozone trends over high-altitude
sites (16 sites), however, are mostly negative (−0.43± 0.45
and−0.12± 0.36 ppb yr−1 in summer and−0.39± 0.38 and
−0.03± 0.29 ppb yr−1 annually). The ozone trends at high-
altitude sites showed large seasonal variations with mini-
mum to maximum ranges of −0.69 to 0.87 and −1.5 to
0.26 ppb yr−1 for AQS and CMAQ data, respectively.

4.4 Air quality dashboard

The comprehensive evaluation of our reanalysis in the above
sections shows that our reanalysis is able to capture key fea-
tures of long-term trends in both MDA8 ozone and PM2.5
over most parts of the CONUS. This increases confidence
in using this dataset for assessing the trends in unmon-
itored areas of the region. Therefore, a GIS-based dash-
board has been developed to aid in community engage-
ment and understanding of the reanalysis data. The dash-
board was developed using ArcGIS Dashboards technol-
ogy from Esri (https://www.esri.com/en-us/arcgis/products/
arcgis-dashboards/overview, last access: 28 April 2025). An
interactive web-based dashboard allows stakeholders to ex-
plore annual air quality concentrations and the number of
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Figure 9. Spatial distribution of positive (blue colors) and negative (red colors) trends in MDA8 ozone at different levels of statistical
significance (p values) using annual and seasonal monthly median time series (top to bottom). Plots on the right show the differences in trend
values (CMAQ−AQS).

days that exceed a certain threshold over space and time.
It provides a step-by-step path for users to explore informa-
tion at the CONUS, state, and county levels. In the center
of the dashboard is a time series chart showing trends in an-
nual concentrations of MDA8 ozone, NO2, PM2.5, PM1, and
PM10 between 2005 and 2018. An indicator element of the
dashboard highlights how many days between 2005 and 2018
have exceeded the National Ambient Air Quality Standards
(NAAQS) for ozone and PM2.5, and a bar chart graph shows
the number of days that exceeded the NAAQS each year.
There is also a map that can zoom in on the selected state
or county of interest and illustrates the spatial distribution of
air quality variables using a quantitative color bar.

The dashboard can be used to better understand how
particular events, such as large wildfires, have affected
air quality in certain geographic areas. For example,
the 2008 wildfires in Shasta and Trinity counties in

California, referred to as the “June Fire Siege”, had
a major impact on air quality (https://storymaps.arcgis.
com/stories/c6535ee477e14b72a20393a5f10aefbc, last ac-
cess: 28 April 2025). Figure 11 shows MDA8 ozone concen-
trations for Shasta County, California. The dashboard shows
a sharp increase in the MDA8 ozone concentration in 2008,
as depicted in the time series plot. The bar chart in the lower
right-hand corner also reflects the large number of days that
exceeded the NAAQS criteria for MDA8 ozone in 2008.

The dashboards can also be used to visualize the ef-
ficacy of air quality management policies. For example,
Los Angeles County, CA, has designed and implemented
strict emission standards to improve air quality. Figure 12
shows the downward trend in PM2.5 concentrations in Los
Angeles County during 2005–2018. The air quality dash-
board is publicly accessible at https://ncar.maps.arcgis.com/
apps/dashboards/9a97650dc77b4f7192b99ea9bef36a21 (last
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Figure 10. Spatial distribution of positive (blue colors) and negative (red colors) trends in the 24 h mean PM2.5 (right panel) at different
levels of statistical significance (p values) using monthly median time series (top to bottom). Plots on the right show the differences in trend
values (CMAQ−AQS).

access: 28 April 2025). To ensure stakeholders have an un-
derstanding of the uncertainties, we have included the fol-
lowing message on the website: “Note that mean bias of
3.7–6.8 ppbv in ozone and that of −0.9–5.6 µg m−3 in PM2.5
could have impacted the calculation of days exceeding the
corresponding National Ambient Air Quality Standards”.

We have also developed a Python-based Streamlit appli-
cation that allows users to select and download data for spe-
cific time periods aggregated over administrative boundaries
such as cities, counties, and states. Temporal and spatial ag-
gregations are performed on the server, and only information
of interest is downloaded and delivered to the users, taking
the data processing workload off of the users. The Stream-
lit application allows users to select a time period, a tem-
poral aggregation (daily, weekly, monthly, or annual), one
or more air quality variables, statistics (min, mean, or max),
and an area of interest (state, county, or city). The data can

then be downloaded as a comma-separated value (CSV) file
as well as graphed on the website, as seen in Fig. 13. The
Streamlit application is available at https://compass.rap.ucar.
edu/airquality/ (last access: 28 April 2025).

5 Data availability

The global meteorological datasets used to drive WRF
are publicly available through the National Center for
Atmospheric Research (NCAR) Research Data Archive
(https://doi.org/10.5065/D6CR5RD9, European Cen-
tre for Medium-Range Weather Forecasts, 2009). The
SMOKE setup used to create emissions for CMAQ is
accessible via the EPA Emissions Modeling Platforms
(https://gaftp.epa.gov/air/emismod/2011/v3platform/, EPA,
2011; https://gaftp.epa.gov/air/emismod/2014/v2/, EPA,
2014; https://gaftp.epa.gov/Air/emismod/2017/, EPA, 2017).
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Figure 11. Dashboard reflecting ozone concentrations for Shasta County, CA.

Figure 12. Dashboard reflecting PM2.5 concentrations for Los Angeles, CA.

FINN biomass burning emissions can be downloaded
from https://doi.org/10.5065/XNPA-AF09 (Wiedinmyer
and Emmons, 2022). Meteorological observations used to
evaluate the model performance are available from https:
//madis-data.cprk.ncep.noaa.gov/madisPublic1/data/archive/
(NOAA, 2025). The EPA AQS system observations are
available from https://www.epa.gov/aqs (US EPA, 2025).
Hourly surface output from the WRF-CMAQ-GSI system
can be downloaded from https://doi.org/10.5065/cfya-4g50
(Kumar and He, 2023).

6 Code availability

The WRF code is publicly accessible at https://github.com/
wrf-model/WRF (Islas, 2025). The CMAQ code is publicly
accessible at https://github.com/USEPA/CMAQ (Adams,
2025), and the GSI code is available at https://github.com/
NOAA-EMC/GSI (Liu, 2025).
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Figure 13. The Streamlit air quality app to easily download and summarize data in a CSV format.

7 Conclusions

Air pollution is an important health hazard affecting human
health and the economy in the CONUS, yet millions of peo-
ple live in counties without air quality monitors. To address
this gap and help air quality managers understand long-term
changes in air quality at the county level across the CONUS,
we have created a 14-year-long, 12 km, hourly dataset via the
daily assimilation of atmospheric composition observations
from the NASA MODIS and MOPITT sensors aboard the
Terra and Aqua satellites in the Community Multiscale Air
Quality (CMAQ) model from 1 January 2005 to 31 Decem-
ber 2018. The WRF model has been used to simulate meteo-
rological parameters, which are then used to drive CMAQ of-
fline and to generate meteorology-dependent anthropogenic
emissions.

The meteorological parameters, ozone, and PM2.5 have
been extensively validated against multi-platform observa-
tions to characterize uncertainties in our dataset, which air
quality managers need to determine the confidence that they
can put in our dataset. We show that our dataset captures
regional-scale hourly, seasonal, and interannual variability in
the meteorological variability well across the CONUS. The
model shows excellent performance with respect to simulat-
ing the regional and temporal variability in temperature and
relative humidity but slightly poorer performance with re-

spect to simulating winds and precipitation, which are well-
known shortcomings of the WRF model. The model also
shows a higher skill with respect to reproducing variabili-
ties in surface ozone (r = 0.77–0.91) compared with PM2.5
(0.49–0.79). The mean biases for CMAQ ozone and PM2.5
are estimated to be 3.7–6.8 ppbv and −0.9–5.6 µg m−3, re-
spectively, and the corresponding RMSE values are 7–9 ppbv
and 3.0–8.3 µg m−3, respectively.

The MDA8 ozone trend over the CONUS is estimated
to be −0.53± 0.46 and −0.56± 0.45 ppb yr−1 (summer-
time) and −0.31± 0.43 and −0.29± 0.39 ppb yr−1 (an-
nual) for AQS and CMAQ data, respectively, with ∼ 70 %
of sites showing negative trends. At the 2σ level, the
summertime MDA8 ozone trends are −0.85± 0.36 and
−0.75± 0.35 ppb yr−1 and the annual MDA8 ozone trends
are −0.52± 0.45 and −0.47± 0.42 ppb yr−1 for AQS and
CMAQ data, respectively, over the CONUS. Annually, at the
2σ level, 46 % sites showed negative trends in both of the
datasets. Annual mean PM2.5 trends are −0.24± 0.21 and
−0.24± 0.24 µg m−3 yr−1 in the AQS and CMAQ datasets,
respectively, and ∼ 79 % of the sites showed negative trends.
Annually, at the 2σ level, 66 % of sites showed negative
trends in both of the datasets. During summertime, the neg-
ative trend percentage is reduced to 71 %, where an increase
in positive trends is observed in the northwestern US.
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An air quality dashboard has been developed that pro-
vides a step-by-step path for users to explore information at
the CONUS, state, and county levels. This dashboard allows
users to visualize air quality information in the form of maps,
bar charts, and NAAQS exceedance days. Finally, a Python-
based Streamlit application is developed to allow the down-
load of air quality data in simplified text and graphic formats
for the end user’s choice of region and time of interest.

Appendix A

A1 Forward and adjoint operators for MOPITT CO
assimilation

The MOPITT-retrieved profile consists of 10 levels, includ-
ing a surface level followed by 100 hPa thick layers from
900 to 100 hPa. The CMAQ vertical profile of CO cannot be
compared with MOPITT CO directly and needs to be con-
volved with the MOPITT a priori profile and averaging ker-
nel. Following Barré et al. (2015) and Gaubert et al. (2016),
the CMAQ profile that can be compared directly to MOPITT
can be written as follows:

COCMAQ
ret =

10(AKMOPITTlog10(COCMAQ)+ (I −AKMOPITT)log10(COMOPITT
apr )).

(A1)

Here, COCMAQ
ret is the CMAQ CO profile convolved with

the MOPITT a priori averaging kernel (AKMOPITT) and a
priori profile (COMOPITT

apr ) that can be compared directly to
the MOPITT retrieved CO profile. COCMAQ is the 10-layer
CMAQ profile mapped to the MOPITT pressure grid. A
log10 transformation is necessary because the averaging ker-
nel matrix for retrievals is obtained with CO parameters in
log10(CO). Differentiation of Eq. (1) will yield the sensitiv-
ity of COCMAQ

ret with respect to COCMAQ, which represents
the adjoint of the forward operator. For the purpose of deriva-
tion, let COCMAQ

ret = y, COCMAQ
= x, AKMOPITT

= A, and
(I −AKMOPITT)log10(COMOPITT

apr ) = C. Equation (1) can be
written as follows:

y = 10(Alog10(x)+C) . (A2)

Applying the differentiation rule d [au]
dx = ln(a) · au · du

dx , we
can differentiate Eq. (2) as follows:

dy
dx
= ln(10) · 10(Alog10(x)+C)

·
d

dx
(Alog10(x) + C). (A3)

As Aand C do not depend on CMAQ simulations,
they are constants; thus, their differentiation is zero. As
d

dx (log10(x)) = 1
x ln(10) , Eq. (3) simplifies to the following:

dy
dx
= 10(Alog10(x)+C)

·A ·
1
x
= A ·

y

x
. (A4)

Substituting the values of y, x, A, and C in Eq. (4), the
changes in the CO vertical profile in the MOPITT space can
be related to changes in CO vertical profile in CMAQ as fol-
lows:

dCOCMAQ
ret = AKMOPITT

·
COCMAQ

ret

COCMAQ dCOCMAQ. (A5)

By writing Eq. (5) in matrix form and then transposing the
forward-operator matrix, we can write the adjoint of the for-
ward operator as a recursive matrix equation:

dCOCMAQ
= dCOCMAQ

+ AKMOPITT

·
COCMAQ

ret

COCMAQ dCOCMAQ
ret . (A6)
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A2 Additional figures

Figure A1. The correlation coefficient, mean bias, and root-mean-square error (RMSE) between the CMAQ and MOPITT CO profiles at
10 MOPITT retrieval pressure levels for the CMAQ experiments with (ASM) and without (BKG) assimilation of the MOPITT CO profiles
during July 2018. These statistics are based on 118 552 data points at each level.

Figure A2. Map showing the EPA regions over which model evaluation has been performed. The map is reproduced from https://www.epa.
gov/aboutepa/visiting-regional-office (last access: 28 April 2025). Our evaluation does not include Puerto Rico in Region 2, the Hawaiian
Islands in Region 9, and Alaska in Region 10.
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Figure A3. Seasonal mean diurnal variations in 2 m temperature (top row), relative humidity (middle row), and 10 m wind speed (bottom
row) from METAR observations and the WRF model.

Figure A4. Average diurnal profile of ozone (top row) and PM2.5 (bottom row) over all AQS sites in the CONUS.
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Figure A5. The stacked histogram shows the number of sites in each location setting (different bars) and land use type (different colors) for
MDA8 ozone (a) and 24 h mean PM2.5 (b).

Figure A6. The annual mean (derived from monthly median values) time series of MDA8 ozone using AQS data (black) and the CMAQ
(red) over different location (top to bottom) and land use (left to right) types during the period from 2005 to 2018. The number of sites for
each scenario is presented in brackets. The blue color represents the mean bias.
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Figure A7. Same as Fig. A6 but for time series derived from the monthly 5th percentile values.

Figure A8. Same as Fig. A6 but for time series derived from the monthly 95th percentile values.
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Figure A9. The annual mean (derived from monthly values) time series of 24 h mean PM2.5 using AQS data (black) and the CMAQ (red)
over different location (top to bottom) and land use (left to right) types during the period from 2005 to 2018. The number of sites for each
scenario is presented in brackets. The blue color represents the mean bias.

Figure A10. Same as Fig. A9 but for time series derived from the monthly 5th percentile values.

https://doi.org/10.5194/essd-17-1807-2025 Earth Syst. Sci. Data, 17, 1807–1834, 2025



1830 R. Kumar et al.: A long-term high-resolution air quality reanalysis

Figure A11. Same as Fig. A9 but for time series derived from monthly 95th percentile values.

A3 Additional tables

Table A1. Key physics and chemical schemes used in the WRF-CMAQ configuration.

Physics Setup 1
(standard simulation used for
assimilation)

Setup 2
(sensitivity simulation used to
generate background error)

Longwave radiation RRTMG RRTM longwave

Shortwave radiation RRTMG Goddard shortwave

Microphysics Morrison double-moment Thomson

Cumulus Kain–Fritsch version 2 Grell 3-D ensemble

Land surface model Pleim–Xiu LSM Unified Noah LSM

Surface layer Pleim–Xiu surface layer MYNN

PBL ACM2 MYNN level 2.5

Gas-phase chemistry CB06 CB06

Aerosol chemistry AERO7 AERO7

Anthropogenic and fire
emissions

EPA NEI EPA NEI perturbed by factors
derived from the uncertainty
analysis of multiple emission
datasets

Biogenic emission Online CMAQ BEIS Offline MEGAN

LSM denotes land surface model.
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Table A2. Annual anthropogenic emissions (in Tg yr−1) for nine species over the CONUS during the period from 2005 to 2018.

Emissions HTAP v2 EDGAR v4.3.2 MACCity CAMSv4.2 NEIa Min–max
(2010) (2010) (2005–2016) (2005–2016) (2014) ratio

CO 56.20 56.77 46.02± 6.39 56.49± 6.46 45.69 1.24
NH3 4.42 5.14 4.44± 0.14 5.12± 0.07 3.25 1.58
NOx 11.07 10.93 10.40± 1.00 10.46± 0.96 12.03 1.16
SO2 13.10 12.52 10.87± 2.44 11.48± 1.90 4.46 2.94
CH2O 0.12 0.20 0.17± 0.02 0.26± 0.02 0.16 2.17
NMVOC 15.61 14.57 6.58± 0.82 14.92± 0.74 12.28 2.37
OC 0.61 0.36 0.48± 0.08 0.36± 0.01 0.79b 2.19
BC 0.34 0.20 0.28± 0.06 0.21± 0.02 0.26b 1.70
PM2.5 2.02 NA NA NA 3.67 1.82

a Except for NEI, all other emissions are simply summed over the region between 20 and 50°N and between 60 and 130° W. b

The CONUS PM2.5 emissions are 5.15 Tg yr−1 and comprise 8 % BC (or EC) and 28 % OC
(https://www.epa.gov/sites/production/files/2019-08/documents/210pm_rao_508_2.pdf, last access: 28 April 2025). The
abbreviations used in the table are as follows: non-methane volatile organic compounds (NMVOC), black carbon (BC), organic
carbon (OC), elemental carbon (EC), and not available (NA).

Table A3. Annual biomass burning emissions (in Tg yr−1) for nine species over the CONUS during the period from 2005 to 2018.

Emissions Top-Down emissions Bottom-up emissions Min–max

QFED GFASv1.3 FINNv1.5 GFEDv4.1 NEI ratio

CO 12.90± 2.59 8.99± 2.40 10.93± 2.21 5.41± 1.12 16.95 3.13
NH3 0.56± 0.11 0.12± 0.03 0.18± 0.04 0.07± 0.02 0.27 8.00
NOx 0.56± 0.11 0.20± 0.06 0.47± 0.10 0.18± 0.04 0.25 3.11
SO2 0.32± 0.07 0.07± 0.02 0.09± 0.02 0.04± 0.01 0.13 8.00
CH2O 0.16± 0.03 0.15± 0.04 0.15± 0.03 0.10± 0.02 0.22 2.20
tVOCs 0.53± 0.11 1.05± 0.28 1.86± 0.40 1.06± 0.22 3.92 7.40
OC 2.99± 0.63 0.60± 0.17 0.66± 0.13 0.34± 0.09 0.45 8.79
BC 0.24± 0.05 0.05± 0.02 0.06± 0.01 0.03± 0.01 0.15 8.00
PM2.5 4.37± 0.92 0.90± 0.24 NA 0.61± 0.14 1.48 7.16

The abbreviations used in the table are as follows: total volatile organic compounds (tVOCs), black carbon (BC), organic
carbon (OC), elemental carbon (EC), and not available (NA).
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