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Abstract. Coastal moorings allow scientists to collect long-term datasets that are valuable in understanding
shelf dynamics, detecting climate variability and changes, and evaluating shelf dynamics and climate variabil-
ity and change impacts on marine ecosystems. However, we often cannot obtain continuous time series data
from moorings due to mooring losses or instrument failures. Here, we present an updated version of the 14-
year sub-surface mooring dataset off the south-western coast of Western Australia (WA) during 2010–2023
(https://doi.org/10.25919/myac-yx60, Bui and Feng, 2024). This updated dataset offers continuous daily tem-
perature and current data with a 5 m vertical resolution, collected from six coastal Integrated Marine Observing
System (IMOS) moorings at depths between 48 and 500 m. The self-organizing map (SOM) machine learn-
ing technique is applied to fill in the data gaps in the previous version. The data capture the Leeuwin Current
variability on the shelf from intraseasonal to interannual timescales. The data also capture the variability of the
Capes Current, a wind-driven northward current on the middle shelf. The usage of the in-filled data product is
demonstrated by detecting extreme temperature events on the Rottnest Shelf. The data products can be used to
characterize sub-surface features of extreme events such as marine heat waves and marine cold spells, which
are influenced by the Leeuwin Current and the wind-driven Capes Current, and to detect decadal change signals
along the WA coast.

1 Introduction

Oceanography moorings are underwater instruments an-
chored on the sea floor that collect ocean currents, tempera-
ture, salinity, and other environmental parameters. Typically,
mooring deployment periods range from 4 to 6 months in
shelf waters to up to 18 months in deep oceans (Sloyan et al.,
2024). Sustained long-term mooring observations serve as
invaluable resources for environmental and climate research
and play a vital role in calibrating and validating numerical
models (Bailey et al., 2019).

The south-western Western Australia (WA) mooring array
is part of the Integrated Marine Observing System (IMOS)
program operated by the Commonwealth Scientific and In-
dustrial Research Organisation (CSIRO) since 2009, de-
signed to monitor the influences of the southward-flowing

Leeuwin Current (LC) on the continental shelf (Thompson,
1984; Chen and Feng, 2021). The anomalous meridional
pressure gradient, associated with warm, low-salinity waters
from the tropical Pacific Ocean entering the Indian Ocean
through the Indonesian Archipelago, is the main driver of the
LC (Feng and Wijffels, 2002; Godfrey and Ridgway, 1985).
The strength of the LC varies seasonally, mostly due to vari-
ations in the along-shore winds (Smith et al., 1991). Dur-
ing the austral summer, strong along-shore northward winds
drive the Capes Current northward on the central inner shelf
(Fig. 1). The interannual variability of the LC is often asso-
ciated with remote signals from the Pacific, i.e. the El Niño–
Southern Oscillation (ENSO), the current being stronger dur-
ing La Niña and weaker during El Niño (Feng et al., 2003).

The south-western WA mooring array has helped scientists
identify the key role of the LC in the development of marine
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Figure 1. Bathymetry map and mooring locations (red circles) on the Rottnest Shelf. (a) Velocities estimated from measurements, with
black arrows representing the mean state of vertically averaged velocities. The 0–200 m average is used for the WATR50 mooring. The three
dashed lines represent the 50, 200, and 500 m contours. The black circles indicate the location of the Fremantle tide gauge station. Note that
NRSROT consists of two separate moorings. (b) Schematic of the shelf currents, with the red arrows denoting the Leeuwin Current and the
blue arrows indicating the direction of the wind-driven Capes Current.

heat waves (MHWs) off the coast (Benthuysen et al., 2014;
Feng et al., 2013). The mooring data were also employed by
Feng et al. (2021) to detect abnormal cooling events off the
coast over 2016–2019 (defined as the marine cold spell or
MCS), when the thermocline depth was elevated due to the
weakening of the LC during the El Niño events. The sus-
tained IMOS mooring array encompasses six coastal moor-
ings on the Rottnest Shelf during 2010–2023 that ranged
from 50 to 500 m (Fig. 1 and Table 1). The first version of
the gridded data from these moorings was published by Chen
and Feng (2021), and an extension was published by Bui et
al. (2023). Mooring time series are susceptible to missing
values due to mooring loss and instrument failure. Strong
currents can exert a force on the mooring line, causing it to
be pushed down into the water column and leaving data gaps
near the surface (Sloyan et al., 2023). This paper introduces
a new update of the mooring data, filling data gaps using a
statistical method.

Various techniques have been employed to address gaps
in mooring datasets. Sprintall et al. (2009) utilized a damped
least-squares fitting method to fill substantial gaps in moor-
ing current time series data when estimating the Indonesian
throughflow transport. Wang et al. (2015) adopted a combi-
nation of data extrapolation, data interpolation, and a least-
squares regression model to fill in missing data recorded in
the central equatorial Indian Ocean. Cao et al. (2015) em-
ployed harmonic analysis and modal decomposition to iso-
late the tidal currents for each mode and reconstruct the
full-depth tidal currents in the northern South China Sea.
More recently, Sloyan et al. (2023) experimented with a ma-
chine learning approach, a self-organizing map (SOM), to fill
data gaps in the East Australian Current mooring array. The

choice of method depends on the characteristics of data loss,
such as the duration of gaps or the depth range affected, as
well as the intended analyses of the data.

A SOM is a technique that projects high-dimensional input
data onto a two-dimensional output space while preserving
the topological structure of the input data (Kohonen, 1982).
In a SOM, units are organized so that similar units are po-
sitioned close to each other, while dissimilar ones are sepa-
rated in the output data space. This method has found exten-
sive applications in meteorology and oceanography (Liu and
Weisberg, 2011) and can perform a range of tasks, including
clustering, data analysis and visualization, feature extraction,
and data interpolation (Lobo, 2009).

Chapman and Charantonis (2017) utilized a SOM to re-
construct deep current velocities in the Southern Ocean from
sea surface observations. They used densely observed surface
velocities, sea surface height, sea surface temperature from
satellites, and sparsely observed deep current velocities from
Argo floats to train the SOM. Then, they derived dense veloc-
ity fields at a depth of 1000 m. Their method took advantage
of local correlations in the data space to find the smallest Eu-
clidean distance, weighted by the local correlations, between
a vector with missing components in the data space and the
SOM units, which increased the accuracy of the filled deep
velocities.

This study employs the SOM method to fill in the data
gaps in the south-western WA mooring data, following the
procedure in Chapman and Charantonis (2017), to gener-
ate a gap-free time series dataset. The use of the continuous
dataset is demonstrated by examining several extreme tem-
perature events that occurred in the region.
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2 Data and methods

2.1 Moored instrument data

2.1.1 Temperature

The in situ temperature dataset is collected using Sea-
Bird Electronics instruments, including SBE37, SBE39, and
SBE39 plus, with sampling intervals varying between 5 and
15 min (Table 1). To ensure data quality, the raw dataset un-
derwent rigorous quality assurance (QA) and quality control
(QC) procedures (Morello et al., 2014), utilizing the IMOS
mooring toolbox written in the MATLAB scientific program-
ming language. Only data flagged as 1, indicating good qual-
ity, are retained for this analysis. The QC data are concate-
nated and then linearly interpolated onto a grid of 5 m vertical
resolution, and they are averaged daily (Bui et al., 2023). The
unfilled data are available in the CSIRO Data Access Portal
(https://doi.org/10.25919/9gb1-ne81, Bui et al., 2023).

For data completion, we use satellite sea surface temper-
ature (SST) sourced from the Regional Australian Multi-
Sensor SST Analysis (RAMSSA) version 1.0 (Beggs et al.,
2011) to extend the temperature data at each mooring to the
sea surface by linear interpolation. The RAMSSA system
combines SST data from infrared and microwave sensors on
polar-orbiting satellites with in situ measurements to gener-
ate daily foundation SST. North of 40° S, RAMSSA is on
average within ±0.07 °C of other multi-sensor SST analyses
(Beggs et al., 2011). From conductivity–temperature–depth
(CTD) profiles in the study region, ocean temperatures vary
mostly linearly in the near-surface layer (top 30 m, below the
foundation SST depth), so linear interpolation is an accept-
able approximation.

When minor gaps occur near the bottom, we use two avail-
able data points at the bottom of the vertical temperature pro-
file to extrapolate linearly to the sea bottom.

These procedures produce gridded temperatures with daily
5 m vertical resolution at the NRSROT, WATR10, and
WATR20 moorings, spanning the time period from January
2010 to May 2023, as presented in Fig. S1 in the Supplement.

2.1.2 Velocity

The velocity observations on the IMOS mooring array are
recorded by various RDI and Nortek ADCP instruments,
typically sampling at 15 min intervals and mounted in an
upward-looking configuration above the seabed (Table 1).

The raw velocity data undergo quality control procedures
similar to temperature, followed by concatenation and in-
terpolation into a daily grid with 5 m vertical resolution, as
described by Bui et al. (2023). The velocity dataset com-
prises observations from five stations: NRSROT, WACA20,
WATR10, WATR20, and WATR50. Initially, gaps in the time
series are filled using linear interpolation if the temporal gap
size is less than 3 d. Subsequently, for each velocity pro-
file, gaps near the surface or bottom are filled using linear

extrapolation, akin to the technique applied for temperature
data. The meridional and zonal components of the velocity
datasets, from August 2011 to May 2023, are presented in
Figs. S2 and S3, respectively.

For the 2010–2023 period, the percentage of missing
mooring data varies from 2 % to 16 % for temperature and
from 12 % to 33 % for velocity at various moorings (Table 2).
The largest percentage of missing data is at WATR20, which
is situated in the core of the LC system. The percentages of
missing data tend to have high values near the surface and
bottom layers of a mooring due to the mooring movement
and variations of deployment depth over time (Fig. S4).

2.2 SOM method

To produce a gap-filled data product, we follow the method
described in Chapman and Charantonis (2017). As discussed
briefly in the introduction, this method “completes” a gappy
dataset by first using available data to train a SOM, which ef-
fectively clusters the data into a set of discrete states. These
states can be represented as a two-dimensional map, where
neighbouring clusters are more similar to each other than dis-
tant clusters. Associated with each cluster is a referent vector
that approximates the mean of all data assigned to that cluster
and a weighted mean of data assigned to neighbouring clus-
ters. After the map is trained, new data can be assigned to
existing clusters by comparing the Euclidean distance in the
data space between that new data vector and the referent vec-
tor of each cluster. The cluster with the smallest Euclidean
distance is known as the best-matching unit (BMU). Once a
SOM is available, data vectors with missing components are
presented sequentially, the BMU is found, and the missing
data are completed (in-filled) by replacing them with the rel-
evant components of the referent vector of the BMU. For full
details, see Chapman and Charantonis (2017).

A schematic using the SOM method to fill gaps in the
mooring dataset is shown in Fig. 2. We utilized the Vesanto
et al. (2000) SOM toolbox for MATLAB 5 in this study.
The temperature or velocity data for each station, along with
ancillary data, are aggregated into data matrices. The ancil-
lary data include the day of the year and the daily Freman-
tle sea level (Fig. 1). Sea level data are obtained from the
University of Hawaii’s Sea Level Center (https://uhslc.soest.
hawaii.edu/, last access: 9 April 2025). The Fremantle sea
level serves as a proxy for the annual and interannual vari-
ations of the Leeuwin Current (Feng et al., 2003). We have
tested adding along-shore winds to the data matrices. How-
ever, there is no improvement in the results, so wind data are
not used in the SOM calculation, as the wind information
may have been integrated into the sea level data. The tem-
perature input matrix comprises 4869 rows (representing the
number of time steps) and 77 columns (reflecting the number
of different observations at each time step). Similarly, the ve-
locity input matrix consists of 4292 rows and 361 columns.
The temperature–velocity input matrix with missing values
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Table 2. Percentage (%) of missing temperature and velocity for
each mooring for the time period 2010–2023. Note that tempera-
ture profiles are not available at WACA20 and WATR50. NA – not
available

Temperature (%) Velocity (%)

NRSROT 2 12
WACA20 NA 19
WATR10 7 18
WATR20 16 33
WATR50 NA 21

is indicated by Dataset 1 in Fig. 2. Only fully available pro-
files in the input matrix are selected as the training data in
Dataset 2. Consequently, the number of rows in the training
data is 3675 for temperature and 1146 for velocity.

The number of units in the SOM is specified prior to the
training process. According to the literature, a small number
of SOM units is useful in capturing the general features of
the system (Liu and Weisberg, 2011), while a larger num-
ber provides more detailed information and is more suitable
for data gap filling (Sloyan et al., 2023). In our case, where
we aimed to capture detailed information from the training
data containing a large number of profiles, we opted for a
larger number of units, i.e. 1000 units for the temperature
data and 500 units for the velocity data. Using lower num-
bers of units only had minor effects on the results. We used
a batch algorithm to train the SOM (Chapman and Charanto-
nis, 2017). The training phase of the SOM was done in two
steps: a first rough phase and a fine-tuning phase. In the first
step, the neighbourhood radius and learning rate were set to
some high values in order to gain a general orientation of the
map, while in the second step they were set to smaller values
to make only fine adjustments to the SOM unit’s position.

One of the important steps was the assignment of each in-
put vector to a specific SOM unit, u, shown on the right-hand
side of Fig. 2. To do this, we calculated the minimum Eu-
clidean distance between a normalized input vector X con-
taining missing and non-missing components and the refer-
ent vector of the SOM unit, refu using a similarity function
(Chapman and Charantonis, 2017). The similarity function is
defined as:

sim
(
X,ref u

)
=

∑
i ∈ non-missing

1+
∑

j ∈missing

(
corui,j

)2


×

√
(Xi − ref u

i )
2
, (1)

where Xi is the non-missing data in X, refui is the mean of all
training data in the SOM unit u, and corui,j is the local cor-
relation matrix between the missing variables and available
variables over all the observed training data within the SOM
unit u.

2.3 Validation of the SOM-based infilling technique

For mooring data, a failed mooring or instrument often re-
sults in a block of data being lost until the next deploy-
ment. To simulate this effect, we withhold temperature data
at one site for 150 d from 1 January to 30 May 2020, which
is roughly the length of one deployment cycle. We utilize
temperature data at the other two sites to identify the best-
matching SOM units and to fill in the withholding data. At
NRSROT, the R2 and the root mean square error (RMSE)
between withheld and filled temperature data are 0.70 and
0.61 °C, respectively. At WATR10, these values are 0.86
and 0.39 °C, and at WATR20 they are 0.91 and 0.58 °C, as
shown in Fig. 3. Furthermore, we evaluate the ability of the
SOM method to reconstruct extreme temperature patterns.
As shown in Fig. S5, a comparison of the observed and SOM-
derived temperatures at WATR20 during the validation pe-
riod (1 January to 30 May 2020) highlights this ability. The
black crosses in both panels denote days identified as ma-
rine cold spells, which are defined as periods where tempera-
tures fall below the 10th percentile for at least 5 consecutive
days (Hobday et al., 2016). SOM-derived temperatures suc-
cessfully captured three bottom-intensified MCS events as
in the observations, demonstrating the method’s reliability in
reconstructing extreme cold temperature patterns.

To assess potential overfitting, the SOM method was tested
on a separate period spanning the time from 10 January to
8 June 2012, with 150 d withheld from training. The resulting
RMSE values were 0.41 °C at NRSROT, 0.36 °C at WATR10,
and 0.55 °C at WATR20. If we repeat this process and val-
idate the method against the data included in the training
dataset, we obtain RMSE figures similar to those obtained
from the withheld data, indicating that the SOM method does
not overfit the dataset.

To assess the accuracy of the SOM method further, we
compare it with a simple climatology method over the same
validation period, as shown in Fig. S6. Overall, the mean
vertical temperature profiles from the SOM method are
closer to the observed data than those from the climatol-
ogy method (Fig. S6a–c). As a result, the residuals from the
SOM method, calculated by subtracting the filled SOM val-
ues from the observed temperatures, are smaller than the cli-
matological residuals. Additionally, the standard deviation of
the observed temperatures is closer to that of the SOM data,
while it differs significantly from that of the climatological
values (Fig. S6d–f). These findings suggest that the SOM
method is more reliable than the climatology method.

Using the same approach, we examine the accuracy of
velocity data gap filling. Specifically, we consider the pe-
riod from May to August 2020, during which velocity data
at WATR50 within the depth range of 70–450 m are with-
held for 90 d. For the meridional velocity, the R2 and RMSE
values between the withheld and in-filled data are 0.63 and
0.12 m s−1, respectively (Fig. 4a). For the zonal component,
these values are 0.50 and 0.05 m s−1, respectively (Fig. 4b).

https://doi.org/10.5194/essd-17-1693-2025 Earth Syst. Sci. Data, 17, 1693–1705, 2025
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Figure 2. Schematic of the SOM method applied to fill gaps in the mooring temperature and velocity data. Dataset 1 denotes an input data
matrix in which rows are daily time vectors and columns are observational variables. In Dataset 1, solid lines present full available profiles,
while dashed lines show the profiles including missing values. In Dataset 2, only full data profiles are selected for training a SOM. In a SOM,
we pre-define the number of units, e.g. 1000 units for temperature and 500 units for velocity. Each SOM unit contains a referent vector.
On the right-hand side, each daily input vector in the input data matrix is assigned to each SOM unit using a similarity function defined by
Chapman and Charantonis (2017). Finally, we use the referent vector of each SOM to fill gaps in the corresponding daily input vector, as
shown in Dataset 3.

To determine whether the SOM method overfits the data,
we withheld velocity data from a different period spanning
the time from May to August 2012. The resulting RMSE
values for the meridional and zonal velocities are 0.13 and
0.06 m s−1, respectively. These findings align with the RMSE
from the validation data, indicating that the SOM method ef-
fectively avoids overfitting.

3 Data application

Having confirmed the effectiveness of the SOM method in
filling missing values in a mooring dataset, we now employ
all non-missing daily data to train the SOM and then fill the
data gaps. The filled temperature data exhibit consistent tem-
poral and spatial variability (Fig. 5). The gap-filled data cap-
ture cold temperature events at WATR20 during early 2010
and mid-2016, coinciding with periods when the thermocline
shoaled under the influence of El Niños, consistent with our
understanding of the dynamics of the Leeuwin Current sys-
tem (Feng et al., 2021).

The pre-processing of the input data via interpolation or
extrapolation has dual advantages: (1) enhancing the accu-
racy of referent vectors in the SOM by increasing the num-

ber of good data profiles and (2) reducing the potential for
errors near the bottom depth. For example, without extrapo-
lating the temperature data to the bottom, there are blocks of
anomalous warm biases near the bottom depth in the SOM-
derived data (Fig. S7).

Figure 6 compares the consistency between observed and
gap-filled temperature time series at three specific depths.
The filled temperatures (shown in red lines) exhibit a tem-
perature variance similar to those of the observed time se-
ries. For example, at a depth of 95 m at WATR10 towards
the end of 2011, the filled temperature is anomalously warm,
reflecting the strengthened Leeuwin Current system during
a La Niña period (Feng et al., 2013), as shown by the red
line rising above the black dashed line. In another example,
at a depth of 190 m at WATR20 during the beginning of 2010
and in the winter of 2016, the filled temperature was cooler
than normal (indicated by the red line below the black dashed
line) due to the shoaling of the thermocline towards the sur-
face during El Niño episodes.

Continuous temperature time series are crucial for detect-
ing sub-surface MHWs or MCSs that significantly affect ma-
rine ecosystems (Smale et al., 2019). Figure 7 shows the
mean intensity of detected MHW or MCS events at WATR20

Earth Syst. Sci. Data, 17, 1693–1705, 2025 https://doi.org/10.5194/essd-17-1693-2025



T. Bui et al.: Gap-filled sub-surface mooring dataset 1699

Figure 3. Scatterplots of observed and SOM-derived temperatures at the three moorings between 1 January and 30 May 2020, a period of
150 d. The red lines are the linear fits of the scatterplots.

Figure 4. Scatterplots of observed and SOM-derived (a) meridional and (b) zonal velocities at WATR50 between May and August 2020, a
period of 90 d and with a depth range of 70–450 m. The red lines are the linear fits.

based on daily gap-filled temperatures. The definition of each
MHW or MCS event is based on Hobday et al. (2016). An
MHW (MCS) event is classified as a thermal event when its
temperature exceeds the 90th percentile threshold (or falls
below the 10th percentile threshold) for at least 5 d. Addi-
tionally, two consecutive events occurring within a temporal
gap of less than 2 d are considered a single combined event.
This plot was created using MATLAB code for MHW and
MCS detections (Zhao and Marin, 2019). Following the in-
tense MHWs during 2011–2013 (Fig. 7a), MCSs occurred
from 2016 to 2020, contributing to the recovery of impacted
marine ecosystems (Fig. 7b). Many of the events are sub-
surface or bottom-intensified, which are less detectable from
the ocean surface based on satellite data alone.

To highlight the role of data products in detecting sub-
surface MHWs, we examine several representative cases at
three specific depths of different moorings: NRSROT-40m,
WATR10-80m, and WATR20-100m (Fig. 8). We also anal-
yse the meridional component of velocity at these depths to
explore the roles of ocean currents in contributing to MHWs.
In this study, different categories of MHWs are defined based
on multiples of the local difference between the climato-

logical mean and the 90th percentile (Hobday et al., 2018).
The magnitude scale descriptors classify MHWs as moder-
ate (between one and two multiples, Category I), strong (two
to three multiples, Category II), severe (three to four multi-
ples, Category III), and extreme (more than four multiples,
Category IV). A MHW at 40 m depth at NRSROT lasted
for 9 d in September 2020, with a maximum intensity of
1.5 °C, and was classified as a moderate (Category I) MHW
(Fig. 8a). During this period, the current was directed south-
ward (Fig. 8b). A MHW at 100 m depth at WATR10 lasted
for a relatively longer duration of 20 d in September 2014,
with a maximum intensity of 1.9 °C, and was classified as
a strong (Category II) MHW. Although the peak current oc-
curred during the MHW event, it led to the peak temperature
anomaly within 9 d (Fig. 8d). A MHW event at 100 m depth
at WATR20 began on 13 August 2022 and lasted for 10 d
with a maximum intensity of 1.4 °C. Unlike the other events,
the peak current led to the MHW time frame, specifically
on 10 August 2022. These observations suggest that strong
southward currents often coincide with or precede MHWs by
several days. Further research is needed to clarify the impact
of the Leeuwin Current in driving sub-surface MHWs on the
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Figure 5. Data matrix of daily gridded, 5 m resolution gap-filled
temperatures for NRSROT, WATR10, and WATR20. The x axis
shows the depth ranges of each mooring, while the y axis presents
the time period from January 2010 to May 2023. Note that 0 m
follows directly after the preceding mooring. The SST data are
derived from the Regional Australian Multi-Sensor SST Analysis
(RAMSSA) version 1.0.

Rottnest Shelf. In addition, we zoomed in on the SOM-filled
temperatures from January to July 2011, when there was a 2-
month gap at the WATR10 mooring (Fig. S8). The gap-filled
temperatures at WATR10 (Fig. S8d) enabled us to detect the
MHW events across the water column.

Overall, the gap-filled velocity data are consistent with
temporal periods of data gaps at the mooring location and the
adjacent mooring sites (Figs. S9–S11). The observed mean
vertical profiles agree well with those derived from the filled
data (Fig. S11), indicating that the SOM method accurately
reconstructed the intricate vertical structure of the LC sys-
tem.

The LC flows along the shelf break, making velocities
measured at WATR20 and WACA20 suitable for character-
izing its primary features. From the v-component data, the
maximum mean currents recorded at WATR20 and WACA20
are −0.25 and −0.12 m s−1, respectively (Fig. S11d, b). Fur-
thermore, the depths corresponding to these maximum val-
ues at the two stations are 80 and 100 m, respectively. It

can be inferred that the LC decelerates and deepens as it
flows from WATR20 to WACA20. The irregular topography
around the head of Perth Canyon may contribute to this dis-
turbance (Fig. 1).

4 Data availability

The outcome of this research yields the in-filled data prod-
uct, which is available at https://doi.org/10.25919/myac-
yx60 (Bui and Feng, 2024). The product comprises contin-
uous daily 5 m resolution temperature and current variables
(Table 3). All of the data products are available as NetCDF
files. In addition to the main parameters such as tempera-
ture and current, we provide quality control flags that indicate
the original data sources. Specifically, we use seven flags for
SOM-filled temperatures and four flags for SOM-filled cur-
rents, as detailed in Table 3.

We provide direct links to all of the datasets used in this
study:

– unfilled gridded data – https://doi.org/10.25919/9gb1-
ne81 (Bui et al., 2023);

– satellite sea surface temperature from RAMSSA – https:
//portal.aodn.org.au (Beggs et al., 2011); and

– the Fremantle sea level from the Univer-
sity of Hawaii Sea Level Center – https:
//uhslc.soest.hawaii.edu (last access: 9 April 2025)
(https://doi.org/10.7289/V5V40S7W, Caldwell et al.,
2015).

5 Code availability

We provide scripts in MATLAB to download and plot
the data products. These scripts are available online
(https://doi.org/10.25919/myac-yx60, Bui and Feng, 2024)
and are available under a Creative Commons Attribution 4.0
International license (CC BY 4.0).

6 Summary and discussion

In this research, we have employed a SOM-based method
to fill significant temperature and velocity measurement gaps
from a mooring array on the Rottnest Shelf off south-western
Western Australia that monitors the Leeuwin Current and the
associated shelf processes. We use daily temperature records
from three moorings of approximately 13.5 years as well as
nearly 13 years of daily current velocity records from five
moorings, in conjunction with daily SST and coastal sea level
at Fremantle, to train a SOM. Because this is a relatively
small mooring array, we pre-process observational data using
interpolation and extrapolation to have enough non-missing
daily data profiles to train a SOM. Evaluated by withhold-
ing data, the RMSEs for temperature estimations at the three
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Figure 6. Comparison of observed and gap-filled temperature time series for (a) NRSROT at 50 m, (b) WATR10 at 95 m, and (c) WATR20
at 190 m. The black dashed lines show daily climatological time series at the corresponding depths. The climatological values are estimated
from gap-filled data. Panel (d) shows the Fremantle sea level time series.

Figure 7. Mean intensity for the individual (a) MHW and (b) MCS events at WATR20. Estimation is based on the daily gap-filled temper-
ature. The definition of each event follows Hobday et al. (2016). This plot is created using MATLAB code (Zhao and Marin, 2019). The
threshold temperature identifying a MHW or MCS is set at the 90th and 10th percentiles, respectively. The three arrows in panel (a) denote
the times of the MHW events shown in Fig. 8.
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Figure 8. (a, c, e) Examples of marine heat waves at NRSROT-40m (a), WATR10-80m (c), and WATR20-100m (e). The categories are
moderate (yellow – category I) and strong (red – category II), as defined by Hobday et al. (2018). In panels (a), (c), and (e), the dashed red
lines are estimated as twice the 90th percentile difference from the mean climatology value. (b, d, f) Meridional component of the current
velocity at the same time and depth as MHWs shown in the corresponding left panels. In all the panels, vertical blue lines indicate the time
frame of each MHW event.

moorings are 0.61 °C at NRSROT, 0.39 °C at WATR10, and
0.58 °C at WATR20, respectively. The RMSEs for the merid-
ional (along-shore) and zonal (cross-shore) velocities are 0.1
and 0.05 m s−1. In addition, the data pre-processing brings
better consistency between the observed and gap-filled data.

Since the strength of the LC is also influenced by local
winds, we have evaluated the impact of including local winds
during SOM training. Figure S12 presents the observed and
reconstructed temperatures at the three moorings between
1 January and 30 May 2020, with local winds incorporated
into the SOM training process. Compared to the case where
local winds were excluded (Fig. 3), we found that includ-
ing local winds resulted in a lower RMSE at NRSROT but
a higher RMSE at WATR20. Overall, the differences were
minimal. Local winds are important for the seasonal clima-
tology of the Leeuwin Current. However, on interannual and
intraseasonal timescales, the Leeuwin Current is more influ-
enced by remotely forced coastal Kelvin waves, as reflected
in coastal sea level variations (Feng et al., 2003; Marshall
and Hendon, 2014). The effects of local winds may also have
been integrated into the sea level variations.

SOM is an unsupervised learning method capable of cap-
turing non-linear processes in the training data. Liu and
Weisberg (2005) showed that the SOM method, unlike linear
empirical orthogonal functions (EOFs), was able to reveal

asymmetric features in the Florida Current system, such as
variations in current strength and coastal jet location. How-
ever, as a statistical approach, it relies on enough realizations
in the training dataset to properly capture the non-linearity.
In the Rottnest Shelf region, several factors contribute to
the non-linear variability in both temperature and velocity
fields. Mesoscale eddies can stem from the instability of the
Leeuwin Current. Intense land and sea breezes during sum-
mer amplify near-inertial currents (Mihanović et al., 2016).
Additionally, the strong shear zone between the Capes Cur-
rent and the Leeuwin Current in summer, as well as inter-
actions between the strengthening of the LC and the Perth
Canyon in winter, can generate sub-mesoscale eddies (Cosoli
et al., 2020). SOM may well capture the mesoscale processes
in the LC. Due to their randomness, however, sub-mesoscale
processes may not be fully captured in daily velocities. This
is reflected in the lower R2 values for velocities compared to
temperatures (Figs. 3 and 4).

There are weak biases in the SOM-derived product, such
as a warm bias at WATR20 during the validation period from
1 January to 30 May 2020 (Fig. S6c). It is noted that this pe-
riod experienced multiple marine cold spells (Fig. 7b). This
systematic bias is likely due to the nature of the SOM al-
gorithm, which tends to underestimate the magnitudes of
extreme events while effectively capturing broader patterns.
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Table 3. Variables included in the in-filled data product.

Parameter Variable name Unit Description

Time TIME d An array containing time information (days since
1950/01/01, 00:00:00 UTC)

Depth DEPTH m An array containing depth levels

Longitude LONGITUDE ° E

Latitude LATITUDE ° N

Temperature TEMP °C A matrix containing temperatures over the entire
record for the whole water column

Temperature_quality
control

TEMP_quality_control A matrix containing flag values that indicate the
original temperature data
1. Observed temperature
2. SST
3. Interpolated temperature near the surface
4. Extrapolated temperature near the bottom
5. SOM-filled temperature near the surface
6. SOM-filled temperature in the sensor range
7. SOM-filled temperature near the bottom

U velocity UCUR m s−1 (true east) A matrix containing current data over the entire record
for the whole water column

V velocity VCUR m s−1 (true north)

Current_quality_control UCUR_quality_control

VCUR_quality_control

A matrix containing flag values that indicate the
original current data
1. Observed current
2. Extrapolated current near the surface
3. Extrapolated current near the bottom
4. SOM-filled current

Future work could explore bias correction techniques to en-
hance accuracy.

Our continuous daily data products reveal that numerous
MHW and MCS events occur below the surface, which are
undetectable while using altimetry data (Fig. 7). We also find
that intense MHW events are frequently related to strong
southward currents at the same depth (Fig. 8). However, the
role of advection temperature due to the shelf or slope LC
or warm-core eddies remains unclear. Future mooring obser-
vations are needed to better understand the characteristics of
MHWs and MCSs as well as the factors driving extreme tem-
peratures.

Addressing small gaps in the mooring data appears to be
a crucial step before training SOM. We have tried two other
options: assigning missing values as zeros or replacing them
with climatological values derived from the original data. We
have experimented with these two options with an iterative
approach (e.g. Sloyan et al., 2023) but found that the filled
temperature time series exhibits some inconsistency, such as
a block of constant values or temperature inversions. Our op-
tion of pre-processing the observational data by filling small

gaps increases the number of good profiles for training. For
example, 75 % of the temperature profiles are gap-free. The
method can easily be applied to fill data gaps in shelf moor-
ing arrays with small gaps in the vertical so that little errors
are introduced from linear extrapolation. For complex moor-
ing systems with enough redundancy, the iterative comple-
tion self-organizing map (ITCOMPSOM) method outlined
in Sloyan et al. (2023) could be more useful.

We have provided examples that highlight the advantages
of using filled mooring data for end-users. The continuous
daily temperature time series are essential for characterizing
sub-surface marine heat waves and cold spells on the Rot-
tnest Shelf, which can last from days to weeks. Furthermore,
the gap-filled velocity time series from the mooring array al-
lows researchers to capture episodic cross-shore and along-
shore processes on the Rottnest Shelf, offering valuable in-
sights into the dynamics of the Leeuwin Current and Capes
Current. These mooring data products, when combined with
other observational platforms such as the IMOS glider pro-
gram and surface radar observations, can be integrated into
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ocean climate models to improve the accuracy of marine pre-
dictions for Western Australia.

Supplement. The supplement related to this article is available
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