
Earth Syst. Sci. Data, 17, 165–179, 2025
https://doi.org/10.5194/essd-17-165-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

SDUST2023BCO: a global seafloor model determined
from a multi-layer perceptron neural network using

multi-source differential marine geodetic data

Shuai Zhou1,2, Jinyun Guo1, Huiying Zhang1, Yongjun Jia3, Heping Sun2, Xin Liu1, and Dechao An4

1College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
2State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement

Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
3National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100812, China

4School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China

Correspondence: Jinyun Guo (jinyunguo1@126.com)

Received: 20 August 2024 – Discussion started: 28 August 2024
Revised: 8 November 2024 – Accepted: 11 November 2024 – Published: 20 January 2025

Abstract. Seafloor topography, as a fundamental marine spatial geographic information, plays a vital role in
marine observation and science research. With the growing demand for high-precision bathymetric models, a
multi-layer perceptron (MLP) neural network is used to integrate multi-source marine geodetic data in this pa-
per. A new bathymetric model of the global ocean, spanning 180° E–180° W and 80° S–80° N, known as the
Shandong University of Science and Technology 2023 Bathymetric Chart of the Oceans (SDUST2023BCO),
has been constructed, with a grid size of 1′× 1′. The multi-source marine geodetic data used include gravity
anomaly data released by the Shandong University of Science and Technology, the vertical gravity gradient
and the vertical deflection data released by the Scripps Institution of Oceanography (SIO), and the mean dy-
namic topography data released by Centre National d’Etudes Spatiales (CNES). First, input and output data are
organized from the multi-source marine geodetic data to train the MLP model. Second, the input data at inter-
esting points are fed into the MLP model to obtain prediction bathymetry. Finally, a high-precision bathymetric
model with a resolution of 1′× 1′ has been constructed for the global marine area. The validity and reliabil-
ity of the SDUST2023BCO model are evaluated by comparing with shipborne single-beam bathymetric data
and GEBCO_2023 and topo_25.1 models. The results demonstrate that the SDUST2023BCO model is accurate
and reliable, effectively capturing and reflecting global marine bathymetric information. The SDUST2023BCO
model is available at https://doi.org/10.5281/zenodo.13341896 (Zhou et al., 2024).

1 Introduction

As a critical foundational dataset for marine scientific re-
search, global bathymetric information plays a vital role in
multiple disciplines such as marine geodesy, geophysics,
biology and seafloor geology. It is also essential for ma-
rine economic development, oceanographic surveys, mar-
itime navigation and rescue operations (Hirt and Rexer, 2015;
Hu et al., 2015; Yang et al., 2018; Sandwell et al., 2022). Cur-
rently, shipborne single-beam bathymetric techniques can
provide high-precision bathymetric data, which is one of

the most direct ways of detecting seafloor topography. How-
ever, despite the accumulation of data collected through ship-
borne techniques, large areas of the global oceans, espe-
cially in the Southern Hemisphere, remain largely uncharted
(Hu et al., 2014). Moreover, shipborne single-beam bathy-
metric data, characterized by its low resolution, high ex-
penses and low precision in positioning and measurements
of older datasets, present significant limitations (Hu et al.,
2014; Xing et al., 2020). The progression in satellite al-
timetry technology has ushered in a novel era for the de-
velopment of bathymetric models. Satellite altimetry, as one
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of the critical techniques for acquiring global marine data,
can obtain the global-coverage, uniformly distributed, high-
precision and high-resolution sea surface heights. The global
marine gravity field information can be recovered based on
relevant geodetic methods (Marks and Smith, 2012; Sun et
al., 2021; Kim et al., 2011). The global bathymetric model
can be obtained with seafloor-inversion methods, consider-
ing the inherent correlation between seafloor topography and
global marine gravity information (Wang, 2000; Hu et al.,
2021; Yeu et al., 2018).

Currently, the inversion of bathymetric values based on
marine gravity data acquired from satellite altimeter data has
become a reliable approach to construct global bathymet-
ric models. The methods employed for predicting seafloor
topography based on satellite altimeter data mainly include
frequency-domain methods, spatial-domain methods (analyt-
ical methods), least-squares collocation methods and gravity-
geological methods (GGMs). While high-precision bathy-
metric models have been effectively constructed using these
methods for specific regions, such as the South China Sea
(Fan et al., 2020; An et al., 2022; Hu et al., 2020), west-
ern Pacific Ocean (Yang et al., 2018), Gulf of Guinea (An-
nan and Wan, 2020), Philippine Sea (An et al., 2024) and
New Zealand (Ramillien and Wright, 2000), the nonlinear
relationship between gravity data and seafloor topography is
still not adequately used by these methods. At the same time,
the seafloor topography is constructed solely based on the
linear relationship between the gravity anomalies or vertical
gravity gradients and the seafloor topography. Consequently,
a global bathymetric model can be constructed by integrat-
ing the nonlinear components inherent in the relationship be-
tween the multi-source marine geodetic data and the seafloor
topography. At the same time, the long-wavelength informa-
tion in multi-source marine geodetic data will affect the pre-
diction accuracy of seafloor topography models. Therefore,
it is necessary to mitigate the impact of long-wavelength in-
formation on the accuracy of model establishment.

With the continuous advancement in computer storage
and computational capabilities, machine learning or deep
learning has been widely applied in various scientific fields,
such as environmental science (Sunil et al., 2024), geology
(Kuster and Toksoz, 1974) and clinical medicine (Lee et al.,
2019). Currently, machine learning or deep learning meth-
ods are increasingly used to construct bathymetric models.
Sun et al. (2023) proposed a method combining neural net-
works and wavelet decomposition of gravity information,
and the superiority of this method has been validated. How-
ever, this model only used gravity anomaly and vertical grav-
ity gradient data without considering other multi-source ma-
rine geodetic data. Zhou et al. (2023) used a multi-layer per-
ceptron (MLP) neural network with a regional inversion ap-
proach to construct a high-precision bathymetric model of
the Gulf of Mexico. However, the impact of long-wavelength
information from multi-source marine geodetic data on the

accuracy of the constructed bathymetric model was not con-
sidered.

The focus of this paper is the establishment of a new
global (80° S–80° N, 180° E–180° W) bathymetric model,
named Shandong University of Science and Technology
2023 Bathymetric Chart of the Oceans (SDUST2023BCO).
This model is constructed based on an MLP neural net-
work using the differences between the multi-source ma-
rine geodetic data (gravity anomalies, vertical gravity gra-
dients, meridional and prime components of vertical de-
flection, mean dynamic topography) of training/prediction
points, and their surrounding grid points. The reliability
of SDUST2023BCO model is validated by comparing it
with the GEBCO_2023 and topo_25.1 models. Section 2
introduces the multi-source marine geodetic data used in
this paper. Section 3 explains the processing methods for
the shipborne single-beam bathymetric data, the principle
of the MLP neural network, the organization of input/out-
put data and the procedure for constructing the bathymet-
ric model. Section 4 contains the results and discussions.
By comparing it with the shipborne single-beam bathymet-
ric data, the GEBCO_2023 model and the topo_25.1 model,
the SDUST2023BCO model is verified. Section 5 contains
the conclusion.

2 Data

The global ocean (80° S–80° N, 180° E–180° W) is desig-
nated as the study region in this paper. Due to the limita-
tions in computational power and storage capacity, the study
region is divided into 144 sub-regions, as shown in Fig. 1.
From west to east, the area is divided into 18 columns and
marked as LONG1 to LONG18. From north to south, the re-
gion is divided into eight rows and marked as LAT1 to LAT8.
To mitigate edge effects and stitching issues between differ-
ent sub-regions, each sub-region is expanded by 0.1° in all
directions. The extended data are used for the inversion of
seafloor topography.

2.1 Shipborne single-beam bathymetry data

The shipborne single-beam bathymetry data are provided by
the National Centers for Environmental Information (NCEI),
a division of the National Oceanic and Atmospheric Ad-
ministration (NOAA) in the United States. The dataset con-
tains global marine bathymetric data collected since the
1950s. The study region includes 5374 shipborne single-
beam bathymetry tracks, as shown in Fig. 1.

Owing to the large time span of the shipborne single-beam
bathymetric data, some datasets have imprecise localization
and significant measurement inaccuracies. Therefore, it is
necessary to preprocess the data to remove some points with
substantial errors. Now, the global marine bathymetric mod-
els derived from satellite altimetry data achieve a high level
of accuracy. The topo_25.1 model, as the latest bathymet-
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Figure 1. Division map and the distribution of shipborne single-beam bathymetry data.

ric model released by the Scripps Institution of Oceanogra-
phy (SIO), shows a standard deviation (SD) of approximately
435 m compared to global shipborne single-beam bathymet-
ric data. Therefore, this paper uses the topo_25.1 model as
a prior model to remove shipborne single-beam bathymetric
points with significant errors. The process of elimination pri-
marily consists of two parts:

The first step is to remove shipborne single-beam
bathymetric tracks that contain significant errors. First,
the topo_25.1 model is used to calculate the predicted
bathymetry at each shipborne single-beam bathymetric point
using a cubic spline interpolation method. The difference be-
tween the topo_25.1 predicted bathymetric values and the ac-
tual measured bathymetry at each point is calculated, and the
standard deviation (SD1) of these differences is calculated.
Second, the topo_25.1 model is interpolated onto each ship-
borne single-beam bathymetric track to obtain correspond-
ing bathymetry. The differences between these interpolated
values and the actual measured depths along each track are
calculated, and the SD of these differences is computed for
each track. Finally, the entire shipborne single-beam bathy-
metric track is removed if its SD exceeds SD1 3 times. Us-
ing this method, 38 ship tracks with significant errors are
eliminated, leaving 5336 shipborne single-beam bathymet-
ric tracks, which consist of a total of 11 335 376 shipborne
single-beam bathymetric points.

The second step is to remove shipborne single-beam
bathymetric points with large errors. Despite the initial re-
moval of entire tracks, some individual shipborne single-
beam bathymetric points with significant large errors may
still remain. Therefore, the method is employed to eliminate
shipborne single-beam bathymetric points that exhibit signif-

icant errors. First, the topo_25.1 model is interpolated onto
all the remaining shipborne single-beam bathymetric points
to obtain the topo_25.1 predicted bathymetry at these points.
The difference between the topo_25.1 predicted bathymetry
and the actual measured bathymetry at each point is calcu-
lated. The SD of these differences is calculated and ship-
borne single-beam bathymetric points with absolute bathy-
metric residuals greater than 3 times the SD are removed.
Finally, the 1 016 374 shipborne single-beam bathymetric
points are eliminated, leaving 112 319 002 shipborne single-
beam bathymetric points, with a removal rate of 0.90 %. The
112 319 002 shipborne single-beam bathymetric points are
used to train the MLP model which is employed to construct
the SDUST2023BCO model. Among them, the largest ship-
borne single-beam bathymetric data are 10 949.5 m, and the
average bathymetry is 2819.8 m.

2.2 Marine geodetic data

2.2.1 Marine gravity data

Gravity anomaly data originate from the global grav-
ity anomaly model (SDUST2022GRA) constructed by the
Shandong University of Science and Technology in 2022.
This model is constructed based on the along-track radar al-
timeter data (Li et al., 2024), and the accuracy and reliabil-
ity of this model have been verified by comparing with the
DTU17 model, SIO grav_32.1 model and shipborne grav-
ity data from NCEI. In local coastal and high-latitude re-
gions, SDUST2022GRA showed an enhancement of 0.16–
0.24 mGal compared to the altimeter-derived global gravity
anomaly models (DTU17, V32.1, NSOAS22) and shipborne
gravity measurements. The model is available for down-
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load from https://doi.org/10.5281/zenodo.8337387 (Li et al.,
2023), with a resolution of 1′× 1′.

Based on the correlation between vertical deflection, ver-
tical gravity gradient and bathymetry, those data can also be
utilized to predict bathymetry. These gravity data are de-
rived from version 32.1 released by SIO in 2022, with a
resolution of 1′× 1′, and can be freely obtained from https:
//topex.ucsd.edu/pub/global_grav_1min/ (last access: 10 Au-
gust 2024).

2.2.2 MDT model

The mean dynamic topography (MDT) model used in this
study is the MDT-CNES-CLS18 model released by the Cen-
tre National d’Etudes Spatiales (CNES). This model plays a
crucial role in land–sea elevation data, physical oceanogra-
phy and global climate change studies (Woodworth et al.,
2015), and it can be downloaded from https://www.aviso.
altimetry.fr/en/data/products/ (last access: 10 August 2024).
The MDT model has a resolution of 7.5′× 7.5′ and is cal-
culated using data from the CNES-CLS15 mean sea level
model (Pujol et al., 2018), GOCO05S geoid model, hydro-
graphic data and drifting data.

2.2.3 Bathymetric models

To validate the accuracy of the SDUST2023BCO model, this
paper introduces the GEBCO_2023 model and the topo_25.1
model.

The GEBCO_2023 model, released in 2023 by the Nip-
pon Foundation–GEBCO Seabed 2030 Project, is a global
elevation model developed in collaboration between the Nip-
pon Foundation (Japan) and GEBCO (General Bathymetric
Chart of the Oceans). It covers the latitude range from 90° N
to 90° S, with a resolution of 15′′, and can be downloaded
from https://www.gebco.net (last access: 10 August 2024).

The topo_25.1 model, released by the SIO in 2023, is ver-
sion 25.1 of the global bathymetric model. It covers latitudes
from 80° N to 80° S, with a resolution of 1′× 1′. The model
is available at https://topex.ucsd.edu/pub/global_topo_1min/
(last access: 10 August 2024).

3 Methodology

3.1 MLP neural network

Neural networks, which do not rely on explicit mathematical
expressions between input data and output data, can learn and
model nonlinear relationships between input and output vec-
tors, facilitating complex function approximation. They have
a strong capacity to learn the intrinsic features of datasets,
which has been applied in numerous domains (Jin et al.,
2021; Kuremoto et al., 2014).

The MLP neural network, as a machine learning method,
is a type of feedforward neural network. An MLP neural net-

work consists of an input layer, an output layer and a num-
ber of hidden layers, which can be adjusted according to
the practical requirements. Each layer is composed of sev-
eral neurons, also known as nodes. The layers in the network
are fully connected, meaning every neuron in one layer is
linked to every neuron in the next layer. Due to the linear con-
nections between neurons across different layers, activation
functions are introduced to enhance the nonlinearity. Conse-
quently, the output of a neuron can be expressed as

y = f (Wx+ b), (1)

where x and y represent the input and output data from a
neuron;W and b represent the weight and bias; and f (·) rep-
resents the tanh activation function in this paper, which adds
the nonlinearity to the MLP neural network, enabling it to ap-
proximate complex functions. The activation function allows
the model to learn and fit complex patterns in the dataset.

3.2 Organization of input/output data

The organization format of input/output data significantly in-
fluences the training and predictive accuracy of MLP neural
networks. In the traditional methods of constructing seafloor
topography models, marine gravity data are typically used
as the initial data. Based on the correlation between gravity
data and bathymetry (Smith and Sandwell, 1997), the grav-
ity anomaly, vertical gravity gradient, and meridional and
prime components of vertical deflection are used as input
data for training and prediction. Since MDT data can reflect
the bathymetric information to a certain extent (Pujol et al.,
2018; Mulet et al., 2021), MDT data have also been intro-
duced.

The bathymetry at a particular point is influenced by var-
ious factors in its surroundings, and the more surrounding
points there are, the more information is provided (Zhu et
al., 2021, 2023). Due to the limitations in computational pro-
cessing power and memory storage, an 8′× 8′ grid centered
on each interesting point is constructed by extending outward
from each point, as shown in Fig. 2. Grid points on the 8′× 8′

grid are marked from point 1 to point 64. To mitigate the im-
pact of long-wavelength information in multi-source geode-
tic data, this paper uses the differences between the multi-
source marine geodetic data at each grid point within an
8′× 8′ area surrounding the interesting point and the multi-
source marine geodetic data at the interesting point. These
differences are used as the input data to train the MLP neu-
ral network. Due to some shipborne single-beam bathymet-
ric points being close to the shore, some grid points will
be located on the land area. In order to improve the accu-
racy of SDUST2023BCO model, the shipborne single-beam
bathymetric points farther than 6′ from the shore are used to
train MLP neural network. At the same time, when modeling
the SDUST2023BCO model, the bathymetric values of the
topo_25.1 model replace the areas within approximately 6′

from the shore.
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Figure 2. The organization of input/output data and structure of MLP.

The training dataset includes all shipborne single-beam
bathymetric point within the global ocean, which are referred
to as the training points. The input data used for training/pre-
diction in this paper are the differences between the multi-
source marine geodetic data of training/prediction points and
their surrounding grid points, which include the location
information (longitude, latitude), bathymetry, slope, merid-
ional components of vertical deflection, prime components of
vertical deflection, vertical gravity gradient, gravity anomaly
and MDT data. As the ratio of depth difference to distance,
slope contains information about the undulating variations of
seafloor topography. Therefore, slope is also used as input
data in this paper. The relevant calculation equation is as fol-
lows:

1L= Ligrid−Ls

1B = Bigrid−Bs

1h= higrid−hs

1slope= slopeigrid− slopes
1ξ = ξ igrid− ξs , i = 1,2, . . .,64,
1η = ηigrid− ηs

1(1g)=1gigrid−1gs

1VGG= VGGigrid−VGGs

1MDT=MDTigrid−MDTs

(2)

where i represents the ith grid node; Ligrid and Bigrid are the
longitude and latitude at the ith grid node; Ls and Bs rep-
resent the longitude and latitude at the training or predic-

tion point; higrid, ξ igrid, ηigrid, 1gigrid, VGGigrid and MDTigrid
represent the interpolations of the topo_25.1 model, the
SIO meridional components of vertical deflection model,
the SIO prime components of vertical deflection model, the
SDUST2022GRA gravity anomaly model, the SIO vertical
gravity gradient model and the MDT model at the ith grid
node; and hs, ξs, ηs, 1gs, VGGs and MDTs represent the
interpolations of the topo_25.1 model, the SIO meridional
components of vertical deflection model, the SIO prime com-
ponents of vertical deflection model, the SDUST2022GRA
gravity anomaly model, the SIO vertical gravity gradient
model and the MDT model at the training or prediction point.
The slope, defined as the ratio of the difference in seafloor
height to distance, is calculated by the following equation:

slopei =
hi −hi+1√

(xi − xi+1)2+ (yi − yi+1)2
, (3)

where slopei represents the slope of the target point at the ith
location; hi is the bathymetry at the ith point; and hi+1 is the
bathymetry at the i+ 1th point, which is 1′ longitudinally or
latitudinally apart from the ith point. xi and yi are the hori-
zontal and vertical coordinates of the ith point, and xi+1 and
yi+1 are the corresponding coordinates of the i+ 1th point.
Using Eq. (3), the slopes in four directions – longitudinal and
latitudinal – are calculated. The maximum value among these
four directional slopes is taken as the final slope for the target
point.
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The output data used for training are

1houtput = htopo−hs, (4)

where 1houtput represents the output data, htopo represents
the bathymetry of the topo_25.1 model at training point and
hs represents the measured bathymetry at the training point.

3.3 Method for model construction

The procedure for constructing a global marine bathymetric
model using an MLP neural network is illustrated in Algo-
rithm 1, with the specific steps detailed as follows.

The first step is the standardization of the input and output
data. Due to the significant differences in magnitude among
various types of data, it is essential to standardize both input
and output data to mitigate the effects of dimensional dis-
crepancies. The calculation equation is as follows:

x̂ =
xi − x

σ
, (5)

where x̂ represents the standardized data, xi is the data before
standardization, x is the mean of the input data and σ is the
SD of the input data. After standardization, the mean of the
input data becomes 0 and the SD becomes 1, ensuring that
all input data contribute equally to the training of the MLP
neural network.

The second step is to select appropriate neural network pa-
rameters. The choice of parameters is critical for the training
and prediction accuracy of the MLP model. This includes the
initialization of weights and biases, number of hidden layers,
activation function, learning rate and batch size. In order to
achieve high precision in training and prediction, the selec-
tion of parameters may be adjusted in different sub-regions.
Relevant parameters are initially set randomly, and individ-
ual parameters are then adjusted based on training accuracy
until the most suitable parameters are obtained. For example,
if the training accuracy is poor, increasing the number of hid-
den layers, the number of neurons in each hidden layer or the
number of iterations or decreasing the learning rate or batch
size can help achieve the most appropriate parameters. The
relevant hyperparameters were determined through the train-
ing set and validation set. In this paper, a four-layer hidden
neural network is used, with each layer containing 512, 256,
128 and 64 neurons, respectively. The learning rate is set to
0.0001, and the batch size is set to 8.

The third step is the training of the MLP model. First,
the MLP neural network is trained using the input and out-
put data. Second, an appropriate loss function and optimiza-
tion algorithm should be selected. Finally, the MLP neural
network models for 144 sub-regions are established through
training. In this paper, the mean squared error (MSE) is cho-
sen as the loss function, and the Adam optimization algo-
rithm is used to update the weight and bias.

The fourth step is the calculation of bathymetric val-
ues. Based on step 3, 144 MLP neural network models for

Algorithm 1 MLP neural network for constructing the
seafloor topography model.

1: Input: training set T and prediction set P for each sub-region.
2: Initialization: normalize the datasets using the Eq. (5); N de-

notes the number of iterations.
3: for i= 1 to N do
4: Initialize the weight W and bias b values.
5: Compute the output of each neuron in each layer and the final

output using Eq. (1).
6: Calculate the loss function.
7: Update the weight W and bias b values using the Adam algo-

rithm.
8: end for
9: until the maximum number of iterations is reached or the loss

function no longer decreases;
10: Save the MLP model.
11: Obtain prediction values using the prediction set P .
12: Recover the bathymetry values using Eq. (6).
13: Bathymetry models for each sub-region.
14: Output: Global bathymetry model.

the sub-regions are established. The prediction outcomes
for each sub-region are obtained by feeding the input data
into the corresponding MLP models for all 144 sub-regions.
Since the prediction result is the difference between the
topo_25.1 model at the prediction points and the actual
bathymetric value at these points, the equation for calculating
the predicted bathymetry value is

h
pred
output = h

′

topo_25.1−1h
′

result, (6)

where hpred
output represents the predicted bathymetric value at

the prediction point,1h′result represents the prediction output
result of the MLP model and h′topo_25.1 represents the bathy-
metric interpolation from the topo_25.1 model at the predic-
tion point.

The final step is the construction of the global bathymet-
ric model. Due to each sub-region being extended outward
by 0.1°, the average bathymetry of the overlapping areas is
taken as the final bathymetric value. This method ensures a
smooth transition between sub-regions and avoids any abrupt
changes in the bathymetric model. By integrating all sub-
regions, a new global bathymetric model is constructed.

4 Results and analysis

4.1 Training results of the MLP neural network

First, input and output data are organized according the
Sect. 3.2. Second, the MLP neural network is trained with
those data to establish MLP models for each sub-region.
Through the training phase, the weights within the MLP neu-
ral network are iteratively adjusted via the Adam optimiza-
tion algorithm. The training outcomes gradually converge to

Earth Syst. Sci. Data, 17, 165–179, 2025 https://doi.org/10.5194/essd-17-165-2025



S. Zhou et al.: SDUST2023BCO 171

Table 1. Training accuracy of each sub_region.

Area Evaluation metrics LAT1 LAT2 LAT3 LAT4 LAT5 LAT6 LAT7 LAT8

LONG1 R2 [%] 98.32 98.61 99.32 95.04 93.69 96.15 98.23 97.98
SD [m] 10.69 8.07 10.83 25.68 14.46 5.64 9.45 3.84

LONG2 R2 [%] 98.41 96.88 99.27 98.80 98.01 99.33 98.33 98.96
SD [m] 0.91 3.69 7.19 4.57 1.21 5.22 8.63 8.41

LONG3 R2 [%] 98.09 93.69 98.96 96.50 97.58 99.26 97.17 97.43
SD [m] 1.77 2.51 5.25 11.18 6.99 9.34 6.99 6.52

LONG4 R2 [%] 95.94 – 97.78 97.45 97.55 98.97 96.90 97.03
SD [m] 1.67 – 5.28 7.10 9.56 9.62 8.00 5.75

LONG5 R2 [%] 92.55 – 99.71 98.61 96.04 98.63 97.84 97.89
SD [m] 2.19 – 1.55 3.55 6.53 5.11 5.98 5.21

LONG6 R2 [%] 86.68 – 95.36 97.19 96.91 96.71 98.92 96.93
SD [m] 0.58 – 2.33 10.52 9.56 10.32 5.90 3.76

LONG7 R2 [%] 97.23 98.23 99.06 95.77 98.18 97.66 98.57 98.88
SD [m] 3.91 6.87 8.68 12.51 7.29 6.34 7.27 5.15

LONG8 R2 [%] 98.68 97.94 93.07 93.39 98.90 96.40 97.05 97.47
SD [m] 2.03 9.83 17.71 15.28 13.51 7.79 10.31 5.82

LONG9 R2 [%] 97.21 97.49 95.90 96.99 95.95 95.50 94.19 95.66
SD [m] 3.74 9.99 9.57 10.62 13.91 7.20 9.09 8.62

LONG10 R2 [%] 99.27 95.99 96.93 97.15 96.19 94.44 97.48 97.97
SD [m] 4.23 11.94 13.04 11.42 15.51 12.54 6.68 7.38

LONG11 R2 [%] 98.85 97.80 96.59 97.30 97.16 96.94 97.95 98.10
SD [m] 6.53 9.98 11.18 9.54 11.39 7.16 7.35 6.93

LONG12 R2 [%] 98.24 96.09 96.78 96.34 96.71 97.81 97.16 95.91
SD [m] 8.31 9.05 8.23 6.61 7.57 5.85 9.29 5.21

LONG13 R2 [%] 94.12 – 94.54 97.08 96.77 98.47 98.99 96.96
SD [m] 1.45 – 9.52 10.85 9.54 9.21 5.83 3.14

LONG14 R2 [%] 98.53 99.90 97.57 96.71 96.01 97.98 98.53 95.81
SD [m] 1.95 1.77 9.70 11.02 11.51 8.39 6.93 2.59

LONG15 R2 [%] 99.87 97.10 98.57 95.25 97.18 98.71 98.09 97.50
SD [m] 3.47 4.01 5.17 14.25 7.37 9.25 8.06 5.20

LONG16 R2 [%] 97.11 96.73 97.16 95.56 99.24 98.97 95.69 98.38
SD [m] 6.83 7.09 14.59 13.03 3.31 6.81 11.64 3.59

LONG17 R2 [%] 97.30 97.22 97.86 98.73 98.32 94.95 99.15 94.63
SD [m] 4.88 12.31 13.59 10.07 9.17 4.29 9.85 8.41

LONG18 R2 [%] 96.26 95.97 96.74 95.90 96.16 98.23 98.17 95.21
SD [m] 9.37 10.04 11.34 9.07 13.44 11.74 7.55 6.42

Note: The dash (–) indicates that the area is land or does not have shipboard bathymetric soundings.

the actual bathymetric values, and the MLP models for each
sub-region are constructed.

In order to evaluate the training accuracy of the MLP neu-
ral network, and the coefficient of determination (R2) is in-
troduced, the calculation equation is as follows:

R2
=

1−

(
n∑
i=1

(hpred
i −hi)2

)
n∑
i=1

(h−hi)2

× 100%, (7)

where hpred
i is the predicted bathymetry of the ith training

point, hi is the measured bathymetry of the ith training point,
h is the average value of the measured bathymetry of the

training point and n is the number of training points. R2 is
generally used to indicate the accuracy of training, and the
greater it is, the better it is.

Table 1 shows the training accuracy for each sub-region,
which indicates that approximately 91.4 % of the sub-regions
achieve a training accuracy exceeding 95 %. This indicates
that the MLP models constructed for these sub-regions have
achieved a high level of accuracy. This satisfies the require-
ments for predicting bathymetry, demonstrating the effec-
tiveness of these models for this application.
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Table 2. RMSE of differences between bathymetric model and shipborne single-beam bathymetric data (in m).

Area Evaluation metrics LAT1 LAT2 LAT3 LAT4 LAT5 LAT6 LAT7 LAT8

LONG1 SDUST2023BCO 65.55 54.85 110.00 53.00 41.60 35.53 63.36 30.59
GEBCO_2023 83.02 57.03 114.81 115.66 55.38 50.40 101.87 48.29
topo_25.1 80.47 59.28 117.69 72.83 43.94 47.46 62.92 36.71

LONG2 SDUST2023BCO 9.44 54.94 102.50 89.41 62.88 122.41 85.33 120.73
GEBCO_2023 16.20 67.03 105.12 95.95 42.96 128.78 104.80 135.55
topo_25.1 14.68 68.64 109.62 102.69 128.41 127.38 90.25 136.13

LONG3 SDUST2023BCO 11.88 44.10 84.40 75.13 53.00 165.52 68.91 68.27
GEBCO_2023 16.81 35.86 90.38 88.05 64.27 171.80 86.21 79.43
topo_25.1 13.71 45.10 88.88 87.53 66.45 172.36 74.00 78.51

LONG4 SDUST2023BCO 19.46 – 53.34 53.56 69.81 138.95 75.72 40.12
GEBCO_2023 32.68 – 74.55 66.98 74.97 129.62 68.17 61.79
topo_25.1 20.55 – 66.39 65.49 71.83 192.42 119.28 49.32

LONG5 SDUST2023BCO 13.54 – 69.08 50.83 56.58 146.90 53.62 44.35
GEBCO_2023 23.87 – 77.11 62.75 50.91 83.22 53.91 64.55
topo_25.1 14.05 – 75.52 62.14 64.24 164.16 60.54 54.11

LONG6 SDUST2023BCO 1.55 – 39.23 89.20 73.58 59.11 76.50 37.05
GEBCO_2023 2.63 – 36.86 96.05 78.76 96.36 77.72 48.90
topo_25.1 2.27 – 47.91 121.88 95.89 90.65 78.35 45.80

LONG7 SDUST2023BCO 45.29 73.18 75.40 73.14 37.94 45.14 79.51 62.62
GEBCO_2023 45.48 91.73 74.35 89.39 97.51 84.20 81.37 88.91
topo_25.1 31.04 84.75 77.33 85.89 68.72 77.76 86.80 74.45

LONG8 SDUST2023BCO 50.40 70.51 110.90 108.05 67.89 46.67 63.41 51.28
GEBCO_2023 129.65 112.30 100.51 90.08 70.66 68.40 95.46 59.08
topo_25.1 83.81 94.38 115.30 118.94 77.84 64.56 77.85 60.65

LONG9 SDUST2023BCO 42.35 63.25 60.33 76.69 94.14 52.94 53.10 57.51
GEBCO_2023 74.78 92.40 69.72 94.11 97.61 60.76 66.73 68.50
topo_25.1 75.94 77.61 73.69 98.14 103.83 62.57 73.73 65.00

LONG10 SDUST2023BCO 86.58 75.64 107.87 150.55 170.00 78.29 51.85 68.37
GEBCO_2023 94.68 96.65 109.06 85.64 93.06 76.22 69.46 83.28
topo_25.1 94.04 90.29 112.11 231.69 209.53 88.53 67.60 78.56

LONG11 SDUST2023BCO 98.10 67.24 86.15 84.09 103.52 60.85 79.76 67.20
GEBCO_2023 112.28 76.59 85.92 84.45 75.32 61.94 90.36 105.21
topo_25.1 113.42 76.37 86.99 87.22 114.59 70.45 88.06 101.02

LONG12 SDUST2023BCO 68.21 68.76 62.98 63.68 51.63 56.84 82.77 45.54
GEBCO_2023 72.42 70.47 60.91 58.06 48.76 59.37 98.29 71.07
topo_25.1 66.67 70.87 63.21 70.02 58.34 68.04 90.03 55.38

LONG13 SDUST2023BCO 24.92 – 70.83 92.18 54.72 114.17 65.85 33.06
GEBCO_2023 45.05 – 75.44 90.76 44.56 59.65 80.47 39.98
topo_25.1 39.73 – 71.94 97.40 60.02 124.54 74.88 41.57

LONG14 SDUST2023BCO 48.71 132.98 48.73 77.96 58.43 80.05 73.78 31.75
GEBCO_2023 50.71 133.43 48.56 78.16 59.94 77.68 84.25 58.81
topo_25.1 49.73 132.84 51.05 81.37 66.49 85.88 82.20 40.26

LONG15 SDUST2023BCO 156.79 59.05 96.16 90.32 56.70 111.03 92.13 62.90
GEBCO_2023 164.46 57.94 95.50 98.09 67.53 119.65 101.24 62.34
topo_25.1 162.80 61.01 98.99 98.82 66.88 119.96 100.57 78.95

LONG16 SDUST2023BCO 48.93 45.00 112.02 86.95 65.75 40.90 70.13 60.13
GEBCO_2023 67.81 50.83 114.80 96.41 80.22 23.03 91.02 52.04
topo_25.1 64.64 50.82 116.23 94.84 79.69 52.08 77.58 69.75

LONG17 SDUST2023BCO 43.29 94.30 129.94 114.02 103.47 40.62 110.35 42.10
GEBCO_2023 44.02 106.14 135.38 129.15 108.97 46.61 167.49 66.70
topo_25.1 58.87 98.55 134.60 126.66 163.78 58.29 154.82 50.35

LONG18 SDUST2023BCO 60.85 71.59 68.84 64.33 95.16 82.34 173.11 38.66
GEBCO_2023 80.66 79.93 78.35 79.73 97.81 116.30 181.99 50.91
topo_25.1 73.72 73.54 78.17 72.96 91.39 92.75 172.09 47.96
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Figure 3. Difference in seafloor topography between the SDUST2023BCO model and the topo_25.1 model.

Figure 4. The SDUST2023BCO model.

4.2 SDUST2023BCO model based on MLP neural
network

Input data at the prediction points within each sub-region are
fed into the respective MLP model, the predicted bathymetry
for the center points of each 1′× 1′ grid are obtained.

The predicted bathymetry is the difference between the
STUST2023BCO model and the topo_25.1 model. Figure 3
presents the difference map between the two models, illus-
trating that the discrepancies are mainly centered around 0 m.
According to statistics, the ratio of differences that fall within
the range of ±100 m is 96.89 %. The high correlation and
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Figure 5. Distribution histogram of the difference between SDUST2023BCO, topo_25.1 and GEBCO_2023 models and shipborne single-
beam bathymetric data: (a) SDUST2023BCO, (b) GEBCO_2023 and (c) topo_25.1.

Table 3. Difference in statistical results between SDUST2023BCO, GEBCO_2023 and topo_25.1 models and shipborne single-beam bathy-
metric points (in m).

Model Max Min Mean SD RMS

SDUST2023BCO 1846.19 −1782.62 8.53 90.23 90.63
GEBCO_2023 4413.78 −2981.52 10.53 90.51 91.12
topo_25.1 977.65 −977.65 9.35 105.80 106.21

minimal differences between the two models, as revealed by
this analysis, further validate the effectiveness of the MLP
neural network method in constructing bathymetric models.

Using Eq. (6), the predicted bathymetry for each sub-
region is obtained. In the overlapping areas of the sub-
regions, the final bathymetric value is obtained by averaging
the values from these regions. Finally, the STUST2023BCO
model is constructed using this method, as shown in Fig. 4.

4.3 Comparison with NCEI shipborne single-beam
bathymetric points

The distribution of shipborne single-beam bathymetric points
is showed in Fig. 1. In order to verify the similarity between
the SDUST2023BCO, GEBCO_2023 and topo_25.1 models
and shipborne single-beam bathymetric data, the RMS of the
differences between the shipborne single-beam bathymetric
data and the three global marine bathymetric models is cal-
culated within each sub-region, as shown in Table 2.

Table 2 shows that the SDUST2023BCO, topo_25.1
and GEBCO_2023 models have their strengths and weak-
nesses in different sub-regions. The results indicate that
the SDUST2023BCO model shows closer resemblance to
shipborne single-beam bathymetric data in 112 and 134
sub-regions compared to the GEBCO_2023 model and the
topo_25.1 model, respectively, which corresponds to approx-
imately 80.00 % and 95.71 % of the total number of sub-
regions. In conclusion, the SDUST2023BCO model is more
closely aligned with the shipborne single-beam bathymetric
data.

To validate the reliability of the SDUST2023BCO model,
each model is interpolated onto all shipborne single-beam
bathymetric points using a cubic spline interpolation method,
the relevant statistical results are showed in Table 3. Ta-
ble 3 shows that the models, ranked from closest to fur-
thest resemblance to the shipborne single-beam bathymet-
ric data, are the SDUST2023BCO model, followed by
the GEBCO_2023 model, and the topo_25.1 model. Com-
pared to the GEBCO_2023 and topo_25.1 models, the SD
of the SDUST2023BCO model is improved by 0.28 and
15.57 m, respectively. The statistical results show that the
SDUST2023BCO model exhibits superior reliability com-
pared to the GEBCO_2023 and topo_25.1 models, align-
ing more closely with the shipborne single-beam bathymetric
data.

Figure 5 shows the histogram distribution of the differ-
ences between the SDUST2023BCO, GEBCO_2023 and
topo_25.1 models and the shipborne single-beam bathymet-
ric data, showing that the error distributions of all three
models exhibit a normal distribution. The percentages of
differences between the bathymetric models and the actual
bathymetry falling within the ±50 m range are 72.44 %,
72.01 % and 68.92 %, respectively. The distribution of dif-
ferences between the SDUST2023BCO model and the ship-
borne single-beam bathymetric data are more concentrated,
demonstrating a superior reliability to reflect the information
of the seafloor topography.

Table 4 presents the statistical results of the com-
parison between the SDUST2023BCO, GEBCO_2023
and topo_25.1 models and shipborne single-beam bathy-
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Table 4. Statistical results of the difference between SDUST2023BCO, GEBCO_2023 and topo_25.1 models and the measured bathymetry
at shipborne single-beam bathymetric points in different ranges of bathymetry (in m).

Different ranges of bathymetry Number of points SDUST2023BCO GEBCO_2023 topo_25.1

SD RMS SD RMS SD RMS

(0, −1000) 26 753 617 87.18 87.63 78.16 79.31 116.62 116.83
[−1000, −2000) 10 794 924 84.58 84.71 92.63 92.98 101.62 101.80
[−2000, −3000) 15 120 787 77.88 78.63 85.59 86.35 87.13 88.09
[−3000, −∞) 59 649 674 95.31 95.69 96.28 96.75 105.72 106.19

Table 5. Statistical results of the bathymetry of SDUST2023BCO, GEBCO_2023 and topo_25.1 models (in m).

Model Max Min Mean SD RMS

SDUST2023BCO 0 −10 869.8 −3476.2 1749.4 3892.6
GEBCO_2023 0 −10 874.1 −3479.1 1750.9 3894.9
topo_25.1 0 −10 804.8 −3478.0 1749.4 3893.2

metric data at different depths. The reliability of the
SDUST2023BCO model outperforms the GEBCO_2023
and topo_25.1 models across depth intervals of −1000 to
−2000 m, −2000 to −3000 m and below −3000 m, with im-
provements of 8.05 and 17.04 m, 7.71 and 9.25 m, and 0.97
and 10.41 m, respectively. In waters shallower than 1000 m,
the GEBCO_2023 model shows closer proximity to the ship-
borne bathymetric points compared to the topo_25.1 and
SDUST2023BCO models. Overall, the SDUST2023BCO
model exhibits commendable reliability in deeper waters.

4.4 Comparison with SIO topo_25.1 and GEBCO_2023

To verify the accuracy of the SDUST2023BCO model,
the bathymetric information for the SDUST2023BCO,
GEBCO_2023 and topo_25.1 models are calculated, as
shown in Table 5.

Table 5 shows that the SD of SDUST2023BCO model is
1749.4 m, differing by 1.5 and 0.0 m from the GEBCO_2023
and topo_25.1 models, respectively. Additionally, the min-
imum and mean values of SDUST2023BCO model are
closely aligned with those of GEBCO_2023 and topo_25.1
models. Considering all these indicators, the consistency of
the SDUST2023BCO model with the GEBCO_2023 and
topo_25.1 models is effectively validated.

To further validate the consistency of the
SDUST2023BCO model with other models, the differ-
ences between the SDUST2023BCO, GEBCO_2023
and topo_25.1 models are calculated. Relevant statis-
tical outcomes are showed in Table 6. Owing to the
SDUST2023BCO model having a resolution of 1′× 1′,
the bathymetric values at 1′ grid nodes are selected from
the GEBCO_2023 model, and the GEBCO_2023 model is
processed into a bathymetric model with a resolution of 1′.

Table 6 shows that the SD of the differences be-
tween the SDUST2023BCO model and the other models
is 58.4 and 41.2 m, respectively. This indicates that the
SDUST2023BCO model has the highest correlation with the
topo_25.1 model, followed by the GEBCO_2023 model. The
SDUST2023BCO model shows commendable consistency
with the GEBCO_2023 and topo_25.1 models, demonstrat-
ing the reliability and effectiveness of this method.

Figure 6 shows the histogram distributions of the differ-
ences between the three bathymetric models. From Fig. 6a,
we see that the differences between the SDUST2023BCO
and GEBCO_2023 models are mainly within the range of
−100 to 100 m, accounting for approximately 94.51 %. From
Fig. 6b, we can conclude that the differences between the
SDUST2023BCO and topo_25.1 models within the same
range account for about 96.89 %. From Fig. 6c, it is evi-
dent that the differences between the topo_25.1 model and
the GEBCO_2023 model within the range of −100 to 100 m
account for approximately 93.38 %. Based on the above
statistics, the SDUST2023BCO model exhibits commend-
able consistency with the GEBCO_2023 and topo_25.1 mod-
els.

According to the law of error propagation, assuming that
the SDUST2023BCO, GEBCO_2023 and topo_25.1 models
are uncorrelated, the SD of these three models can be ex-
pressed as

SD2
S_G = SD2

S+SD2
G,

SD2
S_t = SD2

S+SD2
t ,

SD2
G_t = SD2

G+SD2
t ,

(8)

where SDS_G, SDS_t and SDG_t, respectively, represent
the SD of comparisons between the SDUST2023BCO and
GEBCO_2023 models, the SDUST2023BCO and topo_25.1
models, and the GEBCO_2023 and topo_25.1 models. SDS,
SDG and SDt, respectively, represent the SD of the bathy-
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Table 6. Statistical results of differences between SDUST2023BCO, GEBCO_2023 and topo_25.1 models (in m).

Model Max Min Mean SD RMS

SDUST2023BCO – GEBCO_2023 4316.1 −4043.2 3.0 58.4 58.5
SDUST2023BCO – topo_25.1 2308.8 −3788.4 1.8 41.2 41.2
GEBCO_2023 – topo_25.1 5204.6 −5219.7 1.1 70.3 70.3

Figure 6. Histogram of the difference between the SDUST2023BCO, topo_25.1 and GEBCO_2023 models: (a) SDUST2023BCO −
GEBCO_2023, (b) SDUST2023BCO − topo_25.1 and (c) GEBCO_2023 − topo_25.1.

metric values of the SDUST2023BCO, GEBCO_2023 and
topo_25.1 models.

Using Eq. (8) and the statistical results in Table 6, the
SDS, SDG and SDt can be calculated to be 9.11, 57.69
and 40.18 m, respectively. The high correlation between
SDUST2023BCO model and topo_25.1 model causes the
value of SDS to be small. This result indicates that the
accuracy of the three models, from highest to lowest, is
the SDUST2023BCO, topo_25.1 and GEBCO_2023 mod-
els. This effectively demonstrates that the SDUST2023BCO
model has better reliability among the three models.

Furthermore, four regions are selected to validate the re-
liability of bathymetric model, specifically the North Pacific
Ocean (0–65° N, 120° E–120° W), the South Pacific Ocean
(80–0° S, 120° E–80° W), the Atlantic Ocean (80° S–80° N,
0–60° W) and the Indian Ocean (80° S–30° N, 0–60° E). Rel-
evant statistical results are showed in Table 7. Table 7 shows
that the SDUST2023BCO model exhibits better reliability
across all regions, further substantiating its reliability in the
various oceans.

5 Data availability

The global bathymetric model (SDUST2023BCO) can be
downloaded from https://doi.org/10.5281/zenodo.13341896
(Zhou et al., 2024). The dataset includes geospatial infor-
mation (latitude, longitude) and corresponding bathymetric
values.

6 Conclusion

Considering the effectiveness in the construction of bathy-
metric models, the influence of long-wavelength information
derived from multi-source geodetic datasets, and the nonlin-
ear interrelation between multi-source marine geodetic data
and bathymetry, a new global marine model, designated the
SDUST2023BCO model, has been constructed. This model
has a resolution of 1′× 1′, with spatial coverage ranging from
0 to 360° E in longitude and from 80° S to 80° N in lati-
tude. This model is constructed based on the MLP neural net-
work using the differences from multi-source marine geode-
tic data. The reliability of the SDUST2023BCO model has
been evaluated by shipborne single-beam bathymetric data,
as well as the GEBCO_2023 and topo_25.1 models.

Compared to the shipborne single-beam bathymetric data,
the SDUST2023BCO model achieves an SD of 90.23 m,
which is superior to other bathymetric models, demonstrat-
ing the reliability of the SDUST2023BCO model. Through
the comparison of the accuracy of three models in differ-
ent depth, the SDUST2023BCO model demonstrates supe-
rior reliability in deeper water regions.

The discrepancies between the SDUST2023BCO model
and the GEBCO_2023 and topo_25.1 models primarily
fall within ±100 m, confirming the consistency of the
SDUST2023BCO model with existing models. This paper
also evaluates the accuracy of the SDUST2023BCO model
in four distinct regions across the Pacific, Atlantic and Indian
oceans, effectively validating its reliability.

The results presented in this paper demonstrate that
SDUST2023BCO reaches an international advanced level
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Table 7. Statistical results of the differences between the SDUST2023BCO and GEBCO_2023 and topo_25.1 models within various regions
(in m).

Range Model Max Min Mean SD RMS

North Pacific Ocean SDUST2023BCO – GEBCO_2023 2604.23 −2791.71 −1.96 55.43 55.46
(0–65° N, 120° E–120° W) SDUST2023BCO – topo_25.1 1290.71 −1489.07 −1.47 36.09 36.12

GEBCO_2023 – topo_25.1 3992.29 −3301.33 −0.48 51.55 51.55

South Pacific Ocean SDUST2023BCO- GEBCO_2023 4043.23 −4316.07 −4.69 62.08 62.26
(80–0° S, 120° E–80° W) SDUST2023BCO – topo_25.1 2551.56 −1805.10 −2.71 39.12 39.21

GEBCO_2023 – topo_25.1 5219.67 −4996.58 −1.93 73.79 73.81

Atlantic Ocean SDUST2023BCO – GEBCO_2023 2413.54 −3012.18 −3.95 60.60 60.72
(80° S–80° N, 0–60° W) SDUST2023BCO – topo_25.1 3788.43 −1685.94 −0.40 43.04 43.04

GEBCO_2023 – topo_25.1 5204.59 −2595.10 3.55 73.76 73.85

Indian Ocean SDUST2023BCO – GEBCO_2023 2477.18 −2305.65 −3.57 58.75 58.83
(80° S–30° N, 0–60° E) SDUST2023BCO – topo_25.1 1686.75 −2308.84 −0.52 46.36 46.36

GEBCO_2023 – topo_25.1 2633.55 −3212.54 3.04 75.25 75.31

of global bathymetric models. The accuracy of the
SDUST2023BCO model is better than that of GEBCO_2023
and topo_25.1 models, especially in deeper water regions.
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