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Abstract. A new dedicated 20 Hz coastal sea level dataset, called the International Altimetry Service 2024
(IAS2024, https://doi.org/10.5281/zenodo.13208305, Peng et al., 2024c), is presented for monitoring sea level
changes along the world’s coastlines. One of the reasons for generating this dataset is that the quality of coastal
altimeter data has been greatly improved with advanced coastal reprocessing strategies. In this study, the Seam-
less Combination of Multiple Retrackers (SCMR) strategy is adopted to obtain the reprocessed Jason data from
January 2002 to April 2022. The evaluation/validation results show that the IAS2024 20 Hz along-track coastal
sea level dataset achieves good performance over global coastal oceans. The good consistency between IAS2024
and independent altimeter datasets, including the European Space Agency Climate Change Initiative version 2.4
(ESA CCI v2.4) 20 Hz along-track coastal sea level dataset and the Copernicus Marine Environment Monitoring
Service Level-3 (CMEMS L3) 1 Hz along-track sea level dataset, is observed. The closure of sea level trend
differences (0.16± 3.97 mm yr−1) between IAS2024 and Permanent Service for Mean Sea Level (PSMSL) tide
gauge data at the global scale is also achieved. Moreover, 1548 virtual stations have been constructed using the
IAS2024 coastal sea level dataset, which will contribute to the analysis of coastal sea levels for the ocean com-
munity and to risk management for the policymakers. Our study also finds that no obvious variations exist in the
linear sea level trends from the offshore to the coast over the last 20 km coastal strip at the global scale. In ad-
dition, the vertical land motion (VLM) estimates from the combination of the IAS2024 dataset with the PSMSL
tide gauge records agree well with the University of La Rochelle 7a (ULR7a) Global Navigation Satellite Sys-
tem (GNSS) solution, with the mean difference of VLM estimates being 0.12± 2.27 mm yr−1, suggesting that
altimeter-derived VLM estimates can be used as an independent data source to validate the GNSS solutions.

1 Introduction

Satellite altimetry has become a mature remote sensing tech-
nique over open oceans since the launch of high-precision
satellite altimetry missions (e.g., Topex and Poseidon). It has
been making great contributions to quantifying and moni-
toring sea level changes at both global and regional scales
(Ablain et al., 2017; Prandi et al., 2021; Guérou et al., 2023).
Among these missions, the Jason altimetry series are usu-
ally used as the reference missions for monitoring global
sea levels considering their high-precision and stable perfor-
mance. During the past 2 decades, the precision of repro-

cessed 20 Hz along-track altimeter data in coastal zones from
Jason missions has been remarkably increased thanks to the
dedicated coastal retrackers and improved range/geophysical
corrections (Cipollini et al., 2017; Vignudelli et al., 2019;
Peng et al., 2024a), which makes it possible to construct
altimeter-based virtual stations along the world’s coastlines
(Benveniste et al., 2020; Cazenave et al., 2022).

The IAS (International Altimetry Service) Pilot Service
was established in July 2023 as a service of the Interna-
tional Association of Geodesy (IAG) for providing infor-
mation about altimetry data, geodetic and climate models,
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research, and operational applications based on satellite al-
timetry technology innovations. One of its goals is to pro-
vide auxiliary data and algorithms to produce new products
across coastal zones, including the coastal oceans, land–sea
surfaces, estuaries and inland waterbodies for applications in
studies of the extremes, long-term climate change and envi-
ronmental development.

In this paper, we present the IAS2024 20 Hz along-track
coastal sea level dataset from Jason missions over the pe-
riod of January 2002 and April 2022 reprocessed with the
SCMR (Seamless Combination of Multiple Retrackers) strat-
egy. A total of 1548 virtual stations are built along the world’s
coastlines, which can be used to monitor the coastal sea lev-
els and estimate the vertical land motions (VLMs). In ad-
dition, the spatial variation of 20 Hz along-track sea level
trends from the offshore to nearshore in the last 20 km to
the coast is analyzed using the IAS2024 dataset. The qual-
ity of reprocessed altimeter data is validated against the
monthly tide gauge records from the PSMSL (Permanent
Service for Mean Sea Level, https://psmsl.org/, last access:
29 September 2024), the Copernicus Marine Environment
Monitoring Service (CMEMS) L3 1 Hz along-track prod-
uct (https://data.marine.copernicus.eu/product/SEALEVEL_
GLO_PHY_L3_MY_008_062/description, last access: 29
September 2024) and the European Space Agency (ESA)
Climate Change Initiative (CCI) version 2.4 20 Hz along-
track coastal sea level dataset (https://www.seanoe.org/data/
00631/74354/, last access: 5 December 2024).

Section 2 presents the details of the SCMR processing
strategy and methods to construct the altimeter-based virtual
stations and to assess the quality of reprocessed altimeter
data. Sections 3 and 4 illustrate the cross-validation results
against in situ and independent altimeter datasets as well as
the application of coastal altimeter datasets. Sections 5 and 6
present the data availability and conclusions, respectively.

2 Computation of the IAS2024 coastal sea level
dataset

2.1 The SCMR strategy

The IAS2024 coastal sea level dataset is generated using
the SCMR (Peng et al., 2024b) strategy. The flow dia-
gram is illustrated in Fig. 1, which starts from the wave-
form leading-edge detection and ends with the seamless
combination of sea surface height (SSH) estimates from
multiple retrackers. Four different waveform retrackers are
used in this study, which are the official Sensor Geophys-
ical Data Record (SGDR) maximum likelihood estimator
four-parameter (MLE4) retracker (Amarouche et al., 2004),
the Adaptive Leading-Edge Sub-waveform (ALES, Passaro
et al., 2014), the weighted least-squares three-parameter
(WLS3, Peng and Deng, 2018) and the modified Brown
model four-parameter (MB4) retracker (Poisson et al., 2018).
The main steps are described in the following subsections.

2.1.1 Detection of leading edges

The leading edge is a sequence of waveform gates, where
the power increases sharply and thus can be detected based
on the differences between consecutive powers of gates. The
start gate of the leading edge is deemed the first gate where
the power difference between two consecutive gates is pos-
itive (Passaro et al., 2014). Similarly, the stop gate of the
leading edge is deemed the first gate where the power dif-
ference between two consecutive gates is negative (Passaro
et al., 2014) or smaller than a tiny positive number (Wang
et al., 2019). Moreover, the power of the start gate should
be lower than a constant level, and the power difference be-
tween start and stop gates should be larger than a threshold
value (Gommenginger et al., 2011). The main steps of the
leading-edge detection method are as follows.

First, the intersection points between four horizontal lines
with power levels of 0.1, 0.2, 0.5 and 0.9 and the normalized
waveform are derived. For each intersection point, the start
and stop gates of the leading edge are searched forward and
backward until the following equations are satisfied:

Pstartgate−Pstartgate−1 > 0.001, (1)

Pstopgate+1−Pstopgate < 0.01,

where Pstartgate and Pstopgate are the powers of the normal-
ized waveform at the start and stop gates. If the difference
(i.e., Pstopgate−Pstartgate) is larger than 0.1 and the Pstartgate
is lower than 0.2, the proportion of waveform from start to
stop gates is selected as a potential leading edge. Here, the
above threshold levels are selected based on previous studies
and our empirical experience (Passaro et al., 2014; Peng and
Deng, 2020a).

Second, once all potential leading edges are found, the
50 % threshold retracker (Gommenginger et al., 2011) is ap-
plied to each potential leading edge to calculate the range and
corresponding SSH estimates. The Dijkstra (1959) algorithm
is then applied to find the shortest path between the offshore
and nearshore along-track points, in which the edge weights
are the height differences between connected nodes (Roscher
et al., 2017). As a result, the optimal 20 Hz along-track SSH
profile and the corresponding leading edge are determined
(Peng et al., 2023). The advantage of this method is that it
effectively avoids the perturbations before the true leading
edge of the waveform (cf. Fig. 2 in Peng et al., 2024b).

2.1.2 Detection of land returns

When the altimeter approaches the coast, the contaminated
waveforms appear with peaks that are caused by the high
reflective areas inside the illuminated land surfaces or by
the modification of the sea state close to the shoreline (Hal-
imi et al., 2013). This type of waveform is denoted as the
Brown-peaky waveform because the peaks caused by land
returns are close to the waveform leading edge and the wave-
form shape over oceans follows the Brown model (Fig. 4.5
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Figure 1. Flow diagram of the SCMR processing strategy. It consists of four operating blocks from left to right: (1) four retrackers of the
SGDR MLE4, ALES, WLS3 and MB4; (2) estimating sigma0, SWH and range estimates from different retrackers; (3) calculating SSH
estimates for different retrackers; and (4) removing inter-retracker bias and combining SSH estimates from different retrackers. The sea
state bias (SSB) corrections are individually computed for each retracker. The inter-retracker bias correction model is developed based on the
negative correlation between SSH differences (1h) and SWH differences (1Hs) with respect to the SGDR MLE4 retracker. The combination
of SSH estimates from four retrackers is conducted using the Dijkstra (1959) algorithm based on the situation where the altimeter along-track
SSH estimates do not change significantly at the spatial scale of ∼ 300 m.

in Gommenginger et al., 2011). Here, we detect the land re-
turns following the idea of the adaptive peak detection (APD)
method (Peng and Deng, 2018, 2020a) shown in Fig. 2 but
with some modifications. The main steps are as follows.

Firstly, the forward moving average (Ft ) and backward
moving average (Bt ) are derived using the following normal-
ized waveform:

Ft (i)=
1
N

N−1∑
j=0

Pt (i+ j ) , i = 1, 2, . . ., n−N + 1, (2)

Bt (i)=
1
N

N−1∑
j=0

Pt (i− j ) , i =N, N + 1, . . ., n,

where the N is the moving average step, which is selected to
be 5 through our trial-and-error test, and n is the number of
waveform gates, which is 104 for Jason missions.

Next, we define the Difference I as (Ft −Bt ). This is first
used to determine the Leftfoot points, which correspond to
the local maxima of Difference I whose height and promi-
nence are larger than 0.12 using the MATLAB function find-
peaks. This is then used to determine the Leftedge, Rightfoot
and Rightedge points. The Leftedge and Rightedge points are
the zero-crossing points of Difference I before and after the

corresponding Leftfoot points. The Rightfoot points are the
local minima between consecutive Leftfoot points (Fig. 2).
If there exist multiple Leftfoot points, the waveform is de-
noted as the multi-peak waveform (Fig. 2a and b). Other-
wise, the waveform is classified as a Brown-peaky waveform
if the Difference I of the Rightfoot point is smaller than−0.2
(Fig. 2c and d).

Finally, the start gate of land returns is defined as the stop
gate of the leading edge, while the stop gate of land returns is
the last zero-crossing point between Rightfoot and Rightedge
points (black line in Fig. 2d). Note that the modified APD
method used here is dedicated to the Brown-peaky wave-
forms instead of the multi-peak waveforms.

2.1.3 Waveform retracking

All retrackers included in Fig. 1 can process ocean wave-
forms. Of these, the ALES retracker can handle waveforms
with land returns observed in the waveform trailing edge, the
WLS3 retracker can cope with the Brown-peaky waveforms
with the downsized weights (i.e., 0.01) being assigned to land
returns determined by the modified APD method, and the
MB4 retracker can deal with the specular waveforms (Fig. 3).
Note that the estimates from SGDR MLE4 are directly pro-
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Figure 2. Illustration of the adaptive peak detection (APD) method. Panels (a) and (b) show the curve of Difference I and feature points
detected by the APD method for multi-peak waveforms, respectively. Panels (c) and (d) show the similar results for Brown-peaky wave-
forms. Difference I is calculated as the difference between the forward-moving average and the backward-moving average of the normalized
waveform. The black line corresponds to the gates affected by the land returns.

vided by the official product, while the estimates from the
ALES, WLS3 and MB4 retrackers are solved independently.

2.1.4 Calculation of altimeter SSH

The altimeter SSH at each 20 Hz along-track point is calcu-
lated as follows:

SSH= halt−Rr−Rcor, (3)

where halt is the height of the satellite above the Topex el-
lipsoid; Rr is the distance between the altimeter and nadir
sea surface derived from the waveform retracker; and Rcor
includes dry and wet tropospheric, ionospheric, and sea state
bias corrections. Note that the Topex ellipsoid is a reference
ellipsoid which has an equatorial radius of 6378.1363 km and
a flattening coefficient of 1 / 298.257. The appropriate correc-
tions for each altimetry mission are investigated and summa-
rized in Table 1.

Table 1. Range/geophysical corrections applied to Jason missions
used in this study.

Corrections Jason-1/2/3

Dry tropospheric correction ECMWF (Hersbach et al., 2023)
Wet tropospheric correction ECMWF∗

Ionospheric correction GIM (Komjathy and Born, 1999)
Sea state bias Peng and Deng (2020b)
Geocentric ocean and loading tide FES2014 (Lyard et al., 2021)
Dynamic atmospheric correction MOG2D (Carrère and Lyard, 2003)
Solid earth tide Cartwright and Tayler (1971)
Pole tide Desai et al. (2015)
Mean sea surface CLS22 (Schaeffer et al., 2023)

∗ The modeled wet tropospheric correction at zero altitude has been used instead of
the GNSS-derived Path Delay Plus (GPD+) correction (Fernandes and Lázaro, 2016)
considering that the GPD+ is unavailable beyond February 2021. GIM: Global
Ionospheric Maps.

2.1.5 Seamless combination of SSH estimates from
multiple retrackers

As illustrated by Fig. 1, the coastal retrackers (i.e., ALES,
WLS3 and MB4) are applied to all 20 Hz waveforms to de-
rive range estimates, respectively. Combined with satellite
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Figure 3. An example of observed waveforms and fitted waveforms from different waveform retrackers. Panels (a)–(d) show the fitted results
for different waveform types by methods of (a) SGDR MLE4, (b) ALES, (c) WLS3 and (d) MB4 retrackers.

altitude, range and geophysical corrections, the SSH esti-
mates for these coastal retrackers and the SGDR MLE4 re-
tracker are obtained. Considering the above retrackers can
handle different types of waveforms, as shown in Fig. 3,
and achieve similar performance through our previous Monte
Carlo simulation (Peng and Deng, 2018; Peng et al., 2021),
it is possible to further improve the data availability by com-
bining SSH estimates from these retrackers. However, these
retrackers adopt different processing strategies, and there in-
evitably exist systematic biases between SSH estimates from
these retrackers, which prohibit the seamless combination of
SSH estimates. To solve this problem, we proposed an inter-
retracker bias model to reduce the SSH bias with respect to
the SGDR MLE4 from centimeter levels to millimeter lev-
els (Peng et al., 2024b). Finally, the optimal SSH estimate at
each along-track point is selected using the Dijkstra (1959)
algorithm. The Dijkstra algorithm is used because it can auto-
matically determine the along-track SSH profile with smooth
spatial variation (Roscher et al., 2017), which is consistent
with the real situation where the altimeter along-track SSH
estimates do not change significantly at the spatial scale of
∼ 300 m (Cipollini et al., 2017). Moreover, the Dijkstra al-
gorithm does not rely on the waveform classification results.
For more detailed information about the use of the Dijkstra
algorithm, readers can refer to Peng et al. (2023).

The analytical form of the inter-retracker bias correction
model is as follows (Peng et al., 2024b):

1h= ρ×1Hs+ cb, (4)
hcor = ρ̂×1Hs+ ĉb, (5)

where 1Hs and 1h are the significant wave height (SWH)
difference and SSH difference with respect to the SGDR
MLE4 retracker (e.g., ALES minus SGDR MLE4), and ρ
and cb are the linear regression slope and intercept parame-
ters, which are unknown and need to be estimated. Once the
estimates of the two parameters, ρ̂ and ĉb, are determined,
the inter-retracker bias correction, hcor, can be calculated by
substituting SWH difference 1Hs into Eq. (5). After remov-
ing the inter-retracker bias, the most appropriate SSH profile
between the offshore point and the point closest to the coast
is derived using the Dijkstra algorithm, in which the edge
weight is defined as the absolute SSH difference between two
connected nodes.

2.1.6 Calculation of altimeter SLA

The altimeter sea level anomaly (SLA) estimate at each
20 Hz along-track point is calculated as follows:

SLA= SSH−Gcor−MSS, (6)

where Gcor includes geocentric ocean and loading tide cor-
rections, dynamic atmospheric correction, and solid earth
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tide and pole tide corrections and MSS is the interpolated
value from the CLS22 mean sea surface (MSS) model (Scha-
effer et al., 2023) using the bilinear interpolation.

2.2 Assessment of the IAS2024 coastal sea level
dataset

The assessment of the IAS2024 coastal sea level dataset is
conducted as follows. Firstly, the data availability and pre-
cision of 20 Hz SLA estimates are calculated as a function
of distance to the coast. The data availability is calculated as
the percentage of available 20 Hz SLA estimates, while data
precision is represented as the median value of standard de-
viation (SD) of 20 Hz SLA estimates (Cipollini et al., 2017).

Secondly, the power spectrums of 20 Hz SLA estimates are
computed by the periodogram method (Zanifé et al., 2003).
The SLA power spectrum reflects the strength of SLA sig-
nals at different spatial scales and can be used to estimate the
noise level from the high-frequency part of the spectrum. In
addition, the crossover analysis (Gaspar et al., 1994) is con-
ducted to examine the spatial variation in data quality over
global coastal oceans. For each single mission, the crossover
point is the intersection between the ascending and descend-
ing ground tracks. The 20 Hz along-track points closest to
the crossover point are used to derive the colocated SLA es-
timates at the crossover point using the linear interpolation
method. To reduce the effect of temporal variability, the colo-
cated SLA estimates are only considered if their time lags are
within 1 d.

Finally, the IAS2024 dataset is validated against monthly
tide gauge records from the PSMSL (Holgate et al., 2013).
To guarantee the robustness of the validation results, 549 tide
gauges which have continuous data records over the period
of 2002 and 2022 are used in this study (Fig. 4).

The main steps of the validation procedure are described
as follows.

1. The Jason-3 ground tracks which achieve the maxi-
mum data points within 100 km from the coast are se-
lected as the nominal ground track. The correspond-
ing 20 Hz offshore distances are directly retrieved
from the Jason-3 SGDR product, which are calculated
with respect to the Global Self-consistent, Hierarchical,
High-resolution Geography Database (GSHHG) dataset
(https://www.soest.hawaii.edu/pwessel/gshhg/, last ac-
cess: 29 September 2024). After that, the single nominal
ground track is divided into multiple ground track seg-
ments if the distance between consecutive 20 Hz along-
track points is larger than 10 km. Only the ground track
segments whose nearshore points with distances to the
coast being smaller than 10 km and offshore points with
distances to the coast being larger than 90 km are used
in this study. It is found that there are 1458 ground track
segments which fulfill the above criterion, and the dis-

tribution of the closest distance to the coast for each
ground track segment is shown in Fig. 5.

2. The SCMR-reprocessed 20 Hz along-track SLA esti-
mates from the Jason missions are referenced to the
corresponding ground track segments using the nearest-
neighbor approach, and a 3σ filter is then applied to
the along-track SLA estimates to remove the outliers.
The inter-mission SLA biases between different Jason
missions are estimated and removed using the overlap-
ping time series method (Peng et al., 2022) before con-
structing SLA time series with a temporal sampling of
10 d. Then, the 3σ filter is applied to the SLA time se-
ries again. In this study, only time series with more than
80 % of available data are used to derive the monthly
SLA time series over the period of January 2002 and
April 2022.

3. The linear sea level trends are derived from the de-
seasoned monthly SLA time series with the Hector soft-
ware (Bos et al., 2014), which can handle the time
series with temporally correlated noise. The stochas-
tic noise models used in this study include the first-
and fifth-order autoregressive (i.e., AR1 and AR5), and
the autoregressive fractionally integrated moving av-
erage (ARFIMA) models. The most appropriate noise
model is identified using the lowest mean value of both
the Akaike information criterion (AIC; Akaike, 1992)
and the Bayesian information criterion (BIC; Schwarz,
1978).

4. The monthly SLA time series of 20 Hz along-track
points over the 0–20 km coastal strip are averaged to
generate monthly SLA time series at altimeter-based
virtual stations. The colocated virtual stations and tide
gauges are derived if their distance is smaller than
200 km and the score between them reaches the maxi-
mum. The 200 km distance threshold is chosen because
of the trade-off between including enough nearby vir-
tual stations and retaining high correlation coefficients.
The score is calculated using the correlation coefficient
and root mean square (RMS) of the differences between
the monthly SLA time series from the virtual station and
tide gauge as follows:

score= scoreicc× 0.4+ scoreirms× 0.6, (7)

scoreicc =
cci −min(cc)

max(cc)−min(cc)
× 100,

scoreirms =
max(rms)− rmsi

max(rms)−min(rms)
× 100.

The number of colocated stations, the correlation coefficients
and the RMS values of the differences between monthly SLA
time series from colocated stations, as well as the differences
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Figure 4. Distribution of (a) 549 tide gauges from PSMSL and (b) 1548 altimeter-based virtual stations from the IAS2024 dataset.

Figure 5. Distribution of closest distance to the coast for 1548
ground track segments.

in linear sea level trends derived from the monthly SLA time
series are used for the validation.

The ESA CCI v2.4 20 Hz and the CMEMS L3 1 Hz along-
track sea level datasets are also interpolated into the ground
track segments using the nearest-neighbor approach. After
that, the results from both ESA CCI and CMEMS products
are compared with that from the IAS2024 dataset. For com-
parison, we only use ground track segments that have at least
10 common points with the ESA CCI and 2 common points
with the CMEMS within the last 20 km to the coast. When
it comes to the correlation coefficients, only those whose p
values are smaller than 0.05 are used.

2.3 Application of the IAS2024 coastal sea level dataset

Three applications of coastal altimeter datasets are presented
in this study. Firstly, the coastal altimeter datasets can be used
to build altimeter-based virtual stations (Benveniste et al.,
2020; Cazenave et al., 2022), which is of great importance
for monitoring the coastal sea level change and constraining
the high-resolution ocean models. To examine the data qual-
ity of virtual stations obtained from different coastal strips,
the monthly SLA time series of 20 Hz along-track points over
0–10, 5–15 and 10–20 km are averaged for comparison. For

clarity, these three types of virtual stations are denoted as on-
shore, nearshore and offshore virtual stations.

Secondly, the spatial variation in sea level trends can be
analyzed because the altimeter provides the along-track sea
level trend profile, which help us understand the relative con-
tributions of local and remote processes on coastal sea lev-
els. To address this issue, a linear regression is applied to
the along-track sea level trends using the MATLAB func-
tion robustfit. The trend differences between nearshore and
offshore points in the last 20 km to the coast are then cal-
culated to examine whether there exists significant change
(>±2 mm yr−1) in the along-track sea level trends.

Finally, the VLM estimates can be obtained by calculat-
ing the trend estimates from differenced monthly SLA time
series between colocated virtual stations and tide gauges,
which are used for the comparison with corresponding
Global Navigation Satellite System (GNSS) solutions called
the University of La Rochelle 7a (ULR7a) (Gravelle et al.,
2023). The ULR7a solution is a preliminary version of the
reanalysis of 21 years of GPS data from 2000 to 2020 that
has been undertaken within the framework of the third data
reprocessing campaign of the International GNSS Service
(IGS), whose associated vertical velocity field is expressed
in the International Terrestrial Reference Frame 2014 (ITRF
2014, Altamimi et al., 2016).

3 Evaluation

3.1 Data availability and precision

Figure 6 shows the data availability and precision for the offi-
cial SGDR MLE4 data and SCMR-reprocessed data over dif-
ferent Jason missions. These results are derived after remov-
ing the SLA estimates whose absolute values are greater than
1 m. As we can see from the graph, the results from differ-
ent Jason missions are similar, demonstrating the stability of
the Jason missions. Thanks to the open-loop tracking mode
(Biancamaria et al., 2018), Jason-3 can recover more reli-
able SLA estimates than the other two satellites. The results
also demonstrate that the SCMR strategy outperforms the of-
ficial SGDR MLE4 over global coastal oceans. The SCMR
can remarkably increase the data availability over the entire
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0–20 km distance bands as well as the data precision beyond
6 km to the coast. Note that the higher precision achieved by
the official SGDR MLE4 within the 0–6 km distance band
can be attributed to the low data availability (Fig. 6a to c) and
dedicated data editing strategy applied to the official SGDR
product (Peng et al., 2024b). The improved percentage in
terms of data availability and precision in different coastal
strips (i.e., 0–5, 5–10 and 10–20 km) is summarized in Ta-
ble 2.

As can be seen from Table 2, the improved percentage
for data availability increases with a decreasing offshore dis-
tance. In contrast, the data precision shows a declining trend
from the offshore in the oceans towards the coast. This re-
sult demonstrates that the SCMR strategy can handle multi-
ple waveform types and thus can recover more reliable SLA
estimates than the official SGDR MLE4. Within the distance
of 0–5 km to the coast, the data precision with respect to the
official SGDR MLE4 is not improved, which is mainly at-
tributed to the above reasons. In addition, the range estimates
from contaminated waveforms and range/geophysical cor-
rections near the coast are inferior to those over open oceans,
which results in a smaller or even negative improvement in
the percentage of data precision. Therefore, a dedicated data
editing strategy should be developed for the coastal altimeter
data as has been done in the SGDR product. Overall, the data
availability from SCMR can retain more than 90 % beyond
5 km offshore and more than 70 %–80 % in the last 5 km to
the coast (Fig. 6a–c). The data precision can retain centime-
ter levels (∼ 4.9 cm) over the 10–20 km distance band, in-
crease to 7–9 cm over the 5–10 km distance band and rise up
to decimeter levels (∼ 20–23 cm) towards the coast (Fig. 5d–
f).

The power spectrum and crossover analysis (Fig. 7) fur-
ther demonstrate the good performance of the SCMR strat-
egy in improving the data availability and reducing noise lev-
els at small spatial scales. Compared to the official SGDR
MLE4, the SCMR achieves a reduction in the SLA spectra
at scales below 50 km, with the noise level at sub-kilometer
scales being 23 % lower than that of the official SGDR MLE4
(Fig. 7a–c). In addition, the crossover analysis shows that the
SCMR significantly increases the number of colocated 20 Hz
SLA estimates by 44 % while retaining smaller mean differ-
ences close to zero and slightly larger standard deviations
around 14 cm (Fig. 7d–f).

3.2 Comparison between IAS2024 and ESA CCI v2.4

In this section, the quality of the IAS2024 coastal dataset
is investigated by comparing with the latest ESA CCI v2.4
coastal sea level dataset. The two datasets are compared on
807 ground track segments, which contain at least 10 com-
mon points for both IAS2024 and ESA CCI v2.4 datasets
over the 0–20 km coastal strip. The selection of 10 com-
mon points is meant to guarantee the robustness of the re-
sults. To conduct the comparison between these two datasets,

we first calculate the point-wise correlation coefficient and
RMS of the differences between monthly SLA time series
from these two datasets. Then, the averaged correlation coef-
ficients and RMS values for different ground track segments
are obtained.

Figure 8 shows the histograms of correlation coeffi-
cients and RMS values between detrended and de-seasoned
monthly SLA time series from IAS2024 and ESA CCI v2.4
datasets for different ground track segments over global
coastal oceans. As we can see from the graph, the consistency
of the monthly SLA time series between these two datasets
is good at the global scale, which is consistent with our pre-
vious study in the Australian coastal zone (Peng et al., 2022).
Relatively high correlation coefficients (> 0.4) are achieved
in most cases. As a result, the mean correlation coefficient
between IAS2024 and ESA CCI v2.4 datasets is 0.59, while
the corresponding RMS values mostly varying between the
range of 40 and 80 mm. The spatial distribution of both cor-
relation coefficients and RMS values (Fig. 9) reveals that the
discrepancy between IAS2024 and ESA CCI v2.4 datasets is
only observed on the west coast of South America.

In addition to the comparison of monthly SLA time series,
we also analyze the sea level trends from these two datasets
over a similar period. First, the point-wise sea level trends
and trend uncertainties are derived from both IAS2024 and
ESA CCI v2.4 datasets. Then, the trend differences and un-
certainties at common points are averaged for each ground
track segment. Finally, the histograms of averaged trend dif-
ferences and trend uncertainties are shown in Fig. 10.

As we can see from the graph, the trend differences be-
tween them are predominantly within the range between
−4 and 6 mm yr−1, with the mean of trend differences be-
ing 1.32± 2.40 mm yr−1 (Fig. 10a). The trend uncertain-
ties for both datasets are similar, varying between 0.5 and
2.0 mm yr−1 (Fig. 10b). This result implicates that the sea
level trends derived from the IAS2024 dataset are generally
higher than those from the ESA CCI v2.4 dataset, which is
in line with our previous findings (Peng et al., 2022, 2024a).
The reason behind this may be attributed to the different data
processing techniques adopted, especially the methods used
to estimate the inter-mission SLA biases (Peng et al., 2022).

At last, the tide gauge records from the PSMSL are
deemed as the ground truth and used for the validation of
these two datasets. Table 3 summarizes the number of colo-
cated virtual stations and tide gauges for both IAS2024 and
ESA CCI v2.4 datasets. In addition, the mean of correla-
tion coefficients and RMS values and the mean of trend dif-
ferences between altimeter and tide gauge are listed in Ta-
ble 3. As illustrated by the table, the number of colocated
stations for the IAS2024 dataset (290) is similar to that for
the ESA CCI v2.4 dataset (293). This is because the same
ground track segments are used for comparison. The com-
parable performance is also observed for these two datasets
in terms of correlation coefficients and RMS values. How-
ever, these two datasets differ in the trend differences be-
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Figure 6. Data availability (a–c) and precision (d–f) for official SGDR MLE4 data (in black) and SCMR-reprocessed data (in red). From left
to right, the results for Jason-1, Jason-2 and Jason-3 are shown successively. The data availability is calculated as the percentage of available
20 Hz SLA estimates, while the data precision is represented as the median value of standard deviation (SD) of 20 Hz SLA estimates within
1 s in each 1 km distance band.

Table 2. Improved percentage of the SCMR against the official SGDR MLE4 in terms of data availability and precision over different coastal
strips.

Satellite altimeters 0–5 km 5–10 km 10–20 km

Availability Precision Availability Precision Availability Precision

Jason-1 53.0 % −72.4 % 20.3 % 7.0 % 12.6 % 9.2 %
Jason-2 46.1 % −54.7 % 20.7 % 4.8 % 14.7 % 8.4 %
Jason-3 53.2 % −51.9 % 20.4 % 10.1 % 14.7 % 10.5 %

tween the altimeter and tide gauge at the global scale. As
reported by previous studies (e.g., Watson et al., 2015; Wöp-
pelmann and Marcos, 2016), the VLMs are canceled out on
average along the world’s coastlines. Therefore, it is reason-
able to assume that the averaged trend difference between the
altimeter and tide gauge is close to zero at the global scale.
The result from the IAS2024 dataset is thus consistent with
this assumption, even though it is not a true global scale,
as the mean of trend differences is −0.26± 3.57 mm yr−1,
which demonstrates the good performance of the IAS2024
dataset in monitoring the coastal sea levels. However, a nega-
tive trend difference (−1.50± 3.31 mm yr−1) is shown in Ta-
ble 3 when validating the ESA CCI v2.4 dataset against tide
gauge records. This may be ascribed to the fact that there
exists a systematic bias (1.32± 2.40 mm yr−1) between sea
level trends from IAS2024 and ESA CCI v2.4 datasets.

Overall, the above comparison results reveal the good con-
sistency between IAS2024 and ESA CCI v2.4 datasets over

the same ground track segments, though there exists a sys-
tematic bias between their sea level trends. It is also noted
that the IAS2024 dataset can achieve higher spatial coverage
because the ESA CCI v2.4 dataset has no data in places such
as Japan and northern Europe (see Sect. 4.1 and 4.2).

3.3 Comparison between IAS2024 and CMEMS L3
along-track products

The IAS2024 coastal dataset is also compared with the
CMEMS L3 1 Hz along-track product. Note that 830 ground
track segments which contain at least two common points
for these two datasets over the 0–20 km coastal strip are
used for comparison. The selection of two common points
is made because the CMEMS L3 product provides the 1 Hz
(∼ 7 km along-track) instead of 20 Hz (∼ 300 m along-track)
SLA data.
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Figure 7. Power spectrum of 20 Hz SLA estimates (a–c) and the number, mean and standard deviation of differences from colocated 20 Hz
SLA estimates at crossover points (d–f). J1, J2 and J3 represent Jason-1, Jason-2 and Jason-3 missions, respectively.

Figure 8. Distribution of averaged correlation coefficients (a) and RMS values (b) between detrended and de-seasoned monthly SLA time
series from IAS2024 and ESA CCI v2.4 datasets for different ground track segments over the 0–20 km coastal strip.

Figure 11 shows the histograms of averaged correlation
coefficients and RMS values between detrended and de-
seasoned monthly SLA time series from the IAS2024 and
CMEMS datasets for different ground track segments. As we
can see from the graph, correlation coefficients mostly vary
between 0.4 and 0.8, and the RMS values are mainly smaller
than 60 mm. This result is in line with the comparison re-
sult between IAS2024 and ESA CCI v2.4 datasets shown in
Sect. 3.2, indicating good consistency between IAS2024 and
CMEMS at the global scale. The spatial distribution of both
correlation coefficients and RMS values (Fig. 12) further re-
veals that the low correlation coefficients between IAS2024

and CMEMS datasets are again observed in the west coast of
South America.

Figure 13 shows the histograms of averaged trend differ-
ences and uncertainties. As illustrated by the graph, most
of the trend differences vary between ±4 mm yr−1, while
the trend uncertainties are within the range between 0.5 and
2 mm yr−1. The mean trend difference between IAS2024 and
CMEMS is−0.18± 2.17 mm yr−1, indicating the systematic
bias between these two datasets is relatively small. This re-
sult is in contrast with that between IAS2024 and ESA CCI
v2.4 (see Sect. 3.2). The reason behind this requires further
investigation, which will be the theme of our future work.
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Figure 9. Spatial distribution of averaged correlation coefficients (a) and RMS values (b) between detrended and de-seasoned monthly SLA
time series from IAS2024 and ESA CCI v2.4 datasets for different ground track segments over the 0–20 km coastal strip.

Figure 10. Distribution of (a) averaged trend differences from de-seasoned monthly SLA time series between IAS2024 and ESA CCI v2.4
datasets as well as (b) trend uncertainties for different ground track segments over the 0–20 km coastal strip. The violet bars in (b) are the
overlaps between IAS2024 and ESA CCI.

In the end, the validation results against tide gauge records
for IAS2024 and CMEMS are summarized in Table 4.
As we can see from the table, the results for these two
datasets are in good agreement. Moreover, the trend dif-
ferences derived from these two datasets are similar and
close to zero, which is in contrast with the result from the
ESA CCI v2.4 dataset (−1.50± 3.31 mm yr−1). The rea-
son behind this may be attributed to the fact that the sys-
tematic bias (−0.18± 2.17 mm yr−1) of sea level trends be-
tween IAS2024 and CMEMS datasets is relatively small
(Fig. 13a), while that for the ESA CCI v2.4 dataset is larger
(1.32± 2.40 mm yr−1; Fig. 10a).

4 Applications of coastal altimeter datasets

The coastal altimeter datasets are an important complement
to the existing tide gauge networks considering their higher
spatial coverage (Fig. 4). As we can see from the graph,
the altimeter-based virtual stations are distributed along the
world’s coastlines, while the tide gauges, which have con-
tinuous data records over the period from 2002 to 2022, are
mostly situated in Japan, Australia, North America and West-
ern Europe. Moreover, the altimeter measures the absolute
sea levels relative to the ITRF, which are not affected by the
VLM and thus help us investigate the spatial variation of sea
level changes from the offshore in the oceans to the coast.

In the following sections, we focus on three applications
of coastal altimeter datasets. The first is to build altimeter-
based virtual stations along the world’s coastlines, which can
be used to monitor the coastal sea level changes where tide
gauges are unavailable. The second is to investigate whether
there exist significant trend differences between offshore and
nearshore oceans in the last 20 km to the coast. The former
is of paramount importance for coastal management and risk
adaptation (Fox-Kemper et al., 2021), while the latter gives
us insights into the role of small-scale processes in changing
the coastal sea level trends (Woodworth et al., 2019; Harvey
et al., 2021; Cazenave et al., 2022). The last is to calculate
the VLM estimates by combining virtual stations and tide
gauges, which provides a way to validate the VLM estimates
from GNSS stations (Wöppelmann and Marcos, 2016).

4.1 Altimeter-based virtual stations

To better monitor the coastal sea levels, it is expected that
the virtual stations are located as close to the coast as possi-
ble. However, the precision of altimeter data degrades with a
decreasing offshore distance to the coast (Fig. 6). Therefore,
it is necessary to investigate which coastal strip is preferable
for building the virtual stations. Here, we generate three dif-
ferent sets of virtual stations following the methods described
in Sect. 2.2 using the IAS2024 dataset, and refer them as
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Table 3. Validation results of IAS2024 and ESA CCI v2.4 datasets against tide gauge records from PSMSL. Note that the correlation
coefficients and RMS values are derived from the detrended and de-seasoned monthly SLA time series, while the sea level trends are derived
from the de-seasoned monthly SLA time series.

Altimeter datasets Number of colocated Correlation coefficient RMS (mm) Trend difference
stations with tide gauges (mm yr−1)

IAS2024 290 0.64 43.07 −0.26± 3.57
ESA CCI v2.4 293 0.61 38.45 −1.50± 3.31

Figure 11. Same as Fig. 7 but for the comparison between IAS2024 and CMEMS L3 along-track datasets.

the onshore, nearshore and offshore virtual stations accord-
ing to their distances to the coast. Note that the onshore,
nearshore and offshore stations are generated from the al-
timeter data within 0–10, 5–15 and 10–20 km distance bands,
respectively.

Figure 14 shows the comparison results between onshore
virtual stations and tide gauges in terms of correlation co-
efficients and RMS values. As can be seen from the graph,
the high correlation coefficients (> 0.6) and low RMS values
(< 60 mm) are observed along the world’s coastlines, which
indicates a good quality of the onshore virtual stations. Better
results can be achieved by the nearshore and offshore virtual
stations in terms of a higher number of virtual stations, while
the high correlation coefficients and low RMS values are re-
tained (Table 5). This suggests that the coastal sea level sig-
nals are highly correlated over the spatial scales of ∼ 20 km.
Therefore, the correlation coefficient between nearshore and
offshore time series can be an important indicator in evaluat-
ing data quality.

It is also noted that low correlation coefficients and high
RMS values are observed at some onshore stations such as
the east coast of North America and the west coast of South
America (Fig. 14), which can be attributed to three causes.
Firstly, the VLM affects the comparison between the tide
gauge and altimeter at the local scale (Wöppelmann and Mar-
cos, 2016). Secondly, the colocated stations are usually tens
to hundreds of kilometers away, from which they measure
different sea level signals (Vinogradov and Ponte, 2010). Fi-
nally, the coastal environments (e.g., bathymetry, sea states
and morphology) can be quite different from the nearby off-

shore regions, which leads to the significant deterioration
of range estimates and range/geophysical corrections (e.g.,
geocentric ocean and loading tide corrections, wet tropo-
spheric correction, sea state bias correction, and dynamic at-
mospheric correction) (Gommenginger et al., 2011; Abele et
al., 2023; Peng et al., 2024b).

Compared to the nearshore and offshore stations, the on-
shore stations are more likely to be affected by land contam-
ination because they include the altimeter data within 5 km
of the coast, leading to the smaller number of virtual stations
(1359 vs. 1548). However, the observation degradation does
not seem to be remarkable, and the closure of the trend dif-
ference between satellite and tide gauge at the global scale is
unchanged. This result implies that the altimeter data within
0–5 km of the coastal strip can be used when the dedicated
editing strategy is applied. In addition, the sea level trends
obtained from the altimeter data closer to the coastline are
more consistent with those from tide gauge records at the
global scale. Therefore, we suggest that the 5–15 km coastal
strip is the most suitable for building the virtual stations con-
sidering the trade-off between the closest distances to the
coast and the reliability of the data quality.

4.2 Spatial variations of sea level trends towards the
coast

As reported by previous studies (Deng et al., 2011; Ben-
veniste et al., 2020; Harvey et al., 2021), the coastal sea level
trends measured by tide gauges differ from altimeter-derived
sea level trends offshore. However, it is uncertain whether the
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Figure 12. Same as Fig. 8 but for the comparison between IAS2024 and CMEMS L3 along-track datasets.

Figure 13. Same as Fig. 9 but for the comparison between IAS2024 and CMEMS L3 along-track datasets. The violet bars in (b) are the
overlaps between IAS2024 and CMEMS.

trend discrepancy is due to the different ocean dynamic pro-
cesses measured by the tide gauge and altimeter or the VLM
(Cazenave et al., 2022). Therefore, a good way to solve this
issue is to explore the spatial variation of altimeter-derived
sea level trends from the offshore to the nearshore in the
last 20 km to the coast. For example, Cazenave et al. (2022)
compared the coastal trends (within 4–5 km) with the off-
shore trends (within 15–17 km) and found no significant dif-
ferences (within ±2.0 mm yr−1) at 78 % of the 756 virtual
stations. Note that the degradation of altimeter data within
5 km of the coast affects the results from the above method.
To avoid this problem, a robust linear regression is applied to
the along-track trends using the MATLAB function robustfit
in this study. This regression function is chosen because it
can alleviate the impact of outliers on the estimation proce-
dure from our experimental tests. The trend differences be-
tween nearshore and offshore are then calculated. If the ab-
solute trend differences are smaller than 2.0 mm yr−1, it is
considered that there is no significant discrepancy between
nearshore and offshore sea level trends. Otherwise, the in-
creasing (decreasing) trend is detected if the trend difference
is larger than 2.0 mm yr−1 (smaller than −2.0 mm yr−1).

Figure 15 presents four examples of 20 Hz along-track sea
level trends against distance to the coast for both IAS2024
and ESA CCI v2.4 datasets. As we can see from the graph,
the spatial variations of 20 Hz along-track trends show dif-
ferent patterns (i.e., constant, increasing or decreasing) de-
pending on different geolocations. In addition, the smooth

variations of 20 Hz along-track trends at the spatial scales
of ∼ 300 m is observed (Fig. 15a to c). Therefore, the
abrupt fluctuation of 20 Hz along-track trends near the coast
(Fig. 15d) can be attributed to the degradation of altimeter
data.

The statistical results of trend differences over global
coastal oceans for these two datasets are illustrated in Fig. 16.
As demonstrated by the graph, there is no significant differ-
ence (within±2 mm yr−1, i.e., of the maximum level of trend
uncertainties) at 97 % of the 1548 ground track segments.
In the remaining 3 %, we observe either an increasing trend
(1.5 %) or a decreasing trend (1.5 %). This result is consistent
with that from the ESA CCI v2.4 dataset, where 90 % of the
807 ground track segments show no trend difference, and the
percentage of the decreasing trend (5 %) is equal to that of
the increasing trend (5 %). It is also observed that there is no
any concentration of coastal trends departing from offshore
trends in a particular region (Fig. 17), which means that the
increasing or decreasing trends can occur along the world’s
coastlines.

The trend differences in most places are insignificant,
which may be ascribed to two aspects. Firstly, most of the
trend uncertainties are relatively large (∼ 0.5–2.0 mm yr−1),
which makes them insensitive to the small changes in sea
level trends. Secondly, the small-scale process-induced vari-
ations (e.g., by coastal currents, winds, waves and freshwater
input in river estuaries) do not significantly affect the coastal
sea level trends because the sea level variation over longer
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Table 4. Same as Table 3 but for the comparison between IAS2024 and CMEMS L3 along-track datasets.

Altimeter datasets Number of colocated Correlation coefficient RMS (mm) Trend difference
stations with tide gauges (mm yr−1)

IAS2024 438 0.66 45.50 0.31± 3.95
CMEMS L3 413 0.64 45.20 0.36± 3.72

Figure 14. Comparison results in terms of (a) correlation coefficient and (b) root mean square (RMS) of the differences between monthly
time series from onshore virtual stations and tide gauges. The onshore virtual stations are generated using the 20 Hz along-track altimeter
data within the 0–10 km coastal strip.

timescales is more likely to be affected by the remote signals
from open oceans (Han et al., 2019). It is also noted that the
trend differences are remarkable in some places, which mo-
tivates us to investigate the reasons behind the trend varia-
tion. For instance, a recent study by Piecuch et al. (2018a)
has demonstrated the role of river discharge in affecting
the coastal sea levels over interannual or longer timescales.
Moreover, the high-resolution ocean models (with a grid
mesh smaller than 1 km) contribute to the systematic quan-
tification of coastal phenomena causing the reported trend
to increase or decrease near the coast (Marti et al., 2021;
Gouzenes et al., 2020; Dieng et al., 2021). However, the
high-resolution ocean models are currently not available over
global coastal oceans (Han et al., 2019; Melet et al., 2020;
Laignel et al., 2023). Therefore, more efforts should be made
in the future to improve our understanding of present-day
coastal sea level changes and to improve the ability of cli-
mate models to simulate future sea levels in highly populated
and vulnerable coastal regions of the world.

4.3 Vertical land motion

The combination of satellite radar altimetry and tide gauge
data can be used to estimate the VLM (e.g., Wöppelmann
and Marcos, 2016). Figure 18 shows the sea level trends at
virtual stations and tide gauges, respectively. As we can see
from the graph, the remarkable differences between the al-
timeter and tide gauge are concentrated in the coasts of the
east US and northern Europe. This is because northern Eu-
rope suffers from large uplift rates due to glacial isostatic ad-
justment (GIA), while the US east coast is exposed to large
coastal subsidence rates due to the subsurface fluid with-

drawal and the response to GIA (Wöppelmann and Marcos,
2016; Piecuch et al., 2018b; Harvey et al., 2021).

The VLM (Fig. 19) is derived in this study from the dif-
ference between the de-seasoned monthly SLA time series of
the altimeter and tide gauge (i.e., ALT−TG) that follows the
method described in Sect. 2.3. As can be seen, the large uplift
rates (> 2 mm yr−1) are observed in northern Europe and the
northwest coast of Canada, suggesting that the GIA-related
radial crust displacement is significant in these regions. In ad-
dition, the upper lift rates are also observed along the south-
west coast of South America. The large subsidence rates
(<−2 mm yr−1), however, are presented along the coast of
the northern Gulf of Mexico, where the groundwater extrac-
tion is significant (Wöppelmann and Marcos, 2016; Harvey
et al., 2021). Along the Australian coastline, both the uplift
and the subsidence rates are observed but dominated by sub-
sidence rates along the northeast coast. When it comes to the
western Europe and Japan, the VLM estimates show large
variations dependent on different locations, with the overall
median values being close to zero for different sets of virtual
stations.

Figure 19b illustrates that the VLM estimates from on-
shore virtual stations are in accordance with those from
nearshore and offshore stations, with median values being
close to zero. This result further demonstrates that nearshore
and offshore trends in the last 20 km to the coast are identical
in most cases, which is consistent with the results shown in
Sect. 4.1. To assess the robustness of the results, the VLM
estimates from GNSS observations are used for comparison.
The PSMSL tide gauges and the nearest ULR7a GNSS sta-
tions are colocated if their distances are within 10 km. As a
result, the number of colocated stations is 166, and the com-
parison results are shown in Fig. 20.
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Table 5. Comparison results between altimeter-based virtual stations and tide gauges. The correlation coefficients and RMS values are
derived from the monthly SLA time series between virtual stations and tide gauges, while the trend estimates are obtained from the de-
seasoned SLA time series.

Statistics Onshore Nearshore Offshore

Mean distance to the coast 6.6 km 8.6 km 12.9 km
Number of virtual stations 1359 1548 1548
Number of colocated stations 461 488 490
Correlation coefficient 0.80 0.81 0.82
RMS (mm) 51.75 49.79 47.72
Trend difference (mm yr−1) 0.16± 3.97 0.18± 3.90 0.20± 3.88

Figure 15. Examples of 20 Hz along-track sea level trends against distance to the coast for both IAS2024 and ESA CCI v2.4 datasets.
Panels (a) to (d) show constant, increasing and decreasing trends as well as an abrupt fluctuation towards the coast. Horizontal dashed lines
indicate distances to the coast at 5 km (in black) and 10 km (in magenta).

As can be seen, the VLM uncertainties from ULR7a are
mostly within the range between 0 and 0.5 mm yr−1, while
the corresponding uncertainties from the combination of the
tide gauge and altimeter vary between 0.5 and 2 mm yr−1

(Fig. 20a and b). The uncertainties from the combination of
tide gauge and altimeter are slightly larger, which can be at-
tributed to the different spatial and temporal sampling man-
ners between altimeter and tide gauge datasets, the different
geographical locations between altimeter-based virtual sta-
tions and tide gauges, and the short time span of the time
series. Figure 20c shows that the VLM estimates from the
combination of the altimeter and tide gauge agree well with
those from GNSS observations in most cases, with the dif-

ferences being smaller than ±1.5 mm yr−1. The mean of the
differences is 0.12 mm yr−1, with an SD of 2.27 mm yr−1

for onshore virtual stations, while similar values are 0.14
(0.16) mm yr−1 and 2.16 (2.16) mm yr−1 for nearshore (off-
shore) virtual stations. Therefore, the results from altimeter-
based virtual stations can be used as an independent source
to validate the VLM estimates from GNSS observations.

5 Data availability

The IAS2024 coastal sea level dataset is available as open ac-
cess at https://doi.org/10.5281/zenodo.13208305 as network
Common Data Form (netCDF) files (Peng et al., 2024c). This
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Figure 16. Trend differences between nearshore and offshore sta-
tions for the IAS2024 and ESA CCI v2.4 datasets.

dataset includes monthly SLA time series at 20 Hz along-
track points for different ground track segments and at on-
shore, nearshore and offshore virtual stations. Moreover, it
contains the corresponding SLA time series at 10 d cycle
timescales. The FES2014 geocentric ocean and loading tide
corrections, the MOG2D dynamic atmospheric correction,
and the CLS22 MSS over the same timescales are also pro-
vided for studying oceanography and geodesy.

6 Conclusions

A new reprocessed 20 Hz coastal sea level dataset, namely,
IAS2024, for monitoring sea level changes along the world’s
coastlines has been presented, along with the first eval-
uations. The Seamless Combination of Multiple Retrack-
ers (SCMR) processing strategy is adopted to generate the
coastal 20 Hz SLA estimates from Jason missions over the
period from January 2002 and April 2022. The main conclu-
sions of this study are summarized as follows.

The SCMR strategy has significantly increased the data
availability when compared to the official SGDR MLE4 re-
tracker, with the improvement percentage varying between
12.6 % and 53.2 % depending on the coastal strip. A mod-
erate improvement (4.8 %–10.1 %) of data precision brought
by the SCMR strategy is also observed, mainly because the
SCMR can reduce the variability of the SLA spectrum below
the wavelength of 50 km. As a result, the data availability of
SCMR-reprocessed Jason data can retain more than 90 % of
information beyond 5 km offshore and more than 70 %–80 %
onshore within 5 km to the coast. In addition, the precision
of 20 Hz SLA estimates can be retained at centimeter lev-
els (5–9 cm) over the 5–20 km distance band and at decime-
ter levels (∼ 20–23 cm) towards the coastline. These results
suggest that the IAS2024 dataset generated with the SCMR
strategy has the potential to provide reliable SLA estimates
for monitoring coastal sea level changes.

The performance of the IAS2024 dataset has been eval-
uated and validated through comparisons of the monthly
SLA time series, as well as the sea level trends, with those
from the PSMSL tide gauge records and independent al-
timeter datasets (i.e., ESA CCI v2.4 20 Hz and CMEMS
L3 1 Hz along-track sea level datasets). The good con-
sistency between different altimeter datasets is observed
over global coastal oceans in terms of high correlation co-
efficients (> 0.4) and low RMS values (40–60 mm). The
sea level trends from the IAS2024 dataset are on average
1.32± 2.40 mm yr−1 higher than those from the ESA CCI
v2.4 dataset and are similar to those from the CMEMS L3
product (−0.18± 2.17 mm yr−1). These may be attributed to
the different data processing techniques adopted, especially
the methods used to estimate the inter-mission biases. The
validation against tide gauges demonstrates that the IAS2024
and CMEMS datasets achieve the closure of trend differ-
ences (0.16± 3.97 and 0.36± 3.72 mm yr−1) at the global
scale, which are very close to the theoretical value of zero,
demonstrating the good performance of the IAS2024 dataset
in monitoring the coastal sea levels. In contrast, a negative
bias (−1.50± 3.31 mm yr−1) is found for the ESA CCI v2.4
dataset.

Three applications of the IAS2024 dataset are conducted
in this study, which give us insights into how dedicated
coastal sea level datasets can be used for ocean communities
and policymakers. Firstly, altimeter-based virtual stations are
built along the world’s coastline over 0–10 km (1359), 5–
15 km (1548) and 10–20 km (1548) coastal strips, which are
denoted as onshore, nearshore and offshore virtual stations,
respectively. The results show that virtual stations achieve a
much higher spatial coverage than the PSMSL tide gauges
(1548 vs. 549), which contribute to the analysis of coastal
sea level changes in places where tide gauge data are unavail-
able. It is also found that the onshore stations are affected by
the degradation of altimeter data within 5 km of the coast,
leading to a decrease in the number of virtual stations from
1548 to 1359.

Secondly, the spatial variations of the linear sea level
trends are evaluated with both IAS2024 and ESA CCI v2.4
datasets. The results from these two datasets show a simi-
lar pattern but with different magnitudes at the global scale,
with the constant trend being dominant (97 % for IAS2024
and 90 % for ESA CCI v2.4). This result indicates that the lo-
cal processes have little impact on coastal sea level changes
over longer timescales, which is consistent with the find-
ings revealed by Cazenave et al. (2022). Besides, the rea-
sons leading to the increasing or decreasing trends found in
some places should be further investigated with the use of
high-resolution ocean models, which will be the theme of
our future work. Finally, the VLM estimates derived from
the combination of the altimeter and tide gauge are consis-
tent with those from the GNSS stations, with the mean of
differences in VLMs being 0.12± 2.27 mm yr−1 for onshore
stations. Therefore, the altimeter-derived VLM estimates can
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Figure 17. Trend differences between nearshore and offshore stations in the last 20 km from the coast for the IAS2024 (a) and ESA CCI
v2.4 (b) datasets. Triangles and inverse triangles correspond to increasing and decreasing trends, respectively.

Figure 18. Sea level trends over the period of January 2002 and April 2022 at altimeter-based virtual stations and tide gauges along the
world’s coastlines. Panel (a) shows the results of onshore (0–10 km) virtual stations from the IAS2024 dataset, while (b) presents the results
from the PSMSL tide gauges.

Figure 19. VLM estimates derived from the combination of virtual stations and tide gauges. Panel (a) shows the results of onshore virtual
stations, while (b) shows the boxplot of the VLM estimates from onshore, nearshore and offshore virtual stations. On each box, the central
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers present
the most extreme data points outside the percentiles, while the outliers are plotted individually using the + symbol.
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Figure 20. Comparison between ULR7a-derived VLM estimates from GNSS observations and IAS2024-based virtual stations. Panels (a) to
(c) show the scatterplot between IAS2024 onshore virtual stations and GNSS stations; the uncertainties in VLM from IAS2024 and GNSS;
and the boxplot of the difference in VLM for onshore, nearshore and offshore stations, respectively. In (a), the horizontal and vertical error
bars represent the uncertainties in GNSS-derived and altimeter-derived VLM, respectively.

be used as an independent data source for validating GNSS
solutions.
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