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Abstract. Monitoring global radiation resources relies on sunshine duration (SD) as an important indicator;
however, research examining high-resolution SD data is scarce. This study established a daily 5 km SD dataset in
China from 2016 to 2023 using Himawari’s Advanced Himawari Imager (AHI) Level 3 shortwave radiation fitted
with the Ångström–Prescott model based on a time series. We used ground-measured SD at 2380 Chinese Mete-
orological Administration stations to verify the SD dataset accuracy. The results of the testing set indicate that the
average correlation coefficient between the SD from the estimation and ground measurements was 0.88. Addi-
tionally, we investigated the effects of wind speed, vapour pressure, precipitation, aerosol optical depth, and cloud
capacity on the estimation performance of SD and found that temperature had the greatest effect. We also found
that cloud capacity that was both too low and too high, and wind speed that was too high affected SD estima-
tion on an average annual scale. These high-resolution SD data provide important support for accurate radiation
resource assessments in China. The SD dataset is freely accessible at https://doi.org/10.57760/sciencedb.10276
(Zhang et al., 2024).

1 Introduction

Solar radiation is a major driver of photosynthesis and evap-
otranspiration, plays an indispensable role in regulating tem-
perature and supporting agricultural production, and affects
photovoltaic power generation, making it critical to ecosys-
tems and productive human life (Yu et al., 2022; Feng et al.,
2021). Satellite remote sensing is an effective method for
monitoring and tracking solar radiation, particularly using
geostationary satellites that can monitor solar radiation lev-
els in the same target area several times a day. However, solar
radiation inverted by satellite sensors based on reflectance in-
formation from land surfaces is highly susceptible to atmo-
spheric inverted radiation from clouds and aerosols, which
must be corrected using ground measurement radiation sta-
tions.

There are limited numbers of radiation observation sta-
tions in China (< 200 stations in mainland China) and

other parts of the world (Liang et al., 2006; Zhang et al.,
2015). This is because of the expensive upkeep of terres-
trial radiation-measuring devices (Zhang et al., 2017; Chuk-
wujindu, 2017), as well as the lack of widely used empiri-
cal physical models for satellite–ground radiation correction,
making precise tracking of high spatiotemporal solar radia-
tion over time difficult. Sunshine duration (SD) is a readily
available and cost-effective indicator for monitoring global
radiation resources, and its variability is determined by a
combination of regional factors as well as solar constants,
cloud cover, water vapour, and atmospheric pollutants. The
SD measured from regular meteorological observations has
the advantages of being over a long period and having good
continuity, high spatial density (> 2000 stations in mainland
China), and reliability, and it is considered the best alterna-
tive to solar radiation (Xia, 2010). SD is a key parameter in
solar power potential forecasting (Baumgartner et al., 2018;
Liu et al., 2022); for example, a new SD conversion method
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based on predicted temperature and weather type data for
daily scale solar radiation prediction was proposed by Qin et
al. (2023). Climate change assessment and agricultural pro-
duction also need to consider the impact of changes in SD
(Ghanghermeh et al., 2022). Marsz et al. (2021) suggest that
long-term variations in SD in central Europe are related to
changes in the annual frequency of macro-types of circula-
tion in the mid-troposphere as well as changes in the surface
composition of the thermohaline circulation in the North At-
lantic. In addition, some researchers have found that changes
in SD also affect the probability of human diseases (Chang
et al., 2022; Gu et al., 2019). Liu et al. (2023) observed that
insufficient SD (< 5.3 h) was associated with increased hos-
pitalisation for schizophrenia.

Accurate SD inversion is an important reference for agri-
cultural production, solar resource utilisation, and global cli-
mate change analysis. Studies on SD have mostly been based
on limited ground stations (Vivar et al., 2014; Fan et al.,
2018; Yao et al., 2018), while SD is affected by atmospheric
conditions, and it is difficult for a single station to represent
this over a large area. Therefore, there is a considerable need
for high-resolution SD data based on satellite remote sens-
ing for studies on solar radiation. The Advanced Himawari
Imager (AHI) instrument, carried on board the new genera-
tion of geostationary satellites – Himawari-8 and Himawari-
9 – has been widely used to estimate radiation indicators at
different timescales for their shortwave radiation products
(Damiani et al, 2018; Hou et al., 2020; Letu et al., 2020;
Tana et al., 2023). The Ångström–Prescott model (Ångström,
1924) is the most dominant and widely used model based on
SD and solar radiation, and its quadratic and cubic forms
have been improved and applied to different meteorologi-
cal conditions (Rietveld, 1978; Bahel et al., 1987; Chen et
al., 2004; Wu et al., 2007; Liu et al., 2012; Ampratwum and
Dorvlo, 1999; Elagib and Mansell, 2000). Therefore, based
on the advantages of the high spatiotemporal and temporal
resolution of the AHI and the existing widely used empiri-
cal relationship model between solar radiation and SD, we
can use the radiation products of the AHI to validate SD
data from high-density regular meteorological observation
stations in China to estimate the gridded SD data.

In this study, we generated a daily SD dataset for China
at a spatial resolution of 5 km using AHI Level 3 shortwave
radiation data from 2016 to 2023 fitted with the Ångström–
Prescott model on different days of the year (DOYs). We
validated and assessed the accuracy of daily SD data using
ground-measured SD and other meteorological data (wind
speed, vapour pressure (VAP), cloud capacity, and precip-
itation) from 2380 Chinese Meteorological Administration
(CMA) stations, as well as the aerosol optical depth (AOD)
from MODIS.

2 Data and method

2.1 Remote sensing data

The geostationary meteorological satellite Himawari was
launched on 7 October 2014 by the Japan Aerospace Ex-
ploration Agency (JAXA) in Tanegashima, Japan, with its
hypocentre located at 0.0° N and 140.7° E, ∼ 35 800 km
above the land surface. Compared to other geostationary
satellites, the AHI exhibits superior temporal and spatial res-
olution, reflection band sensitivity, and accuracy (Zhang et
al., 2016). The AHI from Himawari-8 and Himawari-9 has
16 spectral channels covering the visible to infrared range,
with wavelengths ranging from 0.47 to 13.3 µm, providing
a wealth of spectral information (Bessho et al., 2016; Kim
et al., 2018; Yu et al., 2019). The temporal and spatial res-
olutions of the land surface products provided by the AHI
are 10 min and 5 km, respectively, which are important for
understanding spatiotemporal variations on short timescales
(Sawada et al., 2019).

Here, AHI Level 3 hourly shortwave radiation (5 km reso-
lution) data from 1 January 2016 to 31 December 2023 were
used for SD dataset construction, calculated by plane-parallel
theory, and considered the top-of-atmosphere radiation as the
difference between the 300–3000 nm solar shortwave band
and reflected solar radiation by the atmosphere–land surface
(Frouin and Murakami, 2007). This approach assumes that
the effects of clouds and a clear atmosphere can be decou-
pled, which has proven to be effective (Dedieu et al., 1987;
Frouin and Pinker, 1995). If a 1 h interval was absent from the
imagery, linear interpolation was conducted on each pixel of
the missing imagery based on the time series. When imagery
was absent for a period exceeding 1 h, the day in question
was excluded. We calculated the daily average shortwave ra-
diation in China based on China standard time using hourly
AHI shortwave radiation data.

MCD19A2 is a combined MODIS Terra and Aqua Multi-
Angle Implementation of Atmospheric Correction (MAIAC)
land AOD-gridded Level 2 product. It is produced daily at
a 1 km pixel resolution, which is corrected for atmospheric
gases and aerosols using a new MAIAC algorithm that is
based on a time series analysis and a combination of pixel-
and image-based processing (Lyapustin and Wang, 2022).
Here, AOD at 550 nm in MCD19A2 from 2016 to 2023 was
collected using Google Earth Engine (Gorelick et al., 2017).

2.2 Ground measurement data

Ground measurements in the CMA from 1 January 2016 to
31 December 2023 were used to perform the SD estimation.
The spatial coverage of Himawari is 2380 CMA automatic
meteorological stations in China. The CMA performs qual-
ity control of the data, including spatiotemporal consistency
checks, manual corrections, and adjustments, before releas-
ing the meteorological data (Moradi, 2009; Tang et al., 2010).
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Although the quality of ground-based measurements should
be controlled before acquisition, there is still a need for a
more stringent check on the data quality based on the daily
meteorological data reconstruction method from the CMA
(Zhang et al., 2015). Figure 1 shows the spatial distribution
of the 2380 meteorological stations. Here, daily SD, vapour
pressure, temperature, wind speed, cloud capacity, and pre-
cipitation from the CMA automatic meteorological stations
were used to fit and validate the grid dataset as well as to
analyse the factors influencing the estimated performance.
In this study, March–May was classified as spring, June–
August as summer, September–November as autumn, and
December–February as winter.

2.3 Model overview

The Ångström–Prescott model is an empirical model based
on the relationship between SD and solar radiation and is
widely used in meteorology and agricultural science. The
model was proposed by Ångström based on the total solar ra-
diation on clear days and was improved by Prescott based on
astronomical radiation (Ångström, 1924) using the following
equations:

Rs = (a+ b
n

N
)Ra, (1)

where Rs is the total solar radiation reaching the surface, Ra
is the astronomical radiation, a and b are empirical coeffi-
cients, n is the actual SD, and N is the maximum SD avail-
able. Ra and N counts were calculated according to Liu et
al. (2009), as follows:

Ra = 37.6dr(ωssinϕsinδ+ cosϕcosδsinωs) (2)

dr = 1+ 0.033cos(
2π
365

DOY) (3)

δ = 0.4093sin(
2π
365

DOY− 1.39) (4)

ωs = arccos(−tanϕtanδ) (5)

N =
24
π
ωs, (6)

where dr is the eccentricity of the Earth’s orbit around the
Sun, ωs is the angle at sunset, ϕ is the latitude, δ is the incli-
nation angle of the sun, and DOY is the days of a year. We
considered the AHI Level 3 hourly shortwave radiation Rs in
this model and SD of ground-based observations a validation
of n. Parameters a and b of the Ångström–Prescott model
were fitted using the least-squares method.

2.4 Validation

We divided the original data into a training set (> 5× 106

grid cells during 2017–2022) and a testing set (2016 and
2023 were used as there was a widespread transition from

manual to automatic SD recorders in 2019 or station relo-
cations; He et al., 2024). To identify the best Ångström–
Prescott model and corresponding parameters, its perfor-
mance on the training set (2017–2022) was evaluated using
a 100-fold cross-validation (CV) approach and DOY-based
CV strategy. In each iteration of each DOY, 99 folds were
used as the training set, and the remaining folds were used
as the validation set. The training and validation processes
were repeated 100 times to obtain the best model parame-
ters a and b for each DOY. In addition, the 2016 and 2023
ground-based SD data were used as test data to evaluate the
generalisation capability of the best model parameters, a and
b, at each DOY (Fig. 2). Pearson’s correlation coefficient (R)
and root-mean-square error (RMSE) were calculated to eval-
uate the performance of the model.

2.5 Methods of spatiotemporal variation analysis

Empirical orthogonal function (EOF) decomposition is an
important technique used to investigate geographical and
temporal fluctuations in meteorological characteristics (Zhou
et al., 2021). The variable field can be decomposed into two
parts: a spatial function that remains constant across time
and a temporal function that changes exclusively with time;
thus, the primary spatial and temporal variations are evident
in the area with a notable contribution to the variance. The
spatial function component comprises several mutually inde-
pendent and orthogonal spatial modes, which are also con-
sidered eigenvectors. The temporal function consists of the
projection of spatial modes in time, which is represented by
time coefficients. We used EOF to analyse the spatiotempo-
ral variations of the established SD dataset in China. Then,
the original variable field information and spatial coefficients
were concentrated in the first few modes.

3 Results

3.1 Evaluation of the training data

Figure 3 shows the estimation results of the CV sampling
method for all DOYs in the training set (N = 68806). An R
value of 0.9695 was obtained for the entire training set, with
a corresponding RMSE value of 1.2 h. The measured and in-
verted SD converged to the 1 : 1 trend line; however, an over-
estimation occurred in the dense region at ∼ 10 h. Figure 4
shows the inverse performance for different seasons in the
training set. The SD was significantly higher in spring and
summer than in autumn and winter and was more concen-
trated in the 0 and 10 h regions in winter. In spring the high-
estR and RMSE values were 0.9747 and 1.18 h, respectively,
while in winter the lowest RMSE value was 1.13 h (Fig. 4).
However, in summer the highest RMSE value was 1.3 h, and
the estimation in summer performed the worst when the mea-
sured SD was 0 h. The measured and inverted SD in spring

https://doi.org/10.5194/essd-17-1427-2025 Earth Syst. Sci. Data, 17, 1427–1439, 2025



1430 Z. Zhang et al.: A daily sunshine duration (SD) dataset in China

Figure 1. Spatial distribution of the 2380 automatic meteorological stations of the China Meteorological Administration.

Figure 2. Detailed process of model cross-validation and testing.

mostly converged to the 1 : 1 trend line, while overestimation
occurred in the dense region around 10 h in winter.

Figure 3. Estimates of sunshine duration (SD) for the CV sampling
method in the training set.

Figure 5 shows the optimal Ångström–Prescott model pa-
rameters a and b for different DOYs. The parameter a has
an upward parabolic trend with DOY, with local maximum
and minimum values of 0.22 at DOY= 306 and 0.13 at
DOY= 351, respectively. Parameter b showed a significant
“W”-shaped variation with DOY, with a local maximum
value of 0.74 at DOY= 146 and two local minimum val-
ues of 0.66 and 0.63 at DOY= 99 and 351. In general, pa-
rameters a and b of the Ångström–Prescott model are char-
acterised by more pronounced seasonal variations. Figure 6
shows the variation in the training set evaluation indicators
(R and RMSE) with DOY. More than half of the DOYs had
R values greater than the overall R value (Fig. 3), but there
was still 134 d with R values < 0.97 and a minimum value
of 0.94 at DOY= 193. Meanwhile, more than half of the
DOYs have RMSE values less than the overall RMSE val-
ues in Fig. 3, but there was still 157 d with R values < 1.2 h,
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Figure 4. Estimates of sunshine duration (SD) for the CV sampling method in the training set from different seasons: (a) spring, (b) summer,
(c) autumn, and (d) winter.

Figure 5. The a and b coefficients of the Ångström–Prescott model
for different DOYs.

and again there was a maximum value of 2.1 h for RMSE at
DOY= 193. The evaluation indicator for the training set was
not characterised by significant seasonal variations.

Figure 6. The correlation coefficients (R) (a) and RMSE (b) of the
CV sampling method in the training set for different DOYs.

3.2 Evaluation of the testing data

The different evaluation indicators for the test sets (2016 and
2023) are shown in Fig. 7. Figure 7a shows the R of 2016
and 2023, with the trends in these 2 years essentially iden-
tical to an “M” shape. The average R value for 2016 was
0.88, which is generally consistent with that for 2023. The
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Figure 7. Estimated performance in the testing set.

Figure 8. Estimated performance by changing all estimated sunshine durations (SDs)< 0 to 0 in the testing set.

minimum R value of 0.52 in 2023 (DOY= 361) was lower
than that of 0.60 in 2016 (DOY= 21), but both occurred dur-
ing winter. The trend of RMSE values for 2016 and 2023 is
opposite to the R value, with the maximum and minimum
RMSE values occurring in 2023 at 2.77 (DOY= 355) and
1.19 (DOY= 106), respectively. Figure 7c and d show the
estimated performances of 0 SD (no sunshine for the entire
day) for the CMA meteorological stations in 2016 and 2023.
Figure 7c shows the estimated mean values of 0 SD for dif-
ferent DOYs in 2016 and 2023, where the mean value in
2023 (0.49 h) is smaller than that in 2016 (0.75 h), with the
maximum and minimum mean values still occurring in 2023
at 3.42 (DOY= 211) and −0.75 (DOY= 134), respectively.
Figure 7d shows the number of estimated SDs< 0 for dif-
ferent DOYs in 2016 and 2023. There were more average
daily estimated SDs of < 0 in 2016 than in 2023 at 267 d−1,
with the lowest value occurring in 2016 at 997 (DOY= 294).

The bias in the 0 SD estimation is linked to the over- and
under-representation of its number. Changing all estimated
SDs from < 0 to 0 resulted in an improvement in their es-
timated performance (Fig. 8), with 2016 showing a greater
improvement than 2023 with DOY= 285.

3.3 Effect of different environmental factors on SD
estimation

Figure 9 shows the effects of the national daily average VAP,
precipitation, and temperature (based on CMA meteorologi-
cal stations) on the R values in Fig. 8. The R values were ex-
ponentially related to both VAP and precipitation, and VAP
had a greater effect on R than precipitation. Meanwhile, the
estimated performance in 2016 was more affected by mois-
ture conditions. Temperature had the greatest impact on R,
with 2023 being affected to a greater extent than in 2016
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Figure 9. R values and different environmental factors: VAP (a, b), precipitation (c, d), and temperature (e, f). Correlations in 2016 (a, c, e)
and 2023 (b, d, f).

Table 1. Correlation coefficients between estimated performance and influencing factors in different seasons (∗ and ∗∗ refer to passing the
p < 0.05 and p < 0.01 significance tests, respectively).

Time Influencing factors

VAP Precipitation Temperature

Spring 0.29∗ 0.43∗∗ 0.31∗

Summer −0.56∗ 0.28∗ −0.53∗∗

Autumn 0.59∗∗ 0.46∗∗ 0.62∗∗

Winter 0.28∗ 0.26∗∗ 0.22∗∗

(Fig. 9e, f). The influences on SD estimation are discussed
by distinguishing the different seasons (Table 1). VAP, pre-
cipitation, and temperature had the greatest influence on R
values in autumn and the least in winter. Notably, R in sum-
mer was negatively correlated with VAP and temperature.

Figures 10 and 11 show the annual average SD from the
CMA meteorological stations and Himawari estimations in
2016 and 2023, respectively, along with the annual average

AOD, wind speed, and cloud capacity. On an annual scale,
ground-measured and estimated SD are more consistent in
eastern and northern China, while both years have higher es-
timates in eastern China and lower estimates in northwest-
ern and northeastern China. When comparing the impact fac-
tors, higher wind speed and lower AOD in these areas, both
affected the SD estimation. The estimated SD appears to
be overestimated (southern China) at excessively high cloud
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Figure 10. Comparison of annual average ground measurement (a) and Himawari (b) sunshine duration (SD) in 2016, giving an annual
average AOD of 550 nm (c), wind speed (d), total cloud capacity (e), and low cloud capacity (f).

cover, especially at excessively high low-cloud cover, which
was more pronounced in 2016. In 2023, the total cloud cover
was higher, the low-cloud cover was lower, and the estima-
tion error had poorer feedback on the cloud cover.

3.4 Effect of different environmental factors on SD
estimation

The EOF analysis of the mean annual SD grid data in China
from 2015 to 2023 and the spatial variance contribution rate
of the eigenvectors in the first three EOF modes are shown in
Fig. 12, where the explained variance of each mode is 30.44,
23.47, and 19.0 %, respectively, with a cumulative variance
contribution of ∼ 72.91 %. The variance contribution rate of
the Mode 1 eigenvectors in Fig. 12a surpassed that of the
other models, making it the predominant spatial distribu-
tion in China. Mode 1 decreases from western to eastern
China, and northwestern China exhibits extremely low val-
ues; however, there are exceptions in Yunnan Province. Mode
2 (Fig. 12b) exhibits a dipolar distribution, decreasing from
southern to northeastern China, and Mode 3 shows a tripole
distribution, decreasing from central China to the sides. Gen-
erally, it can be concluded that SD decreases from western

to northern China. Figure 12d, e, and f show the time coeffi-
cients of SD from the first three models in China, where the
SD time coefficients of Mode 1 (Fig. 12d) show an increasing
trend from 2016 to 2023, with the minimum time coefficient
in 2019 and maximum time coefficient in 2021. The SD time
coefficients of Modes 2 and 3 exhibit a decreasing trend, and
both are positive in 2016 and negative in 2019 (Fig. 12e, f).

4 Discussion

There is no explicit remote sensing inversion model for SD
as its observation is founded upon the accumulation of radi-
ation. Consequently, SD datasets were constructed through
spatial interpolation, which results in the absence of SD
datasets that are released with high spatiotemporal resolu-
tion. Here, a 5 km resolution SD dataset in China from 2016
to 2023 was established based on a time series using Hi-
mawari imagery fitted with an Ångström–Prescott model, an
approach not done before by previous studies.

The time series based on the Ångström–Prescott model
was used to invert the SD in China, setting the coefficients
of a and b to fixed values for the entire region at different
DOYs, while the suggested coefficients in this study are not
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Figure 11. Comparison of annual average ground measurement (a) and Himawari (b) sunshine duration (SD) in 2023, giving an annual
average AOD of 550 nm (c), wind speed (d), total cloud capacity (e), and low cloud capacity (f).

comparable with the calibrated coefficients for other regions.
Previous studies on the Ångström–Prescott model have con-
firmed that it is a reliable tool for estimating solar energy
in practical applications with no marked dependence on lat-
itude (Paulescu et al., 2016). Additionally, the accuracy of
the model has a strong dependence on the season (Liu et al.,
2023), and according to the results here (Figs. 4–8), the cause
of this can be attributed to differences in the day and night
lengths in different seasons. This work not only provides a
more accurate evaluation standard for the level of radiation
received on the ground but also provides better support for
radiation estimation in the future. More conventional mete-
orological stations will be established in the future to vali-
date and improve the Ångström–Prescott model based on a
time series. It is noteworthy that the number of meteorologi-
cal observation stations in southwestern China (especially in
the Tibetan Plateau region) is small and distributed unevenly,
and the snow in the plateau notably affects interpretation of
the reflectance data from the Himawari imagery. Thus, we
will consider the input of the land cover characteristics as the
climatological data in following studies to improve this poor
performance.

It is worth noting that there is a bias in the validation of
the training and test data, where there is an overestimation at
0 SD (Fig. 3), which may be the strong light in most of the
area under a DOY, leading to the Ångström–Prescott model’s
larger parameters and overestimation of a very small portion
of the image elements that contain aerosols, clouds, and even
precipitation. In addition, in the test data the estimated SD
was< 0 (Fig. 7c, d), because the thicker clouds, atmospheric
aerosols, and water vapour in the majority of the area on that
day did not have much effect on the ground-based SD instru-
ment (the atmospheric longwave radiation contained in the
direct radiation was not affected) but had a significant effect
on the AHI shortwave radiation data, resulting in an SD of
< 0. After changing the image elements with SDs< 0 to 0,
the validation results remained substantial (Fig. 8), indicat-
ing that this part of the radiation was essentially less than the
threshold for SD observations (120 W m−2). In conclusion,
because our approach is based on a time series, it is unavoid-
able that we will encounter input data that are not sensitive
to different sky conditions. In the future, the use of relevant
physical precipitation models will be considered to simulate
the precipitation process at different times of the day based
on radiation data. This will enable us to estimate the SD, and
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Figure 12. Distribution of eigenvector contribution rates (a–c) and time coefficients (d–f) for the first three modes of sunshine duration (SD).

this aspect of the Ångström–Prescott model will be subse-
quently improved.

We found that temperature, moisture conditions, wind
speed, and atmospheric pollutants all influenced the SD esti-
mation, with temperature having the greatest effect on tem-
poral variation and wind speed having a stronger effect on
spatial variation than AOD and cloud capacity. However, we
believe that the effects of these environmental factors are not
independent but are the result of interactions (Tang et al.,
2022). In densely populated and economically developed ar-
eas (eastern and southern China), where pollutant levels are
higher and increased wind speeds accelerate their dispersion,
this regulatory mechanism is enhanced by increasing pollu-
tant concentrations (O’Dowd and Smith, 1993; Wang et al.,
2014). An increase or decrease in wind speed affects the rate
of diffusion of water vapour and pollutants in the air, which
in turn affects atmospheric transparency and, ultimately, SD
estimation. However, the effect of temperature on SD esti-
mation in this study was not consistent with that in previ-
ous studies (Tang et al., 2022; Feng et al., 2019; Ren et al.,
2017), which suggests that the relationship between SD, tem-
perature, and relative humidity is complex and needs further
investigation.

The EOF method analysis of the mean annual SD indi-
cates that it decreases from western to northeastern China,
consistent with the results of Tang et al. (2022) and Xiong et
al. (2020) and suggesting that the pattern of industrial devel-

opment between western and eastern China affects radiation
levels to some extent. The EOF time coefficients show that
there has been a certain degree of increase in SD in recent
years, which correlates with the long-term SD analysis by
Tang et al. (2022). This trend may be related to global cli-
mate change (Josefsson and Landelius, 2000), because the
variation in wind speeds due to global warming has resulted
in decreased cloud dissipation across mainland China (Xiong
et al., 2020). In addition, the decrease in human activity in
recent years (Liu et al., 2020) has contributed to the weaken-
ing of the urban rain island effect and aerosols (Glantz et al.,
2006), and it appears that the latter factor is more influential
in this study. However, short-term reductions in human activ-
ity cannot become the norm, and sunshine duration is bound
to fluctuate due to the acceleration of the hydrological cycle.

5 Data availability

The SD dataset is freely accessible at
https://doi.org/10.57760/sciencedb.10276 (Zhang et al.,
2024).

6 Conclusion

We introduced a newly developed high-resolution dataset
that provides SD data for China for the period 2016–2023.
We calculated the daily SD using Himawari Level 3 short-
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wave radiation fitted with the Ångström–Prescott model
based on a time series and used ground-measured SD to eval-
uate the estimation performance. The validation of testing
data from ground-measured SD gave favourable results, with
R values > 0.5 and an average of 0.88 for all days in 2016
and 2023. We also found that temperature and wind speed
dominated the Ångström–Prescott model in estimating SD.
A future direction for this study would be to divide the Chi-
nese regions into suitable areas to independently estimate and
synthesise a more accurate daily SD dataset for China.
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