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Abstract. Leaf inclination angle (LIA), the angle between the leaf surface normal and zenith directions, is a
vital trait in radiative transfer, rainfall interception, evapotranspiration, photosynthesis, and hydrological pro-
cesses. Due to the difficulty of obtaining large-scale field measurement data, LIA is typically assumed to fol-
low the spherical leaf distribution or simply considered to be constant for different plant types. However, the
appropriateness of these simplifications and the global LIA distribution are still unknown. This study com-
piled global LIA measurements and generated the first global 500 m mean LIA (MLA) product by gap-filling
the LIA measurement data using a random forest regressor. Different generation strategies were employed for
noncrops and crops. The MLA product was evaluated by validating the nadir leaf projection function (G(0))
derived from the MLA product with high-resolution reference data. The global MLA is 41.47°± 9.55°, and
the value increases with latitude. The MLAs for different vegetation types follow the order of cereal crops
(54.65°)> broadleaf crops (52.35°)> deciduous needleleaf forest (50.05°)> shrubland (49.23°)> evergreen
needleleaf forest (47.13°)≈ grassland (47.12°)> deciduous broadleaf forest (41.23°)> evergreen broadleaf
forest (34.40°). Cross-validation shows that the predicted MLA presents a medium consistency (r = 0.75,
RMSE= 7.15°) with the validation samples for noncrops, whereas crops show relatively lower correspondence
(r = 0.48 and 0.60 for broadleaf crops and cereal crops, respectively) because of the limited LIA measurements
and strong seasonality. The global mean G(0) is 0.68± 0.11. The global G(0) distribution is out of phase with
that of the MLA and agrees moderately with the reference data (r = 0.62, RMSE= 0.15). This study shows
that the common spherical and constant LIA assumptions may underestimate the interception of most vegetation
types. The MLA andG(0) products derived in this study could enhance our knowledge of global LIA and should
greatly facilitate remote sensing retrieval and land surface modeling studies.

The global MLA andG(0) products can be accessed at https://doi.org/10.5281/zenodo.12739662 (Li and Fang,
2025).

Published by Copernicus Publications.
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1 Introduction

Vegetation regulates terrestrial carbon and water cycles
through a series of biophysical processes such as photosyn-
thesis, respiration, and transpiration (Foley et al., 1996; Chen
et al., 2019). These biophysical processes are mainly car-
ried out by leaves, and the characterization of leaves within
canopies is vital for remote sensing and Earth system mod-
eling (Ross, 1975; Lawrence et al., 2019). Leaf inclination
angle (LIA) denotes the inclination of the leaf or needle to
the horizontal plane or the angle between the leaf surface
normal and zenith directions (Wilson, 1960). LIA is a key
canopy structural trait that determines radiative transfer, rain-
fall interception, evapotranspiration, photosynthesis, and hy-
drological processes (Sellers, 1985; Ross, 1981; Mantilla-
Perez and Salas Fernandez, 2017; Xiao et al., 2000; Maes
and Steppe, 2012). LIA has been commonly used in radiative
transfer modeling (RTM), remote sensing inversion, and land
surface modeling (LSM) studies (Tang et al., 2016; Wang and
Fang, 2020; Lawrence et al., 2019; Ross, 1975).

At the canopy scale, the probability density of LIA or the
fraction of leaf area per unit LIA is expressed as the leaf an-
gle distribution (LAD) (de Wit, 1965). De Wit (1965) sum-
marized six theoretical LADs, including planophile, erec-
tophile, extremophile, plagiophile, uniform, and spherical
distributions. Specifically, the spherical distribution assumes
that the relative probability density of the LIA is propor-
tional to the area of the corresponding sphere surface ele-
ment and its mean leaf inclination angle (MLA) equals 57.3°
(MLA= 57.3°) (de Wit, 1965). Furthermore, Ross (1981)
defined the inclination index (χL) to describe the departure of
LAD from the spherical distribution. For the planophile dis-
tribution, χL = 1; for the erectophile distribution, χL =−1;
and for the spherical distribution, χL = 0. In the radiative
transfer regime, LIA is generally represented by the leaf pro-
jection function (G(θ )), which is defined as the average pro-
jection ratio of unit leaf area in the illumination or viewing
direction θ (Ross, 1981; Nilson, 1971). The spherical distri-
bution is characterized by an isotropic leaf projection func-
tion (G≡ 0.5) (de Wit, 1965).

In the field, LIA can be measured directly based on the
leaf’s geometrical structure or using indirect optical meth-
ods (Lang, 1973; Ryu et al., 2010; Norman and Campbell,
1989; Weiss and Baret, 2017). Using these methods, sev-
eral LIA measurements have been carried out and some
LIA datasets were constructed (Kattge et al., 2020; Chi-
anucci et al., 2018; Hinojo-Hinojo and Goulden, 2020; Pisek
and Adamson, 2020). These field methods are usually time-
consuming and labor-intensive, and it is typically difficult to
acquire large-scale LIA (Li et al., 2023). In addition, the ex-
isting LIA datasets have not been comprehensively analyzed.
LIA has also been estimated from satellite imagery through
empirical relationships or radiative transfer model inversions
(Zou and Mõttus, 2015; Bayat et al., 2018; Goel and Thomp-
son, 1984). Remote sensing methods are used primarily for

crops in local regions, and the generality of these algorithms
is limited (Li et al., 2023). Due to the difficulty of large-scale
LIA measurements and estimations, our knowledge of the
global LIA remains lacking.

Because our understanding of the global LIA is limited,
different LIA simplification strategies have been adopted in
various studies. For example, LIA is typically assumed to
follow a spherical distribution (Tang et al., 2016; Zhao et
al., 2020; Wang and Fang, 2020). However, this assumption
may decrease the accuracy of radiative transfer modeling,
significantly underestimate the radiation interception (Stadt
and Lieffers, 2000), and cause large errors (> 50 %) in leaf
area index (LAI) measurements and inversions (Yan et al.,
2021). The spherical LIA assumption may introduce greater
error in the nadir direction than inother viewing geometries
(Yan et al., 2021), considering the large G variation in this
direction (Wilson, 1959). The lack of global LIA knowledge
also limits the retrieval of other vegetation structural param-
eters (Li et al., 2023). In many LSMs, LIA is commonly
treated as a fixed value for different plant functional types
(PFTs) (Lawrence et al., 2019; Majasalmi and Bright, 2019).
Field LIA measurements have demonstrated that the spher-
ical distribution is not appropriate for forests, and the PFT-
dependent LIA ignores LIA variation within the PFT (Pisek
et al., 2013; Yan et al., 2021; Majasalmi and Bright, 2019).

This study aims to generate the first global MLA map from
existing LIA field measurements using a data-driven gap-
filling method. This method involves spatial expansion and
upscaling of LIA measurements, as well as a random forest
regressor using input spectral, climate, and PFT data. Based
on the global MLA map, we tested whether the spherical
LIA assumption is appropriate at the global scale. The new
MLA map was validated by comparing the nadir G (G(0))
derived from the MLA with high-resolution reference data.
Section 2 outlines the materials and methods employed to
generate and evaluate the global MLA. Section 3 presents
the global LIA measurements, global MLA and G(0), and
evaluation results. Section 4 discusses the performance of the
global MLA and G(0), the usage of the new MLA map, and
the limitations of the study. Section 6 presents the main con-
clusions.

2 Materials and methods

2.1 LIA measurement data

2.1.1 TRY LIA dataset

TRY is a network of vegetation scientists headed by Fu-
ture Earth, the Max Planck Institute for Biogeochemistry,
and the German Centre for Integrative Biodiversity Re-
search, providing a global database of curated plant traits (the
TRY database) (https://www.try-db.org/TryWeb/Home.php,
last access: 17 April 2023). Since its establishment in 2007,
the TRY database has continuously evolved and has be-
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come one of the most widely used vegetation trait databases.
The latest V6 version (released on 13 October 2022) em-
ployed in this study contains 15 409 681 trait records cover-
ing 305 594 plant taxa (Kattge et al., 2020). In this database,
LIA was recorded as a numerical or categorical variable. Af-
ter data extraction and checking, 31 043 valid records were
used, which include numerical LIA, locations, and species.
Many measurements lack location information, whereas, for
some locations, there are many measurements for individual
species. The spatial distribution map appears to be relatively
sparse despite a large volume of data (Fig. 1). The LIA mea-
surements of most species are located in the Northern Hemi-
sphere, while the LIA measurements in South America are
mainly from palms.

2.1.2 LIA data from the literature

To fully utilize distributed and considerable LIA mea-
surement data in the published literature, several keyword
searches (leaf angle, leaf inclination angle, and leaf tilt an-
gle) were performed in the Web of Science, Google Scholar,
Google, and Chinese documentary databases. Subsequently,
the LIA, location, and species information were manually
extracted from the literature (Fig. 1). Several LIA measure-
ments were already included in the TRY database (Chianucci
et al., 2018; Pisek and Adamson, 2020). After aggregating
LIA measurements for the same species at the same loca-
tion, 780 LIA records were accessed from previous studies
(Hinojo-Hinojo and Goulden, 2020; Pisek et al., 2022; Chen
et al., 2021).

2.1.3 Manual LIA extraction

After TRY and a literature search, only a few measurements
in the northern tundra region were obtained, and the mea-
surements in tropical regions are dominated by palm trees
(Fig. 1). Therefore, LIA data for the northern tundra and trop-
ical regions were further extracted from horizontal side-view
photographs searched from Google (Fig. S1 in the Supple-
ment). ImageJ software (https://imagej.nih.gov/ij/, last ac-
cess: 17 April 2023) was used to process the leveled pho-
tographs and derive LIA following the method of Pisek et
al. (2011). The TRY species location data (848 919, Fig. S2b)
(3 January 2022) were used to obtain the dominant species
information in tropical rainforests and the northern tundra.
The species location points in these two vegetation types
were spatially filtered and the frequency of occurrence for
each species was counted. The species with a high frequency
of occurrence were selected to measure the LIA. For each
species, more than 75 leaves perpendicular to the viewing
direction were selected and processed based on visual judg-
ment to ensure the stability and reliability of the MLA (Pisek
et al., 2013). In total, the MLA of 104 species was manually
derived.

In this study, most LIA measurements were obtained with
a protractor and level digital photogrammetry, especially
for needleleaf species. Therefore, the distinction between
branches and leaves was considered. The diverse LIA records
from different sources were sorted to match the TRY species
and to get the PFT based on the TRY Categorical Traits
Dataset 2018 (https://www.try-db.org/TryWeb/Data.php#3,
last access: 17 April 2023). LIA measurements from differ-
ent sources were unified into canopy-level MLA with aver-
age operation by leaf number (see Appendix A). If there were
multiple LIA records for the same species, the mean value
was computed for the same location and species. In total,
5554 LIA records of 1194 species were collected, covering
the growing season from 2001 to 2022. LIA location repli-
cates per species range from 1 to 330, and there are fewer
than 50 location replicates for most species (98 %). Consid-
ering the different numbers of records for each species, the
LIA data were further aggregated by species.

2.2 Remote sensing data

2.2.1 Ancillary data used for MLA mapping

The ancillary data used for global MLA mapping and analy-
sis are listed in Table 1. Most Earth observation data were ac-
cessed and processed in Google Earth Engine (GEE) (https://
earthengine.google.com/, last access: 12 January 2025). The
PFT classification system in the MODIS global 500 m land
cover type product (MCD12Q1 C6) was used and mode-
aggregated from 2001 to 2022 to match the LIA measure-
ments (Fig. S3) (Sulla-Menashe et al., 2019). The 2001–2022
Landsat surface reflectance (Level 2, Collection 2, Tier 1)
(Crawford et al., 2023), including Landsat 5 (2001–2012),
Landsat 7 (2012–2013), and Landsat 8 (2013–2022), was
utilized to generate a global 30 m PFT map (Sect. 2.3.1),
which was subsequently employed for LIA upscaling. Con-
sidering the sensitivity of directional reflectance variation to
LIA (Jacquemoud et al., 2009; Li et al., 2023), the 2001–
2022 MODIS bidirectional reflectance distribution func-
tion (BRDF) model parameter dataset (MCD43A1 C6.1)
(Schaaf and Wang, 2015) and nadir BRDF-adjusted re-
flectance dataset (MCD43A4 V6 NBAR) (Schaaf and Wang,
2015) produced daily using 16 d of Terra and Aqua MODIS
data at 500 m resolution were utilized as predictive vari-
ables. We used MCD43A1 C6.1 as well as MCD12Q1
and MCD43A4 C6 for MLA mapping as these data were
available on GEE when this study was conducted. For
MCD43A1, only minor calibration changes and polarization
correction were adopted in the upgrading from Collection 6
to 6.1, while the MCD12Q1 and MCD43A4 algorithms
remain the same (https://landweb.modaps.eosdis.nasa.gov/
data/userguide/MODIS_Land_C61_Changes.pdf, last ac-
cess: 12 January 2025). In addition, the multiyear aggrega-
tion of these products (Table 2) further mitigates the ver-
sion impact. Due to the scarcity of crop LIAs and the lack
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Figure 1. Locations of global leaf inclination angle measurements collected from TRY and the literature. DBF: deciduous broadleaf forest,
DNF: deciduous needleleaf forest, EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, CRO-B: broadleaf crops, CRO-C: ce-
real crops, GRA: grassland, SHR: shrubland.

of location information for existing crop LIA measurements,
fine-resolution (10/30 m) crop-type maps (Table 1) in 2018
were employed to support crop LIA mapping. Other data in-
clude the ERA5-Land reanalysis data, the ALOS digital ele-
vation model (AW3D30 V3.2), and the 2001–2022 MODIS
LAI product (MCD15A2H) (Myneni et al., 2015). The LAI
product was averaged and aggregated from 2001–2022.

2.2.2 High-resolution reference data

The high-resolution reference datasets provided by
Ground Based Observations for Validation (GBOV;
https://land.copernicus.eu/global/gbov/dataaccessLP/,
last access: 17 April 2023) and DIRECT 2.1
(https://calvalportal.ceos.org/lpv-direct-v2.1, last ac-
cess: 17 April 2023) were used to evaluate the generated
global MLA (Fig. 2). These datasets provide high-resolution
(20/30 m) LAI, effective LAI (LAIe), and fractional vege-
tation cover (FVC, the proportion of the vertical projection
area covered by green vegetation; Gitelson et al., 2002) data
over a 3 km× 3 km area centered on each site generated
using empirical relationships between various vegetation
indices and ground measurements (Li et al., 2022; Brown et
al., 2020). GBOV has provided continuous high-resolution
reference data since 2013 (Fig. 2).

The global MLA map was indirectly evaluated by compar-
ing the nadir leaf projection function derived from MLA with
reference G(0) because of the lack of high-resolution refer-
ence MLA. The high-resolution reference G(0) was derived
from high-resolution LAI, FVC, and the clumping index (CI)
(LAIe /LAI) with the Beer–Lambert law (Fig. S4) (Nilson,
1971):

P (θ )= exp−
G(θ )·LAI·CI(θ )

cos(θ ) , (1)

where P (θ ), CI(θ ), andG(θ ) denote the gap fraction, CI, and
G in direction θ , respectively. Specifically, the gap fraction
in the nadir direction can be expressed by FVC.

P (0)= 1−FVC (2)

Therefore, the reference G(0) was derived using the follow-
ing formula:

G(0)_CI(0)=−
ln(1−FVC)

CI(0) ·LAI
. (3)

By using the whole CI as the nadir CI (CI(0)) in the above
equation (Fang et al., 2021; Li et al., 2022), G(0) was calcu-
lated as follows:

G(0)_CI≈−
ln(1−FVC)

CI ·LAI
. (4)

2.3 Mapping global LIA

2.3.1 Data preparation

Many studies have treated LIA as a species-specific static
trait and ignored within-species variations when LIA mea-
surements are limited (Pisek et al., 2022; Toda et al., 2022;
Raabe et al., 2015). Following this rationale, the spatial cov-
erage of LIA measurements was expanded, and records with-
out location information were also utilized (Sect. 2.1.1). Un-
der this assumption, the LIA measurements were expanded
through TRY species location data with species name match-
ing. The species location data comprise trait measurements
for common species representing an area of hundreds of
square meters around the location. The dominant species
was artificially identified by investigators and thus the spa-
tial representativeness was considered. When a species had
multiple LIA observations at different locations, the nearest
LIA was assigned to the TRY species location. Visual in-
spections were conducted to remove potential TRY location
biases, especially for non-vegetated points such as water bod-
ies and deserts. After spatial expansion, the number of LIAs
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Table 1. Remote sensing data for global MLA mapping. BRDF: bidirectional reflectance distribution function.

Category Data Year Spatial Temporal Reference
resolution resolution

Plant functional type MCD12Q1 C6 2001–2022 500 m Yearly Sulla-Menashe et al. (2019)

Surface reflectance Landsat collection 2 2001–2022 30 m 16 d Crawford et al. (2023)
MCD43A4 V6 NBAR 2001–2022 500 m Daily Schaaf and Wang (2015)

BRDF MCD43A1 C6.1 2001–2022 500 m Daily Schaaf and Wang (2015)

Crop type Cropland Data Layers (CDL) 2018 30 m Yearly Boryan et al. (2011)
EUCROPMAP 2018 10 m Yearly d’Andrimont et al. (2021)
AAFC Annual Crop Inventory 2018 30 m Yearly Fisette et al. (2013)
Northeast China crop-type map 2018 30 m Yearly You et al. (2021)
NESEA-Rice10 2018 10 m Yearly Han et al. (2021)
China maize map 2018 30 m Yearly Shen et al. (2022)
China winter wheat map 2018 30 m Yearly Dong et al. (2020)

Climate ERA5-Land 2001–2022 0.1° Monthly Muñoz-Sabater et al. (2021)

Terrain AW3D30 V3.2 – 30 m – Tadono et al. (2014)

Table 2. Predictive features in global MLA mapping.

Category Features Variables Number

Spectral Blue, green, red, near-infrared reflectance 10 %, 33 %, 50 %, 67 %, 90 % quantiles and standard deviation 24
NDVI 10 %, 33 %, 50 %, 67 %, 90 % quantiles and standard deviation 6

BRDF Kernel coefficients of the red band 10 %, 33 %, 50 %, 67 %, 90 % quantiles and standard deviation 18
Kernel coefficients of near-infrared band 10 %, 33 %, 50 %, 67 %, 90 % quantiles and standard deviation 18

PFT PFT Constant 1

Climate Solar downward radiation Mean and standard deviation 2
Temperature Mean and standard deviation 2
Precipitation Mean and standard deviation 2

Terrain Elevation Constant 1
Slope Constant 1
Aspect Constant 1

reached 12 328 and the spatial distribution became more uni-
form (Fig. S2c).

In this study, the scale gap between field measurements
and satellite remote sensing data was fully considered. The
canopy-level MLA measurement was regarded as equal to
30 m MLA considering its spatial representativeness. To up-
scale the MLA measurements from the canopy level to the
satellite resolution (500 m), a 30 m PFT map was first de-
rived from Landsat reflectance using a random forest classi-
fication method. The random forest was trained at a 500 m
scale using the mode-aggregated MODIS PFT classification
map as training samples to generate a 30 m PFT map by hier-
archically selecting homogeneous pixels (with a coefficient
of variation in reflectance< 0.2). The classification features
were the same as those in the MODIS classification algo-
rithm (Sulla-Menashe et al., 2019). For a 500 m pixel with

multiple PFTs (Fig. 3a), when one PFT had no MLA mea-
surement, the MLA of the PFT was assigned the value of its
nearest neighbor within 100 km with the same PFT. This dis-
tance setting (100 km) was based on a previous study which
derived global maps of various leaf traits from a limited
number of field measurements, remote sensing, and climate
data (Moreno-Martínez et al., 2018). In field measurement,
the entire canopy MLA is commonly calculated as the av-
erage of all measured leaf LIAs weighted by leaf area (see
Appendix A) (Zou et al., 2014; de Wit, 1965; Yan et al.,
2021). Leaves with larger areas have higher weights. Up-
scaling MLA from 30 to 500 m follows the same rationale
as that from the leaf to canopy scale. For a 30 m pixel with
a higher LAI, the weight of the pixel is higher. Therefore,
the 500 m MLA was computed as the weighted average of
the enhanced vegetation index (EVI2) assuming a linear re-
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Figure 2. Locations of GBOV and DIRECT 2.1 sites used in this study. CRO: cultivated crops, MF: mixed forest, PAS: pasture/hay,
WET: woody wetlands. See Fig. 1 for other acronyms. The black frame indicates sites with more than five continuous records.

Figure 3. Leaf inclination angle (LIA) upscaling (a) and global mean LIA (MLA) mapping (b) strategies.

lationship between LAI and EVI2 (see Appendix A) (Dong
et al., 2019; Alexandridis et al., 2019). Although previous
studies have reported that the vegetation index may be non-
linearly correlated with LAI because of the saturation effect
at medium and high LAI conditions, EVI2 is highly resistant
to the saturation effect (Gao et al., 2023). The errors caused
by this slight nonlinearity were further analyzed in Sect. 4.4.

MLA500 m =

∑
MLA30 m×EVI230 m∑

EVI230 m
(5)

The 500 m upscaled MLA samples were further refined to
select the most representative samples following three crite-
ria: (1) the coefficient of variation of the 30 m EVI2 in the
500 m pixel is less than 0.2, (2) the vegetation proportion in
the 500 m pixel is greater than 0.8, and (3) the proportion of
PFTs represented by the MLA measurements in the 500 m
pixel is greater than 0.4. The final number of samples af-
ter refinement is 3013 with a more even spatial distribution
(Fig. 4).

2.3.2 Global MLA mapping

Different mapping strategies were employed for noncrops
and crops (Fig. 3b) considering the small number of valid
crop samples (Fig. 4) and the lack of location information for
most crop samples. For noncrops, the upscaled 500 m MLA
samples were used to train a random forest regressor to pre-
dict the global MLA from different features (Table 2). All in-
put features were unified to the 500 m resolution. Therefore,
the derived MLA map corresponds to the average MLA at
the 500 m scale. Notably, this study used all MODIS BRDF
and spectral reflectance data including low-quality data that
may be contaminated by clouds. The multiyear aggregation
(Table 2) can partly mitigate the influence induced by low-
quality observations (Sulla-Menashe et al., 2019). The nor-
malized difference vegetation index (NDVI) was used as the
predictive feature because it is strongly coupled with LIA,
especially under low- and medium-vegetation-density condi-
tions (Dong et al., 2019; Zou and Mõttus, 2015). To reduce

Earth Syst. Sci. Data, 17, 1347–1366, 2025 https://doi.org/10.5194/essd-17-1347-2025



S. Li and H. Fang: Mapping global leaf inclination angle (LIA) based on field measurement data 1353

Figure 4. Distribution of global mean leaf inclination angle samples after screening. See Fig. 1 for acronyms.

computational complexity and potential overfitting, a feature
selection process was conducted based on the variable im-
portance (the sum of the decrease in the Gini impurity in-
dex over all trees in the forest) computed by the model, and
only the 40 most important variables were used in the final
prediction. During the training process, the out-of-bag error
was minimized to obtain the optimal hyperparameters. The
prediction performance of the random forest regressor was
evaluated using a 10-fold cross-validation approach with up-
scaled MLA samples.

For crops, the measured MLA values were averaged for
different crop types as a typical MLA (Table S2). Af-
ter assigning typical MLAs for different crops with high-
resolution crop maps (Table 1), the high-resolution crop
MLAs were upscaled to 500 m as training samples (Eq. 5).
Only the samples with a crop area ratio> 80 % within a
500 m pixel were selected for training. The crops were fur-
ther divided into broadleaf crops and cereal crops and pro-
cessed with the same procedure used for noncrops (Fig. 3b).
All procedures were conducted on GEE under the WGS-84
geographic coordinate system.

Two quality layers were added to represent the quality of
input data and the prediction model. The input data quality
was denoted by the proportion of high-quality BRDF inver-
sions for each pixel. The prediction model quality was rep-
resented qualitatively for each pixel considering whether the
MLA was predicted by extrapolating beyond the range of the
training samples. The random forest model is typically re-
garded as a black box, and its uncertainty is difficult to quan-
tify in the present study.

2.4 Evaluation of global MLA

The global MLA map was indirectly evaluated using the
nadir leaf projection function. The global G(0) was derived
from the MLA and evaluated with a high-resolution refer-
ence (Sect. 2.2.2) following the upscaling scheme recom-
mended by the Land Product Validation (LPV) Subgroup

of the Committee on Earth Observation Satellites (CEOS)
(http://lpvs.gsfc.nasa.gov/, last access: 17 April 2023).

Assuming a single-parameter ellipsoidal leaf angle distri-
bution (Campbell, 1990; Wang et al., 2007), the parameter χ ,
the ratio of the horizontal and vertical axes of an ellipsoid,
was first derived from MLA in radians. Compared to other
models, the single-parameter ellipsoidal leaf angle distribu-
tion is a relatively more accurate and simpler model and has
been used in many remote sensing studies (Campbell, 1990;
Wang et al., 2007; Kuusk, 2001; Verhoef et al., 2007).

χ =−3+
(

MLA
9.65

)−0.6061

(6)

TheG(θ ) value in the nadir direction (θ = 0°) was calculated
using an analytical formula (Leblanc and Fournier, 2017).

G(θ )=

√(
χ2+ tan2θ

)
cosθ

χ + 1.774(χ + 1.182)−0.73 (7)

The MLA product was first upscaled to 3 km through a
weighted averaging method using the MODIS LAI to de-
riveG(0) (Eq. 7). The reference LAI, FVC, and CI were also
upscaled to 3 km through simple averaging to compute the
reference G(0) (Eq. 4). The MLA-derived G(0) and the ref-
erence G(0) were compared at the 3 km× 3 km area around
each site. The correlation coefficient (r), bias, and root mean
square error (RMSE) were calculated as the evaluation met-
rics, as follows:

r =

√√√√√√√√1−

n∑
i=1

(
ŷi − yi

)2
n∑
i=1

(yi − y)2
, (8)
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Figure 5. Distribution of global mean LIA (MLA) for different
plant functional types (see Fig. 1 for acronyms). The last shape
shows the global average. Statistics are conducted for each species
as represented by points in the figure.

Bias=
1
n

n∑
i=1

(
ŷ− yi

)
, (9)

RMSE=

√√√√1
n

n∑
i=1

(
ŷ− yi

)2
, (10)

where ŷi , yi , y, and n denote the MLA-derived G(0), refer-
ence G(0), mean of the reference G(0), and number of G(0)
values, respectively.

3 Results

3.1 Global measured LIA values

The species-aggregated LIA was employed in the anal-
ysis of global LIA measurements. Figure 5 shows the
distributions of global measured LIA values for differ-
ent PFTs. The global measured MLA is 40.74° and gen-
erally follows the order of CRO-C>GRA>ENF>CRO-
B>EBF>SHR>DNF>DBF (Table 3). Cereal crops ex-
hibit the highest MLA (59.11°), whereas DBF has the most
horizontal leaves (MLA= 34.94°). GRA and EBF show
large LIA variations (SD= 20.44 and 17.17°, respectively),
whereas CRO-B exhibits a small range. The DNF LIA mea-
surements are only for one species and show very little vari-
ation (Fig. 5).

3.2 The relationships between MLA and other variables

Figure 6 shows the importance of the top 40 variables in
the MLA prediction obtained from the random forest re-
gression model. The importance of these 40 variables ac-
counts for 78 % of the total importance among all 76 vari-
ables. Spectral features account for 30 % of the importance,
which is higher than that of other features. Among the spec-
tral features, NDVI, near-infrared (NIR) band, and red band
reflectance are most critical for MLA prediction. The im-
portance of BRDF features is comparable to that of cli-
matic variables (21 % vs. 20 %), followed by terrain features

Figure 6. The importance of variables in the mean leaf inclina-
tion angle prediction. NIR, red, green, and blue denote the nadir
reflectance in the near-infrared, red, green, and blue bands, respec-
tively; geo, iso, and vol represent kernel coefficients of geometric
optical surface scattering, isotropic scattering, and volumetric scat-
tering, respectively. The suffixes p (followed by a number), mean,
and “std” represent the percent quantile, mean, and standard devia-
tion, respectively.

(7 %). Among the BRDF features, the NIR BRDF informa-
tion shows a higher contribution than the red band, with im-
portance in the following order: geometrically scattered ker-
nel> isotropic scattering kernel> volumetric scattering ker-
nel. The importance ranking of the climatic variables follows
the order of precipitation≈ solar radiation> temperature. In
addition, elevation, slope, and aspect significantly impact the
MLA prediction.

Figure 7 illustrates the relationships between the upscaled
MLA samples and the 16 most important variables. Overall,
MLA decreases with the increase in NDVI, NIR reflectance,
and NIR BRDF kernel parameters, whereas it increases with
the standard deviation of NDVI. MLA is negatively corre-
lated with solar radiation, precipitation, and temperature. Ad-
ditionally, MLA increases with an increasing standard devi-
ation of solar radiation (corresponding to middle- to high-
latitude regions), while it decreases with an increase in the
standard deviation of precipitation (corresponding to tropi-
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Table 3. Statistics of leaf inclination angle measured for different plant functional types (PFTs). SD is the standard deviation. The inclination
index (χL) is converted from mean leaf inclination angle (MLA) (χL = 2cos(MLA)−1) (Lawrence et al., 2019). The bold format highlights
high and low values.

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe

Number of species 171 1 347 23 32 31 399 190 1194
Mean (°) 34.94 35.88 39.30 43.69 39.71 59.11 44.13 38.32 40.74
SD (°) 12.40 0.00 16.11 14.40 8.11 13.28 20.17 13.80 17.12
χL 0.64 0.62 0.55 0.45 0.54 0.03 0.44 0.57 0.52

cal and subtropical regions with high precipitation). MLA
increases slightly with altitude and then decreases.

3.3 Global MLA and G(0) maps

Figure 8 shows the spatial distribution of the global 500 m
MLA product. Central Asia (grasslands), southern India
(cereal crops), and the central United States (grasslands
and cereal crops) show higher MLAs of approximately
60°, whereas the rainforests in South America, central
Africa, and Southeast Asia have more horizontal leaves with
MLAs of around 30° (Figs. 8 and S2). MLA increases with
latitude, from 32.93± 7.03° around the Equator (∼ 1.5° N)
to 53.48± 3.20° in the northern tundra (∼ 76.5° N). Vari-
ation in MLA decreases as latitude increases (Fig. 8).
Among different PFTs, cereal crops show the highest MLA
(54.65±6.28°), while evergreen broadleaf forest has the low-
est MLA (34.40± 6.42°), and PFTs follow the order CRO-
C>CRO-B>DNF>SHR>ENF≈GRA>DBF>EBF
(Table 4). Grassland, broadleaf forest, and evergreen needle-
leaf forests show larger MLA variations than other PFTs,
whereas deciduous needleleaf forests show minimal varia-
tion. The global vegetation MLA is 41.47°, with a standard
deviation of 9.55°, which is comparable to the MLA of DBF
(41.23± 6.58°) (Fig. 9a and Table 4).

The global MLA exhibits an asymmetric probability den-
sity distribution toward the lower MLA (Fig. 9b). It presents
roughly three peaks, with the highest peak (∼ 51°) contain-
ing DNF, ENF, CRO, GRA, and SHR. The moderate peak
(∼ 35°) is mainly composed of EBF and DBF, while the third
peak (∼ 58°) is dominated by crops. The MLAs of crops and
some grasslands are close to the MLA of the spherical distri-
bution (57.30°). The global MLA (41.47°) is 15.83° (38 %)
smaller than the MLA of the spherical distribution because
the vegetation MLA is mostly less than 57.30° (Fig. 9b).

Figure 10 displays the spatial distribution of global G(0)
generated from MLA. Overall, the global G(0) shows a pat-
tern opposite to the global MLA. The G(0) values in central
Asia (grasslands, Fig. S3), southern India (cereal crops), and
the central United States (grasslands and cereal crops) are
relatively lower than those in tropical rainforests and DBFs
in the eastern United States.G(0) generally decreases slowly
with latitude, from 0.78± 0.08 at the Equator (∼ 1.5° N) to
0.52± 0.04 in the northern tundra (∼ 76.5° N).

Among different PFTs, EBF has the highest G(0), at ap-
proximately 0.76± 0.06 (Fig. 11a, Table 4), whereas cereal
crops show the lowest value, at approximately 0.52± 0.08.
The DBF G(0) is comparable to the global average. The
G(0) of broad-leaved forests is greater than that of other
PFTs (Fig. 11a, Table 4). The globalG(0) probability density
distribution peaks at 0.52–0.65, with an asymmetric distribu-
tion (Fig. 11b). The proportion on the right side of the peak is
larger than that on the left. The peak of the global G(0) dis-
tribution mainly contains DNF, ENF, CRO, GRA, and SHR.
The left side of the peak is mainly composed of crops, while
the right side is dominated by broad-leaved forests and some
shrubs. The spherical distribution G(0) (0.50) is mainly rep-
resented by crops and a small amount of grassland, where
G(0) also shows a large variation (∼ 0.35). The spherical
distribution G(0) is 0.18 (26 %) less than the global aver-
ageG(0) (0.68), as most vegetationG(0) is greater than 0.50
(Fig. 11b).

Figure 12 demonstrates the global distributions of the
MLA quality indicators. The global mean proportion of high-
quality BRDF inputs is 68.03 %. The tropical regions have
a low proportion of high-quality inputs (20 %) because of
cloud contamination (Fig. 12a). Considering the large num-
ber of observations for each pixel (7904 from 2001 to 2022),
this percentage (20 %) of high-quality observations is suffi-
cient to map MLA. In addition, 80.39 % of the global MLA
map was derived within the feature ranges of training sam-
ples, and the remaining 19.61 % is mainly located in high-
latitude regions and Africa. For the latter areas, the MLA
map was predicted with extrapolation, and caution should be
taken when using the data in these areas (Fig. 12b).

3.4 Evaluation of global MLA

Figure 13 shows the comparison between the predicted
MLA and upscaled MLA samples using the 10-fold cross-
validation method. For noncrops, the predicted MLA is
moderately consistent with the upscaled sample MLA (r =
0.75, RMSE= 7.15°), with 83 % of samples having residu-
als< 10° and 94 % of samples having residuals< 15°. For
DNF and SHR, the predicted MLA compresses the variation
range of sample MLA (Fig. 13a). For crops, the predicted
MLA of CRO-C shows higher consistency (r = 0.60) than
that of CRO-B (r = 0.48) (Fig. 13b and c).
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Figure 7. Relationships between mean leaf inclination angle (MLA) and different predictive variables. See Fig. 6 for different variables.

Figure 8. The global mean leaf inclination angle (MLA) map. The right panel shows the MLA latitudinal mean (solid line) and the standard
deviation values (shaded area) weighted by leaf area index.

Figure 14 comparesG(0) derived from the MLA and high-
resolution reference data. The MLA-derived G(0) shows
moderate consistency with the reference G(0) (r = 0.62);
65 % of the estimated G(0) residuals are < 0.15 and 84 %
of the residuals are < 0.20. The estimated G(0) gener-
ally overestimates (bias= 0.11), especially when G(0) is
low (< 0.60), mainly for crops, pasture, woody wetlands,
and shrubs, whereas grasslands show better consistency. The
estimated G(0) is temporally more stable than the refer-

ence G(0), which is generally greater than 0.50 and displays
seasonal variation (horizontally distributed bars in Fig. 14).

4 Discussion

4.1 Global MLA and G(0)

This study compiled global LIA field measurements and gen-
erated the first global 500 m MLA and G(0) maps (Figs. 8
and 10). These maps show the average MLA and G(0) con-
ditions during the growing seasons from 2001 to 2022. Over-
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Table 4. Statistics of global predicted mean leaf inclination angle (MLA), nadir leaf projection function (G(0)), and inclination index (χL)
for different plant functional types (PFTs). SD is the standard deviation. The χL is converted from MLA (χL = 2cos(MLA)− 1) (Lawrence
et al., 2019). The bold format highlights high and low values.

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe

Area proportion (%) 14.02 6.32 15.08 11.42 2.99 6.84 28.45 14.88 100.00
MLA (°) 41.23 50.05 34.40 47.13 52.35 54.65 47.12 49.23 41.47
SD of MLA (°) 6.58 3.24 6.42 8.35 6.63 6.28 8.08 5.35 9.55
G(0) 0.69 0.58 0.76 0.61 0.55 0.52 0.61 0.59 0.68
SD of G(0) 0.07 0.03 0.06 0.08 0.07 0.08 0.09 0.06 0.11
χL 0.50 0.28 0.65 0.36 0.22 0.16 0.36 0.31 0.50

Figure 9. Statistics (a) and probability density distributions (b) of
the global mean leaf inclination angle (MLA) for different plant
functional types. The error bars in (a) represent the standard de-
viation. The dashed black line and shaded area in (b) indicate the
global MLA mean and standard deviation. The dashed gray line
represents the MLA (= 57.30°) of the spherical leaf angle distribu-
tion. The mean, standard deviation, and probability density values
are weighted by leaf area index. See Fig. 1 for the acronyms.

all, the global MLA is lowest around the Equator and in-
creases with latitude (Figs. 8 and 10). This is in accordance
with the MLA latitude variation derived from model simu-
lations (Huemmrich, 2013). Crops have higher MLA than
broadleaf forests, the leaves of which are relatively horizon-
tal. The global MLA andG(0) maps enhance our understand-

ing of the global distribution of MLA and G(0) and should
be useful in radiative transfer modeling, remote sensing of
vegetation parameters, land surface modeling, and ecologi-
cal studies.

The global MLA shows good consistency with validation
samples (Fig. 13) and the statistics of LIA field measure-
ments (Tables 3 and 4), demonstrating its reliability. The
globally derived MLA is 41.47°, which is consistent with
the LIA measurements (40.74°, Tables 3 and 4). However,
the derived MLAs of DBF, DNF, CRO-B, and SHR are ap-
proximately 10° greater than the measured MLAs. It is noted
that the number and spatial distribution of LIA measurements
for these biomes are limited. For example, the global CRO-
B areas are dominated by soybeans with higher LIA (Ta-
ble S2), and the LIA measurements for soybeans are limited,
which possibly caused the CRO-B MLA in the global map
to be greater than that in the measurement statistics (Tables 3
and 4). The poor crop MLA prediction (Fig. 13b) is mainly
caused by a small number of samples and the strong seasonal
variation. It is difficult to consider within-crop LIA variation
when typical MLA values are assigned to different crops.

Due to the lack of high-resolution reference MLA, the
global MLA was evaluated through a comparison of the
MLA-derived G(0) with the high-resolution reference G(0)
(Fig. 14). This practice was adopted because both MLA and
G(0) are closely related.G(0) is typically calculated from the
LIA distribution function based on Nilson’s algorithm (Nil-
son, 1971). We calculated G(0) from MLA assuming an el-
lipsoidal LIA distribution (de Wit, 1965) and found that the
calculated G(0) is highly consistent with the reference G(0)
calculated from Nilson’s algorithm for different theoreti-
cal LIA distributions (Fig. S5). The MLA-calculated G(0)
also shows a monotonic decreasing relationship with MLA
(Fig. S6).

Figure 14 shows medium consistency but MLA-
derivedG(0) overestimates at low values (< 0.60), especially
for CRO, PAS, SHR, and WET. The overestimation may be
partly caused by the underestimation of MLA at high val-
ues that is related to the errors introduced in the sample ex-
pansion and upscaling. These errors are mainly caused by a
lack of LIA measurements, vegetation structural complexity,
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Figure 10. The global nadir leaf projection function (G(0)) map. The right panel shows the G(0) mean (solid line) and standard deviation
values (shaded area) weighted by leaf area index.

Figure 11. Statistics (a) and probability density distributions (b)
of the global nadir leaf projection function (G(0)) for different
plant functional types. The error bars in (a) represent the standard
deviation. The dashed black line and shaded area in (b) indicate
the globalG(0) mean and standard deviation. The dashed gray line
represents the G(0) (= 0.50) of spherical leaf angle distribution.
The mean, standard deviation, and probability density values are
weighted by leaf area index. See Fig. 1 for the acronyms.

and seasonal variation. In addition, the uncertainties in the
reference G(0) may have contributed to the overestimation.
The reference G(0) was derived from the Beer–Lambert law
(Eq. 1), which assumes that the canopy is a turbid medium.
The turbid medium assumption is unrealistic for complex
vegetation (Widlowski et al., 2014). The angular variation
of CI and the mixture of branches and leaves in generat-
ing high-resolution G(0) can also lead to the overestima-
tion. Previous studies have shown that CI increases with the
view zenith angle (Fang, 2021), which means that the whole
CI>CI(0) and can lead to the underestimation of the ref-
erence G(0) (Eqs. 3 and 4). Woody materials may intro-
duce biases into the reference G(0) as they were not sep-
arated in the high-resolution FVC and LAI products. The
mixture of woody materials and leaves may have caused
the underestimation of the reference G(0) because trunks
usually have higher inclination angles (Liu et al., 2019).
The MODIS LAI product used for LIA upscaling in the
G(0) validation (Sect. 2.4) is known to have issues such as
internal inconsistency, backup algorithm accuracy, and spa-
tiotemporal gaps (Kandasamy et al., 2013; Pu et al., 2023;
Zhang et al., 2024). In the future, new improved MODIS
LAI can be used in the G(0) validation (Pu et al., 2024;
Yan et al., 2024). Compared with the previous G(0) derived
from global vegetation biophysical products (Eq. 4) (R2

=

0.11, RMSE= 0.53) (Li et al., 2022), the MLA-derivedG(0)
performs better (r = 0.62, RMSE= 0.15). In addition, the
G(0) data obtained from our study can be used to derive the
G(θ ) for any arbitrary angle. One method of getting G(θ ) is
based on a single-parameter ellipsoidal leaf angle distribu-
tion (Campbell, 1990) (Eq. 7). Another method is to make
use of both G(0) and G (57.3°) (≡ 0.5) to derive G(θ ) us-
ing a simple linear (G(θ )= a · θ + b) or sinusoidal (G(θ )=
a · sin(θ )+ b)) interpolation method. Since G(θ ) varies most
significantly in the nadir direction for different MLA (Wil-
son, 1959), the uncertainty of G(θ ) derived from the global
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Figure 12. Global distributions of quality indicators. Panels (a) and (b) show the proportion of high-quality BRDF inversions and whether
the prediction is within the ranges of training samples, respectively.

Figure 13. Comparisons between predicted MLA and sample MLA for noncrop (a), broadleaf crops (b), and cereal crops (c) (see Fig. 1 for
the acronyms). The error bar in (a) represents the standard deviation.
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Figure 14. Comparisons of G(0) derived from mean leaf incli-
nation angle and high-resolution reference data for different plant
functional types (see Fig. 2 for the acronyms). The error bar repre-
sents the standard deviation of reference G(0) in different seasons.

MLA in other directions is expected be smaller than that
of G(0).

4.2 The relationship between MLA and other variables

Analysis of the relationships between MLA and other fea-
tures in the MLA mapping process reveals that MLA is
negatively correlated with NDVI, NIR reflectance, and NIR
BRDF kernel coefficients (Fig. 7). These findings are consis-
tent with other simulation and experimental studies (Zou and
Mõttus, 2015; Liu et al., 2012; Dong et al., 2019; Jacque-
moud et al., 1994). Higher MLA generally means lower
canopy interception and higher transmission for high solar al-
titude, and more soil background can be detected in the nadir
direction (Liu et al., 2012). This results in lower (higher)
canopy NIR (red) reflectance because of the generally lower
(higher) NIR (red) soil reflectance than that of the leaf com-
ponents (Siegmund and Menz, 2005) and negative correla-
tions between MLA and NIR reflectance and NDVI (Liu et
al., 2012). The negative relationships between MLA and ra-
diation, precipitation, and temperature (Fig. 7) are related
to the vegetation adaptation mechanism. Under suitable cli-
mate conditions (radiation, precipitation, and temperature),
horizontal leaves are formed to absorb more radiation and
increase the photosynthesis rate (van Zanten et al., 2010;
King, 1997). The positive correlation between MLA and the
standard deviation of radiation and temperature (Fig. 7) indi-
cates that the MLA is more vertical in areas with significant
seasonal changes in radiation and temperature (mid to high-
latitude areas) because vertical leaves maximize intercepted
radiation under low solar altitudes at middle- to high-latitude
areas (Huemmrich, 2013).

Plant functional types were initially used as a predictive
variable (Tables 1 and 2), but relatively low importance was
found for LIA prediction (Fig. 6, ranked 47 out of 76). This
may be because the biome information is implicitly included
in the spectral features as the former is frequently derived
from the latter (Sulla-Menashe et al., 2019). Previous stud-
ies have demonstrated that the LIA variation within PFTs
may be larger than that between PFTs. This indicates that the
PFT is not a good predictor (Prentice et al., 2024). To avoid
overfitting, only the most important 40 features were used
for MLA prediction (Fig. 6). To explore the regional differ-
ences of the variable importance, an analysis was conducted
for the tropical (23.5° S–23.5° N), northern temperate (23.5–
60° N), northern polar (60–90° N), and southern temperate
(23.5–60° S) zones. The 40 most important variables are sim-
ilar among different regions although minor differences exist
(Fig. S7). Among the 40 variables for tropical, northern tem-
perate, northern polar, and southern temperate zones, 32, 35,
30, and 31 of them, respectively, are the same as the 40 global
variables (Fig. S7). Climate and spectral variables are signif-
icant among all regions, whereas BRDF features are the most
important in the southern temperate zone. The 40 most im-
portant variables in the global MLA prediction account for
∼ 80 % of total importance among different regions, which
is similar to that in the global prediction.

4.3 Use of the new MLA map

The spherical LAD assumption has been widely adopted in
the literature (Tang et al., 2016; Zhao et al., 2020; Wang and
Fang, 2020). This study demonstrates that the spherical as-
sumption is valid only for cereal crops, but not for broadleaf
forests (Tables 3 and 4). This finding is consistent with pre-
vious local LIA measurements (de Wit, 1965; Pisek et al.,
2013; Yan et al., 2021). For crops, the spherical assump-
tion may become invalid because of seasonal change and
species diversity (Table S2, Figs. 5 and 9). In addition, most
(72 %) of the reference G(0) values are greater than 0.50
(Fig. S8); in this case, the spherical distribution would under-
estimate the radiation and rainfall interception because of the
overestimated LIA and underestimated G(0) for most condi-
tions (Figs. 9 and 11) (Stadt and Lieffers, 2000). In current
LSMs, a constant LIA is commonly assigned for each PFT
(Majasalmi and Bright, 2019). For example, the Community
Land Model V5 (CLM5) (Table S4) (Lawrence et al., 2019)
uses lower inclination indices and higher LIA values than our
results (Tables 3 and 4) and may thus underestimate canopy
interception. The global LIA map generated in this study pro-
vides a more reasonable LIA parameterization strategy for
the application communities.

4.4 Limitations and prospects

This study is mainly limited by the small number of LIA
measurements, especially continuous measurements. First,
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within-species LIA variations were neglected in the spatial
expansion due to limited spatial coverage of existing LIA-
measured data (Sect. 2.3.1). This may introduce some er-
rors, especially for crops. Second, three different sources of
LIA measurements were gathered with different measure-
ment schemes, and uncertainty may arise because of these
differences. The random forest algorithm is robust to these
differences because some of the samples and features were
randomly selected and the algorithm ensembled the predic-
tions from multiple decision trees (Svetnik et al., 2003). We
manually inspected all field LIA data and are confident in
their quality. Third, for forests, the contribution of the under-
story was not considered. Typically, the understory is char-
acterized by more horizontal leaves, and ignoring the un-
derstory may lead to an MLA overestimation (Utsugi et al.,
2006). Nevertheless, a previous study showed that the rel-
ative contribution of the understory to the overall MLA is
less than 10 % (Li et al., 2022). Finally, only the growing
season MLA was calculated, whereas the seasonal and long-
term variations of MLA were not considered due to the lack
of continuous LIA measurements.

We assumed a linear LAI–EVI2 relationship (LAI= a ·
EVI2) to upscale MLA from the canopy to 500 m scale
(Sect. 2.3.1 and Appendix A). Global analysis of MODIS
LAI and EVI2 products shows a slight nonlinear relationship
between them (Fig. S9). The nonlinear relationship was also
used to upscale MLA (Eq. A2) in a side experiment, where
the derived MLA was found to be consistent with the original
one (Fig. S10) because of the homogeneity of the 500 m pixel
after rigorous sample screening (Sect. 2.3.1). This demon-
strates the suitability of the linear assumption.

In the future, more efficient LIA observation systems
should be developed to provide continuous LIA data (Katten-
born et al., 2022). LIA measurements can be integrated into
existing ground observation networks, such as the National
Ecological Observatory Network (NEON) (Kao et al., 2012),
Integrated Carbon Observation System (ICOS) (Gielen et al.,
2018), and Terrestrial Ecosystem Research Network (TERN)
(Karan et al., 2016), to enhance temporal LIA measurements
in a larger spatial extent, especially for DNF and crops. Us-
ing standard LIA measurement protocols will certainly im-
prove the LIA data consistency (Li et al., 2023). In addition,
canopy structure parameters are interrelated, and introducing
other structure parameter products, such as LAI, FVC, CI,
and canopy height, as predictive variables may improve the
MLA prediction. Multiangle reflectance (Jacquemoud et al.,
2009; Goel and Thompson, 1984; Jacquemoud et al., 1994)
and light detection and ranging (Zheng and Moskal, 2012;
Bailey and Mahaffee, 2017; Itakura and Hosoi, 2019) are en-
couraging remote sensing tools that can help to derive tem-
porally continuous and high-resolution MLA data.

5 Data availability

The global MLA and G(0) products (CAS-GLA V1.1)
are available at https://doi.org/10.5281/zenodo.12739662 (Li
and Fang, 2025). The related GEE code can be accessed for
GEE user at https://code.earthengine.google.com/?accept_
repo=users/SiJia/MTA (created by Sijia Li, last access:
12 January 2025).

6 Conclusion

This study compiled existing global LIA measurements and
generated the first global 500 m MLA and G(0) products
by gap-filling the LIA measurement data using a random
forest regressor. The mean of global LIA measurements is
40.74° and cereal crops show the highest MLA (59.11°).
The global estimated MLA shows an explicit spatial distribu-
tion and the value increases with latitude. The global MLA
is 41.47°± 9.55° and follows the order of CRO-C>CRO-
B>DNF>SHR >ENF≈GRA>DBF>EBF. The pre-
dicted MLA presents a medium consistency (r = 0.75,
RMSE= 7.15°) with the validation samples for noncrops.
For crops, the results are relatively poorer (r = 0.48 and
0.60 for broadleaf crops and cereal crops) because of lim-
ited LIA measurements and strong seasonality. The esti-
mated G(0) is moderately consistent with the reference G(0)
(r = 0.62).

The MLA and G(0) products obtained in this study could
enhance our understanding of global LIA and assist remote
sensing retrieval and land surface modeling studies. These
products provide a more realistic parameterization strategy
than the commonly used spherical LAD and PFT-specific
MLA assignment. Note that the global MLA and G(0) prod-
ucts mainly represent the typical state during the growing
season. These products can be further improved and temporal
MLA data can be obtained through continuous measurement
and remote sensing retrieval.

Appendix A: Upscaling LIA from leaf to canopy and
ecosystem scales

From leaf to canopy scale, the entire canopy MLA is com-
monly calculated as the average of all measured leaf LIAs
weighted by leaf area (Eq. A1) (Zou et al., 2014; de Wit,
1965; Yan et al., 2021). In practice, because of the difficulty
of leaf area measurement, especially for a large number of
leaves, the variability of leaf areas within a canopy is often
ignored and the areas of all leaves are assumed to be similar.
In this case, the canopy LIA can be simplified as the aver-
age LIA weighted by leaf number (Eq. A1) (Ryu et al., 2010;
Pisek et al., 2011; Chianucci et al., 2018):
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MLAcanopy =

∑
i

LIAi ·LAi∑
i

LAi
=

LAmean ·
∑
i

LIAi

LAmean ·N

=

∑
i

LIAi

N
, (A1)

where MLAcanopy is the MLA at canopy scale, i is the
ith leaf, LIA is leaf inclination angle, LA is single leaf area,
LAmean is the mean leaf area by ignoring the variation of leaf
area within a canopy, and N is the number of leaves within a
canopy.

From the canopy to 30 m scale, the canopy-level MLA is
regarded as equal to 30 m MLA because for MLA measure-
ments, the dominant species was artificially identified by in-
vestigators and the spatial representativeness at the extent of
30 m is ensured.

From 30 to 500 m, the 500 m MLA was formulated as the
weighted average of 30 m MLA by the leaf area of the 30 m
pixel (Eq. A2), the same as that from the leaf to canopy scale.
The leaf area of a 30 m pixel can be deduced from the product
of leaf area index (LAI) and the ground area of a 30 m pixel
according to the definition of LAI (half of the green leaf area
per unit of ground area) (Eq. A2) (Fang et al., 2019):

MLA500 =

∑
j

MLA30_j ·LA30_j∑
j

LA30_j

=

∑
j

MLA30_j ·LAI30_j · S∑
j

LAI30_j · S

=

∑
j

MLA30_j ·LAI30_j∑
j

LAI30_j
, (A2)

where MLA500 and MLA30 represent MLA at 500 and 30 m
scales, j is the j th 30 m pixel, LA30_j is the total leaf area
of a 30 m pixel, LAI30_j is the leaf area index (m2 m−2) of a
30 m pixel, and S is the ground area of a 30 m pixel.

Assuming LAI= a ·EVI2+ b and b ≈ 0 (as illustrated in
Fig. S9), the MLA at 500 m scale can be calculated as

MLA500 =

∑
j

MLA30_j ·EVI230_j∑
j

EVI230_j
. (A3)

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-1347-2025-supplement.
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