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Abstract. The risk of water erosion in mainland China is intensifying due to climate change. A high-precision
rainfall erosivity dataset is crucial for understanding the spatiotemporal patterns of rainfall erosivity and identify-
ing key areas of water erosion. However, due to the limited spatiotemporal resolution of historical precipitation
data, there are significant biases in the estimation of rainfall erosivity in China, particularly in regions with
complex terrain and climatic conditions. Over the past decade, the China Meteorological Administration has
continuously strengthened its ground-based meteorological observation capabilities, establishing a dense net-
work of observation stations. These high-precision precipitation data provide a reliable basis for quantifying
rainfall erosivity pattern in China. In this study, rigorous quality control was performed on the 1 min ground ob-
servation precipitation data from nearly 70 000 stations nationwide between 2014 and 2022, ultimately selecting
data from 60 129 stations. Using the data from these stations, event rainfall erosivity was calculated, producing
a national dataset of mean annual rainfall erosivity with a spatial resolution of 0.25°. This dataset shows that the
mean annual rainfall erosivity in mainland China is approximately 1241 MJ mm ha−1 h−1 yr−1, with values ex-
ceeding 4000 MJ mm ha−1 h−1 yr−1 primarily concentrated in southern China and the southern Tibetan Plateau.
The mean annual rainfall erosivity in mainland China derived from previously released datasets was found to
be 31 % to 65 % higher than the value calculated in this study, and basin-level discrepancies between our find-
ings and other studies also vary significantly. In summary, the release of this dataset enables a more accurate
assessment of the current intensity of water erosion in China. The dataset is available from the National Tibetan
Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Terre.tpdc.301206; Chen, 2024).

1 Introduction

Rainfall-induced soil erosion is a primary contributor to
global soil loss, as highlighted by the Intergovernmental
Panel on Climate Change (IPCC, 2019), posing a signifi-
cant threat to soil functionality. This phenomenon jeopar-
dizes various crucial aspects, including food security, water
quality, and climate change mitigation (FAO and ITPS, 2015;
Borrelli et al., 2020). Precipitation is the principal driver of

erosion processes, influencing soil particle detachment, ag-
gregate breakdown, and particle transport via runoff (Wis-
chmeier and Smith, 1965, 1978). In this context, the rainfall
erosivity index was introduced to quantify the potential of
rainfall to cause soil loss. In the widely used Universal Soil
Loss Equation (USLE) and its updated versions, the multi-
year mean annual rainfall erosivity is referred to as the R

factor, which links rainfall characteristics to soil loss based
on extensive data collected from thousands of plot years of
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natural rainfall and runoff (Nearing et al., 2017). In recent
years, rainfall erosivity has also been widely used in assess-
ing ecosystem service functions, post-fire debris flows, and
other environmental hazards (Diodato et al., 2020; McGuire
et al., 2024; Wu et al., 2024).

Rainfall erosivity is commonly assessed by multiplying
the accumulated kinetic energy (E) by the maximum 30 min
rainfall intensity (I30) of a rainfall event. From a dynamic
perspective, this index encapsulates the comprehensive ef-
fects of soil particle detachment and transport processes. The
E of a rainfall event can be quantified using the raindrop
physical parameters such as raindrop size and falling veloc-
ity measured using distrometers. However, it is challenge to
obtain these parameters on a large spatial scale due to the
high cost of maintaining a dense observational network of
distrometers. To simplify the calculation, empirical models
relating E to rainfall intensity (I ) (hereafter referred to as
the E–I relation) are developed based on observed raindrop
fall velocity and size to estimate the E of rainfall events. The
common used forms of E–I relation models include poly-
nomial (Carter et al., 1974; Tilg et al., 2020), exponential
(Kinnell, 1981; Brown and Foster, 1987; Renard et al., 1997;
Mineo et al., 2019), logarithmic (Wischmeier, 1959; Wis-
chmeier and Smith, 1978; Davison et al., 2005), and power-
law (Laws, 1941; Laws and Parsons, 1943; Uijlenhoet and
Stricker, 1999; Lim et al., 2015) equations. It is important to
note that the accuracy of E depends not only on the mod-
els used but also on the temporal resolution of the in situ
precipitation observations, considering the non-linear E–I

relationship. For example, for logarithmic and exponential
E–I relation models, like those used in the USLE and Re-
vised Universal Soil Loss Equation (RUSLE), studies have
shown that E values derived from 1 h in situ precipitation
data are about 10 % lower than those derived from 1 min
data (Agnese et al., 2006; Yin et al., 2007). In 2023, Dai et
al. (2023) introduced the first global rainfall microphysics-
based E values retrieved from radar reflectivity at different
frequencies, showing that microphysics-based E estimates
outperform those derived from commonly used empirical
E–I relations, validated using ground disdrometers. Specif-
ically, the mean annual rainfall kinetic energy calculated us-
ing the E–I method was found to be 6.17 % to 12.5 % lower
than the radar remote-sensing-based E values across distinct
regions worldwide.

The I30 value of a rainfall event is derived from precipi-
tation process data, including both in situ and gridded pre-
cipitation data. In situ precipitation data with 1 min temporal
resolution are the best suitable data for deriving I30 of a rain
event. Precipitation data with a temporal resolution greater
than 15 min may fail to capture the accurate subhourly rain-
fall process, resulting in underestimated I30 values (Angulo-
Martínez and Beguería, 2009). For example, the I30 value
derived from 1 min data is found to be approximately 1.668
times higher than that derived from hourly records in main-
land China (Yin et al., 2007). As remote sensing technology

and weather forecasting models advance, the temporal res-
olution of gridded precipitation data has greatly improved,
allowing their use to derive I30 values. However, caution is
needed, as I30 values may be underestimated when using
gridded precipitation data. For example, the European Centre
for Medium-Range Weather Forecasts Reanalysis 5 (ERA5)
precipitation data underestimate I30 values by over 80 % on
the Tibetan Plateau (Chen et al., 2022). Satellite-based prod-
ucts, such as the Integrated Multi-satellitE Retrievals for the
Global Precipitation Measurement (GPM IMERG) dataset,
also show significant underestimations in precipitation inten-
sity, posing challenges in accurately identifying I30 (Freitas
et al., 2020).

Based on the analysis, the variation among different E

estimates derived from different data sources and methods
is around 10 %. In contrast, the bias in I30 estimates from
precipitation data with varying temporal resolutions exceeds
60 %. The bias in I30 for individual rainfall events is signif-
icantly greater than that for E. Therefore, the I30 estimation
bias is the crucial source of inaccuracies in determining rain-
fall erosivity. The most reliable approach for obtaining I30
and corresponding rainfall erosivity values is to use in situ
observations from densely spaced weather station networks.

Due to the limited availability of precipitation data of high
temporal–spatial resolution, rainfall erosivity in China has
traditionally been estimated using coarser-resolution precip-
itation data (limited in situ records and gridded data), such
as hourly, daily, monthly, or yearly scales (Yin et al., 2015;
Panagos et al., 2017; Liu et al., 2020; Yue et al., 2022; Chen
et al., 2022, 2023b). Consequently, existing maps of mean
annual rainfall erosivity may contain significant uncertain-
ties, particularly in regions with complex terrain and climate
conditions (Chen et al., 2022). Since 2012, the China Meteo-
rological Administration (CMA) has developed a dense net-
work of automatic weather stations, providing 1 min in situ
precipitation records nationwide. This development offers an
opportunity to better identify subhourly rainfall characteris-
tics. By leveraging this dataset, accurate I30 values, event
rainfall erosivity, and mean annual rainfall erosivity for the
recent decade in mainland China can be obtained. This study
aims to (1) determine mean annual rainfall erosivity values
at approximately 70 000 weather stations using the standard
method, (2) develop a mean annual rainfall erosivity map for
mainland China by integrating values based on 1 min in situ
data with values derived from hourly ERA5 reanalysis pre-
cipitation data, and (3) identify the sources of uncertainties
in estimating the rainfall erosivity.
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Figure 1. (a) Number of available weather stations and (b) aver-
aged coverage time length of in situ precipitation records in each
0.25° grid across mainland China.

2 Data and methods

2.1 Data

2.1.1 Precipitation data

Over the past decade, approximately 70 000 weather sta-
tions have been established by the CMA, maintaining nearly
10 years of precipitation observations at 1 min intervals. To
ensure the accuracy of these in situ data, the quality of
records was evaluated using a data integrity index, defined
as the ratio of available records to the total number of min-
utes in a year for each station. Records with an integrity level
above 90 % for a given year were deemed suitable for calcu-
lating annual rainfall erosivity at the respective stations. Ulti-
mately, data from 60 129 stations across the mainland China
spanning 2014–2022 were used in this study.

Mainland China was divided into 16 167 grids with a spa-
tial resolution of 0.25°. Based on this division, we analyzed
the density of weather stations and the length of available
data coverage at the grid scale (Fig. 1). Results indicated that
the density of stations and coverage time length were signifi-
cantly higher in the southeastern regions of China compared
to the northwest. On a national scale, approximately 57 % of
all grids had in situ precipitation observations, with an aver-
age of 6.7 stations per grid and data coverage of 5.2 years.

A monthly gridded precipitation dataset, released by the
National Meteorological Information Center (NMIC) of the

CMA, was also employed to analyze the spatial characteris-
tics of precipitation across China (hereafter referred to as the
CMA gridded precipitation data). This dataset was particu-
larly valuable for regions with insufficient station data, such
as northwestern China. The gridded precipitation dataset is
based on national weather station data and interpolated onto
0.5° grids using the thin plate spline method. This study used
data from 2014 to 2022 to detect the spatial characteristics of
multi-year mean annual precipitation across China.

The hourly 0.25° ERA5 reanalysis precipitation dataset
was employed to calculate rainfall erosivity in the Dawang–
Chayu area, located in the southern part of the Tibetan
Plateau, which receives more than 1000 mm of annual pre-
cipitation but lacks 1 min precipitation records. ERA5 pre-
cipitation data include large-scale and convective precipi-
tation consisting of rain and snow, produced by the Eu-
ropean Centre for Medium-Range Weather Forecasts Inte-
grated Forecasting System. This dataset, representing the lat-
est generation of global atmospheric reanalysis, provides a
higher spatial resolution compared to ERA-Interim (Hers-
bach et al., 2019).

2.1.2 Rainfall erosivity maps in previous studies

The newly developed mean annual map for mainland China,
presented in the results section, is compared with previ-
ous studies. Two widely used rainfall erosivity maps from
Panagos et al. (2017) and Yue et al. (2022) were se-
lected for comparison. Panagos et al. (2017) developed the
first global-scale rainfall erosivity database using hourly
in situ precipitation records from 3625 stations spread
across 63 countries (https://esdac.jrc.ec.europa.eu/themes/
global-rainfall-erosivity, last access: 21 March 2025). The
distribution of stations varies by continent, with Asia and the
Middle East accounting for 1220 stations (34 % of the to-
tal) across 10 countries, including parts of Russia, China, In-
dia, and Japan. Yue et al. (2022) used hourly rainfall data
from 2381 stations between 1951 and 2018 to generate a
mean annual rainfall erosivity map for mainland China. This
study demonstrated satisfactory performance by comparing
derived values against true rainfall erosivity values calculated
from 1 min rainfall data collected from 62 stations across
China. In this study, the overall performance of different
mean annual rainfall erosivity maps is first compared using
a grid-to-grid approach. Secondly, performance by basin is
also assessed. Mainland China is divided into nine basins: the
Songhua and Liao River basin, Hai River basin, Huai River
basin, Yellow River basin, Yangtze River basin, Pearl River
basin, southeast basin, southwest basin, and continental basin
(Fig. 5a; https://www.resdc.cn/data.aspx?DATAID=141, last
access: 16 October 2024).
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Table 1. Comparison of data and methods used to generate mean annual rainfall erosivity maps.

R factor map Temporal
resolution of
precipitation
data

Number of
stations

Time
coverage

E algorithm I30 (EI30) algorithm Spatial
interpolation
method

Panagos et al.
(2017)

1 h 387 14 years RUSLE (Renard et al.,
1997)

Conversion factor for
rainfall erosivity

Gaussian process
regression

Yue et al.
(2022)

1 h 2381 18 to 54
years

RUSLE2
(USDA-Agricultural
Research Service,
2013)

Conversion factor for
rainfall erosivity

Kriging

This study 1 min 60 129 9 years RUSLE (Renard et al.,
1997)

No conversion Kriging

2.2 Method for calculating rainfall erosivity

Not all rainfall processes lead to soil erosion, and it is gen-
erally believed that rainfall must exceed a certain magni-
tude to cause soil erosion. According to Wischmeier and
Smith (1978), a continuous 6 h dry period without any rain-
fall is used to delineate individual rainfall events. If rainfall is
interrupted for more than 6 h, subsequent rainfall is consid-
ered a separate event. Erosive rainfall events are defined as
those with precipitation exceeding 12 mm (Xie et al., 2000).
The rainfall erosivity (EI30) of an erosive rainfall event is
calculated according to the method proposed by Brown and
Foster (1987), as recommended in RUSLE:

er = 0.29[1− 0.72exp(−0.05ir )] (1)

E =

n∑
r=1

(er ·Pr ) (2)

revent = E · I30, (3)

where E (MJ ha−1) is the total energy of the erosive event,
and revent (MJ mm ha−1 h−1) is the event rainfall erosivity.
For 1 min in situ precipitation data, ir (mm h−1) is the rainfall
intensity for the rth minute, er (MJ ha−1 mm−1) is the unit
energy for the rth minute, Pr (mm) is the rainfall amount for
the rth minute, n is the rainfall duration in minutes, and I30
(mm h−1) is the maximum contiguous 30 min peak intensity.

To address occasional observation errors, particularly in
low-temperature environments, a quality check was con-
ducted on the calculated event rainfall erosivity. For each sta-
tion, the nearest 100 stations were selected, and the recorded
events at these 101 stations were categorized into two clas-
sifications: those occurring during the warm season (April to
October) and those during the cold season (including months
from January to March and November to December). The
median and standard deviation of event rainfall erosivity
were computed separately for both seasons. The threshold
value for each station was defined as the median plus 3 times
the standard deviation. Any event rainfall erosivity exceed-

ing the threshold for the respective season was considered an
outlier and excluded from the annual rainfall erosivity cal-
culation. Ultimately, annual mean rainfall erosivity at each
station was aggregated using quality-checked event rainfall
erosivity values. The mean annual rainfall erosivity for a grid
represents the multi-station averaged value. The overall algo-
rithm for mapping mean annual rainfall erosivity in mainland
China is shown in Fig. 2.

3 Results

3.1 Rainfall erosivity map

Using the methodology described in Sect. 2.2, the rainfall
erosivity of erosive rainfall events was calculated for 60 129
stations across mainland China from 2014 to 2022 (Chen,
2024). The mean annual rainfall erosivity for each station
was subsequently obtained, and gridded mean annual rain-
fall erosivity values were determined at a spatial resolution of
0.25°, representing the average mean annual rainfall erosivity
values of the stations within corresponding grids (Fig. 3). The
mean annual rainfall erosivity across grids with in situ ob-
servations in mainland China is 1917 MJ mm ha−1 h−1 yr−1.
Overall, the southern region of China exhibits the highest
mean annual rainfall erosivity, followed by the northern re-
gion. The mean annual rainfall erosivity is lowest in the arid
and semiarid areas of the northwest, as well as in the Ti-
betan Plateau. In the southern region, the mean annual rain-
fall erosivity generally exceeds 2200 MJ mm ha−1 h−1 yr−1,
with the highest values observed along the southeast coast,
reaching over 10 000 MJ mm ha−1 h−1 yr−1. In contrast, the
mean annual rainfall erosivity in the northwest and Tibetan
Plateau regions is mainly below 500 MJ mm ha−1 h−1 yr−1.

A spatial distribution map of the mean annual rainfall
erosivity across mainland China, with a spatial resolution
of 0.25°, was generated using the kriging method. Notably,
large areas in the northwest and Tibetan Plateau lack ground
observations, necessitating an assessment of the impact of
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Figure 2. The algorithm for mapping mean annual rainfall erosivity in mainland China.

Figure 3. Mean annual rainfall erosivity map in mainland China.

spatial interpolation method on the accuracy of the mean
annual rainfall erosivity map in these regions. Given the
strong positive correlation between the annual rainfall ero-
sivity and precipitation (Richardson et al., 1983; Renard and
Freimund, 1994; Yu and Rosewell, 1996; Xie et al., 2016;
Chen et al., 2024), mean gridded annual precipitation data
were used to identify regions with high precipitation but no
1 min records. Figure 4a shows the spatial distribution of
mean annual precipitation deriving from CMA gridded pre-
cipitation data. Most observation gaps in the northwest and

Tibetan Plateau have relatively low annual precipitation, with
minimal differences compared to surrounding areas with ob-
servations. However, the Dawang–Chayu area, located in the
southern part of the Tibetan Plateau near the Yarlung Zangbo
River grand canyon, is an exception. Precipitation in this
region is primarily influenced by the southwest monsoon,
which brings warm and humid airflow to the Tibetan Plateau
(Chen et al., 2023a). The observed mean annual precipita-
tion here exceeds 1800 mm, significantly higher than that in
surrounding areas. Therefore, extrapolating rainfall erosivity
from surrounding stations for this area is not reasonable.

To address this, hourly ERA5 reanalysis precipitation data,
combined with in situ precipitation records, were used to
generate a gridded dataset of annual rainfall erosivity for
the Tibetan Plateau from 1950 to 2020 (Chen, 2021; Chen
et al., 2022). The mean annual rainfall erosivity for the
Dawang–Chayu area from 2014 to 2022 was obtained form
this dataset instead of relying on direct interpolation. Fig-
ure 4b shows the integrated mean annual rainfall erosivity
map for mainland China. Generally, the mean rainfall ero-
sivity in mainland China exhibits a decreasing trend from
southeast to northwest, with an overall average value of
1241 MJ mm ha−1 h−1 yr−1.
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Figure 4. (a) Spatial distribution of mean annual precipitation in
China. Grids without crossed diagonal lines indicate areas without
station records. The dashed black line marks the Dawang–Chayu re-
gion. (b) Spatial distribution of mean annual rainfall erosivity across
mainland China.

3.2 Comparison with previous studies

The newly generated mean annual rainfall erosivity map for
mainland China is compared with the widely used maps from
Panagos et al. (2017) and Yue et al. (2022). Compared to the
map developed by Panagos et al. (2017), there is a good cor-
relation in regions with mean annual rainfall erosivity below
10 000 MJ mm ha−1 h−1 yr−1. However, in areas with annual
rainfall erosivity exceeding 10 000 MJ mm ha−1 h−1 yr−1,
our estimates are significantly higher (Fig. 5a). When com-
pared with the map by Yue et al. (2022), the overall cor-
relation is good with annual rainfall erosivity less than
10 000 MJ mm ha−1 h−1 yr−1. In regions with mean annual
rainfall erosivity exceeding 10 000 MJ mm ha−1 h−1 yr−1,
the differences are larger, but no clear pattern is observed
(Fig. 5b). In summary, our results correlate well with exist-
ing studies in areas with lower mean annual rainfall erosivity
but show significant differences in high-erosivity areas.

A further comparison was conducted across the nine river
basins in China (Fig. 6). The Hai and Huai river basins show

the largest differences in mean and median mean annual rain-
fall erosivity values among the three datasets. Although some
differences in performance are observed between basins, no
consistent pattern emerges. These discrepancies primarily
stem from variations in spatial and temporal resolution of
the precipitation data and the algorithms used (Table 1). The
algorithms in these studies are based on recommendations
from RUSLE and RUSLE2. The E calculations of RUSLE
are approximately 12 % lower than those from RUSLE2 for
precipitation intensities below 35 mm h−1 but 2 % higher for
intensities above 100 mm h−1 (Nearing et al., 2017). Regard-
ing I30, 1 h precipitation data cannot accurately capture this
value. Unlike other studies, this research utilized the largest
set of in situ precipitation records but over a shorter time cov-
erage. Since the R factor typically describes the potential of
precipitation to cause erosion over a long-term climate scale,
ideally spanning 20 years (Renard et al., 1997), using short-
term data may introduce bias. Ayat et al. (2022) reported an
increasing trend of extreme subhourly rainfall near Sydney,
Australia, over the last 2 decades, though no similar evidence
exists for hourly or daily scales. However, trends in extreme
subhourly rainfall over mainland China remain unclear. This
study provides the mean annual rainfall erosivity map for the
past decade, acknowledging potential biases, particularly in
the context of climate change.

4 Impacts of precipitation data and algorithms on
estimating rainfall erosivity

Variations in rainfall erosivity data and algorithms are the
primary reasons for discrepancies in rainfall erosivity esti-
mation. In this section, E values for erosive precipitation
events are calculated using the kinetic energy methods from
RUSLE and RUSLE2, evaluating how different kinetic en-
ergy algorithms affect rainfall erosivity estimation. To assess
the impact of temporal resolution of precipitation data on the
accuracy of I30, I30 values for erosive rainfall events were
calculated using precipitation data at different temporal res-
olutions (1 min vs. 1 h). A total of 300 stations across China
were randomly selected, using minute-level and hour-level
precipitation data from 2020–2022 for comparison.

Figure 7a and b show the mean E and I30 for erosive
rainfall events across mainland China during 2020–2022.
The mean event E value is 6.2 MJ ha−1, ranging from 1.8
to 81.4 MJ ha−1, and shows a decreasing trend from south-
east to northwest. The mean event I30 value is 18.9 mm h−1,
ranging from 3.0 to 34.9 mm h−1, with two notable centers
in the southern and central parts of China (Beijing–Tianjin–
Hebei region; Shanxi, Henan, and Shandong provinces).
Next, the differences between E computation using RUSLE
and RUSLE2 were analyzed. For minute-level data, the ratio
of the average event kinetic energy computed using RUSLE2
to RUSLE is approximately 1.09, while it is 1.15 for hourly
data (Fig. 7c and d). The analysis was further extended to
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Figure 5. Comparisons between the newly developed mean annual rainfall erosivity map and existing maps (Panagos et al., 2017; Yue et al.,
2022) (unit: MJ mm ha−1 h−1 yr−1).

Figure 6. (a) The nine basins in China and (b) boxplots of mean an-
nual rainfall erosivity across basins (unit: MJ mm ha−1 h−1 yr−1).
Grey, red, and blue boxes represent different mean annual rainfall
erosivity maps from this study, Panagos et al. (2017), and Yue et
al. (2022), respectively.

assess the impact of temporal resolution on E and I30 calcu-
lations. Based on RUSLE’s kinetic energy algorithm, results
show that values computed from minute-level data are 1.21
times higher than those from hourly data, with more signif-
icant differences in the northwest (Fig. 7e). The impact on
I30 is even more pronounced, with minute-level data yield-
ing values 1.72 times higher than those from hourly data
(Fig. 7f). This analysis highlights that I30 values exceed E

at a national scale and are more sensitive to both temporal
resolution of precipitation data and algorithm selection. Ac-
curate computation of I30 is therefore essential for reliable
rainfall erosivity estimation, underscoring the importance of
high-temporal-resolution data in achieving precise rainfall
erosivity estimates.

5 Data availability

The dataset is available from the National Tibetan
Plateau/Third Pole Environment Data Center (https://doi.org/
10.11888/Terre.tpdc.301206; Chen, 2024).

6 Conclusions

The rainfall erosivity of individual rainfall events is de-
termined by two parameters: the E and I30. High-
spatiotemporal-resolution ground precipitation data provide
the most accurate calculations for both E and I30, resulting
in the most reliable rainfall erosivity estimates. Accordingly,
this study used nearly 10 years of 1 min in situ precipitation
data from 60 129 stations to estimate the mean annual rain-
fall erosivity across mainland China. The main findings are
as follows:

1. The mean annual rainfall erosivity across main-
land China shows significant spatial variabil-
ity, with a regional average of approximately
1241 MJ mm ha−1 h−1 yr−1.
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Figure 7. Spatial distribution of (a) mean kinetic energy (E) and (b) maximum 30 min rainfall intensity (I30) of erosive rainfall events
during 2020–2022. (c) Ratio of E calculated using RUSLE and RUSLE2 methods based on 1 min precipitation data. (d) Same as (c) but for
1 h data. (e) Ratio of E calculated using the RUSLE method for 1 min vs. 1 h data. (f) I30 calculated using 1 min vs. 1 h data. The subscript
“min” indicates results based on 1 min data, while “hour” refers to 1 h data. Subscripts “RUSLE” and “RUSLE2” indicate the methods used
to estimate E.

2. Compared to previous studies, this newly released
dataset presents lower mean annual rainfall erosivity
values across mainland China by 31 %–65 %, with sig-
nificant differences across various river basins.

3. With current technology, the accuracy of determining
I30 during erosive rainfall events is much lower than that
of E. The main source of deviation in rainfall erosivity
estimation is the uncertainty in I30.

This newly developed dataset, based on high-resolution
ground precipitation observations from the recent decade,

can enhance the accuracy of soil erosion forecasting when
combined with other factors in RUSLE or RUSLE2, such as
newly released K factor maps (Gupta et al., 2024) and cover-
management factors. Furthermore, rainfall erosivity can be
viewed as a characteristic of rainfall events, offering spatial
insights into precipitation-induced disasters in China.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-1265-2025-supplement.
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