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Abstract. Earth observation data are increasingly used to estimate the magnitude and geographic distribution of
greenhouse gas (GHG) fluxes and reduce overall uncertainty in the global carbon budget, including for forests.
Here, we report on a revised and updated geospatial, Earth-observation-based modeling framework that maps
GHG emissions, carbon removals, and the net balance between them globally for forests from 2001 to 2023
at roughly 30 m resolution, hereafter referred to as the Global Forest Watch (GFW) model (see the “Code and
data availability” section). Revisions address some of the original model’s limitations, improve model inputs,
and refine the uncertainty analysis. We found that, between 2001 and 2023, global forest ecosystems were,
on average, a net sink of − 5.5± 8.1 Gt CO2e yr−1 (gigatonnes of CO2 equivalent per year± 1 standard devi-
ation), which reflects the balance of 9.0± 2.7 Gt CO2e yr−1 of GHG emissions and −14.5± 7.7 Gt CO2 yr−1

of removals, with an additional −0.20 Gt CO2 yr−1 transferred into harvested wood products. Uncertainty
in gross removals was greatly reduced compared with the original model due to the refinement of uncer-
tainty for carbon removal factors in temperate secondary forests. After reallocating GFW’s gross CO2 fluxes
into anthropogenic fluxes from forest land and deforestation categories to increase the conceptual similarity
with national greenhouse gas inventories (NGHGIs), we estimated a global net anthropogenic forest sink of
−3.6 Gt CO2 yr−1, excluding harvested wood products, with the remaining net CO2 flux of−2.2 Gt CO2 yr−1 re-
ported by the GFW model as non-anthropogenic. Although the magnitude of GFW’s translated estimates aligns
relatively well with aggregated NGHGIs, the temporal trends differ. Translating Earth-observation-based flux
estimates into the same reporting framework that countries use for NGHGIs helps build confidence around
land use carbon fluxes and supports independent evaluation of progress towards Paris Agreement goals. The
data availability is as follows: carbon removals (Gibbs et al., 2024a, https://doi.org/10.7910/DVN/V2ISRH),
GHG emissions (Gibbs et al., 2024b, https://doi.org/10.7910/DVN/LNPSGP), and net flux (Gibbs et al., 2024c,
https://doi.org/10.7910/DVN/TVZVBI).
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1 Introduction

Land is the most uncertain component of the global carbon
cycle (Friedlingstein et al., 2023). The highly dynamic and
bidirectional nature of terrestrial carbon fluxes, both spa-
tially and temporally, and the contributions of anthropogenic
and non-anthropogenic processes pose unique challenges for
monitoring fluxes. Top-down atmospheric observations (e.g.,
from sensors such as NASA’s Orbiting Carbon Observatory)
are not precise enough to attribute fluxes to specific drivers,
and the current suite of bottom-up approaches for estimating
global terrestrial carbon fluxes (Friedlingstein et al., 2023)
is based on models that are not fully consistent with each
other (i.e., bookkeeping models and dynamic global vegeta-
tion models (DGVMs) to estimate anthropogenic and nat-
ural fluxes, respectively) (Dorgeist et al., 2024; Walker et
al., 2024). An additional complication is that these mod-
els separate anthropogenic and natural fluxes from land dif-
ferently compared with national greenhouse gas inventories
(NGHGIs), which are used within climate policy treaties to
drive national climate actions (IPCC, 2024). This makes it
difficult for models to provide estimates directly relevant
to climate policy frameworks and national climate action.
Top-down atmospheric approaches do not make this sep-
aration, while global estimates of anthropogenic land use
fluxes from bookkeeping models (Friedlingstein et al., 2023)
are 6.7 Gt CO2 yr−1 higher than aggregate NGHGIs (Grassi
et al., 2023). This gap is primarily due to definitional and
conceptual differences around what is classified as anthro-
pogenic or natural fluxes from forests (Grassi et al., 2018),
with recent studies focusing on reconciling these differences
(e.g., Schwingshackl et al., 2022; Grassi et al., 2023). Thus,
despite improved data acquisition and advances in modeling
capabilities, large uncertainty and variation in estimates of
land emissions and sinks remain. Moreover, the spatial dis-
tribution of forest emissions and, even more so, forest carbon
removals are not well understood, impeding the ability of a
range of actors, such as governments, companies, and civil
society, to monitor the effectiveness of land-based climate
mitigation actions that reduce emissions from forest loss and
maintain or increase forest carbon sinks.

To address some of these limitations, Global Forest Watch
(GFW) introduced an Earth-observation-based framework
and model for estimating forest carbon fluxes globally (Har-
ris et al., 2021) that aligns with calls for spatially explicit
approaches for the monitoring of forest carbon fluxes (Euro-
pean Council, 2018; Nyawira et al., 2024; Ochiai et al., 2023;
Turubanova et al., 2023). It was designed to fill a gap among
existing forest carbon monitoring approaches by combin-
ing global forest change maps, benchmark carbon density
maps, and other Earth observation data based on the Inter-
governmental Panel on Climate Change (IPCC) Guidelines
for National Greenhouse Gas Inventories (IPCC, 2006, 2019)
that countries use to estimate emissions and removals for
their NGHGIs. Within the scope of the Agriculture, Forestry,

and Other Land Use (AFOLU) sector, only greenhouse gas
(GHG) fluxes from forest-related land uses and land use
changes (forest remaining forest, non-forest converted to for-
est, and forest converted to non-forest) were included. The
framework was designed around the United Nations Frame-
work Convention on Climate Change (UNFCCC) guiding
principles for NGHGI preparation: transparency, accuracy,
completeness, comparability, and consistency. All GFW car-
bon flux model inputs and outputs and code are publicly
available (see the “Code and data availability” section).

Recognizing that both Earth observation and ground data
increase and improve through time, we designed GFW’s flux
monitoring framework and the model implementing it with
the flexibility to accommodate updates to existing compo-
nents and add new components. Here, we document updates
to the model, report results from the current version, present
a revised uncertainty analysis, and – following the recom-
mendations of the recent IPCC Expert Meeting on Recon-
ciling Land Use Emissions (IPCC, 2024) – introduce a new
translation of GFW model of CO2 emissions and removals
into NGHGI reporting categories of deforestation and forest
land that provides an Earth observation perspective on forest
fluxes conceptually similar to what countries are expected to
report under IPCC guidelines.

2 Methods

Harris et al. (2021) include a detailed explanation of the
GFW forest flux monitoring framework, but some key ele-
ments are described here. The framework encompasses gross
CO2 emissions from the loss of carbon in aboveground and
belowground biomass pools, dead wood, litter, and soil or-
ganic carbon in mineral soils due to stand-replacing dis-
turbances; carbon loss from drainage of organic soils; and
methane (CH4) and nitrous oxide (N2O) emissions from for-
est fires and drainage of organic soils. Carbon removals in-
clude sequestration into aboveground and belowground for-
est biomass. All model inputs are resampled to the spatial
resolution of a Landsat pixel (0.00025× 0.00025°, roughly
30× 30 m at the Equator), and outputs are generated at the
same resolution. The model uses the Landsat resolution be-
cause it is the highest resolution at which the global forest
change maps and an aboveground biomass map for the year
2000 are publicly available. Higher-resolution maps of forest
change and biomass exist but are not publicly available, are
available only for recent years, and/or include only certain
regions (e.g., Vancutsem et al., 2021; Yang and Zeng, 2023).

The IPCC GHG inventory guidelines, the methodological
basis of GFW’s forest carbon flux monitoring framework, lay
out two methods by which terrestrial carbon stock changes
associated with land use, land use change, and forestry (LU-
LUCF, part of the broader AFOLU sector) can be calculated:
gain–loss and stock-difference (IPCC, 2006). Methods can
be applied according to different tiers (from 1 to 3) with in-
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creasing complexity and presumed accuracy. In the gain–loss
method, carbon emissions and removals are calculated sep-
arately by multiplying activity data, such as forest area lost,
gained, or maintained (ha), by emission or removal factors
(t C ha−1); the net carbon stock change, or flux, is the dif-
ference between gross emissions and gross removals. In the
stock-difference method, carbon stocks are measured during
repeated inventories, and the difference between remeasure-
ments is the estimate of net carbon stock change, or flux.
GFW’s framework employs the gain–loss approach, in which
the activity data and other contextual information are esti-
mated using global Earth-observation-based maps trained on
local ground plot data and/or airborne and spaceborne lidar
observations.

GFW’s gain–loss modeling approach is initialized in the
year 2000 with global maps of carbon densities in five for-
est ecosystem carbon pools (Fig. 1). The model runs for
all pixels with a canopy density ≥ 1 % in 2000 (Hansen et
al., 2013), but default outputs define forests as follows: (1)
> 30 % canopy cover in 2000 (Hansen et al., 2013) or sub-
sequent tree cover gain (Potapov et al., 2022b), (2) nonzero
aboveground biomass in 2000 (Harris et al., 2021), (3) man-
groves in 2000 (Giri et al., 2011), and (4) exclusion of oil
palm plantations in 2000 (see Table 2). We use this definition
of forests because a canopy density of > 30 % is a common
threshold employed for national definitions of forests (Harris
et al., 2018) and because some of the input removal factors
are specifically applicable to denser forest. All outputs and
results use a canopy density > 30 % unless otherwise spec-
ified. However, because the model runs without any a pri-
ori canopy density threshold and the forest definition is ap-
plied after the fact, fluxes can be estimated for lower canopy
density thresholds. Within pixels with canopy cover in 2000,
gross removals are mapped based on locations of forest ex-
tent and regrowth, while gross emissions are subsequently
mapped based on locations of stand-replacing forest distur-
bances. In this system of tracking the forest/non-forest status
of individual pixels over time, the model adheres to IPCC
Approach 3 for land representation (IPCC, 2019).

For activity data, rather than combining and reconciling
national or regional geospatial forest monitoring data in the
limited places where they exist continuously since 2000, we
deliberately use global, independent (nongovernmental) data
sources to maintain global consistency and comparability
within the framework, recognizing that global data are gen-
erally not the most locally accurate or relevant data but that
they remain useful for large-scale analyses and potentially
for verification purposes of other approaches. To identify
forest loss, the GFW model uses the Global Forest Change
(GFC) data of Hansen et al. (2013), which are updated annu-
ally. Because of the framework’s use of GFC, emissions are
limited to those from stand-replacing disturbances or other
disturbances severe enough to be detected by GFC. Tree
cover gain (Potapov et al., 2022b) is gross gain and is as-
signed to the period from 2000 to 2020, not to a specific year.

In the model, forest pixels can have loss only (assigned to a
specific year), neither loss nor gain (i.e., no change), or both
loss and gain (in which the order is unknown). Non-forest
pixels can have either tree cover gain or no gain; in the latter
case, they are outside the framework, as they are non-forest
remaining non-forest.

Emission and removal factors likewise use spatially ex-
plicit data as much as possible to capture spatial variation in
forest properties and dynamics and move beyond ecozone-
level representation of forests. GFW model emission and
removal factors are generally independent of national data
sources, with the exception of some removal factors in tem-
perate forests, which are derived directly from the Forest
Inventory and Analysis (FIA) database maintained by the
United States Forest Service (see Harris et al., 2021, and
Glen et al., 2024, for details). The model uses a combination
of IPCC default (Tier 1) and localized (Tier 2) emission/re-
moval factors, with the goal of using more Tier 2 factors over
time, just as countries are encouraged to do in their NGHGIs.
(Note that some Tier 1 removal factors come from national
forest inventories, particularly FIA data (IPCC, 2019).) For
example, removal factors in primary forests use IPCC de-
faults (Tier 1; IPCC, 2019), while initial (year 2000) above-
ground biomass carbon densities use a global benchmark
map of woody biomass developed from field data and remote
sensing (Tier 2; Harris et al., 2021). Removal factors are ap-
plied in a hierarchy from six sources: (1) mangrove-specific
rates (IPCC, 2014a); (2) Europe-specific rates by forest type
(combination of Table 4.11 of the updated IPCC guidelines,
FAO planted forest assessment, and factors published in na-
tional forest inventories); (3) planted tree rates from the Spa-
tial Database of Planted Trees (SDPT) Version 2.0 (Richter
et al., 2024); (4) US-specific rates by region, forest type, and
age class derived from the FIA database (Glen et al., 2024);
(5) young secondary forest rates (Cook-Patton et al., 2020);
and (6) IPCC default rates for all other areas (e.g., primary
forest, older secondary forests in the tropics, and older tem-
perate forests outside Europe and the US) (IPCC, 2019). The
framework supports the addition of other geospatial removal
factors as they become available. Gross removals are added
to pre-disturbance biomass until the year of loss to determine
the biomass in the year of loss. Emission factors are esti-
mated using a map of tree cover loss drivers (Curtis et al.,
2018) and burned area (Tyukavina et al., 2022); the combi-
nation of these determines the extent to which carbon pools
(including soil organic carbon in mineral soils) are emitted
by forest disturbance. Emission factors are estimated using
“committed” emissions (Hansis et al., 2015) or instantaneous
oxidation (IPCC, 2019), whereby carbon loss from all rel-
evant pools is assumed to occur in the year of disturbance
rather than modeling delayed carbon fluxes through time.
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Figure 1. Updated conceptual framework for modeling forest-related GHG fluxes. The model estimates gross forest-related emissions and
removals as the product of activity data and emission/removal factors for each ∼ 30 m pixel. The net forest GHG flux is the sum of gross
emissions (+) and removals (−). Text and arrows in gold are portions of the removals methodology that are passed into the emissions
methodology.

2.1 Changes to GFW model input data

Since the original release of GFW’s carbon model frame-
work in 2021, which estimated forest carbon flux results
through 2019, we have made several changes to the model in-
puts because new data were published or existing data were
improved (Table 1). These changes keep the model aligned
with recent advances in global Earth observation data and ad-
dress some limitations in the original version, but they do not
change the underlying conceptual framework. The updated
geospatial inputs are shown in the context of all inputs in Ta-
ble 2. We summarize changes to the input data with respect
to extension of the model from 2019 to 2023 (Sect. 2.1.1),
changes to activity data (Sect. 2.1.2), and changes to emis-
sion and removal factors (Sect. 2.1.3).

2.1.1 Annually updated data

We have updated four inputs to the framework annually since
the original GFW model was published: tree cover loss, dom-
inant driver of tree cover loss, burned area, and country-level
transfers to harvested wood products (HWPs). In the origi-
nal version, they extended to 2019, 2015, 2019, and 2015,
respectively. The first three inputs now extend through 2023,
and we plan to continue to update them annually, lagging
1 year behind the calendar year. Country-level HWP transfers
now extend through 2021 based on data from FAOSTAT that
currently extend through 2022 (https://www.fao.org/faostat/
en/, last access: 5 May 2024). These constitute the core up-
dates to the model each year.

2.1.2 Updated activity data

Beyond the annual updates described above, we made the
following four additional updates to the model’s activity
data:
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Table 1. Changes to GFW model inputs since the original version (Harris et al., 2021).

Framework
component

Original version Current version Affects
emissions

Affects
removals

Temporal coverage of
tree cover loss
(Sect. 2.1.1)

Tree cover loss through 2019 (Hansen et
al., 2013, updated annually on GFW)

Tree cover loss through 2023 (Hansen et
al., 2013, updated annually on GFW)

Yes Yes

Temporal coverage of
drivers of tree cover
loss (Sect. 2.1.1)

Dominant driver of tree cover loss
through 2015 (Curtis et al., 2018)

Dominant driver of tree cover loss
through 2023 (Curtis et al., 2018,
updated annually on GFW)

Yes No

Temporal coverage of
burned area
(Sect. 2.1.1)

Burned area through 2019 Burned area through 2023 Yes No

Transfers to harvested
wood products
(country-level only)
(Sect. 2.1.1)

Transfers to HWPs through 2015 (FAO,
2024)

Transfers to HWPs through 2021 (FAO,
2024)

No Yes

Temporal coverage of
tree cover gain
(Sect. 2.1.2)

2000–2012 (Hansen et al., 2013) 2000–2020 (Potapov et al., 2022b) Yes Yes

Burned area extent
(Sect. 2.1.2)

MODIS burned area (Giglio et al., 2018,
updated annually)

Tree cover loss from fires (Tyukavina et
al., 2022, updated annually)

Yes No

Organic soil extent
(Sect. 2.1.2)

– Indonesia and Malaysia (Miettinen et
al., 2016)
– Below 40° N (Gumbricht et al., 2017)
– Above 40° N (Hengl et al., 2017)

– Indonesia and Malaysia (Miettinen et
al., 2016)
– Central Africa (Crezee et al., 2022)
– Lowland Amazonian Peru (Hastie et
al., 2022)
– Below 40° N (Gumbricht et al., 2017)
– Above 40° N (Xu et al., 2018)

Yes No

Planted tree extent
(Sect. 2.1.2)

Spatial Database of Planted Trees v1.0
(Harris et al., 2019)

Spatial Database of Planted Trees v2.0
(Richter et al., 2024)

Yes Yes

Belowground biomass
(R : S ratio)
(Sect. 2.1.3)

Global ratio of 0.26 for belowground
carbon to aboveground carbon for
non-mangrove forests (Mokany et al.,
2006)

Map of ratio of belowground carbon to
aboveground carbon for non-mangrove
forests (Huang et al., 2021)a

Yes Yes

Planted tree removal
factors and their
uncertainties
(Sect. 2.1.3)

Spatial Database of Planted Trees v1.0
(Harris et al., 2019)

Spatial Database of Planted Trees v2.0
(Richter et al., 2024)

Yes Yes

Older secondary
(> 20 years old)
temperate forest
removal factors and
their uncertainties
(Sect. 2.1.3)

2019 Refinement to the 2006 IPCC
Guidelines for National Greenhouse Gas
Inventories, Volume 4, Chapter 4, pages
4.34–4.38, Table 4.9 (IPCC, 2019)

4th Corrigenda to the 2019 Refinement
to the 2006 IPCC Guidelines for
National Greenhouse Gas Inventories,
Volume 4, Chapter 4, pages 4.18–21,
Table 4.9 (IPCC, 2023)b

Yes Yes

Global warming
potential (GWP) values
(Sect. 2.1.3)

IPCC Fifth Assessment Report,
Table 8.7 (100 years, no climate–carbon
feedback) (IPCC, 2014b)

IPCC Sixth Assessment Report,
Table 7.15 (100 years, no
climate–carbon feedback) (IPCC, 2022)

Yes No

a The R : S ratio map was extended outwards to fill gaps in the original map. b Removal factors for other climate domains and ages were not updated.
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Table 2. Geospatial data components and sources currently used in the GFW model. Updated components and sources are denoted using an
asterisk (∗) and italic font. This updates Table S3 in Harris et al. (2021).

Model component Source

Forest extent 2000

Tree cover extent Hansen et al. (2013)

Mangrove forest extent Giri et al. (2011)

Tropical humid primary forest extent Turubanova et al. (2018)

Intact forest landscapes (boreal/temperate) Potapov et al. (2017)

∗Planted tree extent (plantations and tree crops) ∗Richter et al. (2024) (Spatial Database of Planted Trees v2.0)

∗Peatland extent Miettinen et al. (2016) (Indonesia and Malaysia)
∗Crezee et al. (2022) (Congo Basin)
∗Hastie et al. (2022) (Amazonian Peru)
Gumbricht et al. (2017) (< 40° N)
∗Xu et al. (2018) (≥ 40° N)

Oil palm extent 2000 Austin et al. (2017) (Indonesia)
(areas excluded from model) Gaveau et al. (2014) (Borneo)

Miettinen et al. (2016) (Sumatra, Borneo)
Gunarso et al. (2013) (peninsular Malaysia)

Carbon density 2000

Aboveground live woody biomass density Harris et al. (2021) (non-mangrove)
Simard et al. (2019) (mangrove)

∗Belowground biomass density ratio ∗Huang et al. (2021) (root : shoot ratio for non-mangrove forests), with
Mokany et al. (2006) filling in gaps

Soil organic carbon density Hengl et al. (2017) (non-mangrove)
Sanderman et al. (2018) (mangrove)

Ecological zone (for deadwood and litter) FAO (2012)

Elevation (for deadwood and litter) Farr et al. (2007)

Mean annual precipitation (for deadwood and litter) Fick and Hijmans (2017)

Activity data
∗Tree cover loss ∗Hansen et al. (2013) (2001–2023)

∗Tree cover gain ∗Potapov et al. (2022b) (2000–2020)

∗Burned areas ∗Tyukavina et al. (2022) (tree cover loss from fires, updated through 2023)

Emission factors
∗Drivers of forest loss ∗Curtis et al. (2018) (updated through 2023)

Climate zone FAO (2012)

Fire combustion and emission factors IPCC (2019) (Tables 2.5 and 2.6)
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Table 2. Continued.

Model component Source

Removal factors

Ecological zone FAO (2012)

Mangrove removal factors IPCC (2014a) (Wetlands Supplement, Tables 4.4 and 4.5)

US forest type Ruefenacht et al. (2008)

US stand age Pan et al. (2011)

US removal factors (by region× type× age class) USDA Forest Service (2019)

Europe forest type Brus et al. (2012)

Europe removal factors (by forest type) IPCC (2019) (Table 4.11)
FAO (2006)
Portuguese Environmental Agency (2020)

∗Planted tree removal factors ∗Richter et al. (2024) (Spatial Database of Planted Trees v2.0) (including
uncertainties)

Agroforestry removal factors IPCC (2019) (Tables 5.1 and 5.3)

Natural regrowth removal factors (< 20 years) Cook-Patton et al. (2020)

Primary forest removal factors IPCC (2019) (Table 4.9)

∗Old secondary forest removal factors (> 20 years) ∗IPCC (2019) (Table 4.9 for non-temperate forests only)
∗IPCC (2019, 2023) (Table 4.9 Corrigenda 4 for temperate forests (including
uncertainties))

Harvested wood products (country only)
∗Production, import, and export statistics of
sawnwood, wood-based panels, and paper and
paperboard

∗FAO (2024) (2001–2021)

1. Temporal coverage of tree cover gain. Tree cover gain
originally covered 2000–2012 but now covers 2000–
2020. In the original version, tree cover gain covered
7 fewer years than tree cover loss did (12 years of tree
cover gain vs. 19 years of tree cover loss); currently, tree
cover gain covers 3 fewer years than tree cover loss (20
years vs. 23 years). Tree cover gain is still reported in
one interval, so the framework does not assign gain to
a specific year within 2000–2020. The shorter duration
of tree cover gain and its lack of information on timing
is an ongoing limitation of the inputs to the framework
(see Sect. 4.3 and 4.4).

2. Burned area extent. The original version of the GFW
model used MODIS burned area (500 m resolution)
(Giglio et al., 2018), but it now uses Global Land Anal-
ysis & Discovery laboratory tree cover loss due to fires
(TCLF) (30 m resolution) (Tyukavina et al., 2022). This
burned area product is designed to be used with GFC.
As in the original version of the model, emissions from
fires are included only where stand-replacing distur-
bances are detected by GFC, meaning that emissions

from relatively low severity forest fires remain unquan-
tified in the model.

3. Organic soil extent. We added two new regional trop-
ical peatland maps (Peru and Congo Basin; Hastie et
al., 2022; Crezee et al., 2022) and replaced the peat
map above 40° N (Xu et al., 2018). These maps reflect a
more recent understanding of the extent of organic soils
in those regions. This is one of the few inputs to the
model that composites regional maps with pan-tropical
and global maps.

4. Planted tree extent. Planted trees are part of man-
aged ecosystems, and using distinct removal factors
for planted trees instead of removal factors for natural
forests better represents the associated carbon seques-
tration of these managed landscapes. The original ver-
sion of the GFW model used SDPT v1.0 (Harris et al.,
2019), but it now uses SDPT v2.0 (Richter et al., 2024),
which includes the planted tree extent in 45 additional
countries. Richter et al. (2024) define planted trees as
plantation forests and tree crops. This dataset aggre-
gates maps of tree crops and planted forests globally in
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a bottom-up approach that captures roughly 90 % of the
planted tree area globally circa 2020. Each polygon in
the database has the most taxonomically resolved infor-
mation available, from a broad type of production (e.g.,
orchard) to species.

2.1.3 Updated emission and removal factors

We made the following four updates to emission and removal
factors:

1. Belowground biomass (R : S ratio). The original ver-
sion of the GFW model used a single R : S ratio of
0.26 to estimate belowground biomass applied globally
to non-mangrove forests (Mokany et al., 2006). (Man-
groves had separate ratios from (IPCC, 2014a).) The up-
dated model uses a global R : S ratio map from Huang
et al. (2021) to incorporate spatial variability in the R : S
ratio, ranging from less than 0.15 to greater than 0.5. Be-
cause the R : S ratio map does not cover all land where
forest is present in our framework (e.g., some nearshore
islands), we interpolated missing R : S ratio pixels from
nearby ones; where interpolation was not possible (e.g.,
remote Pacific islands), we retained the original default
ratio of 0.26. We applied this ratio map to aboveground
biomass in the year of tree cover loss to calculate carbon
emissions from loss of belowground biomass. We also
used the R : S ratio map to calculate carbon removals
by belowground biomass based on carbon removals by
aboveground biomass. Including this input makes the
belowground carbon stocks and removal factors reflect
local forest types better than using a single global ratio.

2. Planted tree removal factors and their uncertainties.
SDPT v2.0 (Richter et al., 2024) has a removal fac-
tor and uncertainty associated with every planted tree
(planted forest and tree crop) polygon included in the
database. The removal factors of polygons that were in
SDPT v1.0 are largely unchanged in SDPT v2.0, but
polygons newly included in SDPT v2.0 have been as-
signed removal factors based on information about what
kind of planted tree is present using the most taxonom-
ically resolved information available.

3. Older (> 20-year-old) secondary temperate forest re-
moval factors and their uncertainties. The original ver-
sion of the framework applied Tier 1 removal factors
published in Table 4.9 of IPCC (2019) for primary and
some secondary (> 20-year-old) temperate forests. In
2023, IPCC released corrected default removal factors
and their uncertainties for temperate secondary forests
in North and South America, which are also applied in
the GFW model to > 20-year-old forests in temperate
ecozones outside of the USA and Europe where no bet-
ter sources of data are currently available. In the model

update, we replaced the original IPCC defaults with the
corrected ones.

4. Global warming potential (GWP) values. The origi-
nal version of the framework converted non-CO2 emis-
sions from CH4 and N2O into equivalent units of CO2
using GWP values published in IPCC’s Fifth Assess-
ment Report. The framework now uses GWP values for
CH4 and N2O from IPCC’s Sixth Assessment Report.
This affects gross emissions and net flux outputs only
where non-CO2 emissions are estimated (organic soil
drainage, fires in organic soils, or biomass burning).

2.2 Updated uncertainty analysis

With the original version of the framework, we presented
an uncertainty analysis that used an error propagation ap-
proach for inputs for which uncertainties (variances) were
available and potentially substantial. This approach under-
lies Approach 1 (simple error propagation) outlined in the
IPCC guidelines and produces similar results; however, it re-
flects exact calculations of variances and standard deviations,
whereas the IPCC Approach 1 to uncertainty analysis is an
approximated approach that yields 95 % confidence intervals
(IPCC, 2019). For the model update, we repeated this un-
certainty analysis with all of the changes and updates to the
framework described in Sect. 2.1, using the same error prop-
agation approach and the same components employed in the
original analysis.

2.3 Anthropogenic fluxes from “managed” forests

GFW’s Earth-observation-based modeling framework does
not (and cannot) differentiate between anthropogenic and
non-anthropogenic fluxes from forests. Rather, it includes
fluxes from all forest land and, therefore, the combination
of direct anthropogenic, indirect anthropogenic, and natural
fluxes. Thus, results from our model are not directly compa-
rable with those from NGHGIs or bookkeeping models, each
of which define anthropogenic fluxes with different system
boundaries for their specific purposes (Grassi et al., 2022,
2023). Under UNFCCC decisions and IPCC methodological
guidance, countries report only anthropogenic fluxes in their
NGHGIs, approximated by “managed land” (IPCC, 2006;
Ogle et al., 2018). Therefore, if GFW’s forest carbon flux
monitoring framework is to serve as an independent, Earth-
observation-based point of reference for NGHGIs, its re-
sults must be able to be reported in a conceptually similar
way, covering the same scope. In doing so, we adopted the
proposal of Grassi et al. (2023), who recommended adjust-
ing global data to the NGHGI framework for analyses fo-
cused on country policy or action. In translating the GFW
model’s fluxes into the NGHGI reporting framework, we did
what IPCC guidelines direct countries to do when compil-
ing and reporting their inventories, rather than what coun-
tries necessarily do in practice for their inventories. The goal
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of this translation exercise was not to reproduce as closely
as possible how countries prepare their NGHGIs using the
GFW model, to achieve maximum quantitative similarity to
NGHGIs, or to reconcile the GFW flux model with NGHGIs;
rather, we aimed to present CO2 fluxes from a globally con-
sistent, geospatial approach in the same conceptual terms that
national policymakers use.

We developed a three-step process to translate the GFW
model’s gross CO2 emissions and removals into three IPCC
reporting categories: anthropogenic flux from managed for-
est land, emissions from deforestation (anthropogenic), and
non-anthropogenic flux from unmanaged forest (Table 3).
It builds upon the simpler comparison between the GFW
model and NGHGIs conducted in the IPCC Sixth Assess-
ment Report (Nabuurs et al., 2022), in which anthropogenic
fluxes from the GFW model were those outside primary
forests in the tropics and intact forest landscapes in the non-
tropics. This translation process does not change the GFW
model’s bottom-line net flux estimates; rather, it reclassifies
the gross CO2 fluxes by intersecting the GFW model fluxes
with other contextual geospatial data to provide fluxes more
conceptually aligned with those of NGHGIs. The first step
(Sect. 2.3.1) assigned each country to one of three cases
based on how their NGHGI applies the managed land proxy
(Fig. 2). The second and third steps reclassified the GFW
model’s emissions (Sect. 2.3.2) and removals (Sect. 2.3.3),
respectively, into three IPCC reporting categories accord-
ing to the three cases assigned in step 1 (Fig. 2). Emis-
sions and removals within each IPCC reporting category
were then summed to calculate net anthropogenic and non-
anthropogenic forest-related CO2 fluxes for each country.
The GFW model calculates annual emissions, corresponding
to the year of tree cover loss, but does not calculate annual
removals; instead, it calculates removals as an annualized av-
erage over the entire model period. Thus, to generate time
series from the GFW model using the NGHGI reporting cat-
egories, we calculated the average annual removals in each
reporting category by dividing gross removals by the num-
ber of model years. Therefore, the resulting time series for
each reporting category is the difference between the annual
emissions for that year and the average removals.

For this analysis, we used data from the GFW model for
2001–2022 to align with the temporal coverage of NGHGIs.
We limited our comparison to CO2 fluxes only (i.e., exclud-
ing CH4 and N2O emissions from the GFW model) but note
that some developing countries do not separately report CO2
and non-CO2 emissions. Because the GFW model cannot
currently report emissions from organic soil separately from
all other emissions, we combined NGHGIs’ deforestation
and organic soil emissions (including emissions from for-
est land, from peat decomposition and peat fires typically
associated with deforestation, and from agriculture soils) to
achieve the same scope as the model. We excluded transfers
into the harvested wood products pool from both data sources

in this translation analysis, as that is not a core element of our
geospatial framework.

2.3.1 Managed land delineation

In the first step (top rows in Table 3), we assigned countries
to one of three cases based on careful review of NGHGIs and
the availability of in-country information on the distribution
of managed and unmanaged forests. These cases describe
which land is considered managed and unmanaged accord-
ing to information that countries provide in their NGHGIs re-
garding their use of the managed land proxy (Fig. 2). Case 1
included 46 countries (primarily UNFCCC Annex 1 coun-
tries, i.e., advanced economies with annual GHG reporting
commitments) that explicitly consider all forest land man-
aged and another three countries (China, India, and Indone-
sia) for which we assumed that all forest land is consid-
ered managed, based on the information provided in their
NGHGIs. Case 2 included all other countries, which do not
consider all forest to be managed and, thus, consider some
forest to be unmanaged. For the three Case 2a countries
(Brazil, the USA, and Canada), we used the georeferenced
boundaries of managed and unmanaged lands that they use in
their NGHGIs. The remaining 143 countries (UNFCCC non-
Annex 1 countries, i.e., countries with historically less strin-
gent GHG reporting commitments) either report no informa-
tion or not enough details regarding the use of the managed
land proxy and its extent. For example, Russia’s inventory
explicitly includes unmanaged land but reports areas by ad-
ministrative unit rather than spatially, which is not adequate
for our analysis. For these Case 2b countries, we approxi-
mated managed forest in tropical regions as forests outside
humid tropical primary forests from 2001 (Turubanova et
al., 2018) and in extratropical regions as forests outside in-
tact forest landscapes from 2000 (Potapov et al., 2017). For
Case 2 countries, the initial managed forest delineation was
modified in steps 2 and 3 to include unmanaged land reas-
signed to managed land due to direct anthropogenic activity.
We note that while countries’ definitions of forest land dif-
fer, we instead used a single, global definition of forest (as
defined in Sect. 2): a tree cover density > 30 % (Hansen et
al., 2013).

2.3.2 Reclassifying gross carbon dioxide emissions

In the second step (middle rows in Table 3), we combined the
initial delineation of managed forests described in Sect. 2.3.1
with a map of drivers of tree cover loss (Curtis et al., 2018,
updated through 2023) to partition the GFW model’s gross
CO2 emissions into IPCC reporting categories, as not all
of the GFW model’s gross emissions are from deforesta-
tion. For Case 1 countries, which classify all forests as man-
aged, all emissions occurring within country borders were
anthropogenic and no emissions were non-anthropogenic.
For Case 2 countries, all emissions within managed forest
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Table 3. Translating GFW flux model gross CO2 emissions and removals to national greenhouse gas inventory (NGHGI) reporting categories.
To calculate the total net CO2 flux for IPCC reporting categories, GFW flux model emissions and removals were reclassified according to
managed land status (managed vs. unmanaged) and driver of tree cover loss. Following IPCC guidelines, for Case 2 countries, we used
information about the driver of tree cover loss to reassign initially delineated unmanaged forest to managed forest where direct human
activity is observed to result in tree cover loss (i.e., forestry; commodity-driven deforestation, CDD; urbanization; and shifting agriculture).
Thus, all associated fluxes from unmanaged forests reassigned to managed forests are reported in the corresponding anthropogenic IPCC
reporting category (anthropogenic forest land flux and deforestation).

∗ Includes emissions from not only the initial delineation of managed forests but also from tree cover loss in unmanaged forests reassigned to managed forests due to direct human
activity. 1 To calculate the maximum emissions in anthropogenic forest land, we count emissions from shifting agriculture (shifting ag) in secondary forest toward the anthropogenic
forest land flux and emissions from shifting agriculture in primary forests toward deforestation. 2 To calculate the maximum emissions from deforestation, we count all emissions
from shifting agriculture in both primary and secondary forest toward deforestation. This also corresponds to a larger sink in anthropogenic forest land. N/A denotes “not applicable”.

boundaries (defined in Sect. 2.3.1) were anthropogenic and
the remaining emissions within initially delineated unman-
aged forest boundaries were either anthropogenic or non-
anthropogenic depending on the driver of the tree cover loss.
We expanded our definition of managed forests to include
initial unmanaged forest (as defined in Sect. 2.3.1) where
there is direct human activity, such as forest harvest or de-
forestation (IPCC, 2006). Thus, we considered all emissions
from direct human activity to be anthropogenic. The remain-
ing emissions – from natural or seminatural drivers of tree
cover loss, such as wildfire, occurring within unmanaged for-
est boundaries – were the only emissions that we considered
to be non-anthropogenic.

Using this delineation of anthropogenic vs. non-
anthropogenic, we reclassified the GFW model’s gross emis-
sions into three categories that are conceptually aligned with

IPCC reporting categories (Table 3): anthropogenic emis-
sions from managed forest land (“forest remaining forest”
plus “non-forest land converted to forest”), anthropogenic
emissions from deforestation (“forest converted to non-forest
land”), and emissions from unmanaged forest land that are
non-anthropogenic by definition (“forest remaining forest”).
These categories are outlined as follows:

– Anthropogenic emissions from managed forest land. For
all countries, this category included emissions from
wildfire and the negligible emissions not assigned to a
driver (Curtis et al., 2018) occurring within managed
forest areas. This category also included emissions from
forestry regardless of where they occurred (inside or
outside of initial delineated managed land boundaries,
as defined in Sect. 2.3.1), as harvest activity is a di-
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Figure 2. Country representation of managed land in their national greenhouse gas inventories (NGHGIs) as of 2024, before transitioning to
the Paris Agreement rules, and as interpreted for this study. Countries consider fluxes by forests in several ways in their national greenhouse
gas inventories (Melo et al., 2025). Some countries explicitly or implicitly consider all forests to be managed and thus include all forest fluxes
in their NGHGIs (Case 1). The rest do not consider all forests to be managed. Only a few countries (Case 2a) use maps of managed lands to
delineate anthropogenic fluxes from non-anthropogenic fluxes. The rest are not clear in their NGHGIs regarding the spatial extent to which
forests are or are not considered managed and thus which forest fluxes are included in their inventories (Case 2b). Publisher’s remark: please
note that the above figure contains disputed territories.

rect human activity and, thus, any tree cover loss from
forestry activity results in the reclassification of unman-
aged forest to managed forest.

– Anthropogenic emissions from deforestation. For all
countries, this category was the sum of all emissions
from tree cover loss due to commodity-driven defor-
estation and urbanization, regardless of where they oc-
curred, as well as emissions from the loss of intact/pri-
mary forests in areas of shifting agriculture, as this is
considered a permanent change in land use.

– Non-anthropogenic emissions from unmanaged forests.
For Case 1 countries, we assumed (based on their
NGHGIs) that all forests are considered managed and,
thus, no emissions are considered non-anthropogenic.
The two categories above represent all CO2 emissions
from the GFW model for those countries. For Case 2
countries, which have some unmanaged forest (as de-
fined in Sect. 2.3.1), non-anthropogenic emissions were
the sum of the remaining emissions outside managed
forests – emissions from tree cover loss due to wildfires
and the (small) unassigned drivers class (Curtis et al.,

2018). Although some fires in unmanaged land can be
caused by humans, we classified emissions from them
as non-anthropogenic to be consistent with IPCC guide-
lines; separating emissions from human-caused fires in
unmanaged land and reporting them as anthropogenic
forest land emissions could be improved in further iter-
ations of this analysis.

It is often not clear which land use categories emissions
from shifting agriculture cycles are allocated to in NGHGIs,
as this distinction is not required by the IPCC guidelines
(IPCC, 2019). Following Curtis et al. (2018), shifting agri-
culture landscapes are defined as “small- to medium-scale
forest and shrubland conversion for agriculture that is later
abandoned and followed by subsequent forest regrowth”. To
highlight the sensitivity of how emissions from shifting agri-
cultural landscapes are estimated, we created two scenarios
for our emissions reclassification. In one scenario, we calcu-
lated the maximum emissions from deforestation by includ-
ing all emissions from the loss of both primary and secondary
forests within shifting agriculture landscapes; therefore, no
emissions from shifting agriculture are considered to occur in
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forest remaining forest. In the other scenario, we calculated
the maximum emissions from managed forest land by includ-
ing emissions from the loss of secondary forests in shifting
agriculture landscapes in the anthropogenic forest land flux.
This transferred a subset of emissions considered to be defor-
estation under the alternative scenario to forest land. The re-
maining emissions from loss of intact/primary forests due to
shifting agriculture were still considered deforestation emis-
sions, as described above. The two scenarios do not change
the total net anthropogenic forest flux (fluxes from forest land
plus deforestation), as the same emissions are assigned to
either category. In both scenarios, emissions from the loss
of intact/primary forests due to shifting agriculture were al-
ways classified as deforestation because we considered them
to arise from a permanent change from forest to a non-forest
land use.

2.3.3 Reclassifying gross removals

In the third step (bottom rows in Table 3), we partitioned
carbon removals occurring on forest land as either anthro-
pogenic or non-anthropogenic. No forest carbon removals
were included in deforested land; any removals in pixels with
tree cover loss were assigned to either anthropogenic forest
land removals or non-anthropogenic forest removals, as de-
scribed below. As NGHGIs do not treat removals uniformly,
we used the three managed land proxy cases to align GFW
flux model removal estimates with how countries report re-
movals in their NGHGIs (Fig. 2).

For Case 1 countries, which explicitly or implicitly con-
sider all forest land to be managed, we classified all removals
across the full GFW model extent as anthropogenic forest
land. No removals for these countries were considered non-
anthropogenic. For Case 2 countries, we separated removals
into anthropogenic and non-anthropogenic categories follow-
ing the same spatial proxy used to delineate managed forests
(Sect. 2.3.1). In this approach, we classified all removals in
managed forest land as anthropogenic, including unmanaged
forest reclassified as managed forest due to tree cover loss
from forestry and shifting agriculture. All removals in un-
managed forest land were classified as non-anthropogenic.

3 Results

3.1 Emissions, removals, and net fluxes from GFW’s
updated flux model

In the updated GFW flux model, average annual global
gross emissions from stand-replacing forest disturbances
were 9.0 Gt CO2e yr−1 (gigatonnes of CO2 equivalent per
year) between 2001 and 2023 (with 98 % from CO2 and
2.4 % from CH4 and N2O), average annual gross removals
were 14.5 Gt CO2 yr−1, and the average annual net forest
ecosystem sink was −5.5 Gt CO2e yr−1 (Table 4). Glob-
ally, the HWP pool was an additional net carbon sink of

−0.20 Gt CO2 yr−1, resulting from the transfer of carbon out
of forest ecosystems and into the HWP pool. Although the
original and revised values in Table 4 are not directly compa-
rable due to different temporal coverage and model updates,
it does give a high-level view of the degree to which the col-
lective changes to the model have affected (or not affected)
fluxes. Figure 3 maps the updated gross emissions, gross re-
movals, and net GHG flux for forests, derived from Gibbs et
al. (2024a), Gibbs et al. (2024b), and Gibbs et al. (2024c),
respectively.

Our framework allows flexible, yet consistent, estimates
of carbon fluxes in a variety of forest types, at various spa-
tial scales, and in a variety of regions. For example, defin-
ing forest as tree cover > 10 % instead of > 30 % (Hansen
et al., 2013) results in gross emissions of 9.4 Gt CO2e yr−1,
gross removals of −17.5 CO2 yr−1, and a net sink of
−8.1 CO2e yr−1. Tropical and subtropical forests continued
to be the largest contributors to global forest carbon fluxes,
contributing 74 % of gross emissions (6.7 Gt CO2e yr−1) and
60 % of gross removals (−8.8 Gt CO2 yr−1). However, tem-
perate forests were the largest net sink, comprising 40 % of
the global net sink (−2.2 Gt CO2e yr−1). Together, humid
tropical primary forests (Turubanova et al., 2018) and intact
forest landscapes (Potapov et al., 2017) outside the tropics
were a net sink of−0.26 Gt CO2e yr−1 (average annual emis-
sions of 2.8 Gt CO2e yr−1 and removals of 3.1 Gt CO2 yr−1).
Forests within protected areas (UNEP-WCMC, 2024) ac-
counted for 31 % (−1.7 Gt CO2e yr−1) of the global net sink.
In 2023, gross emissions from Canada’s wildfires exceeded
emissions from all humid tropical primary forests loss that
year (3.0 vs. 2.4 Gt CO2e, respectively; MacCarthy et al.,
2024). Updated emissions, removals, and net flux statistics
by country and smaller administrative levels can be found
at https://www.globalforestwatch.org (last access: 11 March
2025).

3.2 Effect of GFW model changes on forest carbon flux
estimates

Updates to the GFW flux model changed gross emissions,
gross removals, and net flux over all spatial scales. Aver-
age annual gross emissions in the updated GFW model are
12 % higher than in the original version, primarily due to
higher gross annual emissions since 2019 (8.5 Gt CO2e yr−1

between 2001 and 2019 vs. 11.4 Gt CO2e yr−1 between 2020
and 2023). Updated gross annual removals are 7.3% lower
than in the original model, primarily due to the use of cor-
rected, lower IPCC Tier 1 removal factors for temperate
forests, which are applied to 290 Mha of secondary forests
in the framework, primarily throughout Eurasia and Canada.
Annual average net GHG flux decreased accordingly by 28 %
from the original version because of both higher gross emis-
sions and lower gross removals.
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Figure 3. Forest-related GHG fluxes (annual average, 2001–2023). (a) Gross GHG emissions. (b) Gross CO2 removals. (c) Net GHG flux.
Fluxes are aggregated to 0.04× 0.04° (approximately 4× 4 km) cells for display purposes. Publisher’s remark: please note that the above
figure contains disputed territories.
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Table 4. Average annual forest GHG fluxes by climate domain and globally, with uncertainties expressed as standard deviations, for the
original (2010–2019) and revised (2001–2023) models. Values in parentheses are the percentage of the global flux that occurred in each
climate domain. An asterisk (∗) denotes fluxes with major changes in the uncertainties in the revised GFW model (see Sect. 3.3). In addition,
the average annual gross emissions from the revised model for 2001–2019 are provided. The original and updated values are not directly
comparable due to different temporal coverage and model updates.

Forest GHG fluxes (in Gt CO2e yr−1, ± standard deviation)

Climate domain Gross emissions Gross removalsa Net GHG fluxa

Original Revised Revised Original Revised Original Revised
(2001–2019) (2001–2019) (2001–2023) (2001–2019) (2001–2023) (2001–2019) (2001–2023)

Boreal 0.88± 0.42 (11) 1.3 (15) 1.4± 0.75 (16) −2.5± 0.96 (16) −2.5± 0.95 (17) −1.6± 1.1 (21) −1.1± 1.2 (20)
Temperate 0.87± 0.60 (11) 1.0 (11) 0.93± 0.62 (10) −4.4± 48* (28) −3.1± 0.55* (22) −3.6± 48* (47) −2.2± 0.83* (41)
Subtropical 1.0± 0.59 (12) 0.9 (10) 1.0± 0.93 (11) −1.6± 0.56 (10) −1.7± 0.56 (12) −0.65± 0.81 (8.6) −0.70± 0.80 (13)
Tropical 5.3± 2.4 (66) 5.4 (64) 5.7± 2.4 (63) −7.0± 7.6 (45) −7.1± 7.6 (49) −1.7± 8.0 (22) −1.4± 7.9 (26)

Global 8.1± 2.5 (100) 8.5 (100) 9.0± 2.7 (100) −16± 49∗ (100) −14.5± 7.7∗ (100) −7.6± 49∗ (100) −5.5± 8.1∗ (100)

a The revised model does not have gross removals and net flux values for 2001–2019 because they are an annual average over the entire model period, rather than a time series,
and thus cannot be calculated for a subset of years.

Although we did not quantify the degree to which each
change to the model individually affects emissions and re-
movals because we implemented multiple changes simulta-
neously, we describe how the inputs changed and some gen-
eral impacts on gross emissions and removals.

For the activity data, we found the following:

1. Temporal coverage of tree cover gain. The area of tree
cover gain increased globally from 78 Mha in the origi-
nal version (gain through 2012) to 130 Mha in the cur-
rent version (gain through 2020). Carbon removals as-
sociated with areas of tree cover gain increased from
−0.57 to −0.62 Gt CO2 yr−1. As in the original model,
carbon removals occurring in these young (< 20-year-
old) forests remain relatively small compared with gross
removals occurring in older, established forests that are
much more extensive in total area (96 % of gross re-
movals occurred in older forests).

2. Data source for burned area. Use of the new source
of fire data with higher spatial resolution (TCLF) com-
bined with an increase in forest fires across Australia,
Spain, the USA, and Canada between 2020 and 2023 led
to an increase in the global average annual burned area
that coincided with tree cover loss from 4.3 Mha yr−1

(2001–2019) to 6.0 Mha yr−1 (2001–2023). Global av-
erage emissions increased from 1.0 to 1.7 Gt CO2e yr−1

in areas where tree cover loss was attributed to fire.

3. Data sources for organic soil extent. Improved data led
to an increase in the extent of organic soils from 477 to
760 Mha, and the area of tree cover loss on organic soils
increased from 0.77 to 2.4 Mha yr−1. Emissions from
organic soil drainage in areas with tree cover loss in-
creased from 0.21 to 0.91 Gt CO2e yr−1, occurring pri-
marily in Indonesia and Malaysia (18 % and 3.1 % of the
global total, respectively). Higher emissions from or-
ganic soil drainage is due to a combination of increased

organic soil extent, planted tree extent, and tree cover
loss compared with the original model.

4. Data sources for planted tree extent. Planted forest and
tree crop extent increased from 140 to 230 Mha, and tree
cover loss in planted tree polygons increased from 42 to
64 Mha.

For the emission and removal factors, we found the fol-
lowing:

1. Data source for R : S ratios. The previous global R : S
ratio used across the full model extent was 0.26. Now,
the average ratio of aboveground removals to below-
ground removals is 0.27, although with considerable ge-
ographic variation.

2. Planted tree removal factors and their uncertain-
ties. The average aboveground removal factor in
planted trees was originally 3.2 t C ha−1 yr−1 but it
is 2.3 t C ha−1 yr−1 using SDPT v2.0. Global planted
forests and trees were originally estimated to be a net
sink of−0.30 Gt CO2e yr−1, but they are now a net sink
of −0.54 Gt CO2e yr−1 using SDPT v2.0, with the in-
creased area of planted trees compensating for the lower
average removal factor.

3. Older (> 20-year-old) secondary temperate forest re-
moval factors and their uncertainties. Older secondary
temperate forests using IPCC Tier 1 removal factors
(i.e., areas affected by this change) originally covered
310 Mha but now cover 290 Mha. Gross removals in
these forests declined from −2.7 to −1.3 Gt CO2 yr−1.

4. Global warming potentials. Updated model results of
non-CO2 emissions associated with biomass burning
and drainage of organic soils were negligibly impacted
by using updated GWPs.
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3.3 Updated uncertainty analysis

Nearly all changes to the framework are represented in
the error propagation approach and, therefore, affect the
global and climate domain uncertainty analyses to some de-
gree. However, the largest change to the uncertainty anal-
ysis in terms of input values was the corrected IPCC Tier
1 temperate forest removal factors, which the model ap-
plies across large areas of Eurasian and Canadian forests.
Some of the largest changes for removal factors and their
uncertainties include temperate mountain forest > 20 years
old (previously 4.4 t AGB ha−1 yr−1

± 100.7 (± standard de-
viation), where AGB refers to aboveground biomass; now
2.1± 0.02 t AGB ha−1 yr−1) and temperate oceanic forest >

20 years old (previously 9.1 t AGB ha−1 yr−1
± 20.2; now

4.9± 0.25 t AGB ha−1 yr−1). We did not formally assess the
contributions of individual model changes to uncertainty be-
cause the change in IPCC Tier 1 temperate forest removal
factor uncertainties was so dominant.

Uncertainty (reported as ± 1 standard deviation) in tem-
perate gross removals declined from 48 Gt CO2 yr−1 in the
original GFW model to 0.55 Gt CO2 yr−1, with uncertainty
for gross emissions in temperate forests increasing slightly
from 0.60 to 0.62 Gt CO2e yr−1 and uncertainty for net flux
decreasing from 48 to 0.83 Gt CO2e yr−1 (Table 4). Reduced
uncertainty in temperate forest gross removals propagated to
reduced uncertainty in global gross removals and net flux.
In the uncertainty analysis for the current version of the
model, tropical gross removals have the highest uncertainty,
driven by relatively high uncertainty in IPCC’s Tier 1 re-
moval factors, which the GFW model applies to tropical pri-
mary forests and older secondary forests. Large uncertainties
for climate domain and global net flux estimates should be
interpreted with caution; their uncertainties are proportion-
ately very large, in part because net fluxes reflect the sum
of negative (removals) and positive (emissions) terms, com-
pounding the addition of their uncertainties.

3.4 Anthropogenic fluxes from managed forests

When gross CO2 emissions and removals from the GFW
flux model for 2001–2022 were reclassified into NGHGI re-
porting categories, the anthropogenic net flux in managed
forest land ranged between −6.9 and −8.6 Gt CO2 yr−1

(with and without emissions from shifting agriculture in
secondary forests, respectively) and emissions from defor-
estation ranged between 3.3 and 5.0 Gt CO2 yr−1 (without
and with emissions from shifting agriculture in secondary
forests, respectively) (Fig. 4; Table A1 in the Appendix).
The resulting net anthropogenic forest flux – the combined
flux from both anthropogenic forest land and deforestation
– was −3.6 Gt CO2 yr−1. The non-anthropogenic net sink
was −2.2 Gt CO2 yr−1, comprised of −2.5 Gt CO2 yr−1 re-
movals and 0.32 Gt CO2 yr−1 emissions from fires and tree
cover loss without an assigned driver in unmanaged forests.

The combined NGHGI-translated anthropogenic and non-
anthropogenic forest sink is about 0.3 Gt CO2 yr−1 larger
than the untranslated net flux (−5.8 vs. −5.5 Gt CO2e yr−1,
respectively), as the former does not include CH4 and N2O
emissions, fluxes from 2023, or fluxes from 32 countries
(mostly small island countries) that do not have comparable
NGHGIs.

Under the scenario that included emissions from shifting
agriculture from secondary forests in deforestation (hatched
bars in Fig. 4), GFW’s maximum estimate for global defor-
estation emissions aligned with the combined NGHGI de-
forestation and organic soil emissions (5.0 Gt CO2 yr−1). In
that scenario, GFW’s corresponding maximum estimate for
the global net sink in anthropogenic forest land was larger
than that estimated by NGHGIs. Under the alternative sce-
nario, which included emissions from shifting agriculture in
secondary forests in the anthropogenic forest land flux (non-
hatched bars in Fig. 4), GFW’s minimum estimate for the
global net sink in anthropogenic forest land was similar to
the NGHGI net forest sink (−6.6 Gt CO2 yr−1), but GFW’s
corresponding minimum estimate for global deforestation
emissions was lower than that estimated by NGHGIs. The
combined GFW flux model net anthropogenic forest sink in
managed lands is 2.0 Gt CO2 yr−1 greater than in NGHGIs
(−1.5 Gt CO2 yr−1).

For Non-Annex 1 countries, the GFW model high and low
estimates for forest land and deforestation bracketed the cor-
responding NGHGI fluxes. However, GFW estimated the net
anthropogenic forest flux for Non-Annex 1 countries to be
a small net anthropogenic sink, whereas NGHGIs estimated
them to be a small net anthropogenic source. For Annex
1 countries, deforestation emissions from the GFW model
were much lower than those from NGHGIs (0.046–0.049 and
0.55 Gt CO2 yr−1, respectively) and the net forest sink was
somewhat larger (−3.2 and−2.3 Gt CO2 yr−1, respectively).

Although the magnitude of the global GFW model esti-
mates for deforestation emissions and the anthropogenic sink
in forests align with the aggregated NGHGIs for 2001–2022
under different scenarios, their trends from 2001 to 2022 do
not agree (Fig. 5). Both globally and for Non-Annex 1 coun-
tries, the NGHGIs suggest that forest land became a slightly
larger sink from 2001 to 2022 and that deforestation emis-
sions lacked a clear trend during the aforementioned period.
However, the GFW flux model results suggest the oppo-
site: a reduced sink in forest land and increased deforesta-
tion emissions. The forest land flux and deforestation emis-
sions from NGHGIs and the GFW model for Non-Annex 1
countries appear to converge in the last 10 years (roughly
−6 Gt CO2 yr−1 and 5 Gt CO2 yr−1, respectively). For An-
nex 1 countries, the forest land sink decreased much more
according to the GFW model than NGHGIs, while deforesta-
tion emissions stayed fairly constant in both.
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Figure 4. Comparison of average annual forest carbon fluxes (2001–2022) between national greenhouse gas inventories (NGHGIs) and the
updated GFW flux model. For the GFW flux model, net anthropogenic forest flux is calculated as the sum of the net anthropogenic forest
land flux in managed forests and deforestation (Sect. 2.3). Non-anthropogenic forest flux is calculated as emissions and removals occurring
outside of managed forests. Because country reporting on emissions from the loss of secondary forests associated with cycles of shifting
agriculture is ambiguous, these emissions are shown as hatched bars for the GFW model to indicate how they impact totals depending on the
reporting category (forest land or deforestation). Results from the GFW model are for CO2 fluxes only, and NGHGI results have also been
limited to CO2 fluxes except for a few developing countries where non-CO2 emissions could not be separated.

4 Discussion

We focus our discussion on the following topics. First, we
examine how the updated GFW forest flux model com-
pares with results from a recent global estimate of forest
fluxes by Pan et al. (2024) and the Global Carbon Bud-
get (GCB). Second, we discuss how fully geospatial, Earth-
observation-based forest flux estimates can be translated into
the reporting categories of NGHGIs and how transparency in
both approaches can result in methodological improvements.
Third, we discuss strengths and limitations of GFW’s Earth-
observation-based forest carbon flux model. Fourth, we out-
line future research priorities which provide partial solutions
to the model’s current limitations.

4.1 Comparison with other recent global flux estimates

Pan et al. (2024) is a relevant comparison for the GFW
model, as both include only forests and report gross rather
than net fluxes. Pan et al. (2024) estimated gross removals
by forests, gross emissions from tropical deforestation, and
the global forest carbon sink by synthesizing forest plot data
(inventories and long-term monitoring sites) from 1990 on-
wards. The removal estimates are conceptually similar (e.g.,
both include established and new forests), but the emission
estimates have a different geographic scope (global for GFW
but tropical for Pan et al., 2024) (Table 5). The global net

fluxes from Pan et al. (2024) and the updated GFW model are
remarkably similar given their entirely different approaches,
and thus provide multiple lines of evidence for a net forest
sink of approximately −6 Gt CO2 yr−1. Differences in gross
emissions and removals between the data sources likely arise
from different scopes and system boundaries, but they may
be balanced out when combined in the global net flux. Pan
et al. (2024) estimated higher tropical gross emissions than
the GFW model did for the tropics and subtropics for 2001–
2019. When the GFW model’s gross emissions (CO2 only)
are limited to the tropics and subtropics and one geospa-
tially implemented definition of deforestation (tree cover loss
due to shifting agriculture in primary forest as well as all
commodity- and urbanization-driven tree cover loss), it esti-
mates 3.2 Gt CO2 yr−1, well below the tropical deforestation
estimate of Pan et al. (2024). When more broadly including
all tree cover loss in the tropics and subtropics, the GFW
model estimates gross emissions of 6.3 Gt CO2 yr−1.

Another point of comparison is the GCB, released by the
Global Carbon Project each year. The GCB provides annual
estimates of GHG emissions and carbon sinks, when rele-
vant, for all sectors. The GFW flux model is not designed to
represent the land portion of the global carbon cycle, nor is
it directly comparable with the land use fluxes included in
the GCB because of differences in definitions, scope, report-
ing structure, and methods (Friedlingstein et al., 2023). Three
overarching differences are as follows: (1) the GCB reports
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Table 5. Comparison of GFW flux model results to Pan et al. (2024) and the Global Carbon Budget (GCB). Estimates from the three data
sources are not directly comparable due to differences in scope, data, methodologies, and reporting structure. GFW model fluxes are limited
to 2001–2022 for comparability with the GCB. The GFW model and Pan et al. (2024) are for forests only, while the GCB also includes
non-forest land.

Flux GFW model, 2001–2022
(Gt CO2 yr−1)

Pan et al. (2024), 2000–2019
(Gt CO2 yr−1)

GCB, 2001–2022 (Gt CO2 yr−1)

Emissions 8.6 (gross, all observed
disturbances)a

7.4 (gross, tropical deforestation)b 4.9 (net, anthropogenic)c

Removals −14.7 (gross, all forest ecosystems
(−14.5) and HWPs (−0.20))d

−13 (gross, global) −11.4 (net, non-anthropogenic)e

Net −6.1 (net, all forests)f
−5.6 (net, global) −6.4 (net, all land)

a Gross emissions from all forest disturbances (anthropogenic and non-anthropogenic) for 2001–2022. Estimate includes CO2 only for comparability with the GCB; non-CO2
emissions are 0.19 Gt CO2e yr−1. This value is lower than that in Table 4 (9.0 Gt CO2e yr−1), as this one includes emissions for 2001–2022 only and excludes non-CO2 gases.
b Includes emissions from degradation. c Estimates only net direct anthropogenic effects, including deforestation, afforestation/reforestation, organic soils, and wood harvest.
Gross fluxes higher but not reported. d Gross removals from all forest processes (direct, indirect, and natural). HWPs are transfers to harvested wood products. Removals are
the annual average from 2001 to 2023. e Represents the land sink associated with indirect human-induced effects such as CO2 fertilization and nitrogen deposition.
f Calculated as the net balance between gross forest ecosystem emissions and removals (8.6–14.5 Gt CO2 yr−1) in this table plus an additional net removal of
−0.20 Gt CO2 yr−1 into HWPs. This value differs from that in Table 4 (−5.5 Gt CO2e yr−1), as this one uses lower gross emissions (see note a).

net sources and sinks for all land (including croplands, grass-
lands, semi-arid savannas, and shrublands), while the GFW
model reports gross emissions and removals for forests only;
(2) the GCB categorizes fluxes by process into net anthro-
pogenic emissions from land use change and forestry and
the “natural” land sink, while the GFW model categorizes
fluxes by activity data; (3) the GCB uses global bookkeep-
ing models to estimate net anthropogenic carbon fluxes from
land use and dynamic global vegetation models (DGVMs) to
estimate net carbon fluxes from the natural land sink (Walker
et al., 2024), while the GFW flux model uses a single inte-
grated approach to estimate emissions and removals. Nev-
ertheless, comparison of the GFW model with the GCB is
useful because they use entirely different data sources and
approaches, and, as such, convergence between them would
represent multiple lines of evidence towards the magnitude
of the land sink.

We estimated a global net CO2 sink by forest ecosystems
of −6.1 Gt CO2 yr−1 between 2001 and 2022, which is sim-
ilar to the net CO2 land sink of −6.4 Gt CO2 yr−1 in the
GCB for all terrestrial fluxes over the same period (Table 5).
The GCB’s net emission estimate (4.9 Gt CO2 yr−1) is lower
than GFW’s gross emissions estimate (8.6 Gt CO2 yr−1), par-
tially because the GCB’s land use change emissions (sources)
reflect the net balance between anthropogenic emissions
and anthropogenic removals associated with forest regrowth.
Similarly, the GFW model’s gross removals reflect removals
across all forest lands, including removals implicit (but unre-
ported) in the GCB net land use change estimate (Friedling-
stein et al., 2023). Additional reclassification of fluxes from
the GFW model into net anthropogenic fluxes from land use
change and the natural land sink may be possible for further
comparisons with the GCB, as has been done between the
GCB and NGHGIs (Schwingshackl et al., 2022).

In the comparison of the original GFW model with the
GCB, we included a nonspatial estimate of emissions from
tropical forest degradation of 2.1 Gt CO2e yr−1 from Pear-
son et al. (2017) that potentially included some emissions
from small-scale disturbances which we assumed our origi-
nal model did not capture. For this and subsequent compar-
isons between the GFW flux framework and the GCB, we are
discontinuing the inclusion of a nonspatial estimate of degra-
dation emissions from a source external to our framework to
maintain its internal consistency and fully geospatial nature.
We acknowledge that the GFW model itself is likely omitting
both emissions (e.g., from degradation not detected by TCL)
and removals (e.g., from low canopy density or regenerating
forest), but those are gaps that the model should be able to
fill over time (see Sect. 4.4). Adding external data such as
Pearson et al. (2017) results in the risk of double-counting
emissions in the global total. As more geospatial data on dis-
tinguishing deforestation from degradation (Vancutsem et al.,
2021) become available globally and geospatial data on the
emission and removal factors associated with forest degra-
dation (Holcomb et al., 2024) and recovery (Heinrich et al.,
2023b) are developed, it may be possible to reintegrate forest
degradation and its associated fluxes.

4.2 Translating between Earth-observation-based fluxes
and NGHGIs

The 6.7 Gt CO2 yr−1 gap in global land use emissions be-
tween NGHGIs and the GCB has been largely explained
(Grassi et al., 2023), and translation between NGHGIs (on
the one hand) and bookkeeping models and DGVMs (on
the other hand) is becoming routine (e.g., Schwingshackl et
al., 2022); this work is the start of a similar process for ex-
plaining the gap between NGHGIs and Earth-observation-
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Figure 5. Comparison of forest carbon flux time series (2001–
2022) between the national greenhouse gas inventories (NGHGIs)
and the updated GFW flux model for the world, Non-Annex 1
countries, and Annex 1 countries. The NGHGI values shown here
exclude any fluxes from harvested wood products, and deforesta-
tion emissions are the combined emissions from both deforesta-
tion and organic soils to conceptually align with the scope of fluxes
from the GFW framework. For the world and Non-Annex 1 coun-
tries, the GFW model results are shown in two time series: one in
which emissions from shifting agriculture in secondary forests are
included in that reporting category and one in which those emis-
sions are not included. For the GFW model in Annex 1 countries,
the two scenarios are essentially the same; thus, we show only one
line. The GFW model has been limited to CO2 only; NGHGI data
include only CO2 except for a few developing countries where non-
CO2 emissions could not be separated.

based models, primarily via the reallocation of emissions
and removals to match NGHGIs’ land use categories and fil-
tering the results with maps of managed forest as a proxy
to delineate anthropogenic from non-anthropogenic fluxes.
This approach follows the recommendations of the recent
IPCC Expert Meeting on Reconciling Land Use Emissions
(IPCC, 2024). Our goal in translating GFW model results
into a NGHGI reporting framework was to provide indepen-
dent estimates of forest-based GHG fluxes based on glob-
ally consistent Earth-observation-based data in the reporting
categories that national policymakers use. It was not to re-
produce how countries classify their managed land, report

their forest fluxes in practice, or compare fluxes for individ-
ual countries. For example, we did not rely solely on the use
of managed land polygons for Case 2a countries to define
managed forest; if our observations detected direct human
activity in unmanaged polygons, we assigned those fluxes to
anthropogenic forest land fluxes or deforestation. Thus, al-
though this translation makes the GFW model more concep-
tually similar with NGHGIs in that the outputs are supposed
to represent the same fluxes, they are still not necessarily en-
tirely comparable because we did not exactly reproduce what
countries do in practice within their NGHGIs. This demon-
strates that the GFW model is sufficiently flexible to approx-
imate the system boundaries of anthropogenic fluxes in the
IPCC reporting framework and that Earth-observation-based
models can be used to independently monitor anthropogenic
GHG fluxes from forests if adequate country data are made
publicly available.

Although the conceptual alignment produces quantita-
tively similar annual average fluxes for the GFW model and
NGHGIs globally and for Non-Annex 1 countries, the trends
from NGHGIs and the GFW model differ (Fig. 5). For Non-
Annex 1 countries, where the trends in each data source are
most evident, NGHGIs reported the forest land sink strength-
ening slightly, while deforestation emissions fluctuated but
were generally steady. The GFW model, on the other hand,
reported a weakening sink in forest land and deforestation
emissions that increased correspondingly. The decreasing
forest land sink in the GFW model is due to the use of aver-
age annual gross removals over time (i.e., a constant value),
combined with increasing (i.e., annually variable) tree cover
losses not associated with deforestation. In NGHGIs, forest
land and deforestation can both change through time. The
differing trends between the GFW flux model and aggre-
gated NGHGIs is likely driven by generally increasing an-
nual tree cover loss used in GFW (Hansen et al., 2013), as
that has the greatest interannual variability present in either
dataset. Quantitative similarity between the GFW model and
NGHGIs may be further improved when the GFW model’s
gross removals can vary through time as well (Sect. 4.4).
Moreover, for Non-Annex 1 countries, results from the GFW
model and NGHGIs have converged for forest land and de-
forestation since around 2010, with the two GFW model sce-
narios bracketing NGHGI fluxes from both reporting cate-
gories after that year. This indicates that the GFW model and
the tree cover loss data that underlie its gross emissions were
perhaps under-detecting loss relative to NGHGIs in the early
part of the time series.

Exploration of the differences between the GFW model
and specific countries’ NGHGIs is beyond the scope of this
paper; future work may include more detailed reclassification
of the GFW model’s fluxes and comparisons with specific
regions or countries. As an initial resource for country-level
data, the European Union Joint Research Centre LULUCF
data hub presents graphs of national land fluxes according to
their NGHGIs, the Global Carbon Budget, and the translated
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fluxes from the GFW model (https://forest-observatory.ec.
europa.eu/carbon/fluxes, last access: 11 March 2025). Fur-
ther sub-setting results from our framework to differenti-
ate anthropogenic and non-anthropogenic fluxes for com-
parison with NGHGIs for individual regions, countries, and
other local-scale analyses is possible and encouraged. In-
deed, comparison of the GFW model and countries’ inven-
tories is a way to explore the complementarity and discrep-
ancies between Earth observation data and inventories, en-
courage transparency for both, and improve both approaches
(Heinrich et al., 2023a). For example, one advantage of the
GFW model, which includes forest fluxes undifferentiated
by human contribution, is that it encompasses both anthro-
pogenic and non-anthropogenic fluxes. When this translation
exercise is conducted, GHG fluxes from managed forests can
be put in the context of all forest fluxes and compared with
fluxes from unmanaged forests. Because NGHGIs are not re-
quired to estimate fluxes from unmanaged land (just to report
the area of unmanaged land), aggregation of NGHGIs does
not provide context for managed land fluxes with unmanaged
land fluxes. In other words, the GFW model can indicate the
scale of non-anthropogenic fluxes that countries are not re-
porting in their NGHGIs (which nevertheless affect atmo-
spheric CO2 concentrations and global temperature), while
NGHGIs are necessary for the GFW model to approximate
the anthropogenic fluxes that are being monitored by coun-
tries and the focus of the Paris Agreement. An alternative
approach for reconciling global models and NGHGIs would
be for NGHGIs to report all land fluxes in the country, in
both managed and unmanaged land (Nabuurs et al., 2023),
but adoption of this seems unlikely.

While our geospatial, Earth-observation-based framework
permits estimation of fluxes for any geospatially defined for-
est and the inclusion (or exclusion) of any area of inter-
est, it cannot distinguish between managed vs. unmanaged
land without relevant spatial data. Thus, the ability of the
GFW model, and Earth observation models in general, to
be translated into IPCC categories largely depends on the
transparency with which countries report on their managed
lands. Only three countries have publicly available maps of
managed and unmanaged forest (Canada, Brazil, and the
USA) (Ogle et al., 2018). For all remaining countries, the
use and application of the managed land proxy were as-
sumed based on the available information from country re-
ports. In the absence of this information, maps of primary or
intact forest have been used as a proxy for unmanaged forest.
With sufficient transparency and flexibility in both the Earth-
observation-based products and NGHGIs, the differences be-
tween them can be explored.

A key driver of forest disturbance, and thus emissions, in
the GFW model is shifting agriculture. However, the compar-
ison between GFW and NGHGIs is complicated by the fact
that countries typically do not provide specific information
on shifting agriculture in their land representation; according
to the IPCC guidelines, it can be implicitly included either

in forest or in other land uses (e.g., cropland) (Grassi et al.,
2023). Thus, we developed two scenarios for the treatment of
fluxes from shifting agriculture (Fig. 4). Hopefully, as coun-
tries begin to submit their biennial transparency reports under
the Paris Agreement, their use of the managed land proxy, the
treatment of shifting agriculture, and other exclusions from
inventories will be progressively clarified, and translation be-
tween approaches will become more accurate. Although they
are time-consuming to implement, the goal should be for
the kinds of Earth-observation-based adjustments described
by Heinrich et al. (2023a) for Brazil to be achievable for
all countries. This will ultimately facilitate comparisons be-
tween global models such as the GFW model and NGHGIs,
provide national policymakers with timely geospatial data in
their own reporting terms, and build confidence in the mag-
nitude and trends of land-based anthropogenic emissions and
sinks (Grassi et al., 2023).

Future improvements to our flux reclassifications, which
may improve regional or country-level comparisons, could
include customizing tree cover density thresholds that align
more closely with countries’ forest definitions to filter for-
est extent and, thus, the associated fluxes on a country-by-
country basis. Additionally, we used maps of primary forests
and intact forest landscapes from 2001 and 2000, respec-
tively, to approximate the extent of unmanaged forests at the
initial year of our model framework. Further refinement to
the GFW model’s estimates of fluxes from managed lands
could include recategorizing forests as managed or unman-
aged using updated primary/intact forest boundaries in dif-
ferent years to reflect changes to countries’ managed land
area over time whenever known. Furthermore, for simplicity,
we considered all forest removals as forest land and did not
differentiate the relatively small amount of removals from
forest gain as “other land converted to forest”, which is a
category that countries report in their NGHGIs. Another im-
provement would be to separate the emissions from drainage
of organic soils and the emissions from deforestation in the
GFW model; in the current translation, deforestation emis-
sions and organic soil emissions are combined in both data
sources. Separating them would refine the conceptual simi-
larity. This would matter most in countries with high emis-
sions from organic soils. Finally, emissions from fires occur-
ring in unmanaged land could theoretically be differentiated
into anthropogenic vs. non-anthropogenic using additional
geospatial data, rather than our simplified assumption that all
fires in unmanaged forests are of non-anthropogenic origin.

4.3 Strengths and limitations of the GFW flux monitoring
framework

The strengths of the current GFW flux model are broadly
similar to those described in Harris et al. (2021). Strengths
include its transparency, operational nature, flexibility, and
updatability as new information becomes available. Here, we
focus on the complementarity of the GFW model with other
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land flux monitoring approaches. A strength of flux moni-
toring based on Earth observation (and therefore geospatial)
data is its geographic specificity, while maintaining spatial
consistency. Knowing where changes in land use and land
cover – and the emissions and removals they have caused
– occurred may help identify what factors are responsible
for these changes and how to attribute them to specific hu-
man activities. While detailed information from ground sur-
veys and activity data generated using local training data
may provide more detail and accuracy at local scales, un-
derstanding the magnitude and distribution of global change
requires a combination of both ground- and space-based ob-
servations (Houghton and Castanho, 2023). In this sense, it
fills in the gaps among other flux monitoring approaches. In
terms of global consistency, the GFW model’s key data are
global in breadth and independent of data from the United
Nations Food and Agriculture Organization, giving it a sep-
arate source for forest change data from bookkeeping mod-
els (Hansis et al., 2015; Gasser et al., 2020; Houghton and
Castanho, 2023). Moreover, by having an open-source model
based on publicly available data, others can evaluate the
model, make improvements, and/or adapt it to use national
or local (rather than global) data. Users can keep some de-
faults while replacing others with better or more specific in-
formation and can understand how results are impacted by
the various changes made for regions or at scales that inter-
est them most.

Limitations are also broadly similar to those described
in Harris et al. (2021). First, combining multiple spatially
explicit data sources compounds the errors present in each
individual source used in the framework. The GFW model
partially manages this over larger areas through uncertainty
propagation analysis to identify the relative contributions of
different model components to uncertainty in each climate
domain, but it cannot provide a pixel-level accuracy or uncer-
tainty map. Extending the uncertainty framework to smaller
regions (e.g., biomes or countries) would require uncertainty
information for each of the individual data sources to be
available at the desired scale of uncertainty propagation anal-
ysis. Second, the gain–loss approach of starting with base-
line carbon densities and adding gains and subtracting losses
over time has the potential to generate unrealistic estimates
over longer periods due to drift from the original benchmark
map. The GFW model could potentially address this through
recalibration of carbon densities and forest extent at one or
more intermediate years (e.g., 2010 and 2015). Finally, the
GFW model continues to have temporal limitations for both
activity data and removal factors. The shorter gain period
compared with tree cover loss in the original publication (12
vs. 19 years, respectively) has largely been addressed with
the extension of tree cover gain through 2020. More limit-
ing than the mismatch of tree cover loss and gain durations
is the non-temporal nature of the tree cover gain map. Be-
cause the year of tree cover gain is not known, the model does
not necessarily include post-disturbance gross regrowth and

removals, which may underestimate removals and decrease
the net sink. This effect would be particularly pronounced
in forest where disturbance occurs earlier in the model and
regrowth is substantial. The tree cover loss time series also
has its own inconsistencies (Weisse and Potapov, 2021). The
improvement in Earth observation data and changes to pro-
cessing confound apparent trends in gross emissions based
on tree cover loss; it is difficult to determine how much the
trends in emissions are due to real increases vs. better detec-
tion of disturbances through time. For removal factors, the
concern is not so much temporal inconsistency as temporal
constancy; the model makes the simplifying assumption of
static removal factors (i.e., removal factors do not change as
forests grow or climate changes over the 23-year model pe-
riod). Thus, the GFW model does not incorporate growth–
response curves or climate feedbacks, unlike in Earth system
models.

4.3.1 Research priorities and anticipated model
developments

Beyond annual updates to the GFW model, we anticipate
continued, substantial changes to and research around both
activity data and emission and removal factors. These do not
change the underlying conceptual framework but rather its
implementation as the model.

For activity data, anticipated model developments include
the following:

1. Global forest change data. The model will use annual
forest extent, loss, and gain maps for greater temporal
detail (similar to Potapov et al., 2019, or Turubanova
et al., 2023) and improved representation of carbon dy-
namics. For example, the year of tree cover gain will
be known (at least approximately) and repeated forest
disturbances in the same location will be captured (un-
like in Hansen et al., 2013), allowing the generation of
annual time series of gross emissions, gross removals,
and net flux. This should further enhance comparability
of temporal trends in GFW’s fluxes with the GCB and
NGHGIs.

2. Drivers of forest loss. The model currently uses a global
map of drivers of forest loss at a 10 km resolution (Cur-
tis et al., 2018, updated to 2023), but research on map-
ping drivers of forest loss is advancing. An anticipated
1 km resolution global map of drivers of forest loss
(Sims et al., 2025) will detect drivers that are not dom-
inant at 10 km (and are therefore not mapped) but are
important at smaller scales, such as loss due to small-
scale infrastructure and built-up areas amid loss due
to agricultural commodity expansion. Moreover, a sep-
arate class of forest loss due to natural disturbances
will further help with parsing natural and anthropogenic
fluxes for translation into NGHGI reporting categories.
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3. Delineation of organic soils and their drainage sta-
tus. The GFW model currently compiles several differ-
ent data sources (Table 2), which have different defini-
tions and resolutions, to map organic soil extent. The
GFW model would benefit from a globally consistent
organic soil map based on a comprehensive aggrega-
tion of soil samples and standardized mapping meth-
ods. However, it is not just the extent of organic soils
but their drainage that affects emissions in the GFW
model. Thus, we are exploring improved mapping of or-
ganic soil drainage using recent improvements in delin-
eating road networks (OSM, 2010; Meijer et al., 2018;
Engert et al., 2024), drainage canal networks (Dadap et
al., 2021), and land cover (Potapov et al., 2022a). More
comprehensive maps of organic soil extent and drainage
will improve where the GFW model reports these emis-
sions, particularly affecting non-CO2 GHG emissions.

4. Improved initial forest age map. The GFW model cur-
rently classifies forested pixels into primary forest, sec-
ondary forest > 20 years old, and secondary forest
< 20 years old in 2000 using a few simple rules (de-
scribed in Harris et al., 2021). However, a forest age
map such as Besnard et al. (2021) could be used to refine
the assignment of starting age categories – particularly
for secondary forests – or to determine where forest is
along age–growth curves.

5. Extent of planted forests and trees. The model currently
uses SDPT v2.0 (Richter et al., 2024), but plans are un-
derway for SDPT v3.0, which will improve differentia-
tion between natural and artificial stands in the USA and
Canada, along with other improvements for delineating
planted tree extent in other countries.

For emission and removal factors, anticipated model de-
velopments include the following:

1. Improved spatial and temporal resolution of forest car-
bon removals. The dominant role of removal factor
uncertainties in the uncertainty analysis highlights the
need to further improve understanding of spatial and
temporal variation in forest carbon removals. Combin-
ing plot-level biomass estimates with spaceborne obser-
vations to produce static biomass maps is well estab-
lished (e.g., Saatchi et al., 2011; Santoro et al., 2021)
and mapping biomass change is being explored (Xu et
al., 2021), but these methods do not provide spatiotem-
porally variable removal factors. An ecology-based, yet
still spatial, way to map removal factors could combine
tree-level information collected in field plots with ma-
chine learning methods to map forest population struc-
ture through time, including variables that influence
biomass change like upgrowth, mortality, and recruit-
ment for different forest types (Ma et al., 2020). Such
an approach can generate spatial and temporal predic-
tions of how biomass changes across space and time

that can be validated with forest plot data. In conjunc-
tion with a time series of tree cover gain (in activity data
list above), this would result in fully temporal gross re-
movals. Alternatively, growth curves for natural regen-
eration of forests could be revised and expanded to in-
clude a greater range of forest ages, using similar meth-
ods to Cook-Patton et al. (2020) (Robinson et al., 2025).

2. Improved maps of soil carbon dynamics in mineral
soils. The GFW model currently uses a benchmark map
of soil organic carbon (SOC) density in mineral soil in
2000 and assumes loss of specific fractions of carbon
under certain types of tree cover loss, following a Tier
1 approach from IPCC 2019. However, a time series of
soil organic carbon density in mineral soil would sup-
port more realistic mapping of SOC losses and gains.

3. Improved maps of emissions from organic soil drainage.
The GFW model currently assumes that organic soils
are drained only wherever tree cover loss, organic soils,
and planted trees (Richter et al., 2024) coincide. Future
improvements could include (1) expanding the proxies
used to map organic soil drainage and (2) incorporating
emissions from the extraction of organic soils.

Additionally, opportunities remain to compare GFW model
emissions and removals with NGHGIs, bookkeeping models,
and regional or local data (e.g., Araza et al., 2023; Heinrich
et al., 2023b). Such work would further our understanding of
the complementary roles of Earth-observation-based forest
carbon models and other approaches to forest flux monitor-
ing.

5 Code and data availability

Gross emissions, gross removals, and net flux are available
for download as 10× 10° GeoTIFFs at 0.00025× 0.00025°
resolution. Data that correspond to the model version
presented in this publication are as follows: gross re-
movals (Gibbs et al., 2024a) – https://doi.org/10.7910/
DVN/V2ISRH; gross emissions (Gibbs et al., 2024b) –
https://doi.org/10.7910/DVN/LNPSGP; and net flux (Gibbs
et al., 2024c) – https://doi.org/10.7910/DVN/TVZVBI.
Data are also available as assets on Google Earth
Engine at https://code.earthengine.google.com/
ae55707e335894d7be515386195390d2 (last access: 10 Jan-
uary 2025). Note that more recent versions of these datasets
may be available from https://www.globalforestwatch.org
(last access: 11 March 2025). The code is available from
https://github.com/wri/carbon-budget (Gibbs et al., 2024d).

6 Conclusion

The updated Earth-observation-based GFW forest carbon
flux framework continues to show a substantial net sink for
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CO2 in forests globally, while also reporting gross emis-
sions over half as large as gross removals since 2001. This
highlights ongoing opportunities to protect the forest car-
bon sink across a broad area and also reduce emissions from
forest loss, especially in hotspots of emissions that are dis-
cernable with our geospatial framework. The revised uncer-
tainty analysis – with its dramatic reduction in uncertainty
in gross removals – demonstrates the importance of refining
forest carbon sequestration rate estimates. The flexibility of
the model supports analyses at a range of spatial scales, while
its operational nature means it can incorporate new and ex-
isting Earth observation products and provide timely maps
and data. Our translation of the GFW model’s fluxes into the
reporting framework that NGHGIs use – following the rec-
ommendations of the recent IPCC Expert Meeting on Recon-
ciling Land Use Emissions (IPCC, 2024) – provides another
lens through which to look at country-level, land-based cli-
mate mitigation and is a resource for national policymakers
interested in timely spatial data on land fluxes. It also demon-
strates the two approaches’ ability to improve, assess, and
potentially confirm each other. Ultimately, confidence and
transparency are needed in assessments of progress towards
the Paris Agreement, and Earth-observation-based forest car-
bon models are another tool to build consensus.

Appendix A

Table A1. Comparison of forest carbon fluxes in Annex 1 countries, Non-Annex 1 countries, and globally between the GFW flux model
and national greenhouse gas inventories (NGHGIs). Here, ranges in reported GFW values come from two different scenarios: one scenario
in which emissions from shifting agriculture in secondary forests are included in forest land and one scenario in which all emissions from
shifting agriculture in deforestation are included. Results from the GFW model are for CO2 fluxes only, and NGHGI results have also been
limited to CO2 fluxes except for a few developing countries where non-CO2 emissions could not be separated.

Net flux in forest land Deforestation emissions Net anthropogenic forest flux Non-anthropogenic forest flux
(Gt CO2 yr−1) (Gt CO2 yr−1) (Gt CO2 yr−1) (Gt CO2 yr−1)

GFW NGHGI GFW NGHGI GFW NGHGI GFW NGHGI

Annex 1 countries −3.2 to −3.2 −2.3 0.046 to 0.049 0.55 −3.1 −1.8 −0.39 N/A
Non-Annex 1 countries −3.8 to −5.5 −4.2 3.3 to 5.0 4.5 −0.50 0.2 −1.8 N/A
Global −6.9 to −8.6 −6.6 3.3 to 5.0 5.0 −3.6 −1.5 −2.2 N/A
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Stereńczak, K., and Hein, L.: Past decade above-ground biomass
change comparisons from four multi-temporal global maps, In-
ternational Journal of Applied Earth Observation and Geoinfor-
mation, 118, 103274, https://doi.org/10.1016/j.jag.2023.103274,
2023.

Austin, K. G., Mosnier, A., Pirker, J., McCallum, I., Fritz,
S., and Kasibhatla, P. S.: Shifting patterns of oil palm
driven deforestation in Indonesia and implications for zero-
deforestation commitments, Land Use Policy, 69, 41–48,
https://doi.org/10.1016/j.landusepol.2017.08.036, 2017.

Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Güt-
ter, J., Herault, B., Kassi, J., N’Guessan, A., Neigh, C., Poul-
ter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age
from forest inventories, biomass and climate data, Earth Syst.
Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-
2021, 2021.

Brus, D. J., Hengeveld, G. M., Walvoort, D. J. J., Goedhart, P. W.,
Heidema, A. H., Nabuurs, G. J., and Gunia, K.: Statistical map-
ping of tree species over Europe, Eur. J. Forest Res., 131, 145–
157, https://doi.org/10.1007/s10342-011-0513-5, 2012.

Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lis-
ter, K., Anderson-Teixeira, K. J., Briggs, R. D., Chazdon, R. L.,
Crowther, T. W., Ellis, P. W., Griscom, H. P., Herrmann, V., Holl,
K. D., Houghton, R. A., Larrosa, C., Lomax, G., Lucas, R., Mad-
sen, P., Malhi, Y., Paquette, A., Parker, J. D., Paul, K., Routh,
D., Roxburgh, S., Saatchi, S., van den Hoogen, J., Walker, W. S.,
Wheeler, C. E., Wood, S. A., Xu, L., and Griscom, B. W.: Map-
ping carbon accumulation potential from global natural forest re-
growth, Nature, 585, 545–550, https://doi.org/10.1038/s41586-
020-2686-x, 2020.

Crezee, B., Dargie, G. C., Ewango, C. E. N., Mitchard, E. T. A.,
Emba B., O., Kanyama T., J., Bola, P., Ndjango, J.-B. N., Girkin,
N. T., Bocko, Y. E., Ifo, S. A., Hubau, W., Seidensticker, D.,
Batumike, R., Imani, G., Cuní-Sanchez, A., Kiahtipes, C. A.,
Lebamba, J., Wotzka, H.-P., Bean, H., Baker, T. R., Baird, A. J.,
Boom, A., Morris, P. J., Page, S. E., Lawson, I. T., and Lewis,
S. L.: Mapping peat thickness and carbon stocks of the cen-
tral Congo Basin using field data, Nat. Geosci., 15, 639–644,
https://doi.org/10.1038/s41561-022-00966-7, 2022.

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., and Hansen,
M. C.: Classifying drivers of global forest loss, Science, 361,
1108–1111, https://doi.org/10.1126/science.aau3445, 2018.

Dadap, N. C., Hoyt, A. M., Cobb, A. R., Oner, D., Kozin-
ski, M., Fua, P. V., Rao, K., Harvey, C. F., and Konings,
A. G.: Drainage Canals in Southeast Asian Peatlands In-
crease Carbon Emissions, AGU Advances, 2, e2020AV000321,
https://doi.org/10.1029/2020AV000321, 2021.

Dorgeist, L., Schwingshackl, C., Bultan, S., and Pongratz, J.: A con-
sistent budgeting of terrestrial carbon fluxes, Nat. Commun., 15,
7426, https://doi.org/10.1038/s41467-024-51126-x, 2024.

Engert, J. E., Campbell, M. J., Cinner, J. E., Ishida, Y., Sloan,
S., Supriatna, J., Alamgir, M., Cislowski, J., and Laurance,
W. F.: Ghost roads and the destruction of Asia-Pacific tropical
forests, Nature, 629, 370–375, https://doi.org/10.1038/s41586-
024-07303-5, 2024.

European Council: Regulation – 2018/841 – EN – EUR-Lex:
https://eur-lex.europa.eu/eli/reg/2018/841/oj (last access: 30 July
2024), 2018.

FAO: Global planted forest thematic study: results and anal-
ysis, edited by: Del Lungo, A., Ball, J., and Carle, J.,
Planted Forests and Trees Working Paper 38, FAO Rome,
Italy, https://openknowledge.fao.org/server/api/core/bitstreams/
5697e770-6a6b-42b0-90f8-35e1f0e33223/content (last access:
15 January 2025), 2006.

FAO: Global ecological zones for FAO forest reporting, FAO Rome,
Italy, 2012.

FAO: FAOSTAT, https://www.fao.org/faostat/en/ (last access:
11 March 2025), 2024.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R.,
Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth,
L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner,
M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shut-
tle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.

Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial reso-
lution climate surfaces for global land areas, Int. J. Climatol., 37,
4302–4315, https://doi.org/10.1002/joc.5086, 2017.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Lui-
jkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl,
C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S.
R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin,
N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Cham-
berlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini,
L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely,
R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T.,
Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner,
M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina,
T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang,
F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein
Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan,
X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G.,
Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Mor-
gan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K.
M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D.,
Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy,
L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J.,
Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso,
R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P.,
Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf,
G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-
Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S.,
Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst.
Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-
2023, 2023.

https://doi.org/10.5194/essd-17-1217-2025 Earth Syst. Sci. Data, 17, 1217–1243, 2025

https://doi.org/10.1016/j.jag.2023.103274
https://doi.org/10.1016/j.landusepol.2017.08.036
https://doi.org/10.5194/essd-13-4881-2021
https://doi.org/10.5194/essd-13-4881-2021
https://doi.org/10.1007/s10342-011-0513-5
https://doi.org/10.1038/s41586-020-2686-x
https://doi.org/10.1038/s41586-020-2686-x
https://doi.org/10.1038/s41561-022-00966-7
https://doi.org/10.1126/science.aau3445
https://doi.org/10.1029/2020AV000321
https://doi.org/10.1038/s41467-024-51126-x
https://doi.org/10.1038/s41586-024-07303-5
https://doi.org/10.1038/s41586-024-07303-5
https://eur-lex.europa.eu/eli/reg/2018/841/oj
https://openknowledge.fao.org/server/api/core/bitstreams/5697e770-6a6b-42b0-90f8-35e1f0e33223/content
https://openknowledge.fao.org/server/api/core/bitstreams/5697e770-6a6b-42b0-90f8-35e1f0e33223/content
https://www.fao.org/faostat/en/
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1002/joc.5086
https://doi.org/10.5194/essd-15-5301-2023
https://doi.org/10.5194/essd-15-5301-2023


1240 D. A. Gibbs et al.: Revised and updated geospatial monitoring of 21st century forest carbon fluxes

Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R. A., Ciais, P.,
and Obersteiner, M.: Historical CO2 emissions from land use
and land cover change and their uncertainty, Biogeosciences, 17,
4075–4101, https://doi.org/10.5194/bg-17-4075-2020, 2020.

Gaveau, D. L. A., Sloan, S., Molidena, E., Yaen, H., Sheil, D.,
Abram, N. K., Ancrenaz, M., Nasi, R., Quinones, M., Wielaard,
N., and Meijaard, E.: Four Decades of Forest Persistence,
Clearance and Logging on Borneo, PLOS ONE, 9, e101654,
https://doi.org/10.1371/journal.pone.0101654, 2014.

Gibbs, D. A., Rose, M., and Harris, N. L.: Forest carbon dioxide
gross removals (sequestration), GFW Forest Flux Mode Data-
verse [data set], https://doi.org/10.7910/DVN/V2ISRH, 2024a.

Gibbs, D. A., Rose, M., and Harris, N. L.: Forest greenhouse gas
gross emissions, GFW Forest Flux Mode Dataverse [data set],
https://doi.org/10.7910/DVN/LNPSGP, 2024b.

Gibbs, D. A., Rose, M., and Harris, N. L.: Forest greenhouse
gas net flux, GFW Forest Flux Mode Dataverse [data set],
https://doi.org/10.7910/DVN/TVZVBI, 2024c.

Gibbs, D., Rose, M., and Harris, N.: GFW Forest Carbon Flux
Model (Version 1.3.2) [Computer software], https://github.com/
wri/carbon-budget (last access: 13 March 2025), 2024d.

Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Jus-
tice, C. O.: The Collection 6 MODIS burned area mapping
algorithm and product, Remote Sens. Environ., 217, 72–85,
https://doi.org/10.1016/j.rse.2018.08.005, 2018.

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland,
T., Masek, J., and Duke, N.: Status and distribution of mangrove
forests of the world using earth observation satellite data, Global
Ecol. Biogeogr., 20, 154–159, https://doi.org/10.1111/j.1466-
8238.2010.00584.x, 2011.

Glen, E., Harris, N., and Birdsey, R.: Land Emissions and Re-
movals Navigator (LEARN) Tool: Data Sources and Cal-
culation Methods, Version 1.1, World Resources Institute,
https://doi.org/10.46830/writn.20.00011, 2024.

Grassi, G., House, J., Kurz, W. A., Cescatti, A., Houghton, R. A.,
Peters, G. P., Sanz, M. J., Viñas, R. A., Alkama, R., Arneth, A.,
Bondeau, A., Dentener, F., Fader, M., Federici, S., Friedlingstein,
P., Jain, A. K., Kato, E., Koven, C. D., Lee, D., Nabel, J. E.
M. S., Nassikas, A. A., Perugini, L., Rossi, S., Sitch, S., Viovy,
N., Wiltshire, A., and Zaehle, S.: Reconciling global-model esti-
mates and country reporting of anthropogenic forest CO2 sinks,
Nat. Clim. Change, 8, 914–920, https://doi.org/10.1038/s41558-
018-0283-x, 2018.

Grassi, G., Conchedda, G., Federici, S., Abad Viñas, R., Koro-
suo, A., Melo, J., Rossi, S., Sandker, M., Somogyi, Z., Vizzarri,
M., and Tubiello, F. N.: Carbon fluxes from land 2000–2020:
bringing clarity to countries’ reporting, Earth Syst. Sci. Data, 14,
4643–4666, https://doi.org/10.5194/essd-14-4643-2022, 2022.

Grassi, G., Schwingshackl, C., Gasser, T., Houghton, R. A., Sitch,
S., Canadell, J. G., Cescatti, A., Ciais, P., Federici, S., Friedling-
stein, P., Kurz, W. A., Sanz Sanchez, M. J., Abad Viñas, R.,
Alkama, R., Bultan, S., Ceccherini, G., Falk, S., Kato, E.,
Kennedy, D., Knauer, J., Korosuo, A., Melo, J., McGrath, M.
J., Nabel, J. E. M. S., Poulter, B., Romanovskaya, A. A., Rossi,
S., Tian, H., Walker, A. P., Yuan, W., Yue, X., and Pongratz, J.:
Harmonising the land-use flux estimates of global models and
national inventories for 2000–2020, Earth Syst. Sci. Data, 15,
1093–1114, https://doi.org/10.5194/essd-15-1093-2023, 2023.

Gumbricht, T., Roman-Cuesta, R. M., Verchot, L., Herold,
M., Wittmann, F., Householder, E., Herold, N., and Mur-
diyarso, D.: An expert system model for mapping tropi-
cal wetlands and peatlands reveals South America as the
largest contributor, Glob. Change Biol., 23, 3581–3599,
https://doi.org/10.1111/gcb.13689, 2017.

Gunarso, P., Hartoyo, M., Agus, F. and Killeen, T.: Oil palm and
land use change in Indonesia, Malaysia and Papua New Guinea,
Rep. Tech. Panels 2nd Greenh, Gas Work, Group Roundtable
Sustain. Palm Oil RSPO 29-39, 2013.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova,
S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J.,
Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice,
C. O., and Townshend, J. R. G.: High-Resolution Global Maps
of 21st-Century Forest Cover Change, Science, 342, 850–853,
https://doi.org/10.1126/science.1244693, 2013.

Hansis, E., Davis, S. J., and Pongratz, J.: Relevance of
methodological choices for accounting of land use change
carbon fluxes, Glob. Biogeochem. Cy., 29, 1230–1246,
https://doi.org/10.1002/2014GB004997, 2015.

Harris, N., Davis, C., Goldman, E. D., Petersen, R., and Gibbes,
S.: Comparing Global and National Approaches to Estimating
Deforestation Rates in REDD+ Countries, WRI Working Paper,
2018.

Harris, N., Goldman, E. D., and Gibbes, S.: Spatial Database of
Planted Trees (SDPT Version 1.0), World Resources Institute,
2019.

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S.,
Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton,
R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M.,
Saatchi, S. S., Slay, C. M., Turubanova, S. A., and Tyukavina,
A.: Global maps of twenty-first century forest carbon fluxes, Nat.
Clim. Change, 11, 234–240, https://doi.org/10.1038/s41558-
020-00976-6, 2021.

Hastie, A., Honorio Coronado, E. N., Reyna, J., Mitchard, E. T.
A., Åkesson, C. M., Baker, T. R., Cole, L. E. S., Oroche, C.
J. C., Dargie, G., Dávila, N., De Grandi, E. C., Del Águila, J.,
Del Castillo Torres, D., De La Cruz Paiva, R., Draper, F. C.,
Flores, G., Grández, J., Hergoualc’h, K., Householder, J. E.,
Janovec, J. P., Lähteenoja, O., Reyna, D., Rodríguez-Veiga, P.,
Roucoux, K. H., Tobler, M., Wheeler, C. E., Williams, M., and
Lawson, I. T.: Risks to carbon storage from land-use change re-
vealed by peat thickness maps of Peru, Nat. Geosci., 15, 369–
374, https://doi.org/10.1038/s41561-022-00923-4, 2022.

Heinrich, V., House, J., Gibbs, D. A., Harris, N., Herold, M., Grassi,
G., Cantinho, R., Rosan, T. M., Zimbres, B., Shimbo, J. Z., Melo,
J., Hales, T., Sitch, S., and Aragão, L. E. O. C.: Mind the gap: rec-
onciling tropical forest carbon flux estimates from earth observa-
tion and national reporting requires transparency, Carbon Bal-
ance and Management, 18, 22, https://doi.org/10.1186/s13021-
023-00240-2, 2023a.

Heinrich, V. H. A., Vancutsem, C., Dalagnol, R., Rosan, T. M.,
Fawcett, D., Silva-Junior, C. H. L., Cassol, H. L. G., Achard,
F., Jucker, T., Silva, C. A., House, J., Sitch, S., Hales, T.
C., and Aragão, L. E. O. C.: The carbon sink of secondary
and degraded humid tropical forests, Nature, 615, 436–442,
https://doi.org/10.1038/s41586-022-05679-w, 2023b.

Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonza-
lez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W.,
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