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Abstract. Land surface models (LSMs) require reliable forcing, validation, and surface attribute data as the
foundation for effective model development and improvement. Eddy covariance flux tower data are widely re-
garded as the benchmark for LSMs. However, currently available flux tower datasets often require multiple
aspects of processing to ensure data quality before application to LSMs. More importantly, these datasets fre-
quently lack site-observed attribute data, such as fractional vegetation cover and leaf area index, which limits
their utility as benchmarking data. Here, we conducted a comprehensive quality screening of the existing re-
processed flux tower dataset, including the proportion of gap-filled data, energy balance closure (EBC), and
external disturbances such as irrigation and deforestation, leading to 90 high-quality sites. For these sites, we
collected vegetation, soil, and topography data as well as wind speed, temperature, and humidity measurement
heights from literature; regional networks; and Biological, Ancillary, Disturbance, and Metadata (BADM) files.
We then compiled the final flux tower attribute dataset by filling in missing attributes with global data and
classifying plant functional types (PFTs). This dataset is provided in NetCDF (Network Common Data Form)
format with necessary descriptions and reference sources. Model simulations revealed substantial disparities
in the output between the attribute data observed at the site and those commonly used by LSMs, underscor-
ing the critical role of site-observed attribute data and increasing the emphasis on flux tower attribute data in
the LSM community. The dataset addresses the lack of the site attribute to some extent, reduces uncertainty
in LSM data source, and aids in diagnosing parameter and process deficiencies. The dataset is available at
https://doi.org/10.5281/zenodo.12596218 (Shi et al., 2024).

1 Introduction

Land surface models (LSMs) simulate the exchange of car-
bon, water and energy fluxes between soil, vegetation, and at-
mosphere and are essential tools for comprehending and pre-
dicting mass and energy interactions between the Earth’s bio-
sphere and atmosphere (Pitman, 2003; Williams et al., 2009).
The key role of LSMs is to provide the land surface boundary
conditions for climate and weather forecast models (Mariotti
et al., 2018; Pitman, 2003) as well as uncoupled stand-alone
runs to investigate terrestrial water resources, ecology, and
carbon storage (Crow et al., 2012; Humphrey et al., 2021;

Ukkola et al., 2016a). Therefore, LSMs offer valuable in-
sights for addressing environmental issues and mitigating cli-
mate change. Offline (i.e., uncoupled) LSMs are forced by
meteorological data, including wind speed, air temperature,
specific humidity, air pressure, precipitation, and downward
longwave and shortwave radiation. Flux towers measure the
cycling of carbon, water, and energy between the biosphere
and atmosphere, providing observations with meteorological
data that can be used to force offline LSMs. These obser-
vations are characterized by high temporal resolution (typi-
cally 30 min), continuous observations, and direct flux mea-
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surements and often span years. For these reasons, they are
regarded as benchmarking data for LSM calibration, evalu-
ation, and enhancement, enabling model development from
sub-daily to seasonal and interannual scales. Numerous stud-
ies have leveraged flux tower data for developing LSMs (Best
et al., 2015; Blyth et al., 2010; Harper et al., 2021; Melton et
al., 2020; Stevens et al., 2020; Stöckli et al., 2008; Ukkola
et al., 2016b; Zhang et al., 2017). However, despite their sig-
nificance, flux tower data were not originally designed for
testing and validating LSMs. When applied to LSMs, these
datasets suffer from poor data quality and a deficiency of site
attribute data.

FLUXNET2015 is currently the most widely used flux
tower dataset (Pastorello et al., 2020). However, substan-
tial preprocessing is frequently required to ensure the reli-
ability of meteorological forcing and flux assessment data
for LSMs. To reduce repetitious data processing efforts and
improve consistency, Ukkola et al. (2022) integrated three
flux tower datasets (FLUXNET2015, La Thuile, and OzFlux)
and then performed screening, gap-filling, and other proce-
dures to resolve issues such as missing data and energy bal-
ance closure (EBC). This effort resulted in a dataset called
PLUMBER2, comprising 170 high-quality sites is tailored
for LSMs. This work considered as many available flux tower
datasets as possible and used an automated, reproducible data
screening process. However, the PLUMBER2 dataset only
performs quality checks on meteorological forcing data, and
not on flux assessment data, to obtain more available years
of data and enable models to be assessed against specific
weather and climate events. Consequently, a large propor-
tion of gap-filled flux data is present at some sites. Land
surface modelers typically employ stringent quality control
(QC) procedures to avoid misleading model evaluation re-
sults (Blyth et al., 2010; Li et al., 2019; Purdy et al., 2016).
Therefore, these existing gap-filled data still require further
processing.

Most importantly, these flux tower datasets lack site-
observed vegetation, soil, and topography data such as frac-
tional vegetation cover (FVC), leaf area index (LAI), soil tex-
ture, slope, and aspect. For regional and single-point mod-
eling, the current practice usually involves obtaining these
attribute data for LSMs through the inversion of global satel-
lite observations. This approach introduces additional uncer-
tainty into LSMs and diminishes the utility of flux tower data
as benchmarking data for model evaluation.

Uncertainty in vegetation and soil data constitutes a signif-
icant source of uncertainty in LSMs (Dai et al., 2019b; Li et
al., 2018). Vegetation composition and density play a promi-
nent role in modulating the surface energy budget (Bagley
et al., 2017; Williams and Torn, 2015) by altering canopy
conductance, aerodynamic properties, and albedo, ultimately
affecting water and energy fluxes between the surface and at-
mosphere (Anderson et al., 2011; Bonan, 2008). Similarly,
soil texture directly influences various soil hydrological and
thermodynamic parameters, including saturated soil water

content and soil thermal conductivity (Arya and Paris, 1981;
Minasny and McBratney, 2007). These parameters have a
substantial impact on soil temperature and moisture as well
as the terrestrial carbon and water cycle (Dirmeyer, 2011;
Entekhabi et al., 1996). Although recent LSM development
has attempted to use site-observed attribute data to reduce
uncertainty in model results (Harper et al., 2021; Melton et
al., 2020), the data used in these studies are typically limited
and not publicly available, making it challenging for other
researchers to apply these valuable data. Generally speak-
ing, no flux tower dataset can be directly used in developing
LSMs, and they frequently lack the necessary site-observed
information about soil, vegetation, and other attributes.

To provide more accurate and reliable flux tower data for
LSM modeling and validation, we conducted thorough qual-
ity control for the site data based on the PLUMBER2 dataset
produced by Ukkola et al. (2022), resulting in a total of 90
sites. Subsequently, we carried out an extensive collection of
available flux tower attribute data, drawing from sources such
as site-related literature and websites. We further comple-
mented the attributes with global data. As a result, we gener-
ated a flux tower dataset that can be directly applied to LSMs
and contains essential attribute data. Furthermore, through
modeling comparison for the four key attribute variables –
percentage of plant functional type (PFT) cover (PCT_PFT),
LAI, canopy height, and soil texture – we demonstrate how
the outputs differ between site-observed attribute data and
the default attribute data employed by an LSM. These results
emphasize the non-negligible impact of flux tower attribute
data on model simulation and development.

2 Data and methods

2.1 Datasets

The data used in this study can be categorized into four
groups, as illustrated in Table 1. Firstly, PLUMBER2 serves
as the dataset for data quality screening. The second group
comprises the attribute sources, including 113 site-related lit-
erature; seven flux regional networks; and Biological, Ancil-
lary, Disturbance, and Metadata (BADM) files provided by
FLUXNET and AmeriFlux.

The third category includes data sources employed for
PFT classification, incorporating seven site-related articles
for C3/C4 classification, flux tower site measurements of pre-
cipitation and air temperature, global maps of the Köppen–
Geiger climate classification, and the reprocessed MODIS
Version 6.1 leaf area index dataset. The Köppen–Geiger
climate classification maps, presented at 1 km resolution,
are derived from an ensemble of four high-resolution, to-
pographically corrected climatic maps. They demonstrate
higher classification accuracy and substantially more detail
than previous versions. The reprocessed MODIS LAI used
the modified temporal spatial filter (mTSF) method for sim-
ple data assimilation and then applied the postprocessing
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– TIMESAT (a software package to analyze time series of
satellite sensor data) Savitzky–Golay (SG) filter to obtain
the result. Site LAI validation shows that the reprocessed
MODIS LAI is much smoother and more consistent with ad-
jacent values than the original MODIS LAI and closer to site
observations (Lin et al., 2023; Yuan et al., 2011).

Finally, three global datasets were used to fill in attribute
data of sites lacking site-observed FVC, LAI, and soil tex-
ture. LAI filling still uses the reprocessed MODIS LAI,
whereas the FVC filling employs a global 300 m PFT map,
PFTlocal (Harper et al., 2023). PFTlocal incorporates a variety
of currently available high-resolution satellite data to quan-
tify the percentage of PFT in each 300 m pixel worldwide.
The 300 m resolution is well matched with the regional extent
of the flux tower footprint (Chu et al., 2021), providing rep-
resentative FVC data. Filling of soil texture uses the Global
Soil Dataset for Earth System Modeling (GSDE) (Shang-
guan et al., 2014). The GSDE harmonizes data collected from
various sources and uses a standardized data structure and
data processing procedures to derive the final dataset. It has
been extensively applied in Earth system models (Dai et al.,
2019a).

2.2 Processing methods

We undertook three primary steps to establish the final
dataset: site and time period selection, attribute collection,
and data processing. First, the data selection process involved
picking years with a low gap-filled percentage for fluxes (la-
tent and sensible heat) and vapor pressure deficit (VPD),
excluding sites subject to external disturbances or unable
to undergo EBC checks. Following that, we collected site-
observed vegetation, soil, and topography data. Vegetation
attributes include FVC, maximum LAI, and mean canopy
height. Soil attributes include soil texture, bulk density, or-
ganic carbon concentration, and depth. Topography attributes
include slope and aspect. Additionally, we obtained the ref-
erence measurement heights (for emulating the lowest layer
of the atmospheric model to which the LSM would be cou-
pled) of wind speed, air temperature, and humidity. Then, we
filled in FVC, maximum LAI, and soil texture using global
datasets. Finally, the FVC was further broken down into dif-
ferent PFTs. Figure 1 presents a flowchart of the processing
pipeline, with each step described in detail below.

2.2.1 Site and time period selection

The PLUMBER2 dataset acquired 170 sites by screening me-
teorological data (including five key variables that have the
largest influence on LSM simulations: incoming shortwave
radiation, precipitation, air temperature, air humidity, and
wind speed). For FLUXNET2015 and La Thuile datasets,
specific humidity is not provided in the original data, so it
was calculated from VPD (Ukkola et al., 2017). However,
the screening process did not consider the gap-filled situa-

tion of VPD. As mentioned earlier, it also did not screen
the flux variables. To address these limitations, we further
implemented quality control on the PLUMBER2 dataset by
performing the following three steps:

1. Sites with only 1 year of observations were excluded to
ensure data stability and reliability.

2. The years where the proportion of data with fluxes
(latent and sensible heat) quality control (QC)≤ 1 ex-
ceeds 90 % were selected (QC = 0 denotes observed
data, QC = 1 represents high-quality gap-filled data in
FLUXNET2015 and La Thuile, and there is no QC = 1
in OzFlux).

3. The years where the proportion of VPD QC= 0 exceeds
90 % in FLUXNET2015 and La Thuile datasets were
selected.

Furthermore, we excluded 23 sites that lacked ground heat
flux observations because the EBC correction factor (fEBC)
could not be calculated (fEBC = (Rn−G)/(Qle+Qh), net ra-
diation (Rn), ground heat flux (G), latent heat flux (Qle), and
sensible heat flux (Qh)). Additionally, two sites (FR-Lq1 and
FR-Lq2) were removed as they have a very low energy bal-
ance ratio (EBR, calculated as (Qle +Qh / (Rn −G) accord-
ing to Wilson et al., 2002) after performing energy closure
(details in Table S3). Lastly, we excluded 10 sites that expe-
rienced external disturbances during the observation period,
such as irrigation and deforestation, and one site impacted by
a large waterbody nearby (details in Table S3). In the end, we
preserved non-consecutive years that met our criteria. This
allows us to maximize the utility of valuable observational
data. Details of the selected and excluded sites and years are
displayed in Tables S2 and S3.

2.2.2 Data collection for vegetation attributes

Percent cover of plant functional types

FVC data were sourced from site descriptions in literature,
regional networks, and FLUXNET BADM files. We sought
appropriate representations of site FVC and obtained site-
observed FVC data for 53 sites. To maximize the amount
of FVC collected, some assumptions were made at certain
sites during the data collection process, addressing scenarios
as follows:

1. For sites lacking explicit FVC data but providing the
percentage of vegetation flux footprint contribution or
dense forest canopy basal area, we treated these values
as FVC. Since FVC directly determines these metrics,
they are numerically similar.

2. In grassland and cropland sites, the vegetation cover
type typically exhibits a high degree of homogeneity.
Therefore, we referred to site pictures (photographs
taken at the site) to make a judgment. If a homogeneous
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Table 1. Summary of the data sources to derive the site attribute dataset.

Data usage Name Sources

For site and time period selection PLUMBER2 Ukkola et al. (2022)

Attribute data Site descriptions in literature (113 arti-
cles)

Details in Table S1 in the Supplement

Site regional networks (7 websites) AmeriFluxa; AT-Neu websitea;
ChinaFluxc; European Fluxesd;
Global Monitoring Laboratorye; OzFluxf;
Swiss FluxNetg

Fluxnet BADM https://fluxnet.org/ (last access: 6 January 2023)

AmeriFlux BADM https://ameriflux.lbl.gov/ (last access:
3 April 2024)

PFT information Site descriptions in literature (7 articles) Details in Table S1

Site measurements of precipitation and
air temperature

Ukkola et al. (2022)

Köppen–Geiger climate classification
maps

Beck et al. (2018)

Reprocessed MODIS Version 6.1 LAI
dataset

Lin et al. (2023)

Data filling PFTlocal PFT maps Harper et al. (2023)

Reprocessed MODIS Version 6.1 LAI
dataset

Lin et al. (2023)

Global soil dataset for Earth System
Modeling

Shangguan et al. (2014)

a https://ameriflux.lbl.gov/. b http://www.biomet.co.at/. c http://www.chinaflux.org/. d http://www.europe-fluxdata.eu/. e https://www.gml.noaa.gov/.
f https://ozflux.org.au/. g https://www.swissfluxnet.ethz.ch/ (last access for all URLs: 11 July 2023).

Figure 1. Data flow diagram for the generation of the flux tower attribute dataset.
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cover could be determined from the pictures, it was as-
signed a 100 % coverage percentage.

3. Some grassland sites with annual vegetation may expe-
rience seasonal bare soil exposure. For these sites, we
used the FVC during the peak vegetation growth period.

4. In forest sites, we simply treated forest litter as grass
cover in the absence of additional information.

After that, trees and shrubs were classified as evergreen or
deciduous and coniferous or broadleaf based on their veg-
etation type. As an example, eucalyptus trees are classified
as evergreen broadleaf trees. For data completeness, we used
the PFTlocal maps to fill in data for sites lacking site-observed
FVC values.

We further broke down the FVC into PFTs to meet the
requirements of LSM simulations using PFTs. The break-
down method is as follows: First, the climate type of PFT
was determined according to the Köppen climate classifica-
tion (Poulter et al., 2011). Then, C3 and C4 grasses were
partitioned using site descriptions. If site descriptions were
unavailable, flux tower air temperature, precipitation, and re-
processed MODIS LAI are used to calculate LAI propor-
tions under C3/C4 climatic conditions, thereby estimating
the C3/C4 grass proportions (Still et al., 2003).

A total of 16 PFTs include the original set of 15 PFTs ini-
tially developed by Bonan et al. (2002), supplemented with
a new bare soil surface type. The full set of PFTs includes
bare soil; Needleleaf evergreen tree, temperate (ENT_Te);
Needleleaf evergreen tree, boreal (ENT_Bo); Needleleaf
deciduous tree (DNT); Broadleaf evergreen tree, tropical
(EBT_Tr); Broadleaf evergreen tree, temperate (EBT_Te);
Broadleaf deciduous tree, tropical (DBT_Tr); Broadleaf de-
ciduous tree, temperate (DBT_Te); Broadleaf deciduous tree,
boreal (DBT_Bo); Broadleaf evergreen shrub, temperate
(EBS_Te); Broadleaf deciduous shrub, temperate (DBS_Te);
Broadleaf deciduous shrub, boreal (DBS_Bo); C3 grass, arc-
tic; C3 grass; C4 grass; and Crop. This PFT classification
scheme is widely utilized in LSMs.

Maximum leaf area index

Maximum LAI data were primarily sourced from site de-
scriptions in literature and AmeriFlux BADM files, which
could be the explicitly stated maximum LAI values or those
derived from interannual scatterplots. To maximize data
availability, we made the following assumptions at certain
sites. Specifically, the summertime LAI observation was con-
sidered the maximum LAI. And when a single LAI value
was provided without observation time or supporting infor-
mation, it was accepted as the maximum LAI. To ensure data
transparency, quality control flags were implemented in the
final dataset, allowing users to select data based on their ac-
ceptance criteria. A total of 67 site observations of maxi-
mum LAI were collected, with 33 sites providing the year

of observation. For data completeness, we used the repro-
cessed MODIS Version 6.1 LAI dataset to fill in missing site-
observed maximum LAI data.

Canopy height

We calculated the mean canopy height over the observation
period for 69 sites included in the FLUXNET2015 dataset
using the canopy heights reported in the FLUXNET BADM
file across different periods. The mean canopy height pro-
vides a more truthful representation of the vegetation condi-
tion during the period of observation. For the remaining 21
sites, the canopy height provided by PLUMBER2 was used.

2.2.3 Data collection for soil attributes

Soil texture

Soil texture data were sourced from site descriptions in liter-
ature, regional networks, and AmeriFlux BADM files. These
descriptions provided information in two forms: (1) percent-
ages of sand, silt, and clay and (2) soil texture types, such as
sandy loam. For the latter, which do not provide the percent-
ages of sand, silt, and clay, we referred to the soil composi-
tion table presented by Dy and Fung (2016) to derive the spe-
cific proportions. This table classifies soil into 16 categories
based on the proportions of sand, silt, and clay. Overall, 72
site observations of soil texture were collected, with 34 sites
providing information on the depth of observations. For data
completeness, we used the GSDE dataset to fill in the data
for sites lacking site-observed soil texture.

Soil bulk density, organic carbon concentration, and depth

Soil bulk density, organic carbon concentration, and depth
data were sourced from site descriptions in literature, re-
gional networks, and AmeriFlux BADM files. Specifically,
soil bulk density was collected at 37 sites, soil organic car-
bon concentration at 23 sites, and soil depth at 31 sites. The
observation depth was recorded for soil bulk density at 32
sites and for organic carbon concentration at 22 sites. De-
spite the limited availability of site-observed data for the
three soil attributes, we included them in the final dataset.
For researchers conducting site-specific studies, these data
can serve as valuable references.

2.2.4 Data collection for topography attributes

The topography data encompasses site slope and aspect.
These data were gathered from site descriptions in literature,
regional networks, FLUXNET, and AmeriFlux BADM files.
Specifically, we acquired slope for 57 sites, and aspect for 49
sites from these sources.
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2.2.5 Reference measurement height

Site descriptions in literature, regional networks, FLUXNET
and AmeriFlux BADM files were all sources for the refer-
ence measurement heights. From these sources, we searched
for the heights of wind speed, air temperature, and air hu-
midity measurements or the height of the instrument used
for these measurements (e.g., wind cups and temperature and
humidity sensors). In cases where the flux tower meteorolog-
ical observation equipment lacked a dedicated wind speed
measurement device, we assumed that the use of a three-
dimensional sonic anemometer for wind speed measure-
ments. Consequently, wind observation heights were avail-
able for a total of 76 sites, while 65 sites had temperature and
humidity observation heights. For the remaining sites where
observation heights were not reported, we used the flux ob-
servation height as a substitute.

2.3 Modeling assessment of attribute data

The impact of collected attributes on carbon, water, and en-
ergy fluxes is assessed through single-point simulations us-
ing the latest version of the Common Land Model (Dai
et al., 2003) (CoLM202X, https://github.com/CoLM-SYSU/
CoLM202X/tree/master, last access: 21 November 2023).
CoLM202X incorporates processes related to biogeophysics,
biogeochemistry, ecological dynamics, and human activities
and offers optional processes and schemes which can be cus-
tomized by the user. In our experiments, vegetation is mod-
eled using a set of time-invariant parameters (optical prop-
erties, i.e., leaf optical properties; morphological properties,
i.e., canopy height, vegetation root depth and profile, leaf size
and angle distributions; and physiological properties). The
dynamic vegetation module is turned off and the time-variant
LAI and stem area index (SAI) values are prescribed from
the reprocessed MODIS LAI data (Lin et al., 2023; Yuan et
al., 2011). The two-big-leaf model (Dai et al., 2004) is em-
ployed to calculate processes such as radiative transfer (Yuan
et al., 2017), photosynthesis (Collatz et al., 1992; Farquhar et
al., 1980), and stomatal conductance (Ball et al., 1987). Sur-
face turbulent exchange is simulated using similarity theory
(Brutsaert, 1982; Zeng and Dickinson, 1998). Total evapo-
transpiration includes evaporation from stems, leaves, and
the ground, as well as vegetation transpiration. Surface and
subsurface runoff consider factors such as terrain, groundwa-
ter level, precipitation, and infiltration rate. Additionally, the
model accounts for processes including precipitation phase
and intensity, canopy interception, vertical movement of wa-
ter in snow and soil, and snow compaction (Dai et al., 2003).

The simulations aim to evaluate the differences in model
results between runs using site-observed attributes and those
commonly utilized by LSMs. For simplicity, we refer to site-
observed data as site data and data commonly utilized by
LSMs as default data in subsequent descriptions. We focus
on four crucial attributes, PCT_PFT, LAI, canopy height, and

soil texture, to demonstrate their corresponding impacts. In
site data simulations, we scaled the default LAI time series
to match the maximum LAI observed, corrected the default
canopy height using site canopy height, and replaced the de-
fault topsoil texture (0–28.9 cm) with the site-observed soil
texture. For sites with multiple PFTs, we calculated the LAI
for each PFT using growing degree days and PCT_PFT val-
ues (Lawrence and Chase, 2007). Canopy height was divided
into three categories based on PFTs (trees, shrubs, or grass-
land) using site data to adjust the default values for the cor-
responding group, while the other two groups retained their
default values.

The default data generally rely on global LAI and soil
texture mapping products, lookup table canopy height, and
site IGBP (International Geosphere–Biosphere Programme)
classifications to characterize surface vegetation and soil
conditions. In this study, the default LAI and soil texture refer
to the reprocessed MODIS Version 6.1 LAI and the GSDE
soil texture shown in Table 1. Lookup table canopy heights
are sourced from CoLM, while site IGBP classifications are
obtained from FLUXNET and OzFlux. We selected 10 sites
for each attribute – LAI, canopy height, and soil texture –
where site data differ most from default data. (In the lookup
table canopy height simulations, sites with zero plane dis-
placement exceeding reference measurement height are ex-
cluded.) For the PCT_PFT analyses, sites with IGBP types
that include combinations of trees and grasses (OSH, WSA,
and SAV) were chosen, resulting in six available sites. Ta-
ble 2 provides an overview of the selected sites along with
their corresponding attribute information. Each site was sim-
ulated under three conditions: (1) using site data for all at-
tributes at each site, (2) using default data for all attributes
at each site, and (3) using default data for the corresponding
attribute at sites selected for each attribute separately while
maintaining site data for the remaining attributes. The com-
parison between simulations (1) and (3) aims to demonstrate
the individual impact of each attribute, while the comparison
between simulations (1) and (2) shows the combined impact
of all four attributes.

At each site, we ran CoLM at either the half-hourly or
hourly time resolution, depending on the forcing data pro-
vided, for all years in the original dataset. Subsequent analy-
ses were conducted only for the years we selected. To reach
an equilibrium in soil moisture and temperature, CoLM loops
the atmospheric forcing data for each site’s observation pe-
riod until it reaches 50 years in duration. The discrepancy
between site data and default data is compared by variables
related to land surface energy, water, and photosynthesis pro-
cesses, including latent heat (Qle), sensible heat (Qh), net ra-
diation (Rn), upward shortwave radiation (SWup), gross pri-
mary production (GPP), friction velocity (Ustar), surface soil
water content (0–4.5 cm) (SWC), and total runoff (TR).

To quantify the differences between the output from site
data and default data while accounting for seasonal fluctua-
tions in the impacts of soil and vegetation on climate-related
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variables (Dirmeyer, 2011; Forzieri et al., 2020), we designed
a statistical indicator called the percentage of mean differ-
ence (MD %) (Eq. 1). This indicator is calculated by express-
ing the mean difference for each month as a percentage of the
observed or default modeled annual mean. We used multi-
year average time series to capture more stable differences
in output. In addition, we used delta root mean squared error
(1RMSE) (Eq. 3) and 1|Bias| (Eq. 5) to measure the dif-
ferences in RMSE and Bias of the output between site and
default data, allowing us to assess the model’s performance
after incorporating site data.

MD%=

|
1
n

n∑
i=1

(Modsite,i−Moddefault,i)|

1
365

365∑
j=1

Obsj

for Qle, Qh, Rn, SWup, GPP, and Ustar
|

1
n

n∑
i=1

(Modsite,i−Moddefault,i)|

1
365

365∑
j=1

Moddefault,j

for SWC and TR

, n= days of month,

(1)

RMSE=

√√√√√ n∑
i

(Modi −Obsi)2

n
, (2)

1RMSE= RMSEsite−RMSEdefault, (3)

Bias=

n∑
i

(Modi −Obsi)

n
, (4)

1|Bias| = |Biassite| − |Biasdefault|, (5)

where Modsite,i and Moddefault,i are the predicted values us-
ing site data and default data, respectively. Obsj is the ob-
served value. n is the number of paired values. RMSEsite and
RMSEdefault are the RMSEs of the simulation results using
site data and default data, respectively. Biassite and Biasdefault
also correspond to the Bias in these results.

3 Results

3.1 Global distribution and attribute information of
selected sites

The final dataset contains 90 globally distributed sites
(Fig. 2a). The majority are in North America and Europe,
followed by Australia, with smaller representations in Asia
(3 sites) and Africa (1 site). Temporal coverage spans from
1997 to 2017, totaling 475 site years. Individual site obser-
vations range from 1 to 17 years, with a median of 4 years
(Fig. 2b). Despite a reduction in available sites and years
due to rigorous quality control, the dataset does offer reliable
meteorological forcing and flux assessment data for LSMs.
Furthermore, the 90 sites encompass the full range of IGBP
classifications originally presented, covering a wide spread
of biomes, from grasslands and savannas to forest ecosys-

tems (Fig. 2c). This enables users to evaluate models across
diverse biomes using quality-benchmarked flux tower obser-
vations.

Out of the 90 sites, data were collected on PCT_PFT for
53 sites, maximum LAI for 67 sites, average canopy height
for 69 sites, and soil texture for 72 sites. Additionally, soil
bulk density was available for 37 sites, soil organic carbon
concentration for 23 sites, and soil depth for 31 sites. Data
on slope were collected for 57 sites, aspect for 49 sites, wind
observation height for 76 sites, and air temperature and hu-
midity observation heights for 65 sites (Fig. 2d). In the ab-
sence of site-observed PCT_PFT, soil texture, and LAI, we
opted for appropriate global data to fill in those missing for
data completeness. To improve data utilization, we provide
the observation year of maximum LAI and the depth of soil
texture, which are available at 33 and 34 sites, respectively.

Figure 3 depicts the discrepancies between site data and
default data for PCT_PFT, maximum LAI, canopy height,
and soil texture. The PCT_PFT shows multiple PFTs at
34 sites, offering a more accurate representation of vegeta-
tion conditions compared to IGBP classifications. For LAI,
canopy height, and soil texture, variations between site data
and default data are substantial at certain sites. Specifically,
at 31 sites, discrepancies in LAI values exceed 1 m2 m−2;
canopy height differs by over 10 m at 15 sites, and sand per-
centage varies by more than 20 % at 18 sites.

3.2 The flux tower site attribute dataset

The final dataset is formatted in NetCDF (Network Common
Data Form). Table 3 outlines the attribute variables and cor-
responding descriptions for each site in the file. These at-
tributes can be categorized into vegetation, soil, and topogra-
phy attributes, as well as reference heights and filtered high-
quality years.

For maximum LAI, the file provides both the year range
covered by maximum LAI and the maximum value for a
specific year. Regarding the three soil attributes, soil texture,
bulk density, and organic carbon concentration, the file pro-
vides values for multiple soil layers along with the specific
depth of each layer. Concerning reference height, we give its
corresponding observed variable, i.e., wind speed, air tem-
perature, and humidity, or fluxes (latent and sensible heat).
Additionally, the NetCDF file incorporates reference sources
for each attribute. These sources are included to facilitate ac-
cess to the original data and enhance flexibility in applica-
tion. A summary of these reference sources is presented in
Table S1.

Figure 4 quantifies the differences between site data and
filled data for sites where both data sources are available,
illustrating the inhomogeneities in the final dataset result-
ing from data filling. Differences in vegetation cover (in-
cluding bare soil, woody, and herbaceous vegetation) gen-
erally fall within 20 %, with a minority of sites exceeding
40 %. The mean and median LAI differences are approx-
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Table 2. Selected sites and their attribute values used in the modeling assessment for attribute data. The suffix default denotes default data,
and site represents site data.

Site_LAI Lat (°) Long (°) LAI_max_ defaulta LAI_max_siteb

(m2 m−2) (m2 m−2)

DE-Bay 54.14 11.86 3.6 6.5
DE-Gri 50.94 13.51 6.5 (2004c) 4.4 (2004)
DK-Lva 55.68 12.08 3.1 (2004) 6.9 (2004)
DE-Seh 58.87 6.44 3.2 (2009) 5.9 (2009)
IT-Cpz 41.70 12.37 5.4 3.5
US-GLE 41.36 −106.24 1.5 3.8
US-Goo 34.25 −89.87 4.5 2.0
US-KS2 28.60 −80.67 6.6 (2005) 2.7 (2005)
US-MMS 39.32 −86.41 7.0 5.2
US-MOz 38.74 −92.20 6.1 (2006) 4.0 (2006)

Site_TEX Lat (°) Long (°) TEX_defaultd TEX_siteb

AU-Cpr −34.00 140.58 64/18/18 94/4/2
AU-DaP −14.06 131.31 63/18/19 92/5/3
AU-DaS −14.15 131.38 63/12/25 92/5/3
CZ-wet 49.02 14.77 39/37/32 10/85/5
DE-Gri 50.94 13.51 52/29/20 10/81/9 (0–23 cm)
ES-LMa 39.94 −5.77 49/24/24 80/11/9 (0–30 cm)
FI-Sod 67.36 26.63 52/25/20 92/5/3
IT-Cpz 41.70 12.37 33/45/22 87/8/5 (0–10 cm)
IT-SRo 43.72 10.28 69/17/15 95/4/1 (10–20 cm)
SD-Dem 13.28 30.47 67/18/14 96/4/0

Site_HTOP Lat (°) Long (°) Hcan_defaulte (m) Hcan_siteb (m)

AU-Lit −13.17 130.79 35 20.0
BE-Vie 50.30 5.99 17 33.7
CH-Dav 46.81 9.85 17 25
DE-Hai 51.07 10.45 20 33.9
DE-Tha 50.93 13.56 17 28.4
IT-Cpz 41.70 12.37 35 14.3
IT-Lav 45.95 11.28 17 28.0
IT-Ren 46.58 11.43 17 29.0
RU-Fyo 56.46 32.92 17 26.3
US-Ton 38.43 −120.96 20 9.9

Site_FVC Lat (°) Long (°) IGBP PCT_PFT_siteb

AU-How −12.49 131.14 WSA EBT_Tr/DBS_Te/C4 : 50/25/25
ES-LMa 39.94 −5.77 SAV EBT_Te/C3 : 20/80
SD-Dem 13.28 30.47 SAV EBT_Tr/C3/C4 : 10/27/63
US-SRM 31.82 −110.86 WSA DBS_Te/C3/C4 : 35/43/22
US-Ton 38.43 −120.96 WSA EBT_Te/C3 : 40/60
US-Whs 31.74 −110.05 OSH Bare/DBS_Te/C3 : 39/51/10

a The maximum LAI at the pixel containing the site provided by Reprocessed MODIS Version 6.1 LAI. b Site-observed
data collected in this study. c Specific year of maximum LAI. d The top-layer soil texture (sand/silt/clay) at the site location
extracted from the GSDE dataset. e Canopy height of the dominant vegetation type at the site from the CoLM lookup table.
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Figure 2. Summary of selected sites and collected site-observed attributes. (a) Geographical distribution of selected sites and their IGBP
types. (b) A histogram showing the number of sites based on the number of years of selected sites. (c) Number of selected sites per IGBP
vegetation class. (d) Number of collected site-observed attributes for percent cover of PFTs (PCT_PFT), maximum LAI (LAI), mean canopy
height (Hcan), soil texture (TEX), bulk density (BD), organic carbon concentration (OC), and soil depth (Depth), slope, aspect, and reference
measurement heights (wind speed: Hv , air temperature: Ht , humidity: Hq ).

Table 3. Attribute variables and their descriptions included in the final dataset (note that not all sites provide Soil_BD, Soil_OC, Soil_depth,
Slope, and Aspect).

Variable (dimension) Long name Unit Description

PCT_PFT (pft=16) Percent plant functional types cover % Sourcea

LAI_Max Maximum leaf area index m2 m−2 Source; year_rangeb; LAI_Max_yearc

Canopy_height Canopy height m Source
Soil_TEX (particle_size=3, soil_layer=4) Soil texture (sand/silt/clay) % Source; layer_n_depthd

Soil_BD (soil_layer=4) Soil bulk density g cm−3 Source; layer_n_depthd

Soil_OC (soil_layer=4) Soil organic carbon concentration % Source; layer_n_depthd

Soil_depth Soil depth cm Source
Slope Site slope – Source
Aspect Site aspect – Source
Reference_height_v Measurement height of wind speed or flux m Source; measurement variable (wind or flux)
Reference_height_t Measurement height of air temperature or flux m Source; measurement variable (temperature or flux)
Reference_height_q Measurement height of air humidity or flux m Source; measurement variable (humidity or flux)
year_qc (year=21) Selected year of high-quality data – –

a The sources of collected attribute data. b The year range covered by maximum LAI. c Maximum LAI for a specific year. d The value of n ranges from 1 to 4, denoting the four soil layers in ascending order of
depth. The parameter layer_n_depth indicates the depth of respective soil layer corresponding to the depth at which soil data is observed.
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Figure 3. The discrepancies between site data and default data of the (a) percent cover of PFTs (PCT_PFT), where the asterisk indicates
non-single PFTs; (b) maximum LAI; (c) canopy height (Hcan); and (d) percentage of sand.

Figure 4. Quantification of discrepancies between site data and filled data for (a) PCT_PFT, (b) maximum LAI, (c) canopy height, and
(d) percentage of sand (at all sites for which both types of data are available). The 16 PFTs were divided into three main categories (bare soil,
woody, and herbaceous vegetation) for separate quantification. Boxes (25th and 75th percentiles) and whiskers (5th and 95th percentiles),
with median (blue line) and mean (blue triangle) are shown. Hollow circles denote outliers defined as values greater than 1.5 times the
interquartile range from the nearest 25th or 75th percentile.

imately 1 m2 m−2. Canopy height deviations are primarily
within 2 m, although a few sites exceed 4 m. Differences in
sand content typically remain within 30 %, with both mean
and median differences below 15 %. This quantification sug-
gests that the filled data are generally reliable across most
sites.

3.3 Impact of site attributes on modeling

The impacts of altering land surface representation from de-
fault data to site data, quantified by MD %, on Qle, Qh, Rn,

SWup, GPP, Ustar, SWC, and TR are shown in Fig. 5. The
figure distinctly demonstrates how vegetation and soil com-
ponents affect carbon, water, and energy fluxes to varying
degrees, contingent on the season. The impacts of vegeta-
tion cover, soil texture, and LAI on Qle and Qh is primarily
observed in the spring and summer, while canopy height ex-
erts its most substantial effects in autumn and winter. The
impact of vegetation cover on Rn and SWup remains con-
sistent throughout the year, whereas LAI maintains a more
pronounced effect in spring and summer. In terms of GPP,
attributes play a more significant role during the summer-
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time. However, the effects of vegetation and soil attributes
on Ustar appear to be independent of season. SWC and TR
are both predominantly influenced by soil texture. The differ-
ence is that soil texture significantly affects SWC across all
seasons, whereas its impact on TR occurs primarily during
the summer and fall. Additionally, vegetation cover was ob-
served to have a significant effect on TR at the SD-Dem site.
This is due to the salient impact at the SD-Dem site, which is
situated within the African savannah with an average annual
precipitation of 320 mm (Ardö et al., 2008).

To elucidate the magnitude of each attribute’s impact on
different variables, Fig. 6 further displays the monthly av-
erage maximum MD %. On average, changes in latent and
sensible heat are not dominated by any single attribute. All
four attributes – PCT_PFT, LAI, canopy height, and soil tex-
ture – have a relatively strong impact on both. Their monthly
average maximum MD % on Qh is all in the range of 14 %–
36 %. And the effect of soil texture on Qle is comparatively
greater, at 18.3 %. Regarding Rn, vegetation cover emerges
as the chief influencer with a monthly average maximum
MD % of 8.8 %. In contrast, SWup is heavily dictated by LAI,
at 56.7 %, due to the exceptionally high value at the US-
GLE site. Vegetation cover and LAI, both with a monthly
average maximum MD % of more than 50 %, dominate the
changes in GPP. Soil texture also has a visible impact on
GPP due to its influence on soil permeability, aeration, and
the capacity to retain water and nutrients. On the other hand,
Ustar is almost exclusively shaped by vegetation cover and
canopy height. This makes sense because the intensity of
land–atmosphere exchange in vegetated areas is directly tied
to canopy height, and changes in vegetation cover typically
correspond to changes in canopy height. Concerning SWC
and TR, vegetation cover and soil texture are the two crucial
attributes. Soil texture exhibits monthly average maximum
MD % of 46.3 % for SWC and 129.8 % for TR, while vege-
tation cover shows 22.7 % and 293.8 %, respectively.

Figure 7 uses 1RMSE and 1|Bias| to show the shifts
in model performance using site data. The incorporation of
site-observed attribute data significantly improves the sim-
ulation of Rn, SWup, and Ustar. Concerning individual at-
tributes, PCT_PFT proves particularly beneficial for model-
ing both Rn and SWup. Concurrently, including site LAI also
enhances the simulation of SWup. Improvements in these
fundamental energy terms contribute to more accurate mod-
eling of latent and sensible heat. Furthermore, site LAI and
canopy height demonstrates steady improvements on GPP
and Ustar, respectively.

In summary, these results underscore the significant im-
pact and importance of incorporating site-observed attribute
data in the simulation of carbon, water, and energy fluxes in
LSMs.

4 Discussion

In land surface community, flux tower attribute data currently
does not receive sufficient attention. However, the site at-
tribute data are nearly as critical as the flux tower observa-
tions themselves. We hope that future flux tower datasets will
provide standardized site attributes. In this study, we have ac-
quired 90 sites with high quality by a comprehensive selec-
tion process, which provide extensive site-observed data on
vegetation, soil, and topography attributes. Through single-
point simulations, we demonstrated their indispensable role
in LSM development. Accurate attribute data will provide
multiple benefits by lowering uncertainty in model calibra-
tion and evaluation.

After selection, fewer sites and years are available. How-
ever, the retained data offers trustworthy observations that
can be directly applied. Data quality is generally the focus
of model calibration and evaluation, and developing LSMs
can benefit immensely from using a modest number of sites
(Brooke et al., 2019; Harper et al., 2021; Swenson et al.,
2019). Therefore, these updates will help the model’s devel-
opments. To collect more site-observed attribute data, while
considering the diversity described within the same attribute
data, particularly the percentage of vegetation cover, we
made a few approximations and assumptions during data col-
lection procedure, such as using approximation substitution
and site photographs to assist in judgment. Although these
methods may introduce slight deviations, they do a good job
of reproducing the surface conditions of these sites. Further-
more, we provide descriptions of the attribute data that are as
detailed as possible. For instance, the year and depth of ob-
servation are given along with the maximum LAI and soil
texture whenever feasible, respectively. They are valuable
references for data applications. One might argue that the
auxiliary descriptions are just as important as the attribute
data itself.

Using CoLM at 36 sites, we evaluated the impacts of
PCT_PFT, LAI, canopy height, and soil texture on model re-
sults. What is conducted here is not an ideal experiment but
rather an actual demonstration of the discrepancies in model
results between site data and default data. The results are in
line with previous research (Dai et al., 2019b), showing that
vegetation cover appreciably affects each of the eight vari-
ables examined, often being the dominant attribute (Fig. 6).
This is due to plant cover being the most prominent surface
feature, directly altering surface energy absorption. The net
radiation simulation was improved using the site PCT_PFT,
but the performance of latent and sensible heat was not as
good. This may be related to uncertainties in the model itself
as well as other input data, such as vegetation biophysical
parameters, and soil thermal and hydraulic conductivities.

Additionally, we find that the impact of attributes is sub-
stantially associated with precipitation, as illustrated in the
average seasonal cycle shown in Fig. 8. At the AU-How site
in Australia, ample rainfall during the wet season combined
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Figure 5. Percentage of mean difference (MD %) of PCT_PFT, LAI, canopy height (Hcan), and soil texture (TEX) on Qle, Qh, Rn, SWup,
GPP, Ustar, SWC, and TR for each season, respectively. Error bars indicate 1 standard deviation from the multi-site mean. Monthly adjust-
ments were made for Southern Hemisphere sites, to ensure consistency between seasons and months in multi-site averaging (i.e., DJF is
considered JJA, MAM is considered SON, and vice versa).

Figure 6. Monthly average maximum MD % of PCT_PFT, LAI, canopy height (Hcan), and soil texture (TEX) on Qle, Qh, Rn, SWup, GPP,
Ustar, SWC, and TR, respectively. The month of occurrence for each maximum value is indicated in parentheses.
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Figure 7. Box plot of changes in RMSE (1RMSE) and absolute Bias (1|Bias| ) when using site data versus default data. PCT_PFT, LAI,
Hcan (canopy height), and TEX (soil texture) denote the individual impacts of the four attributes. All_attributes represents the changes
produced by four attributes together across the 36 sites selected. Boxes (25th and 75th percentiles) and whiskers (5th and 95th percentiles),
with median (black line) and mean (black triangle) are shown. Solid circles denote outliers defined as values greater than 1.5 times the
interquartile range from the nearest 25th or 75th percentile.

Figure 8. Multi-year daily average of the seasonal cycle of model (default, site) and observed Qle, Qh, SWup, and GPP at eight selected
sites. Two sites were chosen for each attribute for comparison: PCT_PFT (AU-How and SD-Dem), LAI (US-KS2 and US-GLE), Hcan
(IT-Cpz and BE-Vie), and Soil texture (FI-Sod and AU-Cpr). Data are smoothed with a 14 d moving average for clarity.

with the increase in surface available energy due to vegeta-
tion cover brings about a significant increase in Qle. In con-
trast, since limited water is available for evapotranspiration at
the SD-Dem site, Qh is the primary feedback from changes
in surface energy. The results from the US-KS2 and US-GLE

sites indicate that the growing season, synchronized with wa-
ter availability, is when LAI exerts a major influence on GPP.
Furthermore, a notable variation in SWup was seen at the US-
GLE site, which was attributed to the presence of snow cover
(Berryman et al., 2018). Corrections to LAI can improve the
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simulation by reducing albedo inaccuracies. This corrobo-
rates the point in Essery (2013) that inadequate land cover
data is largely to blame for the uncertainty in the climate–
snow albedo feedback in LSMs. Results from the IT-Cpz
and BE-Vie sites suggest that differences in the intensity of
land–air exchange, caused by variations in canopy height, are
clearly reflected in Qle during the rainy season. Regarding
soil texture, a comparison between FI-Sod and AU-Cpr sites
revealed stronger control of Qle by soil texture during the
period of high precipitation intensity. This is partly attributed
to increased water availability and largely to the pronounced
differences in soil infiltration capacity under high-intensity
precipitation events.

A previous study by Ménard et al. (2015) stated that at-
tribute data have little effect on modeling results. This study,
however, may lack representativeness since it was limited to
one site. Furthermore, it averaged differences resulting from
attribute data across the whole time series using the raw
RMSE and correlation coefficient statistical metrics. This
approach makes it difficult to detect the crucial role of at-
tribute data. As described in Sect. 3.3, the impacts of attribute
data on climate-related variables generally occur over spe-
cific periods (mostly during the growing season) rather than
throughout the year.

By combining multiple data sources, we were able to max-
imize the available site-observed attribute data. Neverthe-
less, the data sources were primarily from published works,
which led to some missing data at certain sites. The attribute
data focused only on soil and vegetation information. Future
endeavors should incorporate additional surface parameters,
such as irrigation, wildfire, and the depth of soil moisture and
vegetation roots, which are required for LSMs. Such observa-
tions and collections of site time-invariant attributes are gen-
erally low-cost but would strongly benefit model enhance-
ment. In addition, the impact of attribute data on model re-
sults was assessed using one model, potentially limiting the
representativeness of our findings.

As LSMs continually advance their schemes and pro-
cesses, an increasing array of surface parameters will be
incorporated, elevating the models to a heightened level of
complexity. It is imperative that these parameters be clearly
defined and prescribed. Working with site-observed attribute
data enabled us to narrow down reasons for model biases,
thereby enhancing our understanding of the true effects of
diverse schemes and processes.

5 Data availability

The flux tower site attribute dataset provides comprehen-
sive filtered high-quality years of site-observed vegeta-
tion, soil, topography attributes, and reference measurement
heights. Each site’s data are formatted within a NetCDF
file named according to the site name, database, and at-
tributes (vegetation, soil, topography, and reference height),

such as AT-Neu_FLUXNET2015_Veg_Soil_Topography_
ReferenceHeight.nc. The dataset comprises a total of
90 NetCDF files and can be accessed on Zenodo at
https://doi.org/10.5281/zenodo.12596218 (Shi et al., 2024).

6 Code availability

The processing codes are available at https:
//github.com/Mbnl1197/Flux-tower-attribute-for-LSM
(last access: 4 September 2024) (DOI:
https://doi.org/10.5281/zenodo.13684992, Shi and Yuan,
2024).

7 Conclusions

This study is centered on two issues with utilizing flux tower
data in LSMs: inadequate data quality and insufficient site
attributes. We performed a comprehensive quality control
on flux tower data. By examining observation percentage,
energy balance closure, and external disturbances, 90 high-
quality flux tower sites with 475 site years were produced.
By combining various data sources, we created a flux tower
attribute dataset through data collection, processing, and
filling procedures. This dataset includes the site-observed
PCT_PFT, maximum LAI, mean canopy height, soil prop-
erties (texture, bulk density, organic carbon concentrations,
and depth), and site topography (slope and aspect), as well
as the reference measurement heights.

Furthermore, the attribute data collected in this study and
frequently used by LSMs are incorporated in single-point
modeling, respectively, aimed at quantifying the differences
in model output. Our results demonstrate the significance of
certain attributes in the variation in specific variables. All
four attributes significantly influence both latent and sensi-
ble heat. Their monthly average maximum MD % typically
ranges from 10 % to 30 %. Vegetation cover and LAI serve
as the primary controls for net radiation and upward short-
wave radiation, respectively, with a monthly average max-
imum MD % of 8.8 % and 56.7 %. Both GPP and Ustar
were strongly influenced by vegetation cover, with LAI and
canopy height also exerting significant effects on GPP and
Ustar, respectively. The monthly average maximum MD %
for each of these impacts exceeds 50 %. For hydrologic vari-
ables, i.e., SWC and TR, soil texture typically holds greater
significance, followed by vegetation cover. We reveal that
the magnitude of these differences is usually accompanied
by seasonal fluctuations. Regarding fluxes and GPP in par-
ticular, greater discrepancies are generally observed during
spring and summer. These results stress the necessity of site-
observed attribute data in the development of LSMs.

Our endeavors mitigate the inadequacies of flux tower at-
tribute data, enhancing the ability of flux tower data to serve
as benchmarking data for LSMs. The dataset provides rela-
tively complete site attribute data and high-quality flux vali-
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dation data, making it suitable for direct use as input and for
simulation validation in LSMs. This facilitates the compari-
son of LSM simulations under the same standard framework,
promoting their development. Moreover, this effort will draw
more attention to flux tower attribute data from the land
surface modeling group and foster communication between
ecology and modeling communities. We strongly advocate
for the routine release of attribute data as part of flux tower
data. Making such ancillary data more easily and routinely
accessible would greatly increase the value and usability of
the data.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-17-117-2025-supplement.
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