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Abstract. Studying precipitation falling over Antarctica is crucial as snowfall represents the main water input
term for the polar cap. However, precipitation observations still remain scarce – and, more particularly, in the
atmospheric column – due to numerous experimental issues related to the white continent. This paper aims
at helping to close this observation gap by presenting 7 years of Micro Rain Radar (Metek MRR-2) data at
the Dumont d’Urville station in coastal Adélie Land, East Antarctica. Statistics are calculated on three radar
variables (equivalent reflectivity, mean Doppler velocity and signal-to-noise ratio (SNR)) to outline the main
characteristics of the radar dataset. Seasonal and interannual variabilities are also investigated, but no significant
temporal trends are detected, except for the seasonal mean Doppler velocity, which is higher in summer and
lower in winter.

We then use the snowfall rate (S) data from a collocated snow gauge to estimate the MRR precipitation
profile from the radar equivalent reflectivity (Ze) through a locally derived Ze–S relation. We find the relation
Ze = 43.3S0.88. The processing method used to obtain this relation, data quality and uncertainty considerations
are discussed in the paper.

In order to give an example of application of the dataset, a brief statistical comparison of the MRR precipitation
rate along the vertical with model data from the ERA5 reanalysis and the LMDZ climate model is performed,
which notably shows that models underestimate heavy precipitation events.

All datasets are available on the PANGAEA database with the associated DOI:
https://doi.org/10.1594/PANGAEA.962727 (Wiener et al., 2023).

1 Introduction

Precipitation is the largest input term for the surface mass
balance of the Antarctic ice sheet (Christopher et al., 1997;
Krinner et al., 2007). It originates from evaporation over the
surrounding oceans, advection of water vapor to and over the
ice sheet by the atmospheric circulation, then condensation
and fall of condensed water to the surface. Various atmo-

spheric processes determine how much water vapor effec-
tively condensates above the ice sheet, how much falls all the
way down to the surface, and how much remains at the sur-
face and effectively contributes to accumulation and, thus,
the ice sheet mass balance. Thomas et al. (2017) estimated
from ice cores that the Antarctic surface mass balance have
increased on average by 14± 2.8 Gt per decade since 1900.
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Even concentrating on precipitation proper (ignoring post-
deposition processes) raises a number of issues that may be
ignored in the most direct approaches to precipitation stud-
ies. In fact, many studies, and many available climatologies
of precipitation, focus on precipitation at the surface (e.g.,
the Global Precipitation Climatology Project (GPCP), Adler
et al., 2018). This is sensible, as many issues with precip-
itation relate to the surface water budget, water resources
at the surface and mass balance of continental water bod-
ies such as lakes and ice caps. One practical reason for con-
centrating on surface precipitation is that it can be measured
with ground-based instruments such as snow gauges (e.g.,
Seefeldt et al., 2021). The fate of precipitation in the atmo-
spheric column, on the other hand, is more elusive due to the
difficulty of monitoring the atmosphere along the vertical di-
mension. Satellite-borne radars such as CloudSat, which op-
erated from 2006 to 2011, enabled the observation of precipi-
tation above Antarctica on a continental scale (Palerme et al.,
2014), but with limited temporal resolution (one orbit every
5 d), limited spatial coverage (north of 82◦ S), and without
information below 1300 m above ground level. Grazioli et al.
(2017b) showed the importance of low-level processes such
as the sublimation of precipitation due to the dry air flowing
from the Antarctic plateau, which was estimated to reduce
snowfall by 17 % on average all over the continent, although
other studies (Alexander et al., 2023; Bracci et al., 2022a)
find higher values of local snowfall reduction (up to 50 %)
from surface remote sensing data at two coastal stations. This
process can bias satellite estimates of precipitation at the sur-
face and raises the necessity of ground-based measurements
of the atmospheric column.

Ground-based remote sensing using profiling techniques,
such as meteorological radars and lidars, can provide valu-
able additional data. Instrumental challenges (cost, technical
expertise, energy requirements) tend to limit these applica-
tions to specific sites and contexts, e.g., for operational mete-
orology, or weather and hydrological risk predictions. The re-
cent availability of affordable, compact, low power consump-
tion, relatively easy to use precipitation profiling radars has
been a game changer for the study of the Antarctic precipita-
tion in the atmospheric column rather than at the surface only.
This has opened the possibility of studying and document-
ing the processes occurring in the atmospheric column, from
which surface precipitation results. This has important added
value for understanding the precipitation physics and evalu-
ating meteorological and climate models. Numerical models
are essential tools to forecast future climate changes, includ-
ing the future contribution of Antarctic precipitation evolu-
tion to global sea-level change. If Antarctica was to melt en-
tirely, the global sea-level would rise by about 60 m (Church
et al., 2008). This will not happen in the foreseeable future,
but the fact that realizing that just 1 % of this potential would
raise global sea level by 60 cm is a major source of concern
(IPCC, Pörtner et al., 2022). Conversely, an increase in accu-
mulation due to increasing precipitation over the continent,

which was ,for example, estimated at 51±11 Gtyr−1 between
1991 and 2005 by Lenaerts et al. (2018), has a mitigating ef-
fect on the sea-level rise. Medley and Thomas (2019) esti-
mated that precipitation over Antarctica has moderated the
sea-level rise by 2.5 mm per decade since 1979.

In recent years, Antarctica has significantly benefited from
new approaches to observe precipitation. Measuring solid
precipitation using traditional gauge methods is difficult (see
SPICE project, Nitu et al., 2018). It is particularly difficult in
Antarctica, where the main issues of solid precipitation mea-
surements are exacerbated; strong winds in the peripheral re-
gions (Turner et al., 2009 found more than 60 wind events of
storm force or larger per year, i.e., over 24.5 ms−1, in three
coastal stations), very low precipitation rates in the interior
(estimated at 36 mmyr−1 above 2250 m and north of 82◦ S
by Palerme et al., 2014), problems with frost deposition on
instruments and low temperatures impacting electronic com-
ponents.

Over the last decade, several research groups have de-
ployed a new generation of light precipitation radars at
Antarctic stations: at Princess Elisabeth (longitude, latitude
and altitude, respectively, 23.4◦, −72.0◦, 1392 m a.s.l., de-
ployed in 2010, mostly seasonal, Gorodetskaya et al., 2015),
Mario Zucchelli (164.1◦,−74.7◦, 10 m a.s.l., deployed in De-
cember 2016, mostly seasonal, Bracci et al., 2022b), Dumont
d’Urville (140.0◦, −66.7◦, 41 m a.s.l., started in Novem-
ber 2015, Grazioli et al., 2017a, b; Genthon et al., 2018),
and more recently at the Concordia station (123.3◦, −75.1◦,
3233 m a.s.l., Di Natale et al., 2022) and at the Davis station
(78.0◦, −68.6◦, 27 m a.s.l., Alexander et al., 2023). Radars
are not influenced by most of the problems that affect the
measurement of solid precipitation with gauges, but there are
other issues. The main one is that indirect information, such
as radar reflectivity resulting from the backscattering of mi-
crowaves by hydrometeors, has to be converted into hydrom-
eteor distributions and concentrations in the atmosphere, then
to mass and fall speed to retrieve a precipitation flux (Peters
et al., 2002). This involves hypotheses and tuning. In addi-
tion, these radars have been initially developed and are pro-
vided with processing tools designed for liquid precipitation.
Obviously, for Antarctica, this has to be revised to access
solid precipitation (Maahn and Kollias, 2012).

In this paper, we present 7 years of vertical profiling of
precipitation at the Dumont d’Urville station in Adélie Land,
East Antarctica using a Metek Micro-Rain Radar (MRR-
2) precipitation profiler. The setting, instruments, data pro-
cessing methods and datasets are presented in Sect. 2. The
main characteristics of the MRR dataset, including variabil-
ity, statistics and extremes, are presented in Sect. 3.1. In
Sect. 3.2, the mean MRR snowfall profile is derived from an
empirical and local Ze–S relation, enabling a vertical com-
parison with two climate models in Sect. 3.3 as an example
of the application of the dataset. A general conclusion with
information on data access and format is provided in Sect. 6.
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2 Setup, data and methods

2.1 Micro Rain Radar

A Micro Rain Radar (Metek MRR-2, see Fig. 2a) trans-
mitting in the K-band at 24 GHz was deployed at the Du-
mont d’Urville Antarctic station in late 2015. Grazioli et al.
(2017a) and Genthon et al. (2018) describe the setting, pro-
cessing and first set of data from the instrument. The Du-
mont d’Urville (DDU) station is located on the Petrels Island
(longitude: 140.0014◦, latitude: −66.6628◦, 41 m a.s.l., see
Fig. 1), about 5 km off the coast of Adélie Land. As precip-
itation is essentially associated with synoptic extra-tropical
cyclones there (Jullien et al., 2020), observations at DDU
are representative of precipitation at the nearby coast of the
Antarctic ice sheet. Setting the radar at DDU rather than on
the ice sheet has the advantages that it provides easy per-
manent access to power and network, as well as servicing if
necessary. It is installed within an unheated radome that pro-
tects the instruments from the fierce winds that blow in the
region. On the other hand, the radome induces some attenu-
ation of the radar transmitted and reflected electromagnetic
waves and, thus, some reduction of the sensitivity. This is,
in particular, discussed in Grazioli et al. (2017a), which de-
scribes the first year of MRR data, in Durán-Alarcón et al.
(2019), which compares 2 years of the DDU MRR to another
MRR deployed at the Princess Elizabeth station (longitude:
23.35◦, latitude−71.95◦), and lastly in Roussel et al. (2023),
which presents an analysis of precipitation at DDU during
the YOPP (Year Of Polar Prediction) Southern Hemisphere
special observing period (see Bromwich et al., 2020). How-
ever, no accumulated snow on the radome is reported by the
winter-over staff, thanks to the strong winds and the radome’s
domed shape. A consequence of good operating conditions at
DDU station is that, to the authors’ knowledge, and although
it was not the first MRR deployed in Antarctica, the DDU
MRR offers the longest quasi continuous data series for the
Antarctic region so far.

As most of the precipitation at DDU falls as snow, the
MRR data have been processed using the Maahn and Kollias
(2012) processing algorithm for snowfall, hereafter referred
to as MK12. MK12 is especially suited for low signal-to-
noise ratio (SNR) measurements such as those obtained in
snowfall, as it improves noise removal and allows the detec-
tion of weak updrafts thanks to a dynamic dealiasing proce-
dure. The equivalent reflectivity Ze in dBz, mean Doppler
velocity W in ms−1 and SNR in dB are derived from the
MRR minute-averaged raw spectrum, providing profiles of
up to 3 km a.g.l. with a vertical resolution of 100 m. The two
lowest and highest gates (below 300 m and above 2900 m) are
considered too noisy by the algorithm and are, therefore, dis-
carded from this study. A quality flag described in the meta-
data is also provided to give information about masked spec-
tra not kept by the MK12 processing algorithm. We define
the mean Doppler velocity as positive downward.

Due to various technical issues, the MRR was out of oper-
ation out of about 6.4 % of the total number of minutes in the
record. This occurred, e.g., during maintenance or power out-
ages. Furthermore, 0.1 % of the precipitating timesteps (i.e.,
when the minute reflectivity is not null along the vertical)
are discarded as the quality flag indicates a raw spectrum
dealiasing failure. Lastly, equivalent reflectivities lower than
−5 dBz are also discarded, in accordance with the thresh-
old recommended by Maahn and Kollias (2012), removing
10.5 % of the precipitating 1 min timesteps. For a full de-
scription of this method, which has been used in numerous
studies of snowfall in Antarctica (e.g., Scarchilli et al., 2020;
Alexander et al., 2023) or in the Arctic (e.g., Chellini et al.,
2022), we refer the reader to Maahn and Kollias (2012).

Because the MRR is located inside a radome that has not
been optimized for the K-band, the signal is significantly at-
tenuated. This was quantified by Grazioli et al. (2017a) by
comparison with a nearby X-band radar. The regression be-
tween the measured reflectivity values at X- and K-bands ex-
hibited a slope close to 1 and an offset of about 6 dBz (to
be added to the MRR data). This offset was confirmed by
Durán-Alarcón et al. (2019) by comparison with a second
MRR deployed at DDU outside of the radome for a short
period of time. In the present paper, the radome attenuation
is, hence, corrected by adding 6 dBz to the MRR reflectivity
values.

Finally, the equivalent reflectivity, mean Doppler velocity
and SNR are averaged hourly, in accordance with the integra-
tion time recommended by Durán-Alarcón et al. (2019) for
climatological analysis, in order to remove short time per-
turbations while keeping enough data for statistical signifi-
cance. Hours with less than 10 valid minute timesteps were
discarded to avoid spurious spikes.

2.2 Snow gauge

Along with the MRR, an OTT Pluvio2 (model 400 cm2)
weighing gauge (with a wind shield, see Fig. 2b) was de-
ployed during the austral summer campaign 2015–2016 at
Dumont d’Urville. Hydrometeors falling into the bucket are
measured by a very sensitive weighing system and converted
into mm water equivalent. The weighing gauge hourly snow-
fall in mmh−1 is then obtained by summing the 1 min bucket
mass changes over 1 h. These data are used in Sect. 3.2 to
derive MRR snowfall profiles. Various limitations affect the
gauge data, which are also discussed in Sect. 3.2. The gauge
was deployed in the 2015–2016 austral summer campaign,
then removed in February 2016 and reinstalled in January
2017 and used until today. However, it was out of order be-
tween December 2021 and December 2022 inclusive. These
two main gaps are taken into account in the computation of
the MRR snowfall estimates in Sect. 3.2. For more informa-
tion about the DDU snow gauge, we refer the reader to Grazi-
oli et al. (2017a) and Genthon et al. (2018). The MRR and

https://doi.org/10.5194/essd-16-821-2024 Earth Syst. Sci. Data, 16, 821–836, 2024



824 V. Wiener et al.: A 7-year record of radar measurements

Figure 1. Topography of the Antarctic ice sheet and location of the Dumont d’Urville station.

Figure 2. Picture of the DDU MRR in its radome (a) and the DDU snow gauge (b).

snow-gauge data range from November 2015 to June 2023
and the instruments are still in operation.

2.3 Météo-France Observations

Hourly surface meteorological variables such as 2 m temper-
ature, 10 m wind speed and direction, and 2 m relative humid-
ity with respect to liquid are provided by the Meteo-France
weather station at Dumont d’Urville, from January 2015 to
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June 2023 inclusive. They are used in Sect. 3.2 for the com-
putation of the MRR snowfall profile as a quality-control fil-
ter for the weighing gauge data.

2.4 Models data

2.4.1 The ERA5 reanalysis

ERA5 is produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF) and is an atmospheric
reanalysis which combines a weather forecast model with
meteorological observations from a large number of sources,
through a 4-D data assimilation system. It provides vari-
ous meteorological variables over ∼ 30 km resolution with
137 vertical levels, from 1979 to nowadays (Hersbach et al.,
2020). ERA5 supersedes ERA Interim, which stopped being
produced in 2019.

While surface precipitation has been archived, the fore-
casted solid precipitation fluxes at the midpoint of the verti-
cal layers in the model were saved in the reanalysis archives
at the time of the data extraction. To allow a comparison with
radar vertical profiles of precipitation, we use the method
to recalculate ERA5 snowfall rates described in Roussel et
al. (2023), Sect. S3. Hourly data from November 2015 to
December 2021 inclusive were extracted at the grid point
nearest Dumont d’Urville, of longitude 140.0◦ and latitude
−66.8◦.

2.4.2 The LMDZ general circulation model

The LMDZ model was developed at the Labora-
toire de Météorologie Dynamique (LMD) in Paris
and is the atmospheric component of the Insti-
tut Pierre-Simon Laplace climate model (IPSL-CM,
https://cmc.ipsl.fr/ipsl-climate-models/ipsl-cm6/, last ac-
cess: 26 July 2023), an atmosphere–land–ocean–sea ice
global climate model used in particular for the Coupled
Model Intercomparison Project exercises. The Z in LMDZ
stands for its zooming capability, i.e., a refinement of the
mesh around an area of interest. Hourdin et al. (2020)
describes the general model, and Madeleine et al. (2020) the
clouds and precipitation physics. This model has already
been used for various studies in Antarctica (Krinner et al.,
2019; Vignon et al., 2018) and, in particular, in Lemonnier
et al. (2021), which opens the way to the evaluation of the
representation of the Antarctic precipitation in the model.

We use a simulation ranging from November 2015 to De-
cember 2021 inclusive with a 96× 95 horizontal grid and 95
vertical levels. The grid is refined around Adélie Land, result-
ing in a resolution of approximately 50 km in the zoom center
(see Fig. S1 of Roussel et al., 2023, for a map of the grid).
The run was nudged with wind, temperature and humidity
by the ERA5 reanalysis outside of the zoom area. For further
details, we refer the reader to the very similar configuration
in Roussel et al. (2023), which compared the precipitation at
the surface and along the vertical of LMDZ and five other

climate models with the DDU MRR and snow gauge during
the YOPP period. We evaluate the model physics used for
the Sixth Coupled Model Intercomparison Project exercise
(CMIP-6), which has not been specifically adapted and cal-
ibrated to Antarctic precipitation. Hourly precipitation pro-
files are simply extracted at the grid cell nearest DDU of
longitude 140.4◦ and latitude −66.6◦, as the most accurate
representation of snowfall amounts is that of the closest grid
point regardless of the surface type (Roussel et al., 2023).

3 Statistical analysis

3.1 Characteristics of the 7-year record

In this section, before estimating the precipitation flux from
the radar data in Sect. 3.2, the hourly averaged equivalent
reflectivity Ze, the mean Doppler velocity W and the signal-
to-noise ratio SNR are analyzed for the whole 7 year period,
from November 2015 to June 2023 inclusive. The derivation
of these variables with the MK12 processing method is de-
scribed in Sect. 2.1.

Figure 3 presents the daily averaged 7 years of MRR re-
flectivity profiles, giving an overview of individual precipita-
tion events and variability with respect to intensity over the
whole period. The timeseries is quasi continuous except for
several interruptions identified on the figure by gray zones.

2-D joint distributions of equivalent reflectivity, mean
Doppler velocity and SNR are presented in Fig. 4a–c. The
percentage of occurrence of those variables along each radar
gate is color coded (left blank for occurrences below 1 %),
the median is shown with the solid-dotted black line, and the
5th, 25th, 75th and 95th quantiles are shown with the dashed
gray lines.

The median equivalent reflectivity in Fig. 4a ranges from
5.5 dBz in altitude, then increases as ice crystals grow
through deposition and aggregation and densify through rim-
ing (Planat et al., 2021) towards a maxima of 10.2 dBz at
800 m. Then, reflectivity decreases slightly to 9.7 dBz at
300 m due to snowflake sublimation by low-level dry air
blowing from the plateau (katabatic flow). The physics of
this process is discussed in Grazioli et al. (2017b). The 95th
quantile exceeds 20 dBz in the lower gates, indicating the oc-
currence of rare but heavy snowfall events. There is no equiv-
alent reflectivity below 1 dBz, as K-band reflectivities lower
than −5 dBz have been discarded, and an offset of +6 dBz
was added to correct for radome attenuation (see Sect. 2.2).
Hence, the radome attenuation correction reduces the MRR
sensitivity.

The mean Doppler velocity median decreases with height,
going from 1.4 ms−1 at 300 m to 0.9 ms−1 at 2900 m. Even
the 95th quantile does not exceed 2.5 ms−1, supporting that
rain events are very rare. In fact, only 0.7 % of the hourly
mean Doppler velocities exceed 3 ms−1. Vignon et al. (2021)
found that the Dumont d’Urville station experiences on av-
erage only 1.8 d of rainfall per year, although their projec-

https://doi.org/10.5194/essd-16-821-2024 Earth Syst. Sci. Data, 16, 821–836, 2024

https://cmc.ipsl.fr/ipsl-climate-models/ipsl-cm6/


826 V. Wiener et al.: A 7-year record of radar measurements

Figure 3. MRR equivalent reflectivity in dBz. Stripes indicate periods during which the MRR was not in operation. Periods with more than
10 % of missing data are shown in gray shading.

tions from seven climate models indicate that rainfall events
in coastal Antarctica will increase in frequency and intensity
in the next decades.

All quantiles show a sharp increase of approximately
0.2 ms−1 at the lowest gate, which is probably due to noise
in the signal, such as the near-field effect, and despite the
MK12 data quality masking. The 95th quantile also shows a
suspicious increase of the same magnitude at the highest gate
(2900 m), probably due to noise in the signal. Most mean

Doppler velocities above 2000 m are smaller than 1 ms−1.
There are a few rare events of negative W in altitude (75 over
12 253 h timesteps) corresponding to weak updrafts, whose
detection was made possible by the MK12 algorithm (see
Sect. 2.1).

The SNR median in Fig. 4c is constant below 500 m and
then decreases steadily with height, going from a ratio of
−6.0 to −15.6 dB. Most signal-to-noise ratios above 2000 m
are below −10 dB. The SNR median is rather low, because
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Figure 4. Median (solid-dotted black line) and 5th, 25th, 75th and 95th quantiles (dashed gray lines) of the equivalent reflectivity Ze (Fig. 3a),
the mean Doppler velocity W (Fig. 3b) and the signal-to-noise ratio SNR (Fig. 3c). The shading represents the occurrence along each radar
gate (left blank below 1 %). Pay attention to the non-linear colorbar.

the MRR has a high noise level and solid precipitation corre-
sponds to lower reflectivity than rainfall. It should be noted
that the SNR 95th quantile ranges between 0 and +10 dB,
indicating that heavy events fully stand out from the noise.

Overall, the 2D joint distributions shown in Fig. 4 con-
cur with Fig. 4a, d and g of Durán-Alarcón et al. (2019),
which plotted those three variables for the same instrument,
although for a shorter period (2 years).

The maximum value of the equivalent reflectivity
Ze reached 31 dBz at 1900 m on 9 February 2022 at
06:00 pm UTC during a short and intense precipitation out-
burst of about 10 min, surrounded by longer and less intense
events. The corresponding mean Doppler velocity exceeded
6 ms−1, which suggests the presence of rain in altitude. Un-
fortunately, this event occurred during local night, and rain
was not reported by Météo-France staff at the station, al-
though surface temperatures went above 0 ◦C for a few hours
around that time. The snow gauge was not operating (see
Sect. 2.2) and cannot give further information about the mag-
nitude of this event.

A reliable maximum value of the mean Doppler velocity
could not be estimated because of various nonphysical peaks
detected by the algorithm and resulting from an imperfect
dealiasing. Those peaks are not correctly filtered out by the
data quality masking of the MK12 algorithm. However, they
do not seem to significantly shift the median and quantiles of

Fig. 4b, except for the lowermost and uppermost gates (300
and 2900 m).

Interannual variability for the 7 years of data is inves-
tigated in Fig. 5, which presents the median yearly pro-
files from 2016 to 2022 of the equivalent reflectivity, mean
Doppler velocity and SNR from the hourly averaged data
(8760 data points each year). Year 2023 is not shown as it
was not complete at the time of extraction. We characterize
the interannual variability over those 7 years as the maximum
profile minus the minimal profile. The equivalent reflectiv-
ity variability is 3 dBz (30 % of the median profile) and is
rather constant along the vertical; the mean Doppler velocity
variability is 0.2 ms−1 near 300 m (15 % of the median pro-
file) and decreases towards 0.05 ms−1 in altitude; the SNR
variability is 3 dB (50 % of the average profile). There is no
statistically significant temporal trend of those variables over
the 7 years of data (not shown).

Seasonal variability is then considered in Fig. 6 for the
same variables, whose medians have been computed for each
month over the 7 years of data, thus providing a first estima-
tion of the MRR climatology (around 5500 data points for
each month). Here, again, no visible trend is identifiable in
Fig. 6a and c for the equivalent reflectivity and the signal-to-
noise ratio. Seasonal variability for those variables, if any, is
masked by the substantial interannual variability seen above.

In contrast, a clear seasonal signal of the mean Doppler
velocity appears throughout all the columns in Fig. 6b. Ice
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Figure 5. Yearly median profiles of the MRR equivalent reflectivity (a), mean Doppler velocity (b) and SNR (c).

Figure 6. Monthly median profiles of the MRR equivalent reflectivity (a), mean Doppler velocity (b) and SNR (c).
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crystals and snowflakes fall more slowly in winter (June to
September) than in summer (December to February), with
inter-seasons in the middle values. Indeed, relatively warmer
and moister conditions in summer favor aggregation and rim-
ing, thus increasing the snowflakes’ density and fall speed
(Garrett and Yuter, 2014). This signal remains when remov-
ing 1 year from the period at a time (not shown), supporting
that it is robust to interannual variability.

If we characterize seasonal variability as the maximal pro-
file minus the minimal profile in Fig. 6, the equivalent reflec-
tivity variability is 3.5 dBz (around 40 % of the median pro-
file) at 300 m and decreases slightly with altitude; the mean
Doppler velocity variability is 0.3 ms−1 at 300 m (21 % of
the median profile) and is divided by 2 in altitude; whereas
the SNR seasonal variability is 4.1 dB at 300 m (70 % of the
median profile) and only 1.4 dB in altitude.

Both interannual and seasonal variability are larger near
the surface than in altitude. In fact, we expect differences be-
tween precipitation events to emerge during the aggregation
and riming processes (Planat et al., 2021) and, thus, be more
pronounced in the lower gates. Moreover, turbulence in the
katabatic layer (below 1 km or so) is likely to impact the hy-
drometeors’ fall speed and to increase the mean Doppler ve-
locity variability. To quantify this effect, the spectrum width
recorded by the MRR can be used to estimate turbulence in
the lower levels as described in Appendix A of Vignon et al.
(2020); such a study is beyond the scope of this paper.

3.2 Estimation of snowfall rate profiles from the MRR
data

3.2.1 Derivation of the Ze–S relation

In this section, the MRR snowfall rate profile is calculated
by means of a power law relationship between the equiv-
alent radar reflectivity Ze (in mm6 m−3) and the snowfall
rate S (in mmh−1), i.e., Ze = aSb (Eq. 1), whose parame-
ters a (prefactor) and b (exponent) are estimated using the
weighing gauge snowfall S (see Sect. 2.2). This is a common
methodology for retrieving snowfall rates from radar reflec-
tivities (e.g., Grazioli et al., 2017a; Scarchilli et al., 2020;
Souverijns et al., 2017; Schoger et al., 2021). Theoretical
considerations about snowflakes’ shape, mass and velocity
are discussed in Matrosov (2007) and Matrosov et al. (2009).
The equivalent reflectivity Ze at the usable gate closest to the
surface (300 m a.g.l.) is processed as described in Sect. 2.1,
except that it is converted in linear units (mm6 m−3) before
the hourly averaging. The gauge hourly snowfall is computed
as described in Sect. 2.2. We refer the reader to Sect. 6 for the
processing code. The regression period spans from Novem-
ber 2015 to June 2023 included, which corresponds to a 5.5-
year period when taking into account the two gaps in the
snow-gauge data mentioned in Sect. 2.2; 9456 h precipitating
timesteps common for both instruments remain to perform
the regression.

Figure 7. MRR equivalent reflectivity and gauge snowfall rate scat-
ter plot (black crosses) in log space filtered as described above, and
the resulting Ze–S relation derived with a robust quantile regression
(solid blue line). The blue shading represents the regression RMSE.
Ze–S relations from Grazioli et al. (2017a) (red dash-dotted line),
Scarchilli et al. (2020) (dashed yellow line), Souverijns et al. (2017)
(magenta dotted line) and Schoger et al. (2021) (dash-dotted green
line) are also represented. Small gray dots represent data points that
have been filtered out.

At this stage, the scatter plot exhibits a large amount of sta-
tistical noise with many outliers (see the gray dots in Fig. 7).
This issue motivated the application of several filters to re-
duce the noise. We present and use two of them in the follow-
ing, along with their impact on the power-law parameters, as
they were considered both mandatory and sufficient to obtain
a robust regression.

Wind is the main source of uncertainty of snow-gauge
measurements at Dumont d’Urville. It makes the gauge vi-
brate, destabilizing its weighing system and leading to spu-
rious precipitation records. Moreover, snow that has already
precipitated may be remobilized from the surface into the at-
mosphere by the wind and fall into the gauge bucket, lead-
ing to largely overestimated snowfall rates and accumula-
tion. Sugiura et al. (2003) showed that blowing snow can
lead to an overestimation of precipitation by 6 % to 130 %
due to the increased number of aeolian snow particles in the
atmosphere, a result supported by numerous very large snow-
gauge hourly snowfall rates suspiciously corresponding to
low MRR reflectivities. In addition, blowing snow particles
are smaller than snowfall particles (Nishimura and Nemoto,
2005, Naaim-Bouvet et al., 2014) as they originate from shat-
tered snowflakes, and therefore have a different radar signa-
ture since radar reflectivity is dependent on diameter to the
sixth power. This impacts the Ze–S relation as part of the
reflectivity signal and does not correspond to precipitation.

Hourly wind speed provided by the Météo-France weather
station (see Sect. 2.3) is thus used to discard all data points
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corresponding to winds above 7 ms−1, in accordance with
the threshold used in Scarchilli et al. (2020).

As a second filter, weighing gauge hourly snowfall lower
than 0.1 mmh−1 and exceeding 12 mmh−1 have been dis-
carded to avoid, respectively, biases due to the instrument
sensitivity and unrealistic values caused by maintenance op-
erations on the bucket, the second threshold originating from
the snow-gauge documentation.

Data points removed by the application of these two filters
are shown by the small gray crosses in Fig. 7. The impact of
the filters on the Ze–S relation is discussed further below.

Hourly surface temperatures provided by Météo-France
were also investigated to prevent liquid precipitation (above
0 ◦C) from impacting the Z–S relation, defined exclusively
for snowfall. However, very few data points were affected by
this filter, and the impact on the parameters was negligible,
which is consistent with the rare rainfall occurrence found
in Sect. 3.1 from the mean Doppler velocity. Therefore, this
filter was not retained in the final Ze–S relation computation.

Daily occurrences of blizzard and blowing snow from
Météo-France weather reports were also tested as a filter, but
proved too coarse to efficiently clean out the noise in the cor-
relation cloud. Again, this filter was not retained in the com-
putation.

Only 503 data points remain after the application of these
two filters, but they are quite evenly spread over the whole
period (not shown). A significant amount of information is
thus lost in the filtering process, but we consider it mandatory
to extract the signal from the noise.

The 503-data point cloud resulting from the two filters de-
scribed above still visually exhibits a dozen outliers, likely to
affect fits based on root mean square error minimization. It
was, therefore, decided to convert Eq. (1) in log space, and
to fit the resulting equation

ln(Ze)= b · ln(S)+ ln(a) (1)

with a quantile linear regression method more robust to out-
liers compared to the standard least squares method (Pe-
dregosa et al., 2011).

Figure 7 presents the resulting scatter plot after filtering
and the linear fit in log space. Converted back into linear
space, the relation obtained is Ze = 43.3S0.88, with a R2

score in log space of 0.27. We estimate the regression uncer-
tainty as the RMSE, plotted in blue shading in Fig. 7. When
the filter based on the wind speed threshold is deactivated,
there is much more noise in the scatter plot, and the R2 score
drops to 0.10, whereas parameters a and b change by −5 %
and −20 %. Thus, this filter allows us to remove a signifi-
cant amount of outliers corresponding to high snow-gauge
snowfall and low MRR reflectivity values typical of blow-
ing snow conditions, with a major impact on the R2 score
and the regression slope b (see Eq. 2). When the filter based
on the snow-gauge values is deactivated, parameters a and
b decrease by −26 % and −32 %. Although the R2 score is

better (0.33) without this filter, it was retained, as the weigh-
ing gauge snowfall very low values with high relative incer-
titude (> 10 %) lead to a less realistic regression, as can be
seen by the significant impact on the parameters. We chose
to convert the Ze–S relation in log space, and using a robust
quantile linear regression, as by reducing the impact of out-
liers, this leads to a regression that better fits the data, with
almost no change to the R2 score (< 0.01). Parameter a (b)
changes by +17 % (+15 %) compared with the standard lin-
ear regression, which is quite significant.

Compared to the Ze–S relation Ze = 76S0.91 found by
Grazioli et al. (2017a) (plotted with a dashed red line in
Fig. 7) from the same instruments, although for a much
shorter period, the slope b is very similar (inside the 95th
confidence interval [0.78–1.09]) while the fit has an offset
due to the much lower prefactor (outside the 95th confidence
interval [69–83]), leading to a negative R2 score. When our
Ze–S relation is derived over the same period as Grazioli
(from 22 November 2015 to 29 January 2016), although the
small number of data points does not allow us to apply the
filters, the two parameters fall back inside the 95 % confi-
dence interval: a = 73.7 and b = 1.05. Small discrepancies
persist due to different data processing methods such as the
conversion of the Ze–S relation in log space, the use of a ro-
bust quantile linear regression, or the initial processing of S

and Ze. Over the whole period, the parameters found in this
study lead to higher MRR snowfall values than Grazioli et
al. (2017a), as a given equivalent reflectivity corresponds to
a higher gauge snowfall. These considerations could be of
interest for future studies using the DDU MRR as an obser-
vation reference, as up to now, only parameters from Grazioli
et al. (2017a) derived for a 2-month period in austral summer
have been used (e.g., Lemonnier et al., 2019; Jullien et al.,
2020; Roussel et al., 2023).

The Ze–S relation of Scarchilli et al. (2020) Ze = 54S1.15

(although for an integration time of 5 min) shown with a
dashed yellow line in Fig. 7 fits the data fairly well, although
its R2 score is lower (0.20), as it does not take into account
the outliers located in the lower right corner of the scatter
plot. The relation Ze = 18S1.10 of Souverijns et al. (2017),
shown with a dotted magenta line, is outside our uncertainty
range, shown with blue shading, with a negative R2 score.
Likewise, our parameters a and b are both outside their un-
certainty range ([11–43], [0.97–1.17]). This significant dif-
ference can be due to the location of the Princess Eliza-
beth station, 173 km off the coast at the other end of Antarc-
tica with drier conditions and smaller particle diameters, the
much shorter sampling period (January to May 2016) or the
instrument used as snowfall reference (the Precipitation Im-
ager Package). Interestingly, the relation Ze = 77.61S1.22 of
Schoger et al. (2021)(shown with a dash-dotted green line)
better fits our data despite the fact that their MRR is deployed
at the other end of the world (Ny-Ålesund, Svalbard in the
Arctic), which could be related to more similar meteorolog-
ical conditions. The prefactor value a = 43.3 found by this
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Table 1. Impact of the integration time on parameters a and b, the
number of data points N and the R2 score.

Integration time (min) a b N R2

5 48.5 0.87 5712 0.19
15 44.6 0.88 1756 0.20
30 45.0 0.94 939 0.25
60 43.3 0.88 503 0.27
90 43.0 0.85 335 0.23
120 44.0 0.81 258 0.22
180 38.5 0.68 179 0.20

study is consistent with those of the theoretical Ze–S rela-
tions of Matrosov et al. (2009), which range from 28 to 136,
although the corresponding exponents exceed 1. However,
definitive conclusions cannot be drawn for a or b individu-
ally, as they are not independent.

Despite the restrictive filtering steps listed above, the re-
gression score R2 in log space remains low (0.27), which is
mainly due to outliers in the lower right corner of the scat-
ter plot and probably not linked with blowing snow, as they
have not been filtered out by the wind speed threshold. Fur-
thermore, the precipitation flux at DDU may be explained by
factors other than radar reflectivity. Other explanatory vari-
ables, potentially season-dependent, could be used to derive
better precipitation estimates. This important issue will be
addressed again in Sect. 6.

3.2.2 Sensitivity to integration time

Interestingly, the Ze–S relation obtained with the data pro-
cessing detailed previously is robust to the choice of the in-
tegration time. Table 1 presents the values of parameters a,
b, the number of data points N and the score R2 for different
integration times. The hourly wind speed filter from Météo-
France was linearly interpolated in time when the integration
time was below 60 min. Although the shorter (5 min) and
longer (180 min) integration times differ from the average
with lower R2 scores due to, respectively, too much noise
and undersampling effects, the parameters a and b are ap-
proximately independent of the integration time. The hourly
integration time exhibits the higher R2 score.

Sensitivity of the Ze–S relation to interannual variability
was also assessed by removing 1 year at a time in the compu-
tation. The prefactor a varies between 42.3 and 44.1, whereas
the exponent b varies between 0.85 and 0.95 (see Table 2). As
these variations remain within 10 % relative difference, this
result supports that the derived Ze–S relation is also robust
to interannual changes in the recordings.

In Sect. 3.3, the MRR snowfall profile is computed by in-
verting the equation Ze = aSb

S =

(
Ze

a

)1/b

(2)

Table 2. Impact of the interannual variability on parameters a and b,
the number of data points N and the R2 score.

Year removed a b N R2

2016 43.1 0.88 498 0.27
2017 43.2 0.95 418 0.30
2018 42.3 0.89 405 0.23
2019 43.2 0.86 405 0.23
2020 43.6 0.85 377 0.24
2021 43.2 0.89 458 0.33
2022 not in operation
2023 44.1 0.86 464 0.27

with the parameters found for the whole dataset with an in-
tegration time of 1 h. Doing so, we assume that the Z–S re-
lationship derived using the MRR data at 300 m is represen-
tative for the entire profile (up to 3 km), which may not hold
true when there is a large change in the hydrometeors’ struc-
ture and type along the vertical.

3.3 Example of application to model evaluation

In this section, we show how the hourly MRR snowfall com-
puted from the Ze–S relation described in Sect. 3.2 can
be used to evaluate the vertical profiles of precipitation as
simulated by numerical models. The MRR is compared to
the ERA5 reanalysis and the LMDZ model (described in
Sect. 2.4) for the period ranging from 1 December 2015 to
1 January 2022.

Firstly, the median and quantiles profiles of the three
datasets in coastal Adélie Land are investigated. The model
profiles are precipitation threshold-sensitive, as they produce
a large number of very small precipitation events (below
0.01 mmh−1). Palerme et al. (2014) proposed a threshold of
0.07 mm per 6 h to optimize the comparison of ERA-Interim
precipitation rates with CloudSat observations, which was
also used in Roussel et al. (2023) for model evaluation.
Converted to mmh−1, the model threshold is 0.012 mmh−1.
The MRR snowfall threshold is derived from the equiva-
lent reflectivity sensitivity of −5 dBz, i.e., +1 dBz taking
into account radome attenuation (see Sect. 2.1) and 101/10

=

1.3 mm6 m−3 in linear units. Equation (3) with the param-
eters a and b found in Sect. 3.2 gives a MRR threshold
of 0.019 mmh−1. To avoid sampling period biases due to
MRR missing data, only precipitating times (i.e., with a pre-
cipitation rate above the thresholds defined above) for the
three datasets have been retained, corresponding to 3717 data
points. Figure 8 shows the profiles medians (solid lines with
dots) and the 10th and 90th quantiles (dotted lines).

The MRR 90th quantile stands out rather strikingly, peak-
ing more than twice as large as the corresponding ERA5
and LMDZ profiles, while its median and 10th quantile re-
main of similar magnitude. This result suggests that mod-
els struggle to simulate heavy events. Maximum precipita-
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Figure 8. Median (solid line with dots), 10th quantile and 90th
quantile (dashed line) vertical profiles for the MRR (in red), ERA5
(in yellow) and LMDZ (in blue) for the 3717 h data points of com-
mon precipitating timesteps.

tion values reached at the surface (at 300 m for the MRR) for
that period are consistent with that statement: ERA5 attains
only 2.7 mmh−1 and LMDZ 4.6 mmh−1, whereas the MRR
reaches 30 mmh−1.

Although ERA5 and LMDZ reproduce the increase in pre-
cipitation from the top (3 km) down to a maximum around
800 m, as well as the decrease at the bottom due to subli-
mation of snowflakes, the slopes are not steep enough com-
pared to the MRR. This suggests that auto-conversion of ice
crystals into snowfall as well as sublimation due to the kata-
batic flow may be underestimated in the models, which is an
issue that was already raised for ECMWF-IFS and LMDZ
by Grazioli et al. (2017b) with 1 year of data of the same
instrument. Yet, the altitudes of maximum precipitation in
ERA5 and LMDZ correspond fairly well to the observations,
with an ERA5 median profile peaking at 890 m and LMDZ
at 740 m, while the MRR peaks at 800 m. Although the MRR
data do not extend below 300 m, the slopes of the model pro-
files below 800 m substantially overestimate surface precipi-
tation because of too-weak sublimation. If sublimation is de-
fined as the relative difference of the median snowfall rate
between the altitude of maximum precipitation and 300 m
(including for the models), the MRR sublimation is 40 %,
whereas ERA5 (LMDZ) sublimation is only 12 % (13 %).
This MRR sublimation is quite similar to that of Alexander et
al. (2023), who found a sublimation of 50 % for a MRR de-
ployed at the Davis station and that of Bracci et al. (2022a),
who found an order 30 %–40 % for a MRR deployed at the
Mario Zucchelli station.

The underestimation of strong event intensity by the mod-
els has a big impact on the total snow accumulation. Indeed,
Fig. 1 of Turner et al. (2019) indicates that extreme precip-
itation events contribute by more than 50 % to total accu-

mulation near the DDU region. In the present dataset, almost
50 % of the MRR total accumulation is due to snowfall larger
than 2 mmh−1, whereas this contribution drops below 5 %
for ERA5 and LMDZ (not shown). This result is consistent
with Fig. 11 of Grazioli et al. (2017a) (upper panel) for 1 year
using the same instrument, although the contribution of MRR
snowfall rates larger than 2 mmh−1 is only 30 %. This dif-
ference can be explained by the larger MRR snowfall rates
found by this study through the revised Ze–S relation (see
Sect. 3.2).

At the end of the period, after the gaps in the MRR
dataset have been removed, the MRR yearly average accu-
mulation at 300 m is 1060 mmyr−1. It is larger than ERA5 by
44 % with 737 mmyr−1 and larger than LMDZ by 53 % with
691 mmyr−1 for the same period and altitude. However, the
models’ accumulation at 300 m may be underestimated due
to their too smooth profile shape (see Fig. 8). Conversely, the
MRR snowfall rate may be overestimated due to remaining
outliers in the Ze–S computation, despite the restrictive pro-
cessing method described in Sect. 3.2. Grazioli et al. (2017a)
estimated yearly accumulation from October 2015 to Octo-
ber 2016 of between 740 and 989 mmyr−1, i.e., 23 % less on
average than this study, which is again consistent with the
lower snowfall rates obtained with the Grazioli et al. (2017a)
Ze–S relation. Even so, precipitation has a high degree of in-
terannual variability (see Fig. 5a), and two different periods
cannot be directly compared. Also, it is important to keep in
mind that the accumulation at the surface is probably much
lower than 1060 mmyr−1 because of precipitation sublima-
tion below the MRR lowest gate at 300 m. Snow-gauge accu-
mulation is not presented here, as it is largely overestimated
due to contamination by blowing snow (not shown).

On the other hand, the precipitation occurrence of the
models is higher than the MRR, with 29 % of hourly precip-
itating timesteps for ERA5, 22 % for LMDZ and only 15 %
for the MRR. Model snowfall events are also longer with a
median of 13 h (14 h) for ERA5 (LMDZ) compared to 7 h
for the MRR. However, this higher occurrence of model pre-
cipitation is not enough to compensate for the larger MRR
accumulation.

4 Data availability

Data are available on the PANGAEA server here:
https://doi.org/10.1594/PANGAEA.962727 (Wiener et al.,
2023). The MRR 1 min profiles of the source variables
(equivalent reflectivity, mean Doppler velocity, SNR and
quality flag) are stored in zipped netCDF files from
23 November 2015 to 1 July 2023 (one file per year). The
MRR hourly snowfall profiles computed in Sect. 3.2 from
the relation Ze = 43.3S0.88 along with the gauge 1 min snow-
fall accumulation and the hourly wind speed and tempera-
ture from Météo-France observations are also available for
the same period.
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5 Code availability

The processing code in Python used for the derivation of
the Ze–S relation can be accessed here (https://gitlab.in2p3.
fr/valentin.wiener/ze-s-relation-mrr.git, Wiener, 2023). The
latest MRR data can be retrieved upon direct request to
Valentin Wiener.

6 Conclusions

We have presented 7 years of data from a Micro Rain Radar
(MRR) deployed at the Dumont d’Urville station in Antarc-
tica. A statistical analysis outlines the main characteristics of
the MRR vertical profiles of the equivalent reflectivity, mean
Doppler velocity and signal-to-noise ratio, concurring with
the results of Durán-Alarcón et al. (2019). No interannual or
seasonal trends have been clearly identified in the MRR pro-
files, except for the seasonal mean Doppler velocity, which
is larger in summer and smaller in winter, suggesting an en-
hanced aggregation process. Nonetheless, the sample period
is still too short (7 years) to possibly exhibit such climatic
trends.

A Ze–S relation has been derived from the dataset to re-
trieve precipitation profiles, thus allowing us to refine the re-
lation found by Grazioli et al. (2017a) for the same instru-
ment but built in one summer season only. Despite a large
amount of noise, the 7 year period made it possible to apply
restrictive filters robust to integration time and interannual
variability. The uncertainty of the Ze–S relation is estimated
as its RMSE in log space. The results have been compared
with those in the literature, and particularly with the relation
of Grazioli et al. (2017a), with whom an offset probably due
to the sampling period has been found, leading to smaller
MRR snowfall rates than those in this study. However, Ze–
S relations in the literature still present a significant degree
of uncertainty, which makes it difficult to draw final conclu-
sions. Although we chose to be very cautious, the R2 score
remains low, and other processing methods may be applied
to the raw data (see data availability below) by future users.
For instance, other explanatory variables such as tempera-
ture, wind speed, or the mean Doppler velocity of hydrome-
teors could be combined to the equivalent reflectivity to bet-
ter constrain the Ze–S relation, but such considerations are
beyond the scope of this study.

This Ze–S relation allowed the evaluation of two climate
models (ERA5 and LMDZ) along the vertical as an appli-
cation example of the dataset. Models showed profiles that
were too smooth, both in altitude and time, with a large
underestimation of intense snowfall events compared to the
MRR leading to an accumulation that was twice as small.
The weaker sublimation of precipitation by the models is not
enough to compensate for their smaller accumulation.

We believe that the 7 years of data presented in this pa-
per are a great opportunity to evaluate and optimize climate
models by fostering future studies on the parameterization of

snowfall along the vertical in Antarctica, as well as the repre-
sentation of the katabatic layer and its impact on precipitation
sublimation. The dataset can also be used to complement and
validate satellite products by providing ground-based infor-
mation, for instance to evaluate the effect of the blind range
near the ground level to obtain more accurate surface precip-
itation estimates.
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