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Abstract. Modern and fossil pollen data are widely used in paleoenvironmental research to characterize past
environmental changes in a given location. However, their discrete and discontinuous nature can limit the infer-
ences that can be made from them. Deriving continuous spatial maps of the pollen presence from point-based
datasets would enable more robust regional characterization of such past changes. To address this problem, we
propose a comprehensive collection of European pollen presence maps including 194 pollen taxa derived from
the interpolation of pollen data from the Eurasian Modern Pollen Database (EMPD v2) restricted to the Euro-
Mediterranean Basin. To do so, we developed an automatic Kriging-based interpolation workflow to select an
optimal geostatistical model describing the spatial variability for each taxon. The output of the interpolation
model consists of a series of multivariate predictive maps of Europe at 25 km scale, showing the occurrence
probability of pollen taxa, the predicted presence based on diverse probability thresholds, and the interpola-
tion uncertainty for each taxon. Combined visual inspections of the maps and systematic cross-validation tests
demonstrated that the ensemble of predictions is reliable even in data-scarce regions, with a relatively low uncer-
tainty, and robust to complex and non-stationary pollen distributions. The maps, freely distributed as GeoTIFF
files (https://doi.org/10.5281/zenodo.10015695, Oriani et al., 2023), are proposed as a ready-to-use tool for spa-
tial paleoenvironmental characterization. Since the interpolation model only uses the coordinates of the observa-
tion to spatialize the data, the model can also be employed with fossil pollen records (or other presence/absence
indicators), thus enabling the spatial characterization of past changes, and possibly their subsequent use for
quantitative paleoclimate reconstructions.

1 Introduction

Fossil pollen data are commonly used to document how dif-
ferent environments responded to past global climate forc-
ing and events (Bartlein et al., 2011; Dallmeyer et al., 2022).
In particular, continental-scale studies of past land cover
changes or biome data-model comparisons are particularly
informative because they make it possible to extract common
trends from large datasets (Gaillard et al., 2010; Trondman

et al., 2012; Zanon et al., 2018; Githumbi et al., 2022). Pollen
data are also commonly employed to quantitatively recon-
struct past climate using statistical models built on pollen–
climate relationships derived from modern pollen observa-
tions (Birks et al., 2010; Chevalier et al., 2020). These re-
constructions have been instrumental to improving our un-
derstanding of past climate dynamics at various timescales
(Kaufman et al., 2020; Herzschuh et al., 2023a, b; Marsicek
et al., 2018; Routson et al., 2019) and to evaluate earth sys-
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tem model (ESM) simulations over land (Liu et al., 2014;
Mauri et al., 2014; Weitzel et al., 2019).

Despite the recent accumulation of thousands of fossil
pollen records in public repositories (Herzschuh et al., 2022;
Williams et al., 2018), most pollen-based analyses remain
performed at the site level. Each pollen sample is analyzed in
isolation from the others, and the results (e.g., land cover esti-
mates or climate reconstructions) are then merged together to
extract a regional/continental signal (Mauri et al., 2015; Mar-
sicek et al., 2018; Herzschuh et al., 2023b). This approach is
imperfect because it generates coarse spatial representations
with abrupt local transitions relative to the regional grouping
of the samples. Moreover, it generally does not take into ac-
count the local data density and variability, and assessing the
spatial uncertainty of the estimations is generally not possi-
ble.

Advanced geostatistical techniques allow us to draw spa-
tial information based on data density, presence, and spa-
tial variations. However, these techniques require a minimum
density and quality in the data studied to produce reliable
estimates. The recent growth of harmonized modern (Davis
et al., 2020; Whitmore et al., 2005) and fossil (Williams et al.,
2018; Herzschuh et al., 2022) pollen data now allow for the
use of such techniques, which represent, as such, an interest-
ing step forward in the analysis of large-scale compilations
of pollen data. In particular, the spatial covariance, a funda-
mental function of geostatistics, can be robustly estimated
from pollen data in Europe or North America where hun-
dreds of records are available. While the quantity of pollen
grain observed for a given pollen taxon is affected by many
processes (see, for instance, Chevalier et al., 2020) and is,
therefore, heterogeneous over space, its presence (i.e., the
observation of one or more grains at any location) is sub-
ject to lower complexity. As such, binary presence data can
be interpolated into space more robustly, irrespective of the
characteristics of the sampling environment.

However, estimating the complex distribution maps of
pollen occurrence probability across large regions and for
many taxa is difficult. While the commonly used polyno-
mial interpolation techniques could be an obvious solution,
imposing an arbitrary spatial model (e.g., linear, quadratic,
or cubic) and ignoring the uneven spatial distribution of the
pollen samples limits the accuracy and reliability of such
interpolations. Therefore, we developed a model based on
Kriging (Matheron, 1963; Chiles and Delfiner, 2012) to spa-
tialize our point-based observations and estimate occurrence
probability maps. Kriging was preferred over other types of
spatial interpolation techniques because it is based on a spa-
tial model inferred from the observations and it minimizes
the local bias and error variance. To enable its use over a
large number of taxa, we embedded it in an automatic frame-
work that preprocesses the pollen data, chooses the best type
of spatial model for each pollen taxon, and generates the in-
terpolated maps.

The goal of the present study is thus to realize, for the
first time to our knowledge, a collection of raster maps rep-
resenting the probability of occurrence of 194 pollen taxa
observed across the Euro-Mediterranean Basin, compiled in
an atlas called “EUPollMap”. For every taxon considered in
EUPollMap, the output consists of a raster file with three lay-
ers showing (1) the pollen occurrence probability, (2) the dis-
crete occurrence based on probability thresholds, and (3) the
uncertainty of the predictions. The paper is organized along
two main axes, with Sect. 2 describing the automatized Krig-
ing methodology we developed, and Sect. 3 introducing the
cartographic products of the atlas with visual examples and
reliability assessments. We contextualize the value of the re-
search in Sect. 5.

2 Methods: Spatial interpolation of pollen presence
data

2.1 The indicator Kriging method

Kriging is a standard geostatistical interpolation technique
that was first formalized in the early 1960s (Matheron, 1963)
and has been used since then in various fields of geosciences
such as, e.g., mineral resources (Goovaerts, 1997; Sadeghi
et al., 2015), hydrogeology (Varouchakis and Hristopulos,
2013), or soil properties (Emery and Ortiz, 2007; Minasny
and McBratney, 2016). Several comparative studies have
shown that Kriging produces robust and regionally smooth
interpolations, while minimizing the error variance and bias
at the interpolated locations (see, e.g., Zimmerman et al.,
1999; Wagner et al., 2012; Oriani et al., 2020). Kriging in-
terpolates discrete data Z by estimating the target variable at
any location of a pre-defined region of interest as a weighted
mean of nearby data values, with the weights being computed
by the resolution of a system of equations based on the semi-
variogram function γ .

The semivariogram, which is at the core of the Kriging
algorithm, is a function that quantifies the spatial variabil-
ity of the observed data as a response to the distance among
them. Given the spatial variable Z(x), defined at spatial lo-
cations x, with the hypothesis of stationarity (i.e., assuming
that the statistical properties of Z are uniform in space), the
experimental semivariogram for Z is estimated from the ob-
served data as γ̂ (h)= E[(Z(x)−Z(x+h))2

]/2, where Z(x)
and Z(x+h) are any pair of observations of Z at distance
h and E[·] is the average operator among all pairs of points
with a similar h, grouped in discrete h intervals (lags).

Then, a parametric semivariogram model γ is chosen
among a family of pre-determined positive-definite functions
and fitted to the experimental semivariogram γ̂ mostly using
a least-square approach. Different types of models are pos-
sible depending on the structure of the data and, usually, the
model that fits the best with the experimental semivariogram,
either by manual fit or by minimizing the error, is used in
the Kriging system. Here, we consider the exponential model
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(see Isaaks and Srivastava, 1989, p. 374):

γ̂ (h)= 1− exp
(
−3h
a

)
, (1)

where a is the range parameter explained below. Among the
standard models used in Kriging, this one is recommended
for indicator Kriging (p. 102 Chiles and Delfiner, 2012;
Dubrule, 2017), which is the modeling strategy adopted in
this study (see below in this section). Examples of experi-
mental and fitted semivariogram models are shown in panels
(b) of Figs. 1, 2, and 3.

Once fitted, the semivariogram model can be interpreted as
follows. If the modeled curve intersects the origin of the axes,
it indicates that the variation among adjacent observations
(h= 0) is close to zero, while intersecting the y axis at val-
ues larger than zero indicates discontinuities in adjacent data.
The shape of the model curve along the x axis (increasing
lag) describes the variability over larger distances, where a
steep slope indicates sharp variations. Often the model curve
reaches a plateau, whose corresponding h value, called “the
range” (a in Eq. 1), indicates the average correlation length
of the spatial structure. Above the range, the variable values
are on average not correlated. In addition, since long lags are
usually not represented by many pairs of data points, it is
common practice to limit the model fitting to the data below
a fixed maximum lag threshold. In the atlas presented in this
paper, this threshold is set to 3100 km, which corresponds
to the 80th percentile of the distribution of all pairwise dis-
tances between the observations.

Two types of Kriging were considered here: ordinary Krig-
ing (OK), which assumes Z to be stationary with no regional
trend, and Universal Kriging with external drift (UK), im-
plying the existence of a regional trend, given or estimated.
In this study, we performed preliminary tests comparing OK
with UK using elevation as external drift for different taxa
datasets (Sect. S3 in the Supplement). OK enabled the in-
clusion of all data points with reasonable computation time,
while UK required an excessive computational burden. Also,
elevation did not correlate with the pollen presence in the an-
alyzed data, so that its inclusion did not reasonably affect the
prediction when used as external drift in the Kriging model.
For these reasons, OK was preferred over UK.

Finally, the observation data for Z (in this study) are bi-
nary and can only take two values: the pollen taxon is ob-
served (Z = 1) or not observed (Z = 0). OK is therefore ap-
plied as an indicator Kriging interpolation. This way, the
first Kriging output map for Z is the expected value, vary-
ing continuously in space between 0 and 1, which can be
interpreted as the probability of occurrence of the pollen
taxon. Occasionally, the interpolated value can lie just out-
side this interval (e.g., it is expected in situations where the
Kriging weights are negative). In such cases, the values are
bounded to either 0 or 1. The second output map is the
Kriging variance and indicates the uncertainty of the predic-
tion depending on the number of data, their spatial distribu-

tion, and the semivariogram model (Goovaerts, 1997, p. 179).
Generally, the variance is lowest around data points and in-
creases with distance. In this study, the Kriging system is
solved for every pollen taxon separately, using the python
package PyKrige (https://doi.org/10.5281/zenodo.10016909,
Müller et al., 2023).

2.2 Automatic interpolation workflow

The Kriging technique is usually employed in a supervised
context, where the semivariogram model and its parame-
ters are adjusted by examining the experimental semivari-
ogram plot and the interpolation results in a trial-and-error
approach. This is necessary to avoid overfitting the model
semivariogram to the data, which can lead to unrealistic in-
terpolations. However, when many datasets have to be in-
terpolated, as is the case with the European pollen taxa, su-
pervising the model set-up for each taxon in a objective and
consistent way is not feasible.

For this reason, following previous contributions (Desas-
sis and Renard, 2013), we developed an automatic python in-
terpolation workflow for the choice and optimization of the
semivariogram model. The model fitting was based on hav-
ing well-represented lags, at least until a prescribed maxi-
mum lag threshold (here defined as 3100 km, see Sect. 2.1).
Monotonicity and a positive slope are expected in a semivar-
iogram model, but in the case of a noisy experimental semi-
variogram (which is the case for some of the observed pollen
taxa), unconstrained fitting can lead to a negative slope in
the model. For this reason, we imposed flat or monotonic-
positive model functions.

The probability maps were generated for each pollen taxon
with the following steps:

1. If the dataset presents all-0 (i.e., the taxon is not ob-
served in the study area) or all-1 (i.e., the taxon is ob-
served at every sampling location) data, generate a 0/1
field on the defined grid as output Kriging mean and a 0
field as output Kriging variance, then go to step 5.

2. Compute the experimental semivariogram and calibrate
its model (see Sect. 2.1). When the data have little to no
spatial correlation, the fitted semivariogram model tends
to become a constant function, which subsequently
leads to constant estimated mean and variance fields.

3. Solve the Kriging prediction with the optimized model
parameters at every location of the interpolation grid to
obtain the mean and variance maps. A mask based on
the coastal perimeter is used to exclude large water bod-
ies.

4. Generate a discrete occurrence map by applying a series
of fixed thresholds (0.2, 0.4, 0.5, 0.6, 0.8) on the mean
map.
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5. Export an ESRI GeoTIFF file of the georeferenced out-
put maps (see the metadata, Table 1).

6. Export the pollen presence/absence dataset as an ESRI
Shapefile.

2.3 Validation strategy

We compiled an example dataset by identifying a series of
common species for Europe with characteristic spatial fea-
tures (e.g., broad extent, rare species, discontinuous dis-
tributions). The interpolated probability surfaces and their
variances were then visually inspected and compared with
the original observations. Moreover, the reliability of all
the species interpolations was assessed with reliability plots
(Murphy and Winkler, 1977), which are common quantita-
tive and graphical representations in geo- and atmospheric
sciences (Bröcker and Smith, 2007; Allard et al., 2012). A
reliability plot is generated by splitting the dataset into train-
ing and validation data, and the probability of occurrence
predicted by the model is compared with the occurrence fre-
quency observed in the validation data. For example, for grid
cells with a predicted probability of occurrence around 0.2,
the occurrence frequency observed from the validation data
should be close to 0.2 for the prediction to be reliable. The
predicted probability range [0–1] is divided into 10 discrete
bins to group the validation locations and co-located occur-
rence data. Then the sample occurrence probability values
are plotted against the observed frequency. If the plot points
lie along the bisector (i.e., the 1 : 1 line), the predictions can
be considered reliable.

The way binary presence/absence data aggregate in space
determines the estimated probability of occurrence. Some
values are rarely found in the output probability map, and
therefore high numbers of validation data are needed for the
reliability plot to be representative of all probability bins
(Jolliffe and Stephenson, 2012). Moreover, the sampling for
these data cannot be stratified according to the posterior
probability values, which are not available a priori. To cope
with this limitation, we randomly removed 50 % of the data
to approach stable statistical values for all bins of the relia-
bility plot.

3 Application: the European atlas of modern pollen
distributions

3.1 Definition of the study area

Distances between grid points are central to Kriging. As
such, we used the spatial CRS EPSG:3034 that respects dis-
tances better than the standard CRS WGS84 that severely
distorts distances when large latitudinal ranges are covered.

The dataset is limited to data located inside and near the
spatial interpolation grid chosen to define the maps (see
metadata in Table 1). The distance limits for data outside the
grid, for both the E–W and N–S borders, is defined as 5 %

of the total longitudinal length of the map (approximately
242 km). This ensures that the borders of the grid are sur-
rounded by data, where possible, to limit extrapolation biases
near the edges of the domain studied.

3.2 Source data

3.2.1 Modern pollen data

The pollen presence point data used in this study belong to
the Eurasian Modern Pollen Database (EMPD) v.2 (Cheva-
lier et al., 2019; Davis et al., 2020), a community-based,
open-source database including 8134 pollen samples from
all over Eurasia and parts of North Africa. To develop and
test the interpolation workflow, we restricted this dataset to
Europe, where data density is the highest. The dataset is com-
posed of a mix of sample types, including surface layers of
lake and bog sediments, moss polsters, peat, and other data
sources in very low proportions. To avoid redundancy and
to simplify the classification, the names of the pollen types
from EMPD2 were grouped into a lower taxonomic resolu-
tion level and aligned to the globally harmonized pollen tax-
onomy of Herzschuh et al. (2022).

Determining the proper absence of a pollen taxon can only
be done with extensive vegetation surveys, which is unprac-
tical at the European scale. Moreover, such surveys can-
not be done for fossil observations. Therefore, we chose to
analyze the EMPD2 dataset as we would analyze the fos-
sil records. For taxa that produce large quantities of pollen
grains (grasses, pines), low percentages usually represent
long-distance transport to the surroundings of the collec-
tion site, without the actual taxon presence (Lisitsyna et al.,
2011). Assuming that their non-observation is proof of ab-
sence is therefore reasonable. On the other hand, rare taxa
or low-pollinating taxa are more difficult to observe in both
modern and fossil settings. It is common to observe them in
one sample and not in the neighboring one. Using Kriging at
the regional target scale for this study, this problem is miti-
gated since the presence is assessed as a continuous proba-
bility variable, computed as a weighted mean from multiple
neighbor presence/absence data.

The data were preprocessed as follows:

– The data coordinates are transformed from the coor-
dinate reference system (CRS) EPSG:4326 “WGS84”,
used for global data, to EPSG:3034 “ETRS89-extended
/ LCC Europe”, used for European data, to reduce the
local deformation for the domain studied. Records with
missing or invalid coordinates are discarded.

– The considered taxa belong to the following categories:
dwarf shrubs (DWAR), herbs (HERB), liana (LIAN),
palms (PALM), succulents (SUCC), trees and shrubs
(TRSH), and upland herbs (UPHE).

– The pollen counts are binarized to indicate the presence
(1) or absence (0) at every location. Based on the hy-
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pothesis that all the pollen types in a sample have been
detected, we assume that any sample location where a
taxon has not been observed corresponds to an absence
datum for that taxon. This results in a consistent point
dataset for all taxa.

– Samples with identical coordinates are merged. In such
case, a taxon is considered present if it is observed in at
least one of the samples, and absent if not.

– Following Herzschuh et al. (2022), the taxa are grouped
into 194 consolidated pollen taxa names (see the taxa
list in Sect. S1). This includes pollen types which
present redundant naming or are not distinguishable
in the count. This enables a more consistent point–
presence distribution.

3.2.2 Reference plant dataset

To evaluate our probabilistic forecasts of the pollen pres-
ence, we also assess how the spatialized pollen data com-
pare with the modern atlas of European tree distributions
by Mauri et al. (2017). In this work, the tree presence data
are mainly derived from national forest-monitoring surveys
and interpolated over 1 km regular grids. Unfortunately, the
spatial extent of this dataset is more limited than the pollen
dataset as it only covers western and central Europe. In addi-
tion, there are differences among the two datasets that pertain
to both the nature of the data (plant vs. pollen) and the type of
data collections (intensive forest inventories vs. discrete field
sampling to collect pollen samples). Therefore, this compari-
son of pollen–plant distribution only serves as a broad visual
assessment of the ability of the model to capture the main
vegetation distribution.

3.3 Structure of the EUPollMap atlas

The atlas is a collection of 194 multivariate maps represent-
ing the interpolated pollen presence probability across a ge-
ographic domain that covers Europe and its main islands,
as well as the northern edge of Africa at a 25 km resolu-
tion (see Fig. 1). This resolution is a trade-off between the
data density and our goal to provide a spatialized represen-
tation of the pollen observations. For each taxon, the out-
put data are a set of raster maps exported as a GeoTIFF
file that includes (1) the pollen occurrence probability map,
corresponding to the Kriging interpolation mean, (2) a map
with the discrete probability of occurrence, and (3) the oc-
currence uncertainty map (Kriging variance) (see Table 1 and
the examples below). Each map file is complemented with a
georeferenced shapefile containing the preprocessed source
dataset (Table 2) that can be imported in any GIS software.
The shapefile includes 5362 data points that document the
presence or absence status of the taxon with the attribute
POLLEN_PRE. Every taxa folder of the atlas also contains a

summary pdf file with the output maps, point data, and semi-
variogram model plot (similar to Figs. 1–3).

3.4 How to read the maps

In this section, we illustrate the results of the interpolation
framework by introducing the atlas figure content with three
common European trees, which are representative of the map
diversity of the atlas. Figure 1 shows the results for the taxon
Abies (fir), which is mainly observed in western and central
Europe, around the Black Sea region, and in northwestern
Russia. The source dataset plotted over the occurrence prob-
ability map (Fig. 1a) indicates that the observations match
well the high (yellow) and low (blue) probability areas. In-
terpolated areas from presence to absence data, or where the
two types are densely mixed, present an intermediate prob-
ability of pollen occurrence and are accordingly represented
by light blue/green shades.

Figure 1b shows the exponential semivariogram model
calibrated with the automatic set-up and used in the Kriging
interpolation to estimate the occurrence probability map. The
semivariogram range is approximately 1000 km, represent-
ing the average correlation distance of the data. By impos-
ing thresholds to the probability map, a discrete occurrence
map is obtained (Fig. 1c), delimiting zones related to discrete
probability intervals. This version of the probability map is
proposed as a ready-to-use tool for practitioners who want to
quantify discrete areas of pollen presence. Depending on the
application and taxa abundance, different thresholds may be
considered.

Frequent Abies pollen presence is represented by yellow
and green patches covering large parts of the Mediterranean
countries, central and eastern Europe, and northwestern Rus-
sia. This distribution partly matches the plant distribution
data from the external dataset (red dots in Fig. 1c). The
high presence of Abies in the UK and Denmark, as sug-
gested by the plant distribution data, is not represented in
the pollen and is consequently not present in the Kriging in-
terpolation. These plant observations generally constitute in-
troduced trees and might have been excluded from the pollen
analysts who generated the data on the basis that they are
anthropogenic indicators. The apparent mismatches in north-
western Russia and the Black Sea region are the result of the
limited eastward extension of the plant dataset.

Finally, Fig. 1d shows the Kriging variance map that pro-
vides information on the uncertainty of the interpolation.
This indicates the variability of the interpolation determined
by the distance from the available data, their variability, and
the chosen semivariogram model. At the bottom of the map,
the lack of data reasonably increases the uncertainty of the
pollen presence probability estimates. This is inherent to
the data location and common to all taxa of the atlas (See
Fig. 4a).

The second example showcases the pollen distribution of
Betula (birch, Fig. 2), a tree commonly observed north of
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Figure 1. Output maps for Abies: (a) pollen occurrence probability map, (b) semivariogram model, (c) occurrence map based on probability
thresholds, (d) uncertainty map based on the Kriging variance. Red dots in panel (c) indicate the plant presence data (see Sect. 3.2.2).

Table 1. Main metadata of the pollen presence maps.

Raster maps

Name <taxon name>
CRS EPSG:3034 – ETRS89-extended / LCC Europe
Extent 1993992.0, 449652.0 : 6843992.0, 5224652.0
Unit meters
Width 194
Height 191
Pixel size 25 000, −25 000
Data type Float32
GDAL driver description GTiff
File format GeoTIFF
Band count 3
Band 1 Occurrence probability (Kriging mean)
Band 2 Occurrence map (<= probability thresholds)
Band 3 Occurrence uncertainty (Kriging variance)
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Figure 2. Output maps for Betula: (a) pollen occurrence probability map, (b) semivariogram model, (c) occurrence map based on probability
thresholds, (d) uncertainty map based on the Kriging variance. Red areas in panel (c) indicate the plant presence data (see Sect. 3.2.2).

Table 2. Main metadata of the pollen presence point datasets.

Point data

Name <taxon name>
File format ESRI Shapefile
Geometry Point (Point)
CRS EPSG:3034 – ETRS89-extended / LCC Europe
Unit meters
Feature count 5362
Attribute count 1
POLLEN_PRE String (T=True, F=False)

45◦ N. The semivariogram model is fitted with the exper-
imental semivariogram (red stars) in the lower-lag portion
used for calibration (below 3100 km, see Sect. 2.1). Com-
pared to the previous example (Fig. 1), the semivariogram
model for Betula shows a larger range around 3000 km. This
enables longer correlation structures, which are necessary

for modeling the extensive pollen presence across Europe
(Fig. 2a, c), in agreement with the plant distribution data (red
dots, Fig. 2c). In the central-eastern part, the lower density of
data moderately increases the model uncertainty as seen by
the Kriging variance map (Fig. 2d).

The third example is based on the distribution of the pollen
of Olea (the olive tree, Fig. 3), which is commonly ob-
served across most of the Mediterranean region and dis-
appears rapidly with increasing distance from it. Similarly
to the Betula case, the exponential semivariogram model
presents a large range (3000 km), which accounts for long
correlated east–west structures covering the southern sector
of the map, where the pollen presence is highly probable
(Fig. 3a). Toward the mid-latitudes of Europe, the density
of detected pollen points decreases progressively until total
absence. Since the spatial structure of the occurrence proba-
bility follows a simple north–south gradient, the uncertainty
of this map (Fig. 3d) is low and uniform, except at the south-
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Figure 3. Output maps for Olea: (a) pollen occurrence probability map, (b) semivariogram model, (c) occurrence map based on probability
thresholds, (d) uncertainty map based on the Kriging variance. Red areas in panel (c) indicate the plant presence data (see Sect. 3.2.2).

ernmost edge of the map and in Iceland, where the lack of
data increases the uncertainty.

3.5 Ensemble reliability assessment

To assess the overall uncertainty of the predictive maps en-
semble, we derived a map of the average Kriging variance,
here defined as the mean of all the taxa variance maps (Band
3 in Table 1). With the variance theoretically ranging in this
case between 0 and 1, the map presents low values in the or-
der of 10−2 (Fig. 4a), with no zones of high uncertainty over
the European continent and its variability controlled by the
distance from the data. This confirms that the selected data
provide statistically accurate information on the pollen dis-
tribution over the study zone. The poorly constrained regions
unsurprisingly lie in data-poor regions.

To assess the reliability of the probabilistic predictions, we
generated reliability plots, which are realized by removing
50 % of the data and then plotting the predicted probability

of pollen occurrence for these locations with the observed
frequency from the removed data. While the number of re-
moved data is rather high and may penalize the prediction
performance, it is necessary to select enough pollen occur-
rences for all predicted probability classes (see Sect. 2.3).
The reliability values are displayed both in the form of an
ensemble graph (Fig. 4b) and in a table containing the same
reliability indicator for each taxon individually (Sect. S1).
The latter allows us to identify the taxa that do not show re-
liable predictions for any probability class.

In the ensemble reliability plot (Fig. 4b), the taxa distribu-
tion mainly aligns with the bisector (0.25–0.75 quantile enve-
lope of the ensemble), meaning that the predicted occurrence
probability matches well the observed frequency. Neverthe-
less, for some taxa, the interpolation has a tendency to over-
estimate the pollen occurrence, as seen from the 0.1 ensem-
ble boundary below the bisector (Fig. 4b). This tendency can
be identified in the table presented in the Sect. S1, where the
observed occurrence probability in each class is shown for
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Figure 4. Ensemble statistical indicators for the generated maps: (a) average Kriging variance map and (b) reliability plot obtained from the
cross-validation test removing 50 % of the data. The latter shows the observed relative frequency (y axis) as an ensemble taxa distribution
for the different probability classes predicted (x axis).

each taxon separately, with the biased values marked in bold.
The biased values mainly correspond to taxa with poorly rep-
resented local pollen variability, where isolated pollen pres-
ence data are surrounded by non-detection points or vice
versa. Examples of these cases include Casuarina, Poaceae,
Tamarix, and taxa which are almost totally absent such as
Aizoaceae, Styrax, Tsuga, or Vitex. In general, the model is
reliable, including for many rare taxa (i.e., the ones with only
the lowest-probability column filled in Sect. S1).

4 Code and data availability

The dataset presented in the paper is available at
https://doi.org/10.5281/zenodo.10015695 (Oriani et al.,
2023). Scripts to generate the dataset are available at
https://github.com/orianif/EUPollMap_scripts (last access:
17 October 2023).

5 Conclusions and perspectives

The atlas presented here constitutes a systematic carto-
graphic product offering both a discrete and a probabilis-
tic estimation for pollen presence in Europe. Primary ap-
plications are paleoclimate and paleoenvironmental recon-
structions, where these maps can be used as contemporary
analogs, but also biodiversity and environmental studies re-
quiring spatially continuous pollen maps as input.

The cross-validation test (Sect. 3.5) performed with 50 %
of the data removed shows that the interpolation approach
is overall reliable and accurate for complex but well-
represented spatial pollen distributions. The results suggest
this is also true for rarely detected taxa. Nevertheless, the

data should be sufficient to represent complex local variabil-
ity or sporadic pollen presence in order to lead to a robust
interpolation.

One possibility to relax this requirement could be to inte-
grate auxiliary variables to guide the interpolation, especially
for zones where the point data are scarce, e.g., by applying
Universal Kriging with external drift. If the auxiliary variable
is informative enough, it increases the predictive power of
the model, but at the cost of increased computational burden,
especially in regional studies with large interpolation grids
like the one presented here. However, the improvement of
the model by adding this additional information layer is not
guaranteed. Indeed, our preliminary attempt to incorporate
the elevation variable over the whole interpolation grid as ex-
ternal drift did not lead to any significant improvement in the
interpolation. This can be explained by the fact that, at this
regional scale, this auxiliary variable does not have a sim-
ple statistical relationship with the target variable, and thus
it cannot serve as an optimal explanatory variable. Neverthe-
less, it may be the case in sub-regional contexts where a clear
and causal correlation between elevation and the target vari-
able can be observed. For this reason, an accurate correlation
study would be necessary to set up multivariate interpolations
and improve our model.

The workflow developed is adaptive to large datasets and
hence it is suitable for regional gridded interpolations. In
particular, it should perform equally well with fossil pollen
records to produce continuous pollen/vegetation maps dur-
ing key periods of the past, provided that the data density
remains sufficient.

https://doi.org/10.5194/essd-16-731-2024 Earth Syst. Sci. Data, 16, 731–742, 2024

https://doi.org/10.5281/zenodo.10015695
https://github.com/orianif/EUPollMap_scripts


740 F. Oriani et al.: EUPollMap: the European atlas of contemporary pollen distribution maps

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-731-2024-supplement.

Author contributions. FO – conceptual design, development,
data analysis, manuscript writing, manuscript revision; MC – con-
ceptual design, funding acquisition, development, manuscript revi-
sion; GM – conceptual design, manuscript revision.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Denis Allard, research director at
BioSP INRAE, very much for the helpful exchange on the modeling
approach.

Financial support. This research has been supported by
the Schweizerischer Nationalfonds zur Förderung der Wis-
senschaftlichen Forschung (grant no. CRSK-2_195875). Manuel
Chevalier is also supported by the German Federal Ministry of
Education and Research (BMBF) with the Research for Sus-
tainability initiative (FONA; https://www.fona.de/en, last access:
25 June 2022) through the PalMod Phase II project (grant no.
FKZ:01LP1926D).

Review statement. This paper was edited by Birgit Heim and re-
viewed by two anonymous referees.

References

Allard, D., Comunian, A., and Renard, P.: Probability aggre-
gation methods in geoscience, Math. Geosci., 44, 545–581,
https://doi.org/10.1007/s11004-012-9396-3, 2012.

Bartlein, P., Harrison, S., Brewer, S., Connor, S., Davis, B.,
Gajewski, K., Guiot, J., Harrison-Prentice, T., Henderson, A.,
Peyron, O., Prentice, I., Scholze, M., Seppä, H., Shuman,
B., Sugita, S., Thompson, R., Viau, A., Williams, J., and
Wu, H.: Pollen-based continental climate reconstructions at 6
and 21 ka: a global synthesis, Climate Dynam., 37, 775–802,
https://doi.org/10.1007/s00382-010-0904-1, 2011.

Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E.: Strengths
and Weaknesses of Quantitative Climate Reconstructions Based
on Late-Quaternary Biological Proxies, Open Ecol. J., 3, 68–110,
https://doi.org/10.2174/1874213001003020068, 2010.

Bröcker, J. and Smith, L. A.: Increasing the reliability of
reliability diagrams, Weather Forecast., 22, 651–661,
https://doi.org/10.1175/WAF993.1, 2007.

Chevalier, M., Davis, B. A. S., Sommer, P. S., Zanon, M.,
Carter, V. A., Phelps, L. N., Mauri, A., and Finsinger,
W.: Eurasian Modern Pollen Database (former Euro-
pean Modern Pollen Database), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.909130, 2019.

Chevalier, M., Davis, B. A., Heiri, O., Seppä, H., Chase, B. M.,
Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot,
J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A.,
Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F.,
Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holmström,
L., Marsicek, J., Goring, S. J., Sommer, P. S., Chaput, M.,
and Kupriyanov, D.: Pollen-based climate reconstruction tech-
niques for late Quaternary studies, Earth-Sci. Rev., 210, 103384,
https://doi.org/10.1016/j.earscirev.2020.103384, 2020.

Chiles, J.-P. and Delfiner, P.: Geostatistics: modeling spatial uncer-
tainty, vol. 713, John Wiley & Sons, ISBN 978-0-470-31783-9,
2012.

Dallmeyer, A., Kleinen, T., Claussen, M., Weitzel, N., Cao, X., and
Herzschuh, U.: The deglacial forest conundrum, Nat. Commun.,
13, 6035, https://doi.org/10.1038/s41467-022-33646-6, 2022.

Davis, B. A. S., Chevalier, M., Sommer, P., Carter, V. A., Finsinger,
W., Mauri, A., Phelps, L. N., Zanon, M., Abegglen, R., Åkesson,
C. M., Alba-Sánchez, F., Anderson, R. S., Antipina, T. G.,
Atanassova, J. R., Beer, R., Belyanina, N. I., Blyakharchuk, T.
A., Borisova, O. K., Bozilova, E., Bukreeva, G., Bunting, M.
J., Clò, E., Colombaroli, D., Combourieu-Nebout, N., Desprat,
S., Di Rita, F., Djamali, M., Edwards, K. J., Fall, P. L., Feur-
dean, A., Fletcher, W., Florenzano, A., Furlanetto, G., Gaceur,
E., Galimov, A. T., Gałka, M., García-Moreiras, I., Giesecke,
T., Grindean, R., Guido, M. A., Gvozdeva, I. G., Herzschuh,
U., Hjelle, K. L., Ivanov, S., Jahns, S., Jankovska, V., Jiménez-
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