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Abstract. Phosphorus (P) is recognized as an important driver of terrestrial primary productivity across biomes.
Several recent developments in process-based vegetation models aim at the concomitant representation of the
carbon (C), nitrogen (N), and P cycles in terrestrial ecosystems, building upon the ecological stoichiometry and
the processes that govern nutrient availability in soils. Thus, understanding the spatial distribution of P forms in
soil is fundamental to initializing and/or evaluating process-based models that include the biogeochemical cycle
of P. One of the major constraints for the large-scale application of these models is the lack of data related to
the spatial patterns of the various forms of P present in soils, given the sparse nature of in situ observations.
We applied a model selection approach based on random forest regression models trained and tested for the
prediction of different P forms (total, available, organic, inorganic, and occluded P) – obtained by the Hedley
sequential extraction method. As input for the models, reference soil group and textural properties, geolocation,
N and C contents, terrain elevation and slope, soil pH, and mean annual precipitation and temperature from 108
sites of the RAINFOR network were used. The selected models were then applied to predict the target P forms
using several spatially explicit datasets containing contiguous estimated values across the area of interest. Here,
we present a set of maps depicting the distribution of total, available, organic, inorganic, and occluded P forms
in the topsoil profile (0–30 cm) of the pan-Amazon region in the spatial resolution of 5 arcmin. The random
forest regression models presented a good level of mean accuracy for the total, available, organic, inorganic,
and occluded P forms (77.37 %, 76,86 %, 75.14 %, 68.23 %, and 64.62% respectively). Our results confirm that
the mapped area generally has very low total P concentration status, with a clear gradient of soil development
and nutrient content. Total N was the most important variable for the prediction of all target P forms and the
analysis of partial dependence indicates several features that are also related with soil concentration of all target
P forms. We observed that gaps in the data used to train and test the random forest models, especially in the
most elevated areas, constitute a problem to the methods applied here. However, most of the area could be
mapped with a good level of accuracy. Also, the biases of gridded data used for model prediction are introduced
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in the P maps. Nonetheless, the final map of total P resembles the expected geographical patterns. Our maps
may be useful for the parametrization and evaluation of process-based terrestrial ecosystem models as well as
other types of models. Also, they can promote the testing of new hypotheses about the gradient and status of
P availability and soil-vegetation feedback in the pan-Amazon region. The reference maps can be downloaded
from https://doi.org/10.25824/redu/FROESE (Darela-Filho and Lapola, 2023).

1 Introduction

Phosphorus (P) is one of the main plant macronutrients, and
it is known to pose major limitations on the terrestrial pri-
mary productivity in the tropics (Wollast et al., 1993, Du
et al., 2020; Cunha et al., 2022). In ecosystems with highly
weathered soils, such as in the pan-Amazon region (RAISG,
2023), the processes that govern the local readily available P
(orthophosphates, i.e. salts and esters of the orthophosphoric
acid) in soils, are largely related to the mineralization of or-
ganic matter mediated by decomposers (da Silva et al., 2022).
In such weathered soils, the readily available P for living or-
ganisms, including plants, is only a small fraction of the total
P (Quesada et al., 2010; Vitousek et al., 2010; Walker and
Syers, 1976), whereas most of the P is chemically bound
or adsorbed to other molecules, forming stable organic and
inorganic compounds (Buendia et al., 2014; Smeck, 1985).
Plants and microorganisms developed several strategies to
overcome the lack of available P in these soils, explore less
available P pools (Lugli et al., 2020; Reichert et al., 2022;
Lambers, 2022, and citations therein), and preserve the ac-
quired P, resulting in a tight cycling and very small leaching
(Wilcke et al., 2019).

The different P pools vary in time and respond differen-
tially to environmental conditions; thus, they can act as sinks
or sources of available P (Schubert et al., 2020; Helfenstein
et al., 2018; Gama-Rodrigues et al., 2014), and the under-
standing of the processes that govern the cycling of P in these
pools is important to the models that aim at simulating the
productivity of terrestrial ecosystems. Dynamic global vege-
tation models (DGVMs) that include the P cycle often rely on
maps of soil P for model benchmarking or model initializa-
tion. These maps are built upon models of varying complex-
ity that link soil P pools to variables like soil type, soil age,
lithology, soil C and N content, and soil texture (e.g. Cas-
tanho et al., 2013; Goll et al., 2012; Wang et al., 2010). The
global maps of soil P forms created and described by Yang
et al. (2013) (available in Yang et al., 2014) were derived
from several global soil datasets combined with the current
scientific understanding of P transformations during pedo-
genesis. In this approach, total P content was obtained from
estimates of initial rock P content and model-based P loss
rates from soil chronosequences. The attribution of each P
fraction, from the estimated total P, is based on averaged val-
ues of each fraction extracted sequentially in different soil
reference groups (Yang et al., 2013). The low number of soil

P measurements and the lack of knowledge about the pro-
cesses controlling P during pedogenesis are the sources of a
high level of uncertainty in these global maps (Yang and Post,
2011). Yet, some studies provided evidence that edaphic and
climatic factors (He et al., 2021; Gama-Rodrigues et al.,
2014) other than reference soil groups can be used to predict
the size of the P pools in soils.

Thus, here we aim to overcome the low number of soil P
measurements for certain reference soil groups by develop-
ing a set of maps of the different P forms for the pan-Amazon
region. Firstly, we used a model selection approach to fit, test,
and evaluate a set of machine learning regression models us-
ing 108 sites with measurements of sequential extraction of
soil P and a set of environmental variables that are comple-
mentary to the reference soil groups. Finally, we used the
selected models to predict the spatial distributions of soil P
forms using gridded datasets of the same environmental vari-
ables used to fit the random forest (RF) regression models.

2 Material and methods

2.1 Phosphorus data: the fitting dataset

The soil and other environmental measurements at 92 sites
selected (Hou et al., 2018) for this study were originally pre-
sented in the studies of Quesada et al. (2010) and Lloyd et
al. (2015). The soil P measurements and analysis are de-
scribed and standardized by Quesada et al. (2010) and refer
to the 0–30 cm depth of the soil profile. Additionally, here we
included 16 unpublished site data from the study of Quesada
et al. (2020), resulting in a total of 108 observations (Figs. 1
and S6). All soil samples were collected under the RAIN-
FOR protocol for soil sampling (RAINFOR, 2022). The soil
samples were submitted to a sequential P extraction using a
Hedley fractionation procedure (Carter and Gregorich, 2007;
Hedley and Stewart, 1982). In this dataset, the P fractionation
data are complemented by several variables. For this study,
soil texture (sand, silt, and clay fraction), C and N content,
pH, elevation, reference soil group, mean annual precipita-
tion and temperature, latitude, and longitude were used (Ta-
ble 1). The calculations of soil attributes, like pH, texture,
and C and N contents, are described in Quesada et al. (2010).
Elevation and climatic variables were extracted by Quesada
et al. (2010, 2020) and Lloyd et al. (2015) from a digital el-
evation model (Shuttle Radar Topography Mission database
– Digital Elevation Model – SRTM-DEM) (Farr et al., 2007)
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and the WordClim dataset (Fick and Hijmans, 2017), respec-
tively. The slope for all sites in the fitting dataset was calcu-
lated using the same digital elevation model (Saatchi, 2013)
with 30 arcsec of resolution. The categorical variable refer-
ence soil group was transformed into a set of 16 binary vari-
ables via one-hot encoding to train the random forest regres-
sion models.

Due to the complex forms in which soil P occurs in
soils, sequential chemical extraction methods are commonly
used (Hedley and Stewart, 1982), resulting in groupings of
“ecosystem-relevant” pools (Gama-Rodrigues et al., 2014;
Hou et al., 2018), which we refer to here as P forms. There
is ongoing discussion about the interpretation of the P frac-
tions obtained via the sequential extraction methods and no
consensus on how to organize this into reservoirs in the
ecosystem (Gu and Margenot, 2021; Barrow et al., 2020).
Nonetheless, up to now this has been the most commonly
used method to determine soil P fractions, and in this study,
we considered five P pools or forms based on previous works
(Hedley et al., 1982; Yang et al., 2013; Hou et al., 2018).

1. The orthophosphates, and other inorganic forms which
can be easily converted into orthophosphates with res-
idence times that vary from minutes to hours (Helfen-
stein et al., 2020), are classified as available P. This P
pool is composed of the resin and NaHCO3 (sodium bi-
carbonate) inorganic fractions derived from the sequen-
tial extraction process.

2. The forms of P resulting from chemical bonds with in-
organic compounds that are less but still accessible by
plants, i.e. they have mean residence times that vary
from days to months (Helfenstein et al., 2020), are clas-
sified here as inorganic P; this P pool is composed of the
NaOH (sodium hydroxide) inorganic P fraction derived
from the sequential extraction method.

3. All the fractions of P related to the organic matter are
classified as organic P; this pool is composed of the or-
ganic fractions extracted with NaHCO3 and NaOH in
the sequential extraction process. The inorganic and or-
ganic P pools are accessible by plants via alternative ac-
quisition and mobilization strategies (Lambers, 2022).

4. P linked to primary minerals is the form that is present
in the parent lithology. This form of soil P is com-
monly named primary mineral P and is transformed by
weathering, which liberates inorganic P in the soil. Here
we assume that the primary mineral P is composed of
the fraction extracted with HCl (hydrochloric acid –
calcium-bound P) in the sequential fractionation pro-
cess. The mean residence time of primary mineral P
falls into timescales that vary from years to millennia
(Helfenstein et al., 2020).

5. There are less accessible forms of P that are tightly
bonded or adsorbed to other molecules in soil, organic

or inorganic, and, due to the strength of these chemi-
cal linkages, only become available to plants at longer
timescales and/or with higher costs for mobilization
and acquisition (Schubert et al., 2020). These forms are
grouped into the pool of occluded P and are represented
here by the residual P obtained by Quesada et al. (2010).
This residual pool is estimated from the subtraction be-
tween total P (presented next) and the sum of all preced-
ing forms (1–4). Both occluded P and primary mineral
P are formed by stable compounds that have residence
times ranging from years to millennia (Lambers, 2022;
Helfenstein et al., 2018).

The total P pool comprises all the forms of P described
above and is the total P extracted with acid digestion using a
concentrated solution of H2SO4 followed by H2O2 in repli-
cate samples to avoid errors caused by the laboratory proce-
dures (Quesada et al., 2010). The aggregation of P fractions
extracted sequentially into P pools to be used in this study is
summarized in Table 2.

The limited number of samples and the spatial gaps in the
dataset used for fitting are understandable, considering the
mobility challenges in the region. Similarly, the sample col-
lection is temporally heterogeneous due to these constraints,
limiting opportunities for repeated sampling over extended
periods (Carvalho et al., 2023). The reference maps con-
structed here are based on the assumption that the size of the
P form pools in soils remains stable during sampling. This
implies that the transformation of some P forms into others
does not significantly alter the size of the P form pools dur-
ing data collection. Given the geological timescales of P’s
biogeochemical cycling, we consider this a reasonable as-
sumption. However, understanding the dynamics of P forms
in soil falls outside the scope of this study. The complete de-
scription of the phosphorus dataset used for model fitting is
described in Sect. 2.3.

2.2 Predictive variables for constructing the P maps: the
predictive dataset

The predictor data were obtained from two different
sources. Mean annual precipitation and temperature (MAP
in mm yr−1 and MAT in ◦C) and elevation (metres) were
extracted from the WorldClim database (Fick and Hijmans,
2017). Terrain slope (%) was estimated from the elevation
data. Soil pH in water, soil texture (sand, silt, and clay, %),
total organic C (TOC; %), total N (TN; %), and reference
soil groups (World Reference Base, WRB) were obtained
from the SoilGrids 2.0 database (Poggio et al., 2021). All
spatial raster datasets were downloaded from the sources and
used in the resolution of 5 arcmin. While it is possible to ob-
tain the data in a finer resolution, the primary intent of the
maps presented here is to parametrize and benchmark land
surface models that simulate terrestrial vegetation. Thus, we
opted to produce the maps in the resolution of 5 arcmin. In
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Figure 1. (a) Mean total P predicted by 300 selected random forest models with mean accuracy of 77.4 % in the training/testing phase.
(b) Standard error of the 300 predicted maps. The hatched areas mark the regions where the dissimilarity index (DI) presented values greater
than the sum of the third quartile with the interquartile range. Red circles mark the sites with data collections for the fitting dataset.

Table 1. Measured variables used in this study. The P pools sizes are based on the grouping of different fractions sequentially extracted of
soil samples (see Table 2). All soil measurements were collected in the 0–30 cm soil profile.

Feature Units

Latitude (lat) Decimal degrees north (WGS84)
Longitude (long) Decimal degrees east (WGS84)
Reference soil group WRB major reference soil groups
Sand, silt, and clay %
Slope %
Elevation Metres (m)
MAT (mean annual temperature) ◦C
MAP (mean annual precipitation) mm yr−1

Topsoil pH in water − log(H+)
TOC (total organic carbon) %
TN (total nitrogen) %
Inorganic P mg kg−1

Organic P mg kg−1

Available P mg kg−1

Occluded P mg kg−1

Total P mg kg−1

Table 2. Ecological P forms modelled in this study and the respec-
tive fractions of P obtained with the methods described in Hedley et
al. (1982), Quesada et al. (2010), and Hou et al. (2018). The total P
was extracted from a replicate sample using the method of Tiessen
and Moir (Carter and Gregorich, 2007). Pi is the inorganic P frac-
tion. Po is the organic P fraction, as in Hou et al. (2018).

Forms of P modelled Hedley fractions
in this study

Available P Resin P, NaHCO3 Pi
Organic P NaHCO3 Po, NaOH Po
Inorganic P NaOH Pi
Occluded P HCl
Total P H3SO4+ H2O2 in a replicate sample

this resolution, the maps can be easily aggregated to sat-
isfy the needs of land surface modelling, at the same time
enabling other possible uses of the reference maps that re-
quire a higher resolution. To identify the areas, i.e. grid cells,
where the predictor data present high multivariate dissimi-
larity with the observed data, such that the predictive power
of the random forest models can be compromised, we calcu-
lated the dissimilarity index (DI; Meyer and Pebesma, 2021).
The DI denotes the multidimensional dissimilarity of a given
predictor grid cell (a spatial grain composed of the data de-
scribed in this section) in relation to the fitting dataset (the
phosphorus dataset, described in the previous section). The
DI can assume values equal to or greater than zero. Low val-
ues of DI indicate that the given predictor grid cell presents
low dissimilarity in relation to the observations in the fitting
dataset. We filtered the data, aiming to prevent the random
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forest models from realizing predictions in areas where the
values in the predictive dataset fall outside the range of the
variables in the fitting dataset, used to train and test the mod-
els. We excluded all grid cells with DI values above the sum
of the third quartile with the interquartile range from the fig-
ures (Fig. S2). Geospatial raster layers with the DI values and
masks with regions excluded in the DI analysis are provided
with the reference P maps.

2.3 Random forest models

We employed a model selection approach based on regres-
sions using the random forest algorithm (Breiman, 2001;
Cutler et al., 2012). For each target P form (available, or-
ganic, inorganic, occluded, and total P), 100 000 random for-
est regression models were trained and tested using the fit-
ting dataset (Sect. 2.1). We used the Scikit-Learn Random-
ForestRegressor (Pedregosa et al., 2011). For each random
forest model being fitted, 100 decision tree estimators were
used. For each model, the phosphorus dataset was randomly
split into training and test data (75 % and 25 % of the sam-
ples, respectively). During the training and testing, every fit-
ted model and its relative train–test subsets were assigned
to a random state, represented by an integer between 0 and
99 999. We chose this selection approach due to the inherent
stochasticity in both the train–test split phase and the train-
ing of random forest models. In the former, samples from the
dataset are randomly assigned to either the training or test-
ing sets. In the latter, stochasticity arises from two factors:
(i) bootstrap sampling, where each decision tree is trained on
a random sample (with replacement) from the dataset, and
(ii) feature randomness during decision tree construction.
Unlike standard decision tree construction, which uses the
feature that provides the most information gain for a split (or
tree branch), random forests build each tree based on a ran-
dom subset of features from the training data. Therefore, by
selecting a group of models from a pool, we can capture the
inherent stochasticity in the models while choosing the most
accurate ones. As criteria for the selection of random forest
models, we adopted an accuracy measure (Eq. 1) based on
the mean absolute percentage error (MAPE; De Myttenaere
et al., 2016) and a Monte Carlo cross-validation procedure
(Stone, 1974; Kuhn and Johnson, 2013) in which the models
were cross-validated on 15 random splits of the phosphorus
dataset, using the same ratio of the fitting dataset splitting as
in the training phase. The metric used to evaluate the model’s
performance in the cross-validation phase was the coefficient
of determination (R2). The cross-validation provides a mea-
sure of the generalization power of each selected model over
the fitting dataset. For each target variable,i.e. P form, we
selected the models with accuracy and cross-validation R2

scores above arbitrarily chosen threshold values based on
preliminary evaluations of a thousand random forest regres-
sion models for each target variable. The threshold values
chosen (Table 3) were defined to enable our model selection

to result in a minimal number of models after training the
pool of models for each target variable. The selection crite-
ria, the number of selected models for each target variable,
the mean accuracy (Aµ), and cross-validation R2 of the se-
lected models are presented in Table 3. The model accuracy
is defined as

accuracy= 100−MAPE (%). (1)

We calculated two additional model evaluation metrics; the
mean absolute error and the coefficient of determination (not
to be confused with the cross-validationR2) for each selected
model for all P forms. To estimate the importance of the
features, also a measure of model sensitivity to the regres-
sor variables, we calculated the mean decrease in accuracy
(MDA) for each selected model. The MDA is calculated via
permutation where a given selected model is tested several
times (120 in our case), with rearrangements (shuffling of
a single feature) in the model’s respective testing split of the
fitting dataset. These rearrangements aim to eliminate the po-
tential relationships between the permutated features and the
target variable and estimate how much accuracy is lost in the
process. Thus, for a given model, features that show higher
values of MDA provide higher predictive power.

In our model selection approach, the models fitted for the
primary mineral phosphorus (P) form demonstrated very low
accuracy, with the best cases achieving only 15 %. Conse-
quently, we did not include the primary mineral P form in the
initial part of the analysis, which involved model fitting. We
attribute this to the extremely low values of calcium-bound P
observed in most samples in the fitting dataset. The majority
of data in the fitting dataset were collected from sites with
old, well-weathered, and acidic soils, characterized by trace
amounts of calcium-bound P. Furthermore, we concluded
that our set of predictive variables, considering both the ge-
ographical context and the distribution of sampled sites, was
insufficient to generate an inference model for primary min-
eral P. To address this issue, we estimated the size of the pri-
mary P pool by subtracting the combined total of available,
organic, inorganic, and occluded P forms from the estimated
total P. We interpret this as an indication that the information
from the set of variables in Table 1 is insufficient to gener-
ate predictions for the primary P form. It is important to note
that the total, available, organic, inorganic, and occluded P
forms described in this section were used solely as targets,
i.e. response variables, for model fitting purposes.

To identify the effects of the most important input features
on the predictions of the random forest models, we calcu-
lated the partial dependence (Hastie et al., 2001) and plot-
ted the individual conditional expectation (Goldstein et al.,
2014) for the most accurate random forest model selected for
each P form. To generate the final maps of the P forms, we
grouped the maps predicted by the selected models for each
P form via the mean and calculate the standard error (both
in mg kg−1). We used the topsoil bulk density from SoilGrids
2.0 (Poggio et al., 2021) to calculate the stocks of each P
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Table 3. Threshold values for model selection (see the main text, Sect. 2.1), number of selected models, and mean accuracy (Aµ) obtained
for each P fraction.

P form Min. A value Min. R2 in Number of Aµ of Mean cross-validation
(%) cross-validation selected models selected models (%) R2 of selected models

Available P 75 0.55 419 76.86 0.59
Organic P 73 0.55 247 75.14 0.67
Inorganic P 65 0.55 102 68.23 0.57
Occluded P 60 0.55 56 64.61 0.58
Total P 75.8 0.55 300 77.37 0.7

form in the topsoil (in Pg – petagrams). The steps involved in
model training, testing, and selection and the selected models
used for the prediction of P forms are summarized in Fig. S1.
We compared our final map of total P concentration with the
map of He et al. (2021). The observed values of total P in the
fitting dataset were compared with the respective predicted
values in the corresponding grid cells of the estimated maps
via the Pearson correlation coefficient. The maps presented
here were coloured using Scientific colour maps version 8.0
(Crameri, 2021; Crameri et al., 2020).

3 Results

3.1 Descriptive statistics of the datasets

The mean concentration of total P in the fitting dataset across
the 108 sites was 284.13 mg kg−1 (Table S1). The primary
mineral and occluded forms of P corresponded to 53.61 %
of the mean total P concentration, followed by the organic
P (27.78 %), inorganic P (11.9 %), and lastly the available P
(6.71 %). The descriptive statistics of the features in the fit-
ting dataset are presented in Table S2. The predictive dataset
was obtained after the adequation of several well-known spa-
tial datasets covering the area of interest. The descriptive
statistics of the features in the predictive dataset are presented
in Table S3. The use of the dissimilarity index (DI; Fig. S2)
resulted in the exclusion of several grid cells from the pre-
dictive dataset (hatched areas in Figs. 1–6). The area covered
by the predictive dataset is approximately 8.4× 106 km2, of
which 12.34 % was excluded for the prediction of the total
P map. The excluded areas for the final maps of the avail-
able, organic, inorganic, and occluded P forms were 14.3 %,
11.7 %, 14 %, and 7.3 % respectively. The excluded areas for
each P form overlap in several locations. The intersection of
all excluded areas represented 21.5 % of the covered area in
the predictive dataset (hatched areas in Fig. 6). The excluded
grid cells in the DI analysis have higher values of elevation,
slope, TOC, and TN and lower values of MAT when com-
pared with the non-excluded grid cells (Figs. S3 and S4). The
predicted values of P forms were consistently higher in the
excluded areas (Fig. S4). After the exclusion of the grid cells
with high DI values, the distribution of the features in the
predictive dataset fell approximately within the distributions

of the features in the fitting dataset (Fig. S5). The descriptive
statistics of the predictive dataset without the exclusion of the
grid cells with high DI values can be found in Table S3.

3.2 Estimated P stocks in the topsoil and the
geographical patterns of P pools in the study area

All estimates presented in this section do not consider the
excluded areas in the DI analysis. The estimated P form con-
centrations (Figs. 1–5) are the mean values for each grid
cell as predicted by the selected models. The mean values
are presented with the standard error. The estimated stock
of total P (Fig. 1) is 0.71 Pg P, with a mean concentration
of 264.17 mg kg−1 ranging from 104.25 to 823.7 mg kg−1

in the topsoil profile. We found total P concentration above
the mean values in the Amazonian foreland basins and in
the central area of the western portion of the Amazon rift
(the region that divides the Brazilian and Guiana shields),
which corresponds approximately to the catchments of the
Solimões, Juruá, and Purús rivers at the centre of the study
area (Fig. S6). In comparison, the mean total P concentra-
tion found in the He et al. (2021) map, over the same area,
is 336.6 mg kg−1, ranging from 191.2 to 961.1 mg kg−1. The
estimated stock of available P (Fig. 2) is 0.04 Pg P – or 5.6 %
of the total P stock, and the estimated mean concentration
is 13.84 mg kg−1, ranging from 6.92 to 65.21 mg kg−1. The
concentration of available P is lower than the mean in most
of the central and north portions of the study area but higher
than the mean in the regions under the influence of the oro-
genic systems in the western, southern, and northern regions,
characterized by elevations higher than 600 m (Fig. S6). The
stock of organic P (Fig. 3) is 0.16 Pg P (22.5 % of the to-
tal P stock). The estimated mean concentration of organic
P ranges from 19.6 to 247.18 mg kg−1, with mean values of
59.6 mg kg−1. The estimated stock of inorganic P (Fig. 4)
is 0.08 Pg P (11.2 % of the estimated total P stock) with a
mean concentration of 29.79 mg kg−1, ranging from 11.63
to 117.18 mg kg−1. The spatial patterns of organic and inor-
ganic P concentrations follow the spatial pattern of the total
P concentrations. The estimated stocks of occluded P corre-
spond to 55 % (0.39 Pg P) of the predicted stock of total P,
with a mean concentration value of 137.87 mg kg−1 ranging
from 54.12 to 319.53 mg kg−1 (Fig. 5). Finally, the estimated
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stocks of primary mineral correspond to 7 % (0.05 Pg P)
of the predicted stock of total P, with a mean concentra-
tion value of 21.29 mg kg−1 ranging from 0 to 161 mg kg−1

(Fig. 6).

3.3 Model performance and relations between
predictive features and target P forms

For each modelled P form (total, available, organic, inor-
ganic, and occluded P), several models were selected based
on minimum thresholds of accuracy (Eq. 1) and performance
in a Monte Carlo cross-validation procedure. Both evaluation
metrics were calculated during the training and testing of the
random forest regression models with the P (fitting) dataset.
We selected 300 models for the prediction of the total P con-
centration maps (Table 3). The models presented a mean ac-
curacy of 77.37 % (Fig. 1, left panel) with a mean score (R2)
of 0.7 in the cross-validation (Fig. S7). The importance score
(Fig. 7) shows the features that confer more valuable infor-
mation and that increase the accuracy of the random forest
models in the training/testing phase. Total N has high val-
ues of MDA for all target P forms and the highest values
for total P. Total N, pH, sand, mean annual temperature, silt,
and total organic C were the most important predictive fea-
tures for the models fitted with total P as target (Fig. 7). Total
P presented positive non-linear relations with total N, silt,
and total organic C; a non-monotonic relation with pH; and
negative non-linear relations with MAT and sand fraction as
shown by the partial dependency plots (Fig. S8).

The 419 models selected for prediction of the available
P (Table 3) presented a mean accuracy of 76.85 % with a
score of 0.6 in the cross-validation (Figs. 2 and S9). The vari-
ables with higher values of MDA were total N, MAP, total
organic C, pH, elevation, and slope (Fig. 7). All the listed
variables presented positive non-linear relations with avail-
able P apart from MAP, that showed a non-linear relation
(Fig. S9). For the prediction of organic P, 247 random forest
regression models were selected (Table 3) with a mean accu-
racy of 75.14 % and cross-validation R2 of 0.67 (Figs. 3 and
S10). The variables with higher values of MDA for organic
P (Fig. 7), on average, were total N, MAT, silt, elevation,
total organic C, and pH. All variables presented positive re-
lations with organic P concentration except MAT (Fig. S12).
For the inorganic P form, 102 models with a mean accuracy
of 68.23 % and a cross-validation score of 0.58 were selected
(Figs. 4 and S13). The variables with higher values of MDA
for the inorganic P form were total N, sand, total organic C,
MAT, latitude, and clay (Fig. 7). Total N, total organic C, and
clay presented positive relations with inorganic P; in contrast,
MAT and sand showed negative relations (Fig. S14). For the
occluded P form, 56 models were selected and presented a
mean accuracy of 64.6 % with a score of 0.58 in the cross-
validation (Fig. S15). The most important variables for the
prediction of occluded P were pH, sand, TN, clay, silt, and
latitude (Fig. 7). Occluded P showed positive non-linear re-

lationships with all those variables with exception of sand
(Fig. S16). In our analysis, the reference soil group has very
low values of MDA (Figs. 7 and S17), indicating that they are
not powering the accuracy of the random forest models and,
thus, are not good predictors for P forms in the soil in our sta-
tistical approach. The predicted values of total P in our map
presented a correlation coefficient of 0.73 (p<0.01) when
compared with the observed values in the fitting dataset. For
comparison, the map of total P of He et al. (2021) presented
a correlation coefficient of 0.36 (p<0.01).

4 Discussion

We used soil data sampled in 108 plots of the RAINFOR
network in the pan-Amazon region (the fitting dataset) to
train, test, and select random forest regression models. The
target variables were the concentration of total, available, or-
ganic, and inorganic P forms in the topsoil. The predictive
features in the fitting dataset were latitude; longitude; sand,
silt, and clay fractions; mean annual precipitation and tem-
perature; pH; elevation and slope; total N; total organic C;
and reference soil group. Using the selected models and a
compiled spatially explicit dataset (5 arcmin lat–long) con-
taining 98 705 grid cells with estimated values of the pre-
dictive features found in the fitting dataset, we constructed
estimated maps of the target P forms for the pan-Amazon
region.

4.1 Soil phosphorus maps

The mean concentration of total P in the fitting dataset
(284.13 mg kg−1) shows that the pan-Amazon region is
poor in phosphorus when compared with a global mean
of 570 mg kg−1 (He et al., 2021). The Amazonian foreland
basins (Fig. S6) are marked by relatively higher values of
total P. These are Cenozoic sedimentary basins in western
Amazon and are under the influence of the ongoing Andean
orogenesis uplifting (Val et al., 2021, and citations therein)
during the last 1× 107 years. The regional atmospheric cir-
culation, influenced by orogenic effects, causes high precipi-
tation rates along the Andes foothills in the western Amazon
(Bookhagen and Strecker, 2008). The transport of primary
material enriched with P from the Andes foothills through
Amazonian foreland basins and through the lowland catch-
ments of the Amazonas, Solimões, Juruá, and Purús rivers
in the central Amazon (Solimões and Amazon sedimentary
basins, Fig S6) results in a relatively higher total P in these
regions (Wittmann at al., 2011; Quesada et al., 2010). In
contrast, the sedimentary basins in the lowlands of eastern
Amazon are characterized by approximately 2×107 years of
tectonic stability under the influence of the weathered crys-
talline outcrops of the Proterozoic rocks of the Brazilian and
Guinan shields (Quesada et al., 2010). The generated map of
total P (Fig. 1) resembles the predicted patterns found in the
literature (Val et al., 2021) and in comparison with the more

https://doi.org/10.5194/essd-16-715-2024 Earth Syst. Sci. Data, 16, 715–729, 2024



722 J. P. Darela-Filho et al.: Reference maps of soil phosphorus for the pan-Amazon region

Figure 2. (a) Mean available P concentration predicted by the 419 selected random forest models, with a mean accuracy of 76.9 % at the
training phase. (b) Fraction of mean available P as percentage of the predicted total P concentration. (c) Standard error of the 419 predicted
maps. The hatched areas mark the regions where the dissimilarity index (DI) presented values greater than the sum of the third quartile with
the interquartile range.

Figure 3. (a) Mean organic P predicted by 247 selected random forest models, with a mean accuracy of 75.1 %. (b) Fraction of the mean
total P represented by the mean organic P. (c) Standard error of the 247 predicted maps. The hatched areas mark the regions where the
dissimilarity index (DI) presented values greater than the sum of the third quartile with the interquartile range.

recent map of total P (He et al., 2021) our map presented a
better correlation coefficient with observed data. However, it
is important to note that despite the fact that the dataset used
to train our random forest models was a subset of the data
used to train and test the random forest model used by He
et al. (2021), the latter was trained using global data aiming
to the production of a global map, indicating that training
models to restricted areas could be important to optimize the
accuracy and predictive power. The difference between the
predicted map of total P (Fig. 1) and the sum of the com-
pounding P forms (Figs. 2–6) is a proxy for the primary min-
eral P form (Fig. 7) and shows that the abundance of P-rich
primary material is higher in the border between the Andes
and the Amazon than in the older soils of the Amazon low-
lands due to the high weathering intensity and transport of
parental material associated with the environmental condi-
tions. The spatial distribution of the occluded P (Fig. 6), or-
ganic P (Fig. 3), and inorganic P (Fig. 4) followed the pattern
observed in the total P map (Fig. 1), indicating that the sizes
of these P pools are related with the concentration of total P
(He et al., 2023).

4.2 Important variables and partial dependence

The analysis presented here showed the dependence of all
target P forms, especially total P, on total N (Fig. S8). Con-
sidering the theory about the fate of these elements in soils
(Walker and Syers, 1976; Lambers et al., 2008), one possible
explanation for this observed link comes from the develop-
ment stage of the soils in the region, that are originated from
old lithologies (minimum age >1.5×106 years) and charac-
terized by millions of years of geological stability and contin-
uous weathering (Val et al., 2021), meaning that the younger
soils in the fitting dataset are old if compared with volcanic
soils in the common chronosequences studied in Hawaii, for
example (Crews et al., 1995). Quesada et al. (2010) already
identified a positive correlation between total P and total N.
In general, higher values of total P concentration and total N
were found in the younger reference soil groups in the fitting
dataset, with the concentration of both N and P decreasing
with soil age, indicating that the correlation between total N
and total P could be explained by the gradient of soil particle
specific surface area, surface charge densities, and organic
matter adsorption (Quesada et al., 2010). Another concurrent
explanation could be the possible control of P on N fixation
(Reed et al., 2013, but see Wong et al., 2020). On the one
hand, for younger and less weathered soils the main source
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Figure 4. (a) Mean inorganic P predicted by 102 selected random forest models, with a mean accuracy of 68.2 % in the training/testing
phase. (b) Fraction of the mean total P represented by the mean inorganic P. (c) Standard error of the 102 predicted maps. The hatched areas
mark the regions where the dissimilarity index (DI) presented values greater than the sum of the third quartile with the interquartile range.

Figure 5. (a) Mean occluded P predicted by 56 selected random forest models, with a mean accuracy of 64.6 % in the training/testing phase.
(b) Fraction of the mean total P represented by the mean occluded P. (c) Standard error of the 56 predicted maps. The hatched areas mark
the regions where the dissimilarity index (DI) presented values greater than the sum of the third quartile with the interquartile range.

of N is biological fixation, and for P it is weathering and/or
deposition of primary minerals rich in P (Lambers, 2022).
On the other hand, older and weathered soils are character-
ized by the continuous loss of N and P and the accumulation
of P as occluded forms (Crews et al., 1995), with the organic
forms of both elements exerting a strong control on the nutri-
ent availability to plants (da Silva et al., 2022). The predom-
inant low nutritional status of the soils in the fitting dataset
and the positive relation between total N and total P indicate
that in the very old and weathered soils of the pan-Amazon
region, the low availability of P may be a limiting factor for
biological N fixation (Liese et al., 2017; Van Langenhove et
al., 2021; Zhang et al., 2022).

Besides total N, other variables also presented high values
of MDA for the target P forms. The variable pH has high val-
ues of MDA for all target P forms with the exception of the
inorganic P. The partial dependence of total P on pH (Figs. 7
and S8) indicates a positive relation between pH and total P.
This is expected because in the sampled sites, in general, a
greater concentration of total P is associated with younger
soils that have a higher sum of bases and less exchange-
able Al, which in turn are associated with higher pH values
(Quesada et al., 2010). Mean annual precipitation presented
high values of importance for the prediction of available P
(Fig. 6) and a negative relation with available P (Fig. S10).
The strong dependence of available P on precipitation is ex-

plained by a few sites that are characterized by young soils
(Umbrisols and Cambisols) that have an overall greater total
P concentration and present MAP lower than 1000 mm yr−1.
In these sites, the low precipitation rates can contribute to a
low-intensity transport of water-soluble fractions of P. Un-
surprisingly, mean annual temperature presented high values
of importance for the prediction of organic P (Fig. 6) and a
negative correlation with the organic P form (Fig. S12). Tem-
perature is one of the main drivers of organic matter decom-
position (Howe and Smith, 2021), and thus, it is reasonable
to expect that under lower decomposition rates, the concen-
trations of P related to organic matter should be relatively
higher. The sand fraction presented high values of MDA for
the prediction of the inorganic P form (Fig. 6), and the partial
dependence analysis (Fig. S14) shows a negative relation be-
tween sand fraction and inorganic P. The reduced adsorption
capacity in the sandy soils of the fitting dataset can explain
the negative relationship with the inorganic P form (Quesada
et al., 2010; Osman, 2018). The relations between the target P
forms (and the fractional components of the Hedley sequen-
tial extraction) and the most important features of the fitting
dataset are analysed and discussed extensively in the study
of Quesada et al. (2010).
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Figure 6. (a) Map generated by the subtraction between mean total P and the sum of the remaining predicted P forms. (b) Percentage of
the mean total P represented by mineral P, depicted in (a). The hatched areas mark the regions where the dissimilarity index (DI) presented
values greater than the sum of the third quartile with the interquartile range in the total, available, organic, inorganic, and occluded P form
maps.

4.3 Uncertainties related to the fitting and predictive
datasets

The reference soil groups presented low importance values
for predicting the target P forms (Fig. S17). This indicates
that the spatial extrapolation of P forms made from Hedley
fractionation data based on reference soil groups can lead
to a wrong interpretation of the concentrations and propor-
tions of P forms in soils. The low number of observations of
Hedley fractionation in different soil types (Yang and Post,
2011) leads to a high coefficient of variation of Hedley P
fractions for each reference soil group. Moreover, there are
a few soil classes that are under-represented in the fitting
dataset (Tables S4 and 1 in Quesada et al., 2011). In gen-
eral, this is the case for sites with higher elevations charac-
terized by the occurrence of younger soils like Leptosols and
Andosols (Table S4). Important intervals in the upper and/or
lower ranges of some features related to elevation are ab-
sent in the training data, as shown by the dissimilarity index
analysis (Fig. S3), reducing the suitable area to predictions
using the random forest models. Our random forest regres-
sion models presented a good level of accuracy during the
training phase. Nonetheless, the results could be improved
by a greater number of in situ observations of soil P frac-
tions and other edaphic and climatic variables in the Ama-
zon region, especially in high-elevation areas where obser-
vations are lacking, with notable exceptions (Wilcke et al.,
2019). The P forms have different residence times ranging
from hours to millennia and are subject to a complex set
of interactions with biotic, edaphic, and climatic environ-
mental attributes over time. In this scenario, the presented
maps can be useful to define initial conditions to dynamic,
process-oriented models, for the simulation of P cycling in
soils (Helfenstein et al., 2018). Finally, it is important to note

that our P maps rely on raster datasets used to predict the P
pools, which are subject to their own uncertainties (Poggio et
al., 2021). The continuous improvement of these maps is also
important to the precision and accuracy of mapping exercises
as we present here.

5 Data availability

The phosphorus maps for the pan-Amazon region can
be downloaded from https://doi.org/10.25824/redu/FROESE
(Darela-Filho and Lapola, 2023).

6 Code availability

The source code and input data used to produce the maps are
available at jpdarela/Reference_phosphorus_maps_pan-
Amazon (https://github.com/jpdarela/Reference_
phosphorus_maps_pan-Amazon, last access: 26 Jan-
uary 2024; DOI: https://doi.org/10.5281/zenodo.10571880,
Darela-Filho, 2024).

7 Outlook

The maps presented here provide information about P stocks
and their distribution in soils. They are available for devel-
oping and evaluating DGVMs that seek to include or im-
prove the representation of P cycling and P limitation on pri-
mary productivity in the pan-Amazon region. Additionally,
the data presented here can be useful for correlational spa-
tial studies that promote new hypothesis linking P availabil-
ity and vegetation structure and function that could be tested
in the study area. However, caution is needed with regard to
the temporal variability of these P forms. Random forests are
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Figure 7. Variable’s permutation importance – or MDA (mean decrease in accuracy), distribution of means for the set of RF models selected
for each P form (Table 3). Positive (negative) values of MDA indicate that the “exclusion” of the variable decreases (increases) the RF model
accuracy. Higher values of MDA indicate higher variable importance. Each selected model was permuted 120 times. The internal variability
(standard deviation of MDA) of each model is not presented. Abbreviations: TN – total nitrogen, TOC – total organic carbon, MAP/MAT
– mean annual precipitation/temperature, lat – latitude, long – longitude, RSG – reference soil group (sum of the mean MDA for all soil
classes). See Table 1 for variable units.

recognized for their power in prediction exercises; however,
the methods to unveil the underlying drivers and mechanisms
relating target variables and explanatory features are still un-
der development (Lucas, 2020; Simon et al., 2023). More-
over, the dataset used to fit the random forest models is sub-
ject to a lack of observations in elevated regions. Nonethe-
less, the method applied here to estimate the spatial distribu-
tion of P forms in the topsoil of the pan-Amazon region relies
on the relationships that maximize the amount of information
that each predictive variable (i.e. feature related to the soil P
content at the landscape scale) can contribute to the random
forest regression models. Thus, our approach can partially
overcome the lack of certainty in the Hedley fractionation P
form–soil classification relationship by applying a nonpara-

metric method based on statistical learning to predict the P
forms in the soils of the pan-Amazon region.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-715-2024-supplement.
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