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Abstract. The reduction of CO2 emissions and the enhancement of CO2 removals related to land use are consid-
ered essential for future pathways towards net-zero emissions and mitigating climate change. With the growing
pressure under global climate treaties, country-level land-use CO2 flux data are becoming increasingly impor-
tant. So far, country-level estimates are mainly available through official country reports, such as the greenhouse
gas inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC). Recently,
different modelling approaches, namely dynamic global vegetation models (DGVMs) and bookkeeping models,
have moved to higher spatial resolutions, which makes it possible to obtain model-based country-level estimates
that are globally consistent in their methodology. To progress towards a largely independent assessment of coun-
try reports using models, we analyse the robustness of country-level CO2 flux estimates from different modelling
approaches in the period 1950–2021 and compare them with estimates from country reports.

Our results highlight the general ability of modelling approaches to estimate land-use CO2 fluxes at the coun-
try level and at higher spatial resolution. Modelled land-use CO2 flux estimates generally agree well, but the
investigation of multiple DGVMs and bookkeeping models reveals that the robustness of their estimates strongly
varies across countries, and substantial uncertainties remain, even for top emitters. Similarly, modelled land-use
CO2 flux estimates and country-report-based estimates agree reasonably well in many countries once their dif-
fering definitions are accounted for, although differences remain in some other countries. A separate analysis of
CO2 emissions and removals from land use using bookkeeping models also shows that historical peaks in net
fluxes stem from emission peaks in most countries, whereas the long-term trends are more connected to removal
dynamics. The ratio of the net flux to the sum of CO2 emissions and removals from land use (the net-to-gross
flux ratio) underlines the spatio-temporal heterogeneity in the drivers of net land-use CO2 flux trends. In many
tropical regions, net-to-gross flux ratios of about 50 % are due to much larger emissions than removals; in many
temperate countries, ratios close to zero show that emissions and removals largely offset each other. Considering
only the net flux thus potentially masks large emissions and removals and the different timescales upon which
they act, particularly if averaged over countries or larger regions, highlighting the need for future studies to focus
more on the gross fluxes.

Data from this study are openly available via the Zenodo portal at https://doi.org/10.5281/zenodo.8144174
(Obermeier et al., 2023).
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1 Introduction

The carbon dioxide (CO2) flux from land use, land-use
change and forestry (LULUCF) is a key component of the
global carbon cycle (Pongratz et al., 2021), and the net CO2
flux from LULUCF (fLULUCF) has contributed about 10 %–
15 % to the total anthropogenic CO2 emissions in recent
decades (Friedlingstein et al., 2022a). Under the efforts to-
wards achieving the long-term temperature targets formu-
lated in the Paris Agreement, the importance of fLULUCF is
expected to increase in the future (Fuss et al., 2018), poten-
tially contributing ∼ 30 % of the global climate change mit-
igation needed in 2050 to reach the 1.5 ◦C target via both
emission reduction and CO2 removal (Roe et al., 2019). De-
spite its outstanding importance, estimates of fLULUCF re-
main subject to high uncertainty. For example, within the an-
nual Global Carbon Budget (GCB) assessments of the Global
Carbon Project (GCP), the net fLULUCF has the highest rela-
tive uncertainty among all terms (∼ 60 % for the most recent
decade; see Friedlingstein et al., 2022a for GCB2022).

At the global scale, such as in the assessments of the In-
tergovernmental Panel on Climate Change (IPCC) and the
GCB, fLULUCF is usually assessed by modelling approaches
(Friedlingstein et al., 2022a), namely semi-empirical book-
keeping models (BKs) and dynamic global vegetation mod-
els (DGVMs), and more recently by merging bottom-up in-
ventory estimates built up from country-level information
(Grassi et al., 2018, 2023a). Global modelling approaches
have the advantage of being globally consistent, thus en-
abling, for example, the analysis of the global carbon cy-
cle. Given recent improvements in global modelling ap-
proaches, such as better representation of processes related
to land management, vegetation physiology, and soil bio-
geochemistry as well as increased spatial resolutions (Ar-
neth et al., 2017; Blyth et al., 2021; Pongratz et al., 2021),
several analyses of fLULUCF estimates using multiple ap-
proaches, including models, at country (e.g. Federici et al.,
2017; Rosan et al., 2021; Schwingshackl et al., 2022; Grassi
et al., 2023a) and regional scales (e.g. Bastos et al., 2020a;
Petrescu et al., 2021; Tubiello et al., 2021; Nabuurs et al.,
2022) have recently been conducted. Yet, their results might
be less robust and consistent at finer spatial scales. Bottom-
up approaches, such as national greenhouse gas inventories
(NGHGIs), quantify fLULUCF based on inventory data that
countries regularly submit to the United Nations Framework
Convention on Climate Change (UNFCCC). Even though
NGHGIs should fulfil best-practice guidance from the IPCC
(IPCC, 2006), the quality, methodological complexity and
provision of data used by the reporting countries vary (Grassi
et al., 2021, 2022). Additionally, the Food and Agriculture
Organization of the United Nations (FAO) disseminates in-
dependent bottom up estimates of LULUCF emissions and
removals, based on forest area and carbon stock informa-

tion provided every 5 years by the countries to the FAO
Global Forest Resources Assessment (FRA), complemented
by geospatial information on biomass fires and peatland
degradation (Tubiello et al., 2022).

Land-based climate change mitigation can be achieved via
two levers, namely by decreasing gross emissions and by in-
creasing gross removals (the latter is often referred to as neg-
ative emissions; e.g. Fuss et al., 2018). These gross fluxes,
which add up to the net fLULUCF, act on different timescales
and are in reality often linked by common land-use prac-
tices (note that throughout the paper the term “CO2 fluxes”
generally refers to anthropogenic fluxes from land use). For
example, if fewer wood products are harvested in forestry,
this quickly leads to lower emissions but also to lower for-
est regrowth and thus lower removals, balancing towards
net-zero fluxes in the longer-term (Gasser et al., 2022). In
this study, we define gross fluxes as the sum of all fluxes
related to certain LULUCF practices that typically lead to
emissions or removals, respectively, in line with the Global
Carbon Project. Gross emissions from LULUCF (CO2 fluxes
from the biosphere to the atmosphere, i.e. C source) are
mainly related to cropland or pasture expansion resulting
in the destruction of natural ecosystems by deforestation,
forest and peatland degradation, as well as land-use prac-
tices, such as biomass burning or forest management caus-
ing the decay of harvested wood products (HWPs; Friedling-
stein et al., 2022a). Gross removals from LULUCF (CO2
fluxes from the atmosphere to the biosphere, i.e. C sinks)
are associated with land-use changes such as afforestation
and reforestation including the regrowth of secondary for-
est after agricultural abandonment, as well as land-use influ-
ences such as forestry cycles and restoration of other (non-
forest) ecosystems. It is noteworthy that the CO2 removal
potential of LULUCF is deemed the most suitable and eas-
ily scalable option for negative emissions, potentially pro-
viding 25 % of net greenhouse gas emissions reductions by
2030, primarily via afforestation, reforestation and manage-
ment of existing forests (Griscom et al., 2017; Gidden et al.,
2022; Smith et al., 2023). This is reflected by the fact that
negative emissions from LULUCF are already widely in-
cluded in the nationally determined contributions (NDCs)
for climate change mitigation (Grassi et al., 2017; Smith
et al., 2023). While this clearly highlights the importance
of separately estimating gross emissions and gross removals,
global assessments of fLULUCF usually consider net fLULUCF
only, and, as stated by Houghton (2020), little attention has
been paid to its components. While some studies explic-
itly separated gross fluxes early on (Tubiello et al., 2015;
Federici et al., 2015), GCB studies considered gross fluxes
for the first time in 2020 (Friedlingstein et al., 2020), with
the most recent GCB2022 estimating global anthropogenic
gross emissions at 3.8± 0.7 GtC yr−1 and gross removals
at 2.6± 0.4 GtC yr−1 for 2012–2021, thus being 2–4 times
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larger than the global net fLULUCF of 1.2± 0.7 GtC yr−1 in
this period (Friedlingstein et al., 2022a).

The aim of this study is to provide a comprehensive na-
tional and regional comparison that integrates the different
approaches and definitions around the world and comple-
ments previous studies on selective countries or regions. We
investigate the robustness of net fLULUCF estimates from
models, namely from BKs and DGVMs, we provide esti-
mates at country and regional level, and, additionally, we
compare net estimates from models and inventories. To iden-
tify the drivers of the spatio-temporally varying net fLULUCF
estimations from these assessments, we present and discuss
country-level gross fLULUCF estimates as well as the net-to-
gross flux ratio from BKs in addition to net flux estimates.
This allows us a more nuanced analysis and identification
of the land component processes that are relevant in specific
regions and provides a quantification of land-based climate
change mitigation potentials distinctly for the two levers “re-
ducing emissions” and “increasing removals”. The need for
such an assessment is underlined by the increasing political
relevance of LULUCF fluxes for countries’ emissions reduc-
tion pledges, for example, in support of the ongoing Global
Stocktake and the Glasgow Leaders’ Declaration on Forests
and Land Use of the 26th UN Climate Change Conference of
the Parties (COP26) in Glasgow.

2 Overview of different fLULUCF assessment
methods

We use data from BKs and DGVMs, NGHGIs, and FAO-
STAT (the Statistical Division of the Food and Agricultural
Organization) for our analysis. The approaches are briefly de-
scribed below and explained in more detail in Appendix A.

2.1 Bookkeeping models (BKs)

BKs are explicitly designed to estimate LULUCF fluxes fol-
lowing land management and land-use changes by tracking
the carbon content in soil, vegetation and product pools,
i.e. stocks and fluxes of carbon in the land biosphere and
between land and atmosphere. They combine spatial infor-
mation on land-use activities with observation-based carbon
stock densities and specific response curves of soil and veg-
etation carbon for each land-use conversion type (for more
details refer to Sect. A1 and Pongratz et al., 2014). Using
separate response curves for carbon release (emissions) and
carbon uptake (removals), BKs model both gross fluxes ex-
plicitly, and net fLULUCF is derived as the sum of the two
gross fluxes. BKs do not model the fluxes from peatland
fire and drainage, but these emissions are added on top of
the BK estimates in this study according to the approaches
used in the GCBs; compare Sect. A1. We use simulations by
three BKs that were conducted for the GCB2022 (Friedling-
stein et al., 2022a), namely (1) the “bookkeeping of land use
emissions” model (hereafter BLUE22; Hansis et al., 2015),

(2) the “Houghton and Nassikas” model (hereafter H&N22;
Houghton and Nassikas, 2017) and (3) the compact Earth
system model “OSCAR” (hereafter OSCAR22; Gasser et al.,
2020).

2.2 Dynamic global vegetation models (DGVMs)

DGVMs are process-based models used to simulate the in-
teraction between land surface and vegetation processes with
the atmosphere. They approximate net fLULUCF as the differ-
ence in net biome productivity (NBP) of a simulation includ-
ing LULUCF (similarly to the BKs, using spatial information
on land-use activities) and a simulation excluding LULUCF
(the latter using a time-invariant pre-industrial land-use map;
for more details refer to Sect. A2 and Obermeier et al., 2021).
DGVM simulations using transient (observed) environmen-
tal forcing are operationally available and can be used to es-
timate the impact of climate variability or long-term environ-
mental changes on fLULUCF. In addition, DGVM simulations
can be forced with constant environmental data prescrib-
ing, for instance, pre-industrial or present-day environmental
conditions. Simulations using the latter setup most closely
resemble conditions that occurred during the time when ob-
served carbon densities (as used by BKs or inventories) were
measured and are therefore the best DGVM setup to com-
pare with BKs or inventories. Here we use nine DGVMs that
provided simulations with present-day as well as transient
environmental forcing within the project “Trends and drivers
of the regional-scale emissions and removals of carbon diox-
ide” (TRENDY; Le Quéré et al., 2014; Sitch et al., 2015).

2.3 National greenhouse gas inventories (NGHGIs)

NGHGIs are the official country reports to UNFCCC that in-
clude estimates of greenhouse gas emissions and removals
from LULUCF. They widely rely on empirical emission fac-
tors in combination with country-level data on land-use activ-
ities to estimate fLULUCF (for more details refer to Sect. A3
and Grassi et al., 2022). The methods and report details
strongly vary between and among non-Annex I and An-
nex I countries. Non-Annex I countries frequently use de-
fault IPCC emission factors (IPCC, 2006) and often only
report fluxes from deforestation, while estimates from An-
nex I countries are often based on country-specific statisti-
cal or process-based models for all IPCC land-use categories
(forest land, cropland, grassland, wetlands, settlements and
other land). For the analysis presented here, we use the coun-
try database (DB) compiled by Grassi et al. (2022), as up-
dated in Grassi et al. (2023a) (hereafter referred to as NGHGI
DB), which includes GHG data from all available country
reports submitted to UNFCCC, gap-filled when necessary
to allow a complete time series from 2000 until 2020. Ac-
cording to UNFCCC guidelines, country reports should en-
compass all LULUCF fluxes from any areas considered man-
aged and for which IPCC provide methodological guidance.
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In most cases, NGHGIs include natural and indirect anthro-
pogenic fluxes (e.g. from CO2 fertilization; Grassi et al.,
2018; Schwingshackl et al., 2022; IPCC, 2010). To improve
comparability of the NGHGI DB data with modelled esti-
mates, we adjust the NGHGI DB data to better match the
processes and definitions of the modelled estimates (the ba-
sis in this study) by correcting for this so-called managed
land issue (hereafter adjusted NGHGI DB). Following the
approach described in Grassi et al. (2023a), we therefore sub-
tract from the NGHGI DB estimates those fluxes resulting
from natural and indirect effects (i.e. human-induced envi-
ronmental change) from managed land. These effects are es-
timated by the ensemble mean of 16 transient DGVM sim-
ulations without land-use changes from TRENDYv11 (cor-
responding to the “natural terrestrial sink” in recent GCBs
of the GCP), except for Brazil and Canada filtered with
an intact/non-intact forest mask (Potapov et al., 2017). For
Brazil and Canada, this approach uses the national gridded
maps on managed and unmanaged forests used in the respec-
tive NGHGIs (Brazil, 2020; Canada, 2021).

2.4 Statistical Division of the Food and Agricultural
Organization (FAOSTAT)

FAOSTAT fLULUCF estimates resemble the bottom-up ap-
proach of the UNFCCC data in the way that they are based on
consistent underlying activity data – at grid cell or at coun-
try level – in combination with emission factors. FAOSTAT
fLULUCF data are estimated by applying IPCC Guidelines
(IPCC, 2003, 2006) to activity data generated either through
official country reporting processes or through geospatial
data analysed by FAO (for more details refer to Sect. A3 and
FAO, 2020; Tubiello et al., 2021). FAOSTAT fLULUCF cover
carbon emissions and carbon removals in forests and from
deforestation, derived from national carbon stock change
statistics and IPCC emission factors, as well as emissions
from peatland fires and peat drainage, the latter two obtained
from satellite imagery in combination with IPCC emission
factors (Conchedda and Tubiello, 2020; Tubiello et al., 2021;
Prosperi et al., 2020). The IPCC (2006, 2019) recognizes ex-
plicitly that both FAO activity data and FAO emissions es-
timates provide a valuable set of reference data that can be
used for validation, quality control and quality assurance of
the data submitted through NGHGIs.

2.5 Main differences between the approaches

Although the different approaches summarized above (and
described in detail in Appendix A) all aim at quantifying CO2
fluxes from LULUCF, they differ substantially. Some of the
key differences between the approaches are briefly described
below; further details are provided in the results in Sect. 4.2
and 4.3 and in the Appendix.

Uncertainties in fLULUCF estimations from modelling ap-
proaches mainly arise at high spatial resolutions (Kondo

et al., 2022), from differences in underlying land-use and
land-cover information (Gasser et al., 2020; Hartung et al.,
2021; Ganzenmüller et al., 2022), missing observational con-
straints (Goll et al., 2015; Li et al., 2017), differences in pro-
cess complexity and in the degree of implementation of LU-
LUCF practices (Arneth et al., 2017; Hartung et al., 2021;
Fisher and Koven, 2020), inconsistencies in common termi-
nology and definitions (Pongratz et al., 2014; Gasser and
Ciais, 2013), and different model assumptions and setups
(Obermeier et al., 2021; Bastos et al., 2021a).

Most of the investigated modelling approaches use the spa-
tially explicit LUH2-GCB2022 dataset as LULUCF forcing
(Friedlingstein et al., 2022a). The BK model H&N22 uses
FAO activity data at country level, and OSCAR22 uses both
LUH2-GCB2022 and FAO activity data. To analyse the im-
pact of different land-use forcing data, we further use BLUE
data from the GCB2019 (hereafter BLUE19). As the BLUE
model code was not changed between the GCB2019 and
GCB2022, this allows the direct impact of the LULUCF forc-
ing data to be isolated, which for these GCBs was based
on HYDE3.2 and HYDE3.3, respectively. The main innova-
tions in HYDE3.3 were the provision of yearly output from
1950 onwards, the update of the onset of agriculture based
on new radiocarbon data and archaeological expertise indi-
cating more spatial heterogeneity, the use of the latest satel-
lite data with increased spatial resolution on an annual basis
from 1992–2018 from the European Space Agency (ESA)
and MapBiomas data for Brazil for the period 1985–2020,
and the inclusion of more sub-national cropland and pasture
data.

BKs do not explicitly represent biogeochemical processes
and do not directly use environmental forcing data and thus
usually exclude effects from climate change and meteoro-
logical or climate variability. DGVMs, in contrast, incorpo-
rate biogeochemical processes implemented in their mod-
elling scheme, and – additionally to land-use change data –
they use environmental forcing data as input. Consequently,
DGVM estimates under transient environmental conditions
include the long-term response to changing environmental
conditions (e.g. atmospheric CO2 increase, nitrogen deposi-
tion and fertilizer applications) and effects of climate vari-
ability. Due to the setup to calculate LULUCF emissions
from DGVMs, transient DGVM fLULUCF estimates include
the loss of additional sink capacity (LASC), representing car-
bon fluxes in response to environmental changes on man-
aged land (typically croplands with low carbon sink capac-
ity and fast turnover rates) as compared to potential natu-
ral vegetation (typically forests with large carbon sinks and
low turnover rates), which leads to higher flux estimates
compared to BKs towards the end of the simulated periods
(Gasser and Ciais, 2013; Pongratz et al., 2014; Obermeier
et al., 2021).

In contrast to modelling approaches that provide glob-
ally consistent historical fLULUCF analysis over the entire
simulated period (e.g. from 1700 onward), country reports
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only cover the most recent decade for which observations
and statistics exist (starting around 1990–2000, depending
on the dataset and country) and are restricted to the ter-
ritories and components that countries report. In addition,
fLULUCF estimates from country reports rely on different
definitions and assumptions than global models and there-
fore do not allow, for example, a realistic derivation of coun-
tries’ climate change mitigation contributions that are con-
sistent with the pathways to achieve the climate targets of the
Paris Agreement as derived by integrated assessment models.
One major difference is the definition of managed land, with
NGHGIs having comparatively larger areas of managed land
than models (Grassi et al., 2023a). Further, NGHGI estimates
that rely on direct observations (e.g. national forest invento-
ries) include both direct and most indirect anthropogenic ef-
fects on managed lands, which can only be separated based
on modelling approaches (Grassi et al., 2018; Schwingshackl
et al., 2022). Consequently, most NGHGI fLULUCF estimates
include large parts of the natural response to recent environ-
mental change in managed lands (e.g. larger vegetation car-
bon sink due to so-called CO2 fertilization) and, thus, esti-
mate larger anthropogenic CO2 removals (and widely lower
net fLULUCF) than global models (IPCC, 2006; Grassi et al.,
2018; Schwingshackl et al., 2022). In order to make the
NGHGI and BK land-use flux estimates comparable, here we
translate NGHGI estimates by removing the fluxes that mod-
els attribute to the natural land sink (compare the adjusted
NGHGI DB data described in Sect. A3).

Reported fLULUCF estimates remain highly uncertain, par-
ticularly in many developing countries, as country reports to
UNFCCC do not explicitly separate managed from unman-
aged forest land or only report forest-related fluxes (Grassi
et al., 2022). Other countries report fluxes from additional
LULUCF practices, such as from natural peatland that is con-
verted to agriculture or from land that is converted to hu-
man settlements (not included in modelled estimates). While
human-induced degradation from logging and fires is often
included in national reports, forest degradation fluxes are
hardly existent in BKs.

The main differences between FAOSTAT data and the
NGHGI database are explained by a more complete cover-
age in the NGHGI database than FAOSTAT, in particular the
inclusion of non-biomass carbon pools and non-forest land
uses (Grassi et al., 2022). Additional differences stem from
(1) differences in activity data, for instance, different time
series of the forest area which may be communicated inde-
pendently to UNFCCC and FAO by different national agen-
cies; (2) differences in emission factors, including carbon
stock data and their sub-national resolution as well as their
changes over time; and (3) differences in scale, especially
considering that forest fluxes may be computed at grid cell
or sub-national scale in many countries using remote sensing
or information from national forest inventories. Additionally,
the FAO area data do not distinguish between managed and
unmanaged areas and, thus, do not in principle separate an-

thropogenic and non-anthropogenic drivers (Tubiello et al.,
2021; Grassi et al., 2022). The nature of data reported to FAO
indicates that in most cases the area considered in FAOSTAT
estimates is similar to the one in the NGHGIs, but often the
effects of environmental changes (i.e. natural and indirect an-
thropogenic effects) are not included as in the NGHGIs. For
this reason, we did not correct FAOSTAT estimate data here.

3 Data processing for country-level and regional
analysis

This study compiles fLULUCF estimates from various mod-
elling and country-report-based approaches, aggregated to
the country and regional level. Country-level aggregation is
provided for all 186 (out of 195) UNFCCC country par-
ties that reported LULUCF fluxes, comprising > 99.6 % of
global net fLULUCF (as derived by the three BKs). Re-
gional aggregation is based on the 18 land regions defined
by the REgional Carbon Cycle Assessment and Processes
Phase 2 (RECCAP2; part of European Space Agency Cli-
mate Change Initiative (ESA CCI); Ciais et al., 2022), as de-
fined in Tian et al. (2019) and shown in Fig. A1.

Due to different spatial resolutions of the investigated
datasets, preliminary processing steps were needed to obtain
fLULUCF at country level. Data from NGHGI DB, FAOSTAT,
H&N22 and OSCAR22 are disseminated at country level al-
ready. For the NGHGI DB and FAOSTAT estimates, we con-
verted CO2 fluxes into carbon fluxes based on their molar
mass fraction, i.e. dividing by 44/12 (according to the IPCC
(2006) approach). The gridded outputs of the DGVMs and of
the BLUE model were aggregated to country-level fLULUCF
estimates based on a (modified) 0.25◦ country mask from
Columbia University – Center for International Earth Sci-
ence Information Network (CIESIN) (2018). We remapped
the mask of each country to the native grid of each DGVM
by conservative remapping using Climate Data Operators
(CDO), which yields the area fraction of every country in
each DGVM grid cell. We calculate each country’s fLULUCF
share by multiplying the total fLULUCF in a grid cell by the
share of each country of the total land fraction in that grid
cell. The country-wide fLULUCF is then obtained as a sum
over all grid cells.

Similar to the country-level aggregation, the RECCAP2
region mask was remapped to the native grid of each
DGVM and the BLUE model to obtain regional aggregation.
Country-level data from FAOSTAT, H&N22, NGHGI DB,
and OSCAR22 were aggregated to RECCAP2 regions by
overlaying the CIESIN country map. Where country borders
did not match RECCAP2 regions, namely where a country
is split between two regions, those country’s fluxes in FAO-
STAT, H&N22, NGHGI DB, and OSCAR22 were attributed
to the RECCAP2 containing the largest area fraction of the
country.
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4 Country-level fLULUCF estimates from different
approaches

In the main paper we exemplarily focus on the top eight
countries with highest cumulative net LULUCF emissions in
the period 1950–2021 based on BKs, as well as the United
States with the highest cumulative removals in this period. In
the following, we analyse and compare fLULUCF estimates
from BKs, DGVMs, and country-report-based approaches to
assess the robustness of fLULUCF estimates within and across
the different datasets. Specifically, we identify countries in
which the different estimates agree well and those where un-
certainties in fLULUCF estimates are high. We further quan-
tify and assess the gross fluxes (i.e. gross emissions and gross
removals) in each country and analyse their importance in
comparison to net fluxes.

Appendix A contains a comprehensive compilation of the
fLULUCF estimates from BKs, DGVMs, and country-report-
based approaches for the RECCAP2 regions (Figs. A4–A8)
and for the investigated 186 countries (Figs. A9–A18). Sum-
mary statistics of the BK estimates for all 186 country ag-
gregates and the EU27 + UK can be found in Tables A1–A3,
and a dataset covering all aggregated country data for the
period 1950–2021 for all datasets used is accessible under
https://doi.org/10.5281/zenodo.8144174 (Obermeier et al.,
2023).

4.1 Overview of selected country-level net fLULUCF
estimates from bookkeeping models

Country-level net fLULUCF estimates from bookkeeping
models strongly vary across countries. Net LULUCF emis-
sions are highest (in descending order) in Brazil, Canada,
China, DR Congo, India, Indonesia, Nigeria and Russia
based on cumulative estimates between 1950 and 2021
(Fig. 1a). The eight countries with the highest cumulative net
emissions from LULUCF are either located in carbon-rich,
forested tropical regions (Brazil, DR Congo, Indonesia and
Nigeria) and/or encompass vast territories (Brazil, Canada,
China, India and Russia). These top eight emitters emitted
more than ∼ 53 % of the total net LULUCF emissions in the
period 1950–2021 and are thus of outstanding importance for
climate change mitigation via LULUCF emission reductions.
In particular in Indonesia, the estimated emissions per area
are higher than in all other 185 countries studied, which illus-
trates an enormous pressure on the terrestrial carbon stocks
in the tropics (Fig. A3). However, it should be noted that the
resulting call for action is not limited to these top emitters,
as large parts of national LULUCF emissions, particularly
in the tropics, are caused by consumption elsewhere (Hong
et al., 2022).

During the second half of the 20th century, high net
LULUCF hotspots became increasingly concentrated in the
countries of the Global South. As stated in the GCB2022
(Friedlingstein et al., 2022a), more than 50 % of most recent

net emissions from LULUCF occur in only three countries,
namely Brazil, DR Congo and Indonesia – all located in the
tropics (Fig. 1b). The pronounced land-use change impact in
the tropics is also evident from the fLULUCF estimates calcu-
lated per area and per capita, with the 10 largest net emitters
all located in the tropics (Figs. A3 and A2). However, most of
these emissions are embodied in trade and are caused by con-
sumption in industrialized regions such as Europe, the United
States and China (Hong et al., 2022). A trend towards fewer
countries comprising larger shares of global net LULUCF
emissions is found when comparing cumulative and most re-
cent annual fLULUCF estimates. In the period 1950–2021, the
top 22 net emitters comprised more than 75 % (top 43 emit-
ters more than 90 %) of cumulative net emissions from LU-
LUCF, while in 2011–2021, only 15 countries make up 75 %
(top 33 emitters more than 90 %) of the global net emissions.
In China, the fLULUCF estimates from the BKs show an re-
markable turnaround, turning China from the third-highest
cumulative emitter in 1950–2021 to the country with the
third-highest net removals in 2011–2021.

The large number of net emitting countries and the fact
that BKs estimate a global net source of carbon from LU-
LUCF to the atmosphere are in stark contrast to the pledges
to achieve the goals associated with the Paris Agreement
and the reported global carbon removal from LULUCF when
summed across all NGHGIs (Grassi et al., 2022). Of note,
despite widely included net negative emissions from LU-
LUCF in the NDCs, including the need for carbon dioxide
removal (CDR) techniques, BKs estimate net removals from
LULUCF only for very few countries (both cumulatively be-
tween 1950–2021 as well as more recently in 2011–2021).
Substantial country-level net removals from LULUCF are
only found in the United States; some European countries;
and, in the most recent decade, in China. However, large
relative uncertainties in BK estimates remain, within the cu-
mulative net fLULUCF estimates (globally ∼ 38 %, and much
higher in specific countries, for example, in China ∼ 150 %,
the United States ∼ 680 %; see Table 1) and recent annual
fLULUCF estimates (globally ∼ 31 %, in China ∼ 700 % and
Russia ∼ 1000 %). In order to explain the uncertainties re-
lated to fLULUCF estimates from BKs, the latter need to be
compared to estimates from other approaches, and the under-
lying drivers for the differences in fLULUCF estimates need to
be investigated.

4.2 Comparing country-level net fLULUCF estimates from
BKs and DGVMs

To test the robustness and explain the large spread in mod-
elled country-level fLULUCF estimates, we compare and dis-
cuss the differences of the net estimates from the BK en-
semble and the DGVM ensemble with respect to the charac-
teristics of the individual modelling approaches, particularly
regarding the underlying land-use forcing data and, for the
DGVM ensemble, the environmental forcing data.
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Figure 1. Net carbon fluxes from land use, land-use change and forestry (fLULUCF) from three bookkeeping models (BKs; data from
GCB2022 simulations). (a) Cumulative carbon fluxes over 1950–2021 and (b) average carbon fluxes in 2011–2021. The bars show the mean
of the three BKs (filled bars) and minimum and maximum estimates (hatched bars). Numbers in parentheses show the multi-model average
and standard deviation (in GtC in (a) and MtC yr−1 in (b)). Colours indicate the absolute quantities, showing countries with net emissions in
red and countries with net removals in green. All 186 country aggregates from this study are shown in decreasing order of their (a) cumulative
and (b) most recent annual fLULUCF. In each panel, the top 10 emitters and the five countries with the largest removals are labelled (and the
countries from the main paper if not yet included). The dashed red lines show the percentiles of net carbon emissions for each panel when
adding the countries in decreasing order.

Table 1. Statistics of the annually averaged (2011–2021) and cumulative (1950–2021) net carbon fluxes from land use, land-use change and
forestry (fLULUCF) for the nine countries analysed. The table indicates the mean fLULUCF estimates, their standard deviation across the
different model estimates (SD) and their relative uncertainty (SD divided by the absolute mean value).

Cumulative fLULUCF Annual mean fLULUCF
in 1950–2021 (GtC) in 2011–2021 (MtC yr−1)

Country Mean SD Rel. unc. (%) Mean SD Rel. unc. ( %)

Brazil 21.8 7.0 32 285.3 111.6 39
Indonesia 14.0 1.1 8 283.1 16.3 6
China 4.8 7.3 150 −9.0 62.9 700
Congo, Dem. Rep. 4.6 0.6 13 155.3 21.8 14
India 3.3 2.3 71 15.3 26.5 170
Canada 2.9 1.7 57 23.2 8.2 35
Russian Federation 2.3 3.1 140 6.3 63.9 1000
Nigeria 2.2 0.9 39 6.8 4.8 71
United States −1.0 7.0 680 −26.7 57.3 210
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Figure 2. Time series of net carbon flux from land use, land-use change and forestry (fLULUCF) in 1950–2021 derived by bookkeeping
models (BKs) and TRENDYv8 simulations with dynamic global vegetation models (DGVMs; used in the GCB2019) under present-day
climate forcing. The eight countries with highest cumulative emissions since 1950 are shown in decreasing order and the United States. The
figure shows the mean and absolute range of three BKs (using the GCB2022 simulations, BKs 2022) and the median and interquartile range
of the eight DGVMs. Additionally, estimates from BLUE simulations from the GCB2019 (BLUE19; blue solid) and from the GCB2022
(BLUE22; blue dashed) are shown to illustrate the impact of updates in the LUHv2 forcing data (difference shows in steel blue) and the
differences between DGVMs and BLUE (TRENDYv8 present-day minus BLUE19; purple) to illustrate the relevance of different modelling
approaches. Numbers in the top-right corner of each panel indicate the median of the cumulative fLULUCF sums over 1950–2018 (in GtC)
for TRENDYv8 (red), BLUE19 (blue), BLUE22 (blue), and the difference of TRENDYv8 present-day minus BLUE19 (purple) and of the
LUHv2 forcing (BLUE22 minus BLUE19; steel blue); numbers in the bottom-left corner indicate coefficients of correlation squared for
BLUE19 and TRENDYv8 (purple) and for BLUE19 and BLUE22 (steel blue). BLUE19 data are only available until 2019, and TRENDYv8
data are only available until 2018. Greenish background depicts negative fLULUCF, which is carbon removal from the atmosphere.

Country-level net fLULUCF estimates of BKs and DGVMs
from 1950 onward agree generally well in the investigated
countries (Fig. 2; refer to Fig. A4 for RECCAP2 regions and
Figs. A9 and A10 for all 186 investigated countries).

In most countries, modelled estimates from BLUE19 and
(present-day) DGVM simulations show consistent tempo-
ral evolutions and peaks in emissions, when using the same
land-use forcing data (compare the “difference of the mod-
elling approach”, derived as the present-day TRENDYv8
mean minus BLUE19 which share the same (LUHv2) land-
use forcing data; purple line in Fig. 2). These consistent
trends and peaks lead to comparably high correlation coef-
ficients between the BLUE19 and present-day DGVM esti-
mates, for example, in Brazil, China and Nigeria. However,
the correlation coefficients for the estimates from the differ-
ent modelling approaches are generally rather low, which is
due to the interannual variability, which is captured by the
DGVMs but usually not by the BKs. In line with this, the par-
ticularly low correlation coefficients between DGVMs and

BKs in the United States and Russia result from high interan-
nual variability in combination with a low signal from land-
use changes. Yet, the fLULUCF estimates also substantially
differ in some of the countries with pronounced land-use
changes, despite identical land-use forcing data. The most
striking difference occurs in 1997 in Indonesia. The year
1997 was an El Niño year, causing high carbon emissions
from organic soils in Indonesia, which are included in the
BK estimates but not in the DGVM estimates used (in line
with the GCP assessments).

BLUE19 generally yields higher net emission estimates
compared to the present-day TRENDYv8 ensemble (except
for Nigeria), which indicates a tendency towards higher esti-
mates when using the BK approach. To investigate this fur-
ther, we compare the estimates of all three BKs from 2022
(BKs 2022; note that BLUE model code was not changed
between 2019 and 2022 versions). BLUE22 tends to estimate
the highest emissions among the BKs in most countries and
during most of the time, indicating that the BK mean might
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agree better with the mean of the present-day DGVM simu-
lations compared to BLUE19. This can mainly be explained
by higher differences in the carbon densities between natu-
ral and managed areas assumed in the BLUE model in con-
junction with the fact the BLUE captures the full extent of
(LUH2-based) gross transitions (compare Sect. 4.3 and de-
scription of the BKs in Sect. A1 and Bastos et al., 2021a).

The strong influence of the land-use forcing data is high-
lighted by the often differing trends and peaks in fLULUCF
from BLUE19 based on HYDE3.2 and BLUE22 based on
HYDE3.3 (compare the “LUHv2 forcing difference”, de-
rived as BLUE22 minus BLUE19, in Fig. 2) and the huge
ranges in the BK estimates in many regions. Large LUHv2
forcing differences, as indicated by particularly low cor-
relation coefficients, are found in Brazil, DR Congo and
Nigeria, with substantially larger estimates using the more
recent HYDE3.3 data. The particularly big differences for
Brazil mainly result from an improved representation of de-
forestation patterns through the inclusion of MapBiomas
land cover data in the newer HYDE version, and, for DR
Congo, they result from the inclusion of revised data from the
FAO (Friedlingstein et al., 2022b). In contrast, BLUE22 has
lower fLULUCF estimates than BLUE19 in Canada (mainly
in the 1950s) and, in the most recent decade, in China, In-
dia, Indonesia and Nigeria. In particular for tropical coun-
tries, lower emissions may be related to decreased cropland
expansion in the updated HYDE data (Friedlingstein et al.,
2022b).

Emission peaks around 1960 occur in several regions
(e.g. Canada, DR Congo and Russia), mainly in the 2022 es-
timates (BLUE22) but not in the 2019 estimates (BLUE19).
Those peaks can be explained by an artefact in HYDE3.3,
resulting from the merge of historical HYDE data (used
up to 1960) with FAOSTAT data (used from 1961 onward)
(Chini et al., 2021; Friedlingstein et al., 2022b). The 1960
peaks thus do not represent any real-world land-use change
fluxes and should be corrected in future updates of HYDE (as
has already been achieved for Brazil; compare Sect. A1 and
Friedlingstein et al., 2022b; Rosan et al., 2021). For Brazil,
an additional peak in 2004 corresponds to increased defor-
estation for cropland and pasture, followed by a slowdown in
deforestation rates due to governmental regulations, which is
only captured in HYDE3.3 through the inclusion of ESA CCI
Land Cover data (Rosan et al., 2021).

Additionally, the environmental forcing plays an important
role in many regions, as can be assessed by comparing tran-
sient and present-day TRENDYv8 simulations (Fig. 3 – the
“Present-day versus transient difference”; refer to Fig. A5 for
RECCAP2 regions and Figs. A11 and A12 for all 186 inves-
tigated countries). Estimates of fLULUCF under present-day
environmental forcing tend to be higher compared to tran-
sient estimates in the earliest simulated periods, particularly
in tropical regions with high LULUCF activity (e.g. in Brazil,
China, DR Congo and India), which is also reflected in the
cumulative emissions estimates (see numbers displayed in

Fig. 3). This can be explained by higher carbon stocks un-
der present-day environmental forcing compared to transient
forcing (the multi-DGVM mean global vegetation carbon
stock increased by ∼ 23 % from 664 to 815 PgC from 1800
until today), particularly in early simulation periods (when
atmospheric CO2 concentration was substantially lower than
today; Obermeier et al., 2021). Differences between present-
day and transient fLULUCF estimates become smaller as the
simulations progress, as transient environmental conditions
approach present-day conditions and additionally accumu-
late the loss of additional sink capacity (Pongratz et al.,
2014). It is noteworthy that towards the end of the simu-
lated period, transient fLULUCF estimates even tend to ex-
ceed present-day estimates, due to the steadily accumulat-
ing loss of additional sink capacity, which globally com-
prises ∼ 0.8± 0.3 GtC yr−1 (∼ 40 %) of transient fLULUCF
in the period from 2009–2018 (Obermeier et al., 2021). In
the temperate zone (e.g. in Russia and the United States),
variations in fLULUCF estimates due to environmental condi-
tions rather depend on the inter-annual meteorological and
climate variability. Here, carbon stocks have not been en-
hanced by higher CO2 concentrations as homogeneously as
in the tropics, and climate change has even led to decreased
carbon stocks in some regions (Obermeier et al., 2021). What
is striking here is the particularly low correlation coefficient
in the United States. Similar to the difference between the
modelling approaches, this results primarily from the com-
bination of a low land-use signal with very high interannual
variability in environmental conditions.

As described above (and in the Appendix), the multiple
modelling approaches differ in their underlying assumptions,
their implemented process complexity and parametrizations,
and the input forcing data used. These differences partly
lead to highly differing estimates, in particular at finer spa-
tial scales, which decreases the accuracy of some country-
level estimates from models. The differences in country-level
net fLULUCF estimates that are due to the modelling ap-
proach versus changes in land-use forcing (approximated by
the LUHv2 forcing difference for the BK model BLUE) or
environmental forcing (difference between present-day and
transient DGVM simulations) are of a similar order of mag-
nitude, yet with very different spatial patterns. Whether the
modelling approach, land use or environmental forcing is the
dominating factor depends on the specific country and partly
also on the specific time period. The modelling approach had
the highest influence on the cumulative estimates, for exam-
ple, in Brazil, Canada, India, Indonesia and Russia, whereas
the LUHv2 forcing difference in the BK model BLUE was
higher in China, DR Congo and Nigeria. For the DGVMs,
the land-use forcing data impacted cumulative fLULUCF es-
timates widely more strongly compared to the environmen-
tal forcing (except in the United States), although of similar
magnitude. It should be emphasized that the strong influence
of environmental factors, which is reflected in the up- and
downswings of the DGVM estimates, is likely to become
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Figure 3. Net carbon flux from land use, land-use change and forestry (fLULUCF) in 1950–2021 derived from TRENDYv8 simulations
with dynamic global vegetation models (DGVMs) under historical (transient) and fixed present-day environmental conditions (compare
Appendix). The eight countries with the highest cumulative emissions since 1950 are shown in decreasing order and the United States. The
median and interquartile range of eight DGVMs are shown. Lines (shading) indicate the median (interquartile range) of the eight DGVMs,
for which data for both simulations are available. Lines in the lower panels indicate the impact of the environmental forcing (present-day
minus transient; purple). Numbers in the top-right corner depict the multi-model median of the cumulative sums in the period 1950–2019
(left column; GtC) and the differences between the simulations (right column); numbers in the bottom-left corner indicate the coefficient of
correlation squared for TRENDYv8 present-day and transient simulations (purple). The light-green background indicates negative fLULUCF,
that is net carbon removal from the atmosphere by LULUCF.

more important under future climate conditions with more
frequent and intense extreme environmental conditions and
potentially decreasing LULUCF activities as set out by the
Glasgow Leaders’ Declaration on Forests and Land Use.

4.3 Net fLULUCF from individual bookkeeping models at
country-level and country-report-based estimates

Despite broad agreement in most country-level net fLULUCF
estimates when averaged across multiple models, individual
BK model output differs strongly in some countries (compare
BK range in Figs. 2 and 4), and, not surprisingly, country-
report-based estimates mostly diverge even more (Fig. 4; re-
fer to Fig. A6 for RECCAP2 regions and Figs. A13 and A14
for all 186 investigated countries).

Differences in annual net fLULUCF estimates across the
three BKs (based on simulations with the most recent land-
use forcing) are particularly high in Canada and the United
States throughout the 20th century and before and after emis-
sion peaks (e.g. 1960 and 2011 in DR Congo, 1980s in China,
and in the 1950s in India). As stated above, the high dif-
ferences related to emission peaks are predominantly due
to the use of different land-use forcing data, which is re-

flected by the fact that H&N22 (based on FAO data) does not
capture any of these peaks, while BLUE22 and OSCAR22
models (both of which use LUH2 data) show very similar
trends and peaks. In China, for example, the H&N22 land-
use forcing data assume a steady increase in forest areas
from 1950, while the LUH2 data show decreasing forest ar-
eas until 1990 and relatively stable forest areas thereafter (Yu
et al., 2022). The estimates of OSCAR22 often lie close to
the multi-model mean of the BKs, which can be explained
by the fact that OSCAR22 uses both FAO and LUH2 forc-
ing data to derive a best-guess estimate for fLULUCF (Gasser
et al., 2020). The huge uncertainties in Canada, China and the
United States cannot fully be explained by the net fLULUCF
but are discussed in Sect. 4.4 in relation to the gross fluxes.

Beyond the effects of the land-use forcing data, BK model
differences in net fLULUCF can be explained by several in-
dividual model specifics. The upper limit of the BK range
is predominately defined by BLUE22, particularly during
phases of high BK uncertainty, while the lower limit is of-
ten defined by H&N22. This is mainly due to different as-
sumed carbon densities, which, depending on the ecosys-
tem, are particularly high in the BLUE model and low
in the H&N model (compare Appendix and Bastos et al.,
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Figure 4. Net carbon flux from land use, land-use change and forestry (fLULUCF) in 1950–2019 derived from individual bookkeeping
models (BKs) used in GCB2022 (BKs 2022) and country-report-based estimates (FAOSTAT and NGHGI DB). The use of dashed and solid
lines indicates that BK estimates and country-report-based estimates are not directly comparable (see Sect. 2.5 and the Appendix). For better
comparability, the adjusted NGHGI DB estimates, matching the fLULUCF definition of the BKs, are additionally shown. The grey line
(shading) depicts the median (range) of the three BKs. The light-green background indicates negative fLULUCF that is net carbon removal
from the atmosphere by LULUCF.

2021a, b). Moreover, the inclusion of sub-grid-scale transi-
tions in BLUE22 (and OSCAR22) increases emission esti-
mates compared to H&N22. Additionally, H&N22 assumes
conversion of natural grasslands to pasture, while BLUE22
and OSCAR22 allocate pasture proportionally on all natu-
ral vegetation that exists in a grid cell (Hansis et al., 2015;
Friedlingstein et al., 2022b), yielding lower fLULUCF for
H&N22. In addition, different turnover periods for the HWPs
in the different BKs lead to varying BK estimates after sig-
nificant changes in LULUCF practices. The exception of
slightly higher emission estimates from H&N22 in Indonesia
(mainly in the 1990s) and DR Congo (from 1970s until 2007)
is due to much higher carbon removals due to afforestation
and reforestation in BLUE22 and OSCAR22 (not shown) and
faster increasing emissions from deforestation in the H&N22
model.

Country-report-based net fLULUCF estimates are substan-
tially lower than BK estimates in most of the investigated
countries; in particular NGHGI DB has the lowest emission
estimates in almost all investigated countries. Much of this
discrepancy (globally adding up to∼ 1.6 GtC yr−1 for the pe-
riod 2001–2020) can be explained by different definitions,
particularly regarding two points (compare Appendix and
Grassi et al., 2023a; Schwingshackl et al., 2022). (1) Natu-
ral and indirect human-induced fluxes are included, such as
those resulting from increased forest regrowth due to higher
atmospheric CO2 concentration and N deposition, in many
country reports. (2) The area assumed to be managed land is
larger and is therefore included in the fLULUCF assessment in
the country reports compared to the BKs. This is confirmed
by the fact that the adjusted NGHGI DB data, where the nat-

ural land sink on managed land is subtracted, agree better
with the BK estimates than the NGHGI DB data for most
countries.

However, for individual countries, other reasons, such as
omitted fluxes due to incomplete reporting of land uses and
carbon pools, also (partly) explain the differences between
modelled and reported fLULUCF estimates (Schwingshackl
et al., 2022). In the United States, lower country-report-
based estimates may additionally result from the inclusion
of CO2 removals from urban vegetation (Churkina et al.,
2010), which is not considered in the BK estimates. In ad-
dition, despite the increased methodological complexity of
the approaches being used by many developed countries, it
was shown that reported fLULUCF estimates for the United
States still remain uncertain, mainly due to uncertainty in in-
puts, model parameters and plot-based sampling (e.g. McG-
lynn et al., 2022). The Canadian NGHGI report discounts
fluxes (emissions and removals) on areas affected by wild-
fires and severe insect disturbances and reports them in a
separate category (Kurz et al., 2018), which can explain the
strongly increased difference for the adjusted NGHGI DB
estimate (Grassi et al., 2018; Schwingshackl et al., 2022). In
China, the large gap between country-report-based and mod-
elled estimates might be explained by high carbon removals
from afforestation and ecological restoration projects (Yang
et al., 2022; Jin et al., 2020; Yu et al., 2022) considered in
the country reports but not fully included in the land-use data
used by the models (compare Sect. 4.4 and Yu et al., 2022).

The generally good agreement in the fLULUCF estimates
from BKs and inventories in Indonesia is due to the domi-
nance of the added peat data, with a pronounced interannual
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variability controlled mostly by El Niño–Southern Oscilla-
tion patterns on top of land use (Federici et al., 2017).

LULUCF flux estimates from FAOSTAT are largely in
agreement with BK estimates, with some important differ-
ences, notably lower estimates in China and Russia and
higher estimates in DR Congo and Canada. FAOSTAT es-
timates are generally higher than the NGHGI DB estimates
except for the period from 2000–2019 in Russia and Nigeria
and the emission peak in Brazil in 2004. As for the NGHGI
DB estimates, lower FAOSTAT estimates compared to BK
estimates are likely due to the inclusion of all fluxes on man-
aged land (compare adjusted NGHGI DB data). Differences
between FAOSTAT and NGHGI DB estimates can be ex-
plained by the generally more complete coverage of carbon
fluxes in the latter and differing approaches to estimate forest
fluxes, where FAO applies a carbon stock change approach
based on observed forest data from FRA, while NGHGI re-
ports are based on the use of a simple carbon stock change
approach or a gain loss approach by the scaling up of forest
growth rates based on IPCC default factors to forest land es-
timates (refer to Appendix and Grassi et al., 2022; Tubiello
et al., 2021, for a detailed description of the differences be-
tween UNFCCC country, NGHGI DB and FAOSTAT esti-
mates).

Additionally, the underlying data on forest land differ,
with the NGHGI DB database reporting much greater for-
est areas and forest carbon removals (in particular for non-
Annex I countries). Moreover, NGHGIs of Annex I and
the largest non-Annex I countries also include non-biomass
carbon pools and non-forest land uses, while, except for
organic soils, FAOSTAT only includes above- and below-
ground biomass pools (Federici et al., 2015; Tubiello et al.,
2021; Grassi et al., 2022). The higher estimates of NGHGI
DB compared to FAOSTAT in Brazil are caused by larger
deforestation and afforestation areas in the Brazilian report
to UNFCCC compared to FRA and the fact that it consid-
ers gross deforestation and afforestation, while FAOSTAT
reports net deforestation and afforestation directly (Federici
et al., 2017; Rosan et al., 2021; Schwingshackl et al., 2022)
(which might increase emissions in the NGHGI due to the
asymmetry in instantaneously occurring gross emissions ver-
sus slowly increasing gross removals over the long term).

4.4 Gross fLULUCF from bookkeeping models at country
level

To get more insights into the underlying drivers of country-
level net LULUCF estimates, we split them into gross fluxes,
namely gross emissions (or “sources”) and gross removals
(or “sinks”). As stated in the Introduction, here we define
these gross fluxes as the sum of all fluxes related to those LU-
LUCF practices that typically lead to emissions or removals,
respectively. Gross emissions are mainly caused by defor-
estation, peatland degradation, biomass burning, the decay of
HWPs and biomass left on site after harvest (Friedlingstein

et al., 2022a). Gross removals are mainly associated with af-
forestation and reforestation including forest regrowth after
agricultural abandonment, as well as forestry cycles and the
restoration of other (non-forest) ecosystems. In the follow-
ing, we present and discuss gross fLULUCF derived from the
three BKs for the nine selected countries (Fig. 5; refer to
Fig. A7 for RECCAP2 regions and Figs. A15 and A16 for
all 186 investigated countries).

Similarly to the net fluxes, gross fluxes modelled by the
three BKs show widely similar trends and agree on the tim-
ing of emission peaks. Peaks in net emissions are predom-
inantly due to peaks in gross emissions, while the time se-
ries of gross removals is much smoother, consistent with
the slower pace of vegetation regrowth. Consequently, the
short-term evolution of net fLULUCF is much more influenced
by the dynamics of highly fluctuating gross emissions than
by the dynamics of rather slowly changing gross removals.
However, the decreasing trends in net fLULUCF estimates
across many regions (globally from 1.6± 0.7 GtC yr−1 in the
1960s to 1.1± 0.7 GtC yr−1 in the period from 2011–2020)
mainly relate to a steady increase in the gross removals (glob-
ally from −1.9± 0.4 to −2.7± 0.4 GtC yr−1 in the same pe-
riod), which exceeded the increase in gross emissions (glob-
ally from 3.4± 0.9 to 3.8± 0.6 GtC yr−1 in the same period;
Friedlingstein et al., 2022b). This smooth evolution towards
increased removals results from increased carbon sequestra-
tion on previously managed land, mainly due to forest re-
growth and soil recovery. Environmental changes, such as
those resulting from CO2 fertilization, are not modelled by
BKs (except the changing carbon densities in OSCAR).

In most regions, uncertainties in net fLULUCF are due to
uncertainties in gross emissions rather than uncertainties in
gross removals. The largest differences, and thus pronounced
uncertainties, in gross emissions from BKs are found for In-
dia and Canada as well as in the years before and after most
emission peaks in many regions. Uncertainties related to the
peaks in the 1960s mainly stem from the merging of two dif-
ferent datasets. In China, the pronounced peak in the 1980s
is caused by spurious signals in the LUHv2 data, inherited
from an abrupt cropland increment in the FAO data (Yu et al.,
2022). Because cropland area is quantified relative to for-
est proportions, an increasing cropland area causes decreas-
ing forest area (and vice versa), while China’s afforestation
projects were largely implemented in drier and previously
unmanaged and unforested lands, increasing the total forest
area without replacing croplands (Yu et al., 2022). Similar
to net fLULUCF, the highest emission estimates are generally
derived from BLUE22 and the lowest emissions predomi-
nantly from H&N22. As stated above, this can mainly be ex-
plained by different process representation and parametriza-
tion in the models (compare Sect. 4.3). The exception of
higher OSCAR22 estimates in Brazil in recent decades likely
results from higher deforestation rates since 2004 and shorter
turnover times for HWPs in OSCAR compared to the other
BKs. In addition, OSCAR uses the averaged biome-specific
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Figure 5. Gross and net fluxes from land use, land-use change and forestry (fLULUCF) from 1950 until 2021, as derived by three bookkeeping
models (BKs; used in the GCB2022). Eight countries with the highest cumulative emissions since 1950 are shown in decreasing order and
the United States. Lines (shaded area) depict the mean (range) of the BK estimates.

carbon densities taken uniformly over the country which may
overestimate emissions in particular in large countries cover-
ing differing types of the same biome (e.g. different types of
forest), if land-use transitions predominantly happen in re-
gions with lower carbon densities.

The highest differences in gross removal estimates among
the BKs are found in India, Russia and the United States.
In India, this may result from greater removals due to the
inclusion of sub-grid-scale transitions in BLUE22 and OS-
CAR22, while H&N22 estimates rather negligible removals.
It is noteworthy that in India, the large uncertainties in gross
emissions and removals from BKs translate into a huge un-
certainty in net fLULUCF in the 1950s, but subsequently un-
certainties in gross fluxes cancel out, yielding only small un-
certainties for the net flux. In Russia, the models agree in a
decreasing removal trend despite a considerable spread, with
large removal estimates by H&N22 and small estimates by
OSCAR22. In recent decades, these decreasing removals in
Russia can partly be explained by the decreasing trend in
the abandonment sink as was shown for the BLUE model
by Winkler et al. (2023) in addition to intensified logging
and wood harvest activities that cause ongoing deforesta-
tion (Kuzminyh et al., 2020). In the United States, the large
BK range for net fluxes is predominantly due to large un-
certainties in the removal estimates, while the gross emis-
sion estimates agree well among BKs. This removal-driven
net fLULUCF uncertainty can be explained by the inclusion
of fire management in the United States in H&N22, leading
to large removal estimates, while BLUE22 and OSCAR22
show much lower removal estimates.

4.5 Ratio of net-to-gross fLULUCF from bookkeeping
models

To further investigate the importance of gross fluxes, we cal-
culate the ratio of net fLULUCF to the sum of gross fLULUCF
(net-to-gross ratio, with the sum of gross fluxes defined as the
range between gross emissions and gross removals) for the
three BKs (Fig. 6; refer to Fig. A8 for RECCAP2 regions and
Figs. A17 and A18 for all 186 investigated countries). Ra-
tios close to 1 (close to −1) indicate that the net flux reflects
mostly gross emissions (gross removals) and only very small
gross removals (gross emissions). Ratios between 0 and 0.5
(between 0 and −0.5) indicate that the net flux represents
only a small fraction of the occurring gross sources (sinks),
which is the case in most countries during most of the time
investigated. Ratios close to zero indicate that gross fluxes
are largely compensating each other, which might indicate a
sustainable land management that causes gross removals to
largely offset gross emissions.

Seven out of the nine investigated countries (Brazil, China,
India, Canada, Russia, Nigeria and the United States) show
decreasing country-level ratios of net-to-gross fLULUCF from
1950 onward, indicating increasingly compensating gross
emissions and gross removals. This is mostly due to increas-
ing gross removals from LULUCF, while at the same time
the gross emissions did not increase in such a pronounced
way (particularly in Brazil, Canada, China, India and Nige-
ria). In some of the countries, the ratios became even negative
over time (China, India, Russia, and the United States), indi-
cating that gross removals became larger than gross emis-
sions. Large negative net-to-gross ratios indicate that gross
removals are much larger than gross emissions, and thus the
(negative) net flux is mostly controlled by carbon removals
from the atmosphere (e.g. in the most recent decade in Eu-
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Figure 6. Decadal mean ratio of net-to-gross fluxes from land use, land-use change and forestry (with “gross” defined as the range between
gross emissions and gross removals) from 1950 to 2020 derived by three bookkeeping models (BKs). The eight countries with the highest
cumulative emissions since 1950 are shown in decreasing order and the United States. Values close to 1 or −1 indicate that either gross
removals or gross emissions are close to 0 and the net value corresponds to either gross emissions or removals, with few compensating
effects. Values near zero indicate that emissions and removals largely compensate each other. A negative ratio (green background) indicates
net removals; that is, gross removals are greater than gross emissions.

ropean countries, Japan and Türkiye; compare Fig. 7a and
Tables A1–A3).

In contrast, increasing net-to-gross ratios over time are
found in Indonesia and DR Congo (particularly, in the most
recent decade), mainly due to strongly increasing gross emis-
sions, which are not compensated by equally large gross re-
movals, despite increasing removals also observable in these
countries (see Fig. 5). High positive net-to-gross ratios in
the most recent decade reveal large gross emissions that are
not compensated by gross removals and are mainly found in
the tropics and the Southern Hemisphere, in particular in Ar-
gentina, Angola, Paraguay, Bolivia, Papua New Guinea and
Tanzania (Fig. 7a).

Large uncertainties in the net-to-gross ratio in Canada
and China in the second half of 21st century are caused by
strongly varying emission estimates and in the same period in
the United States, from strongly varying removal estimates.

Near-zero net-to-gross ratios indicate that gross fluxes
counterbalance each other; i.e. gross removals compensate
gross emissions. Country-level near-zero net-to-gross ra-
tios can be found in China, India, Russia and the United
States, particularly in the most recent decade (compare
Figs. 6 and 7a). Grid-cell-wise analysis revealed, however,
that pronounced gross fluxes occurred also in these countries.
This highlights that considering only the net land-use CO2
fluxes might miss the importance of potentially large gross
fluxes. This is especially true when net fluxes are estimated
on a larger scale, such as at the country level and particu-
larly for very large countries, since here the opposing gross
fluxes, which often occur spatially separately, are more likely

to be offset (compare, for example, United States and China
in Fig. 7c and d). This, furthermore, highlights the need for
spatial explicit analysis of the net as well as gross fLULUCF
and that country commitments based on net LULUCF fluxes
can still be associated with large emission fluxes. Similarly,
the rather vague commitment of the Glasgow Leaders’ Dec-
laration on Forests and Land Use to halt deforestation, with-
out stating whether this accounts for gross or net transitions,
can lead to strongly varying forest flux trajectories (Gasser
et al., 2022). In line with Gasser et al. (2022), we therefore
argue that climate mitigation measures should focus on gross
fluxes from LULUCF rather than net fluxes.

5 Data availability

The NGHGI DB and the adjusted NGHGI DB data can be
found under https://doi.org/10.5281/zenodo.7650360 (Grassi
et al., 2023b), and OSCAR22 output can be found under
https://doi.org/10.5281/zenodo.7313498 (Gasser and Shri-
vastav, 2022). TRENDY simulations are available via re-
quest to s.a.sitch[at]exeter.ac.uk. A dataset covering all
aggregated country data for the period 1950–2021 for
all datasets used in this study can be found under
https://doi.org/10.5281/zenodo.8144174 (Obermeier et al.,
2023).
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Figure 7. Maps of (a) country-level ratio of net-to-gross carbon fluxes from land use, land-use change and forestry (with “gross” defined as
the range between gross emissions and gross removals), (b) net fLULUCF, (c) gross emissions, and (d) gross removals as average values of
the three bookkeeping models for the period 2011–2021. Hatching in (a) indicates countries with a very low range in gross fluxes (average
gross emissions minus gross removals smaller than 0.1 t C ha−1 yr−1). Green (brown) colours in (a) depict negative (positive) net fluxes
with a value of −1 (+1), indicating that no carbon emissions (removals) occur. The maps depict the median from three bookkeeping models
(BLUE22, H&N22, OSCAR22). Grid cells with a gross flux range smaller than 0.02 tC ha−1 yr−1 are excluded. Gross fluxes from OSCAR22
and H&N22 were distributed using the spatial patterns of the gross flux density in BLUE for each country, respectively.

6 Conclusions

In this study, we have comprehensively compiled country-
level data on carbon fluxes from land use, land-use change
and forestry (fLULUCF) from modelling and country-report-
based approaches for 186 countries. The increasing spatial
resolution of modelling approaches makes it possible to pro-
vide model-based fLULUCF estimates at country level, which
can be compared to estimates based on official country re-
ports. The comparison of multiple approaches for estimating
fLULUCF showed a fair agreement in the majority of coun-
tries, although with large differences in some other countries.
The modelling approaches (BKs and DGVMs) yield gener-
ally consistent fLULUCF estimates for the nine investigated
countries. Differences, particularly across BKs, are due to
differences in land-use forcing data, process implementation
and parametrization.

Similarly, DGVM estimates strongly depend on the land-
use forcing data. For some of the investigated countries, fur-
ther uncertainties in the DGVM estimates of a similar mag-
nitude are caused by the environmental forcing data used,
namely present-day environmental forcing, which is more

comparable to BKs and country-report-based approaches,
compared to transient environmental forcing, which better
reflects historical environmental changes in the real world.
In the majority of investigated countries, fLULUCF estimates
based on official country reports (NGHGI DB and FAO-
STAT) are lower compared to the modelled estimates. How-
ever, once the varying characteristics and definitions (in par-
ticular the so-called managed land proxy) are accounted for,
the differences become substantially lower in most countries.

Analysing the gross fluxes from BKs revealed that short-
term variations in net fluxes are mostly linked to gross emis-
sions, which show large temporal variability, while gross re-
movals rather impact the long-term trends of net fluxes. Un-
certainties in net fluxes mainly relate to uncertainties in gross
emissions (for example, in Brazil, Canada, China and DR
Congo) but can also be strongly impacted by uncertainties
in gross removals (for example in the United States). In India
and Russia, pronounced uncertainties in both gross emissions
and gross removals largely compensate each other, which re-
sults in rather low uncertainties of the net flux. Furthermore,
the investigation of the net-to-gross ratio revealed that the
net flux is comprised by large gross fluxes in most countries
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and over most of the investigated time from 1950 onward. It
is noteworthy that gross fluxes increasingly compensate each
other in most of the countries over time. Considering only net
fluxes might thus miss potentially important and large gross
fluxes. In addition, grid-cell-wise analysis revealed that pro-
nounced gross and net fluxes may occur within a country at
different locations, even though net fluxes are close to zero
when averaged at the country level, which highlights the need
for spatially explicit data on gross fluxes.

Consequently, model-based spatial data as presented in
this study may support the identification of component-wise,
historical and/or regional “uncertainty hotspots” that partic-
ularly need improved fLULUCF estimations. For example, the
uncertain emission estimates from BKs in India, from the
1980s onward in China, and for the most recent decade in
Brazil and DR Congo could be improved by better land-use
forcing data. Likewise, the uncertain removal estimates in
Russia and India could be improved by incorporating better
land-use forcing data and improved process representation
in models, such as for fluxes related to land abandonment.
The differences in fLULUCF estimates in these “hotspots”
highlight the need for a careful interpretation of the outputs
from the varying methods and for a further reconciliation of
the different approaches, in particular regarding the differ-
ent components considered and the methods used for their
estimation. For example, in Canada and Nigeria, increasing
differences between modelled estimates and those from the
NGHGI DB, even after adjustment of the latter, call for in-
depth analysis of the underlying drivers.

To this end, we argue for a systematic model evaluation
and improved parametrization of models, in particular re-
garding land-use forcing data, parametrized carbon densities,
and the different processes represented in the models. In ad-
dition, the definition and framework issues implicitly under-
lying all datasets that still exist, for example, definition/inclu-
sion of LASC, whether there are transient C densities or not,
biome and plant functional type (PFT) definitions, and man-
aged land proxy, should be addressed. To further increase the
confidence in fLULUCF estimates, more approaches similar
to bookkeeping models, for example, by DGVM simulations
under BK-like protocol, could be used. In addition, all mod-
els (BKs and DGVMs) should use more spatially explicit
forcing datasets. In particular, Earth observation data may
provide improved spatially explicit data (e.g. of land degra-
dation and restoration efforts) on carbon densities in vegeta-
tion and soil, forest regrowth by incorporation of forest age
classes, and forest management from optical and microwave
satellite measurements, as well as data on carbon fluxes from
atmospheric inversions. Furthermore, spatially explicit data
on land-use activities from Earth observations could improve
the quality of report-based estimates where data sources are
scarce and improve comparability with estimates from mod-
elling approaches. Such an improved incorporation of Earth
observation data into modelling and country-report-based ap-

proaches may provide substantial advancements in the as-
sessment and understanding of CO2 fluxes from LULUCF.

Appendix A: Description of individual approaches for
estimating fLULUCF

A1 Bookkeeping models

BKs use spatial information on land-use activities to derive
net fLULUCF by summing up all gross carbon fluxes that oc-
cur due to land conversion and land management (Pongratz
et al., 2014). To estimate carbon fluxes from LULUCF, BKs
rely on observation-based carbon stock densities, growth
curves (uptake) and decomposition curves (release) of soil
and vegetation carbon that are specific for each conversion
type. Fluxes due to land-use conversion can occur instanta-
neously (fluxes upon or within the year of LULUCF) and in
the years following the conversion (legacy fluxes, for exam-
ple, from readjustment of carbon stocks).

Fluxes from peat fire and peat drainage are not directly
modelled by BKs but are added from external data. For the
GCB2022 simulations, which we use here, peat fire emis-
sions were added from the Global Fire Emission Database
(GFED4s; van der Werf et al., 2017) for Brunei Darussalam,
Indonesia, Malaysia and Papua New Guinea. Peat drainage
emissions were added for all countries as the average from
FAO data (Conchedda and Tubiello, 2020) and DGVM sim-
ulations with ORCHIDEE-PEAT (Qiu et al., 2021) and LPX-
Bern (Lienert and Joos, 2018; Müller and Joos, 2021). More
details can be found in Friedlingstein et al. (2022a).

The three BKs notably differ in (1) the implemented pro-
cesses; (2) the land-use forcing data; and (3) the assigned car-
bon densities, response curves and pool allocation fractions
(compare Friedlingstein et al., 2022b; Bastos et al., 2021a):

1. BLUE22 and OSCAR22 include sub-grid-scale transi-
tions between all vegetation types (e.g. from shifting
cultivation – a rotation cycle between forest and agri-
culture), which presumably leads to higher emissions,
whereas sub-grid-scale transitions are not implemented
in H&N22 – only if a country’s forest loss reported
to FRA exceeds agricultural expansion based on FAO
land-use data does H&N22 assume that this area is
cleared for shifting cultivation. BLUE22 includes gross
fluxes related to degradation from primary to secondary
land in the case that natural vegetation is used as range-
land. H&N22 considers fire management in the United
States and southeast Asia, in contrast to BLUE22 and
OSCAR22.

2. BLUE22 uses the LUH2-GCB2022 dataset (an update
to most recent harmonized land-use change data (LUH2
v2h); Chini et al., 2021; Hurtt et al., 2020) based on
HYDE3.3, whose contemporary land use is constrained
by annual ESA CCI Land Cover and updated agricul-
tural areas from FAO (Klein Goldewijk et al., 2017).

Earth Syst. Sci. Data, 16, 605–645, 2024 https://doi.org/10.5194/essd-16-605-2024



W. A. Obermeier et al.: Country-level gross and net land-use carbon flux estimates 621

Figure A1. Regions as defined by REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2; Tian et al., 2019).

Figure A2. Net per-capita carbon fluxes from land use, land-use change and forestry (fLULUCF) from three bookkeeping models (BKs; data
from GCB2022 simulations). (a) Cumulative per-capita carbon fluxes over 1950–2021 and (b) average per-capita carbon fluxes in 2011–
2021. The bars show the mean of the three BKs (filled bars) and minimum and maximum estimates (hatched bars). Numbers in parentheses
show the multi-model average and standard deviation (in tC per capita in (a) and tC per capita yr−1 in (b)). Colours indicate the absolute
quantities, showing countries with net emissions in red and countries with net removals in green. All 186 country aggregates from this study
are shown in decreasing order of their (a) cumulative and (b) most recent annual fLULUCF. In each panel, the top 10 emitters and the five
countries with the largest removals are labelled. The figure corresponds to Fig. 1 in the main paper, with the difference that fluxes are shown
per capita. Note that values for very small countries should be interpreted with care as the relatively low resolution of many models creates
uncertainty at the small scale.
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Figure A3. Net per-area carbon fluxes from land use, land-use change and forestry (fLULUCF) from three bookkeeping models (BKs; data
from GCB2022 simulations). (a) Cumulative per-area carbon fluxes over 1950–2021 and (b) average per-area carbon fluxes in 2011–2021.
The bars show the mean of the three BKs (filled bars) and minimum and maximum estimates (hatched bars). Numbers in parentheses show
the multi-model average and standard deviation (in tC ha−1 in (a) and tC ha−1 yr−1 in (b)). Colours indicate the absolute quantities, showing
countries with net emissions in red and countries with net removals in green. All 186 country aggregates from this study are shown in
decreasing order of their (a) cumulative and (b) most recent annual fLULUCF. In each panel, the top 10 emitters and the five countries with
the largest removals are labelled. The figure corresponds to Fig. 1 in the main paper, with the difference that the fluxes are shown per area.
Note that values for very small countries should be interpreted with care as the relatively low resolution of many models creates uncertainty
at the small scale.

These data are globally consistent but have a relatively
coarse spatial resolution (0.25◦× 0.25◦) and may thus
exclude regional and local specifics (Bastos et al., 2018;
Li et al., 2018; Kondo et al., 2022). H&N22 uses FAO-
FRA data from 2020 for forest (from 1990 onward and
various sources before; FAO, 2020) and data from FAO-
STAT for other land uses and applies a 5-year run-
ning mean on the activity data before flux calculations
(Friedlingstein et al., 2022b). OSCAR22 calculates a
best-guess estimate of fLULUCF based on a combina-
tion of the LUH2-GCB2022 dataset and FAO-FRA data
(Gasser et al., 2020, 2022). BLUE22 output is spatially
explicit, while H&N22 and OSCAR22 provide country-
level estimates.

We further use BLUE data from GCB2019 (hereafter
BLUE19), forced with LUH2-GCB2019 data based on
HYDE3.2 (Klein Goldewijk et al., 2011; Chini et al.,
2021). As the BLUE model code was not changed be-
tween GCB2019 and GCB2022, this allows the impact

of changes in the LULUCF forcing data to be isolated,
with HYDE3.2 using 1 year of ESA CCI as a refer-
ence year for the spatial land cover patterns, whereas
HYDE3.3 uses time-varying ESA maps, which led to
spatio-temporally improved land cover maps (Rosan
et al., 2021). From 2018 onward, the underlying LUH2
data linearly interpolate the trend in cropland, pasture
and urban area of the previous 5 years until the year
2021. This approach does not properly reflect the dy-
namics in regions with intensive land use and land-
use changes (LULUCs) in most recent years; therefore,
the LUH2-GCB2022 land-use forcing data in Brazil are
taken from the MapBiomas dataset (collection 6) for the
period 1985–2020, according to the approach described
in Friedlingstein et al. (2022a).

3. H&N22 assigns vegetation carbon densities at country
level (based on official country reports) and soil carbon
densities globally for 20 types of ecosystems (Houghton
and Nassikas, 2017). BLUE22 assigns vegetation and
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Figure A4. Time series of net carbon flux from land use, land-use change and forestry (fLULUCF) in 1950–2021 derived by bookkeeping
models (BKs) and TRENDYv8 simulations with dynamic global vegetation models (DGVMs; used in the GCB2019) under present-day
climate forcing for the RECCAP2 regions. Regions are sorted according to their cumulative net emissions from 1950–2021, as derived by
three bookkeeping models. The complete region designations for the acronyms used can be found in the legend of Fig. A1. The figure shows
the mean and absolute range of three BKs (using the GCB2022 simulations, BKs 2022) and the median and interquartile range of the eight
DGVMs. Additionally, estimates from BLUE simulations from the GCB2019 (BLUE19; blue solid) and from the GCB2022 (BLUE22; blue
dashed) are shown to illustrate the impact of updates in the LUHv2 forcing data. BLUE19 data are only available until 2019 and TRENDYv8
data are only available until 2018. Greenish background depicts negative fLULUCF, which is carbon removal from the atmosphere. The figure
corresponds to Fig. 2 in the main paper, with the difference that the fluxes are shown for the RECCAP regions.

Figure A5. Time series of net carbon flux from land use, land-use change and forestry (fLULUCF) in 1950–2021 derived from TRENDYv8
simulations with dynamic global vegetation models (DGVMs) under historical (transient) and fixed present-day environmental conditions
(compare Appendix) for the RECCAP2 regions. Regions are sorted according to their cumulative net emissions from 1950–2021, as derived
by three bookkeeping models. The complete region designations for the acronyms used can be found in the legend of Fig. A1. The figure
shows the median and interquartile range of the eight DGVMs. Greenish background depicts negative fLULUCF, which is carbon removal
from the atmosphere. The figure corresponds to Fig. 3 in the main paper, with the difference that the fluxes are shown for the RECCAP
regions.
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Figure A6. Net carbon flux from land use, land-use change and forestry (fLULUCF) in 1950–2019 derived from individual bookkeeping
models (BKs) used in GCB2022 (BKs 2022) and country-report-based estimates (FAOSTAT and NGHGI DB) for the RECCAP2 regions. The
use of dashed and solid lines indicates that BK estimates and country-report-based estimates are not directly comparable (see Sect. 2.5 and
the Appendix). For better comparability, the adjusted NGHGI DB estimates, matching the fLULUCF definition of the BKs, are additionally
shown. The grey line (shading) depicts the median (range) of the three BKs. The light-green background indicates negative fLULUCF that is
net carbon removal from the atmosphere by LULUCF. The figure corresponds to Fig. 4 in the main paper, with the difference that the fluxes
are shown for the RECCAP regions.

soil carbon densities for 11 PFTs globally (based on
literature values; Houghton et al., 1983; Hansis et al.,
2015). OSCAR22 uses carbon densities derived from
DGVMs and response curves specified for 96 world re-
gions and five biomes (Gasser et al., 2020, 2022). Sim-
ilarly, carbon response curves in H&N22 and BLUE22
are assigned for each of the 20 ecosystems and 11 PFTs
considered, respectively. The BLUE model, in general,
has highest carbon densities implemented which causes
high fLULUCF estimates, as was shown by Bastos et al.
(2021a, b), where parameterizing BLUE with H&N car-
bon densities led to a 24 % reduction of global cumu-
lative fLULUCF from 1850–2015. Using carbon den-
sities and response curves that are static over time,
BLUE22 and H&N22 do not explicitly model the ef-
fects of environmental changes (e.g. increased CO2 con-
centration and climatic change), although some are im-
plicitly captured within the observed carbon densities
and response curves (Pongratz et al., 2014). In con-
trast, OSCAR22 includes transient environmental re-
sponse due to its calibration to transient DGVM sim-
ulations (Gasser et al., 2017, 2020). In addition, the al-
location of HWPs to different product pools differs be-
tween the models: BLUE22 uses three HWP pools (with
turnover times of 1, 10, and 100 years) with fixed al-
location fractions for each PFT. H&N22 assigns time-
variant fractions for five pools (fuel and industrial and
1-year, 10-year and 100-year turnover times) specific

for each country (Bastos et al., 2021a). OSCAR22 uses
three HWP pools (with average turnover times of 0.75,
6.0 and 65 years) and allocation fractions specific to re-
gions and biomes (Gasser et al., 2017, 2020).

In some countries depicted in the Appendix, particularly in
arid world regions, gross emissions from BKs are negative in
some years. This relates to the definition of gross emissions
which include emissions from deforestation, forest degrada-
tion and wood harvest and fluxes from transitions between
natural land, cropland and pasture. The latter, however, may
cause negative carbon fluxes if carbon densities of the initial
land cover are lower than the carbon densities of the con-
verted land cover. Consequently, this may cause gross emis-
sions to be negative, particularly in dryland countries with
little forest cover. On the global scale, this effect is negligi-
ble.

A2 Dynamic global vegetation models

DGVMs are used in the GCB for the uncertainty assessment
of fLULUCF and the estimation of the natural land sink. More-
over, DGVMs are frequently used in more detailed studies,
for example, on the effects of land-use changes on local cli-
mate, due to their implementation of complex biogeochem-
ical and biogeophysical processes and their capacity to sim-
ulate transient environmental responses (e.g. Krause et al.,
2018; Winckler et al., 2017; Bright et al., 2017). We ag-
gregated country-level fLULUCF based on DGVMs that per-
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Figure A7. Gross and net fluxes from land use, land-use change and forestry (fLULUCF) from 1950 until 2021, as derived by three book-
keeping models (BKs; used in the GCB2022) for the RECCAP2 regions. Regions are sorted according to their cumulative net emissions from
1950–2021, as derived by three bookkeeping models. The complete region designations for the acronyms used can be found in the legend of
Fig. A1. Greenish background depicts negative fLULUCF, which is carbon removal from the atmosphere. The figure corresponds to Fig. 5 in
the main paper, with the difference that the fluxes are shown for the RECCAP regions.

Figure A8. Gross and net fluxes from land use, land-use change and forestry (fLULUCF) from 1950 until 2021, as derived by three book-
keeping models (BKs; used in the GCB2022) for the RECCAP2 regions. Regions are sorted according to their cumulative net emissions from
1950–2021, as derived by three bookkeeping models. The complete region designations for the acronyms used can be found in the legend
of Fig. A1. Lines (shaded area) depict the mean (range) of the BK estimates. The figure corresponds to Fig. 6 in the main paper, with the
difference that the fluxes are shown for the RECCAP regions.
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Figure A9. As in Fig. 2 but for the 93 top-emitting countries according to their cumulative emission in 1950–2021, as derived by three
bookkeeping models (without the lines for the differences of the estimations; remaining countries are shown in Fig. A10). Green-shaded
areas depict the range of net carbon removals. For the complete country designations of the alpha-3 codes, refer to Tables A1–A3.

formed simulations within the project “Trends and drivers of
the regional-scale emissions and removals of carbon dioxide”
(TRENDY; Le Quéré et al., 2014; Sitch et al., 2015).

DGVMs do not directly output fLULUCF. Instead, fLULUCF
is estimated as the difference between two simulations with
the same environmental forcing, one including and one ex-

cluding LULUCF. To derive fLULUCF for each grid cell and
each (yearly) time step, the net biome productivity (NBP)
of the simulation including LULUCF is subtracted from the
NBP in the simulation excluding LULUCF, the latter using a
constant pre-industrial LULUCF map (from 1700) over time.
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Figure A10. As in Fig. A9 but showing the lowest-emitting countries and countries with net removals according to their cumulative fluxes
in 1950–2021, as derived by three bookkeeping models. Green-shaded areas depict the range of net carbon removals. For the official country
names and each country’s rank (order of subplots), refer to Tables A1–A3.

Thereby, fLULUCF from DGVMs includes instantaneous as
well as legacy fluxes, like BK estimates.

DGVM simulations can be forced with different envi-
ronmental conditions, where some environmental variables
are set constant (fixed) at either pre-industrial or present-
day levels or follow observed, transient conditions (for an

overview of the different simulations, refer to Obermeier
et al., 2021). Here, we use simulations under fixed present-
day environmental conditions as they most closely resemble
BK simulations and country-report-based approaches (using
observed C densities) and are recommended by RECCAP2
(Ciais et al., 2022). Present-day environmental simulations
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Figure A11. As in Fig. 3 but for the 93 top-emitting countries according to their cumulative emission in 1950–2021, as derived by three
bookkeeping models (without the lines for the differences of the estimations; remaining countries are shown in Fig. A12). Green-shaded areas
depict the range of net carbon removals. For the official country names and each country’s rank (order of subplots), refer to Tables A1–A3.

are run under the CO2 concentration from 2018 through-
out the simulated period and recycle the climate from 1999–
2018 using the mean and variability of the individual years
in this period (Obermeier et al., 2021). DGVM simulations
with present-day conditions are not performed every year.

The most recent present-day simulations available stem from
TRENDYv8 used in GCB2019 (Friedlingstein et al., 2019).

We additionally employ transient DGVM simulations
from TRENDY v8 as transient simulations are operationally
available, commonly used within the scientific community,
and enable us to derive the difference in fLULUCF that re-

Earth Syst. Sci. Data, 16, 605–645, 2024 https://doi.org/10.5194/essd-16-605-2024



W. A. Obermeier et al.: Country-level gross and net land-use carbon flux estimates 629

Figure A12. As in Fig. A11 but showing the lowest- emitting countries and countries with net removals according to their cumulative fluxes
in 1950–2020, as derived by three bookkeeping models. Green-shaded areas depict the range of net carbon removals. For the official country
names and each country’s rank (order of subplots), refer to Tables A1–A3.

sults from different environmental forcing (by comparing to
present-day TRENDYv8 simulations). The transient environ-
mental simulations used here are forced with observation-
based temperature, precipitation and incoming surface radi-
ation data (0.5◦× 0.5◦ resolution) of the Climatic Research
Unit (CRU) and the Japanese Reanalysis (JRA; Friedling-

stein et al., 2019; Harris et al., 2014) and global atmospheric
CO2 concentrations from ice core data before 1958 (Joos
and Spahni, 2008) combined with National Oceanic and At-
mospheric Administration (NOAA) data from 1958 onward
(Dlugokencky and Tans, 2020).
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Figure A13. As in Fig. 4 but for the 93 top-emitting countries according to their cumulative emission in 1950–2020, as derived by three
bookkeeping models (remaining countries are shown in Fig. A14). Green-shaded areas depict the range of net carbon removals. For the
official country names and each country’s rank (order of subplots), refer to Tables A1–A3.

To enable a robust comparison between the differ-
ent forcings, we selected only those nine DGVMs that
provide present-day in addition to transient simulations
within TRENDYv8: CLASS-CTEM (Melton and Arora,
2016), DLEM (Tian et al., 2015), JSBACH (Mauritsen
et al., 2019), LPJ-GUESS (Smith et al., 2014), LPX-Bern
(Lienert and Joos, 2018), ORCHIDEE (Krinner et al., 2005),

ORCHIDEE-CNP (Goll et al., 2017), SDGVM (Walker
et al., 2017) and VISIT (Kato et al., 2013).

Differences among the DGVMs mainly result from (1) dif-
fering model parameters and (2) the implementation of dif-
ferent processes with varying complexities (Friedlingstein
et al., 2022b):
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Figure A14. As in Fig. A13 but showing the lowest-emitting countries and countries with net removals according to their cumulative fluxes
in 1950–2020, as derived by three bookkeeping models. Green-shaded areas highlight net carbon removals. For the official country names
and each country’s rank (order of subplots), refer to Tables A1–A3.

1. Model parametrization differs, for instance, in the dis-
tinction of primary and secondary forests and turnover
rates of product pools (Kondo et al., 2022), the frac-
tion of directly emitted carbon upon LULUCs, and the
implemented decomposition rates and resulting soil car-
bon densities (Goll et al., 2015).

2. Implemented processes differ, for example, as some
DGVMs include fires (without distinguishing whether
they are natural or anthropogenic), while others have
no fire implemented. Other natural disturbances are not
included by the DGVMs. Additionally, some DGVMs
consider nitrogen or phosphorus cycles, cropland ir-
rigation, shifting cultivation, forest degradation, and
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Figure A15. As in Fig. 5 but for the 93 top-emitting countries according to their cumulative emission in 1950–2021, as derived by three
bookkeeping models (remaining countries are shown in Fig. A15). Green-shaded areas highlight net carbon removals. For the official country
names and each country’s rank (order of subplots), refer to Tables A1–A3.

residue carbon after deforestation and wood and crop
harvests, while others do not (for more details refer
to Bastos et al., 2020b; Kondo et al., 2022; Friedling-
stein et al., 2022b). It is noteworthy that the inclusion
of processes such as shifting cultivation, wood harvest,
grazing, crop harvest and cropland management in-
creases historic (1901–2014) LULUCF emissions from

DGVMs by 20 %–30 % for each of these processes (Ar-
neth et al., 2017).
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Figure A16. As in Fig. A15 but showing the lowest-emitting countries and countries with net removals according to their cumulative fluxes
in 1950–2021, as derived by three bookkeeping models. Green-shaded areas highlight net carbon removals. For the official country names
and each country’s rank (order of subplots), refer to Tables A1–A3.

A3 National greenhouse gas inventories under the
UNFCCC

To take stock and track progress towards their NDCs, coun-
tries report official inventory statistics of GHG emissions and
removals to the UNFCCC via different schemes. In line with
Grassi et al. (2023a), in this study, we refer to any of such

official country reports on anthropogenic GHG data sub-
mitted to UNFCCC as national greenhouse gas inventories
(NGHGIs).

Following the reporting guidelines of UNFCCC, NGHGIs
are submitted regularly (annually for Annex I countries and
typically at least every few years for non-Annex I coun-
tries). NGHGIs are required to meet the key principles of
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transparency, accuracy, completeness, consistency and com-
parability (TACCC). Nonetheless, depending on national cir-
cumstances and conditions, reporting is done with differ-
ent frequency and sophistication of the underlying meth-
ods, and large methodological uncertainties exist (Federici
et al., 2017). According to the IPCC best-practice guidelines
(IPCC, 2006), some flexibility is allowed for forest defini-
tions within the NGHGIs; for example, thresholds of param-
eters defining forests (minimum area, tree crown cover, tree
height) can be chosen from an allowed interval (0.05–1.0 ha2,
10 %–30 %, 2–5 m, respectively) in the first national commu-
nication but must be kept constant afterwards. The IPCC de-
fined different tiers that indicate the sophistication of the ap-
plied methods ranging from Tier 1 to Tier 3, with Tier 3 being
the most demanding in terms of data availability and method
complexity. Most Annex I countries (members of the OECD
and some transitional economies) report all land-use fluxes
annually since 1990 following the 2006 IPCC Guidelines
(and partly following the 2019 IPCC refinements) (IPCC,
2006, 2019). Guidelines for non-Annex I countries (emerg-
ing economies, for example, Brazil, China, Democratic Re-
public of the Congo, India, Indonesia and Nigeria) are more
flexible, the applied methodologies are generally less com-
plex and reporting often started in 2000 only (IPCC, 2006).

The most important developing countries (Brazil, Indone-
sia, China, India and Mexico) rely on national inventories
and, in the case of Brazil, even have a NGHGI comparable to
some of the developed countries. In contrast, NGHGIs from
most other non-Annex I countries rely on empirical emis-
sion factors to estimate fLULUCF, which are representative
rates of emissions (e.g. for specific forest and climate types)
that are usually obtained from averaged measurement data
sampled under certain environmental conditions and, thus,
hardly capture local dynamics. Such basic approaches using
default values correspond to Tier 1 level, while reports from
Annex I countries are often based on country-specific statisti-
cal or process-based models using national activity data (i.e.
Tier 2 or Tier 3 level).

To reduce the uncertainties associated with the differ-
ent reporting schemes, we use the newly compiled data
from Grassi et al. (2023a), which is based on official coun-
try reports to the UNFCCC but additionally includes qual-
ity checks and gap-filling if necessary (hereafter named
NGHGI DB). NGHGI DB data are freely available un-
der https://doi.org/10.5281/zenodo.7650360 (Grassi et al.,
2023b) from 2000 onward and are considered a realistic ap-
proximation of the data to be used for the forthcoming Global
Stocktake in 2023 (Grassi et al., 2023a).

NGHGIs are supposed to encompass all LULUCF fluxes
from areas considered managed, including forest land, crop-
land, grassland, wetlands and settlements, as well as emis-
sions from organic soils and fires (and some also include
shifting cultivation). Thereby, the reports should include
pools for dead wood, litter, soil organic C and HWPs. How-
ever, many non-Annex I countries report only fluxes from

deforestation, and only few include fluxes from other LU-
LUCF categories. To distinguish between anthropogenic and
non-anthropogenic fluxes, national authorities use the “man-
aged land” proxy where emissions and removals on managed
lands are counted for, whereas fluxes on unmanaged lands are
not reported.

A4 FAOSTAT

The FAOSTAT fLULUCF data are a component of the FAO
Emissions database, developed to assess the role of food
and agriculture in global anthropogenic emissions (Tubiello,
2019; Tubiello et al., 2022; FAO, 2021). The FAOSTAT
fLULUCF data cover carbon emissions and carbon removals
as well as non-CO2 emissions from biomass fires (not
considered in this work) on the following IPCC land-use
and land-use-change categories: (1) emissions and removals
on forests and from deforestation (Tubiello et al., 2021),
(2) emissions from peatland fires (Rossi et al., 2016; Pros-
peri et al., 2020), and (3) emissions from peatland drainage
(Conchedda and Tubiello, 2020; Tubiello et al., 2016).

FAOSTAT fLULUCF data cover 238 countries and territo-
ries, with sub-regional, regional and global aggregates for
the period 1990–2020. They are estimated by applying IPCC
(2006) guidelines to LULUCF activity data generated either
through official country reporting processes, such as the FRA
(FAO, 2020), or through analysis of geospatial data carried
out by FAO under its mandate. Specifically, forest fluxes are
based on carbon stock change statistics computed directly at
national level, following carbon stock and (net) area change
statistics reported by member countries to FAO at 5-year
intervals (FAO, 2020; Tubiello et al., 2021). Deforestation
emissions are computed separately for the two FAO forest
types, naturally regenerating forest (comprising primary and
secondary natural forests) and planted forest. It is noteworthy
that FAOSTAT estimates only include the above- and below-
ground biomass pools, while fluxes resulting from changes
in other pools, such as the soil carbon pools, are not mod-
elled, except for those in organic soils. The estimated emis-
sions and removals on forest land do not distinguish between
anthropogenic and non-anthropogenic fluxes and include in-
direct climate and CO2 effects in line with the IPCC man-
agement land proxy. Additionally, FAOSTAT fLULUCF data
comprise anthropogenic peat fires computed at grid cell level
using the map of Histosols from the Harmonized World Soils
Database (as a proxy for spatial peatland distribution) com-
bined with remote sensing products of MODIS burnt area
and underlying MODIS land cover maps. IPCC (2013) tier
1 emission factors are associated with each land cover/e-
cological zone by merging with the IPCcarbon-JRC agro-
climatic zone map (FAOSTAT, 2020), and results are aggre-
gated at country level (for details, refer to Rossi et al., 2016;
Prosperi et al., 2020). Similarly to the BKs, peat fire emis-
sions are only considered anthropogenic for Southeast Asian
countries, albeit data are available globally. Emissions from
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Table A1. Mean, range, minimum and maximum estimates of country-level annual mean (2011–2021) and cumulative (1950–2021) net
fLULUCF, as derived from three bookkeeping models, and the respective country’s rank. Countries are sorted in alphabetical order. Note that
the rank of the cumulative fLULUCF (in bold) gives the order of countries as they occur in Figs. A9–A18.

Cumulative fLULUCF Annual mean fLULUCF
in 1950–2021 (GtC) in 2011–2021 (MtC yr−1)

Country Code Mean Range Min Max Rank Mean Range Min Max Rank

Afghanistan AFG 0.095 0.096 0.048 0.145 83 0.336 0.719 0.094 0.813 95
Albania ALB 0.017 0.075 −0.018 0.057 119 0.016 0.314 −0.164 0.15 118
Algeria DZA 0.074 0.287 −0.082 0.205 88 0.063 1.49 −0.821 0.669 112
Andorra AND 0 0.075 0 0.001 147 0 0.314 0 0 128
Angola AGO 1.302 0.881 0.733 1.613 20 32.122 16.523 24.005 40.527 7
Argentina ARG 1.446 1.686 0.47 2.156 18 22.116 35.909 2.262 38.171 12
Armenia ARM 0.029 0.03 0.012 0.042 109 0.311 0.61 0.025 0.635 97
Australia AUS 1.742 1.881 1.044 2.925 17 11.341 20.364 2.734 23.097 22
Austria AUT −0.151 0.303 −0.344 −0.042 180 −1.725 3.421 −3.921 −0.5 167
Azerbaijan AZE 0.075 0.076 0.042 0.118 87 0.912 1.137 0.527 1.665 71
Bahamas, The BHS 0.001 0.001 0.001 0.001 140 −0.007 1.095 −0.01 0 136
Bahrain BHR 0 0.14 0 0 152 0 1.095 0 0 129
Bangladesh BGD 0.408 0.253 0.296 0.55 43 4.122 2.193 2.926 5.119 44
Barbados BRB 0 0.001 0 0.001 145 −0.018 0.025 −0.028 −0.004 140
Belarus BLR 0.15 0.044 0.126 0.17 71 −0.485 2.445 −1.489 0.955 158
Belgium BEL −0.011 0.065 −0.043 0.022 165 0.58 0.339 0.369 0.708 80
Belize BLZ 0.059 0.043 0.04 0.083 92 1.383 1.518 0.79 2.308 66
Benin BEN 0.288 0.217 0.148 0.365 51 4.536 3.156 2.924 6.08 39
Bhutan BTN 0.107 0.209 0.02 0.23 80 0.568 2.727 −0.4 2.327 81
Bolivia BOL 1.127 0.2 0.997 1.198 22 15.175 11.079 8.732 19.811 18
Bosnia and Herzegovina BIH 0.03 0.026 0.018 0.044 108 0.081 0.758 −0.303 0.455 109
Botswana BWA 0.103 0.141 0.054 0.195 81 2.326 5.765 0.286 6.052 55
Brazil BRA 21.801 12.461 13.702 26.163 1 285.283 222.921 170.548 393.469 1
British Virgin Islands VGB 0 0.606 0 0.001 149 0 11.413 0 0 131
Brunei Darussalam BRN 0.014 0.003 0.013 0.016 123 0.233 0.176 0.14 0.316 104
Bulgaria BGR 0.002 0.14 −0.087 0.053 137 −1.131 1.095 −1.542 −0.446 164
Burkina Faso BFA 0.243 0.078 0.197 0.274 57 3.342 1.729 2.582 4.311 49
Burundi BDI 0.115 0.079 0.085 0.164 78 0.995 0.878 0.55 1.428 70
Cambodia KHM 0.557 0.731 0.174 0.905 38 9.836 8.741 6.495 15.236 26
Cameroon CMR 0.695 0.535 0.461 0.996 31 8.06 6.708 4.554 11.262 30
Canada CAN 2.939 3.345 1.4 4.746 6 23.225 15.395 17.079 32.475 11
Central African Republic CAF 0.191 0.139 0.139 0.278 64 1.968 2.295 0.84 3.135 59
Chad TCD 0.212 0.08 0.176 0.255 60 8.53 5.153 6.365 11.517 29
Chile CHL 0.367 0.467 0.082 0.549 46 3.243 13.698 −3.688 10.01 53
China CHN 4.787 14.325 −1.675 12.649 3 −9.03 110.042 −46.485 63.557 184
Colombia COL 2.211 0.919 1.64 2.559 9 25.223 10.831 20.048 30.879 10
Congo, Dem. Rep. COD 4.614 1.125 4.169 5.293 4 155.269 40.147 140.109 180.256 3
Congo, Rep. COG 0.356 0.373 0.152 0.526 47 3.937 3.546 2.566 6.113 45
Cook Islands COK 0 0.373 0 0 153 −0.005 3.546 −0.01 0 134
Costa Rica CRI 0.239 0.26 0.07 0.33 58 0.335 0.374 0.147 0.521 96
Côte d’Ivoire CIV 1.872 1.868 0.86 2.728 13 17.281 19.955 9.61 29.565 15
Croatia HRV −0.003 0.075 −0.047 0.028 161 −0.598 0.62 −0.999 −0.379 162
Cuba CUB 0.612 0.543 0.281 0.825 35 −1.715 1.611 −2.314 −0.703 166
Cyprus CYP −0.011 0.004 −0.013 −0.009 166 −0.187 0.105 −0.249 −0.144 151
Czech Republic CZE −0.274 0.495 −0.579 −0.084 181 −4.471 6.98 −8.198 −1.218 178
Denmark DNK 0.008 0.066 −0.034 0.032 126 0.253 0.316 0.062 0.378 103
Djibouti DJI 0 0.003 −0.002 0.001 156 0.005 0.029 −0.009 0.02 122
Dominica DMA 0.001 0.002 0 0.002 141 −0.005 0.033 −0.024 0.009 135
Dominican Republic DOM 0.138 0.107 0.089 0.196 74 −0.516 0.447 −0.796 −0.349 159
Ecuador ECU 0.786 0.562 0.57 1.132 29 5.747 3.781 3.509 7.29 35
Egypt, Arab Rep. EGY 0.117 0.266 0.012 0.278 77 0.82 1.946 0.144 2.09 74
El Salvador SLV 0.069 0.096 0.033 0.129 89 −0.258 0.905 −0.727 0.177 154
Equatorial Guinea GNQ 0.049 0.019 0.043 0.061 95 0.547 0.892 0.115 1.006 82
Eritrea ERI 0.017 0.023 0.007 0.03 120 0.484 0.805 0.201 1.006 86
Estonia EST −0.03 0.108 −0.091 0.017 173 −0.089 0.661 −0.518 0.143 144
Ethiopia ETH 0.995 1.202 0.392 1.595 26 25.452 38.049 9.761 47.81 9
Fiji FJI 0.029 0.039 0.015 0.054 110 0.074 0.307 −0.08 0.227 111
Finland FIN 0.108 0.253 −0.051 0.202 79 3.298 2.368 2.195 4.563 51
France FRA −0.491 0.825 −0.836 −0.011 183 −7.948 15.478 −16.857 −1.379 182
French Guiana GUF 0.018 0.014 0.013 0.026 118 0.466 0.318 0.327 0.645 89
French Polynesia PYF 0 0 0 0 155 −0.013 8.934 −0.025 0 138
Gabon GAB 0.18 0.151 0.118 0.269 68 1.916 1.441 1.373 2.814 60
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Table A2. Mean, range, minimum and maximum estimates of country-level annual mean (2011–2021) and cumulative (1950–2021) net
fLULUCF, as derived from three bookkeeping models, and the respective country’s rank. Countries are sorted in alphabetical order. Note that
the rank of the cumulative fLULUCF (in bold) gives the order of countries as they occur in Figs. A9–A18.

Cumulative fLULUCF Annual mean fLULUCF
in 1950–2021 (GtC) in 2011–2021 (MtC yr−1)

Country Code Mean Range Min Max Rank Mean Range Min Max Rank

Gambia, The GMB 0.018 0.021 0.01 0.03 117 0.381 0.709 0.056 0.765 94
Georgia GEO −0.106 0.268 −0.255 0.014 178 −1.615 1.435 −2.54 −1.105 165
Germany DEU −0.84 1.744 −1.812 −0.068 185 −8.779 24.136 −23.653 0.484 183
Ghana GHA 0.402 0.504 0.19 0.694 45 2.228 5.142 0.256 5.398 57
Greece GRC 0.019 0.033 0.008 0.042 113 −2.504 5.321 −5.786 −0.465 173
Guadeloupe GLP 0.003 0.003 0.001 0.004 133 0.024 0.12 −0.032 0.088 115
Guatemala GTM 0.651 0.632 0.328 0.96 32 3.347 1.761 2.313 4.074 48
Guinea GIN 0.257 0.295 0.139 0.433 54 4.416 1.741 3.521 5.262 40
Guinea−Bissau GNB 0.038 0.029 0.025 0.053 102 0.395 0.581 0.11 0.691 92
Guyana GUY 0.18 0.039 0.162 0.201 69 1.657 1.019 1.288 2.307 64
Haiti HTI 0.06 0.066 0.038 0.104 91 0.799 0.765 0.518 1.284 75
Honduras HND 0.346 0.401 0.086 0.486 48 2.525 3.306 1.374 4.68 54
Hungary HUN −0.083 0.166 −0.16 0.006 176 −2.095 2.605 −3.213 −0.607 169
Iceland ISL 0.011 0.018 0 0.018 125 0.038 0.074 0.01 0.084 114
India IND 3.299 4.553 1.35 5.903 5 15.349 52.845 −9.659 43.186 17
Indonesia IDN 14.038 2.022 13.338 15.36 2 283.084 31.705 265.159 296.864 2
Iran, Islamic Rep. IRN 0.123 0.236 −0.012 0.224 75 −2.418 6.592 −6.662 −0.07 172
Iraq IRQ 0.045 0.108 −0.011 0.097 96 1.361 3.066 −0.133 2.934 67
Ireland IRL −0.084 0.194 −0.211 −0.017 177 −2.767 4.085 −4.834 −0.748 174
Israel ISR 0.007 0.012 −0.001 0.011 127 0.258 0.415 −0.016 0.398 102
Italy ITA −0.47 0.72 −0.859 −0.139 182 −7.719 7.932 −11.436 −3.505 181
Jamaica JAM 0.03 0.031 0.017 0.047 107 0.002 0.717 −0.36 0.357 125
Japan JPN 0.037 0.74 −0.319 0.422 103 −3.972 5.718 −5.977 −0.259 176
Jordan JOR 0.005 0.013 −0.001 0.012 129 0.093 0.124 0.036 0.16 108
Kazakhstan KAZ 1.823 2.681 0.572 3.254 14 7.366 26.369 −3.122 23.247 31
Kenya KEN 0.509 0.48 0.202 0.683 40 4.149 3.425 2.46 5.885 43
Korea, Dem. People’s Rep. PRK 0.101 0.129 0.034 0.163 82 1.707 1.679 1.02 2.699 63
Korea, Rep. KOR −0.005 0.214 −0.109 0.105 163 −2.161 1.595 −2.945 −1.35 170
Kuwait KWT 0 0.001 0 0.001 150 0.002 1.595 0 0.005 126
Kyrgyz Republic KGZ 0.079 0.128 0.031 0.158 86 0.464 1.514 −0.053 1.461 90
Lao PDR LAO 0.441 0.538 0.158 0.696 42 10.97 13.061 3.449 16.51 23
Latvia LVA 0.018 0.026 0.002 0.028 116 0.481 0.575 0.21 0.785 87
Lebanon LBN 0.003 0.004 0.001 0.005 134 0.013 0.075 −0.012 0.063 120
Lesotho LSO 0.019 0.02 0.011 0.031 115 0.385 1.036 0.034 1.07 93
Liberia LBR 0.193 0.122 0.143 0.265 63 4.374 2.211 3.161 5.372 41
Libya LBY −0.014 0.098 −0.079 0.019 168 −0.226 0.164 −0.284 −0.12 153
Liechtenstein LIE 0 0.002 0 0 154 −0.004 0.015 −0.01 0 133
Lithuania LTU 0.081 0.054 0.062 0.116 84 0.582 1.267 −0.15 1.117 79
Luxembourg LUX −0.003 0.004 −0.004 0 160 0.001 0.066 −0.037 0.029 127
Macedonia, FYR MKD 0 0.051 −0.027 0.024 146 −0.145 0.552 −0.509 0.043 150
Madagascar MDG 1.057 0.756 0.557 1.313 23 6.589 7.034 2.105 9.138 33
Malawi MWI 0.293 0.109 0.238 0.346 50 3.274 3.105 1.735 4.84 52
Malaysia MYS 1.908 0.975 1.456 2.431 12 36.059 15.157 28.825 43.983 5
Mali MLI 0.148 0.464 −0.098 0.366 72 0.274 4.09 −2.198 1.892 100
Malta MLT −0.001 0.002 −0.002 0 158 −0.009 4.09 −0.017 0 137
Martinique MTQ 0.002 0.002 0.001 0.003 136 −0.026 0.034 −0.045 −0.012 142
Mauritania MRT −0.017 0.107 −0.084 0.023 170 0.228 0.505 −0.007 0.498 105
Mexico MEX 1.366 1.904 0.467 2.37 19 21.758 44.215 2.513 46.727 13
Micronesia, Fed. Sts. FSM −0.001 0.825 −0.004 0 159 −0.02 15.478 −0.049 0 141
Moldova MDA 0.043 0.051 0.016 0.067 99 −0.38 0.867 −0.791 0.076 156
Mongolia MNG 0.273 0.335 0.132 0.466 52 −2.415 4.261 −4.838 −0.577 171
Montenegro MNE 0.002 0.007 −0.002 0.006 138 −0.275 0.353 −0.462 −0.109 155
Morocco MAR 0.186 0.309 0.005 0.314 65 0.461 1.068 −0.05 1.018 91
Mozambique MOZ 0.719 0.326 0.601 0.927 30 10.785 6.795 7.422 14.217 24
Myanmar MMR 1.822 0.486 1.576 2.062 15 33.651 7.463 29.817 37.28 6
Namibia NAM 0.055 0.026 0.039 0.065 93 1.606 1.09 0.891 1.981 65
Nepal NPL 0.268 0.15 0.218 0.368 53 1.304 4.198 −0.606 3.592 68
Netherlands NLD 0.037 0.026 0.028 0.054 104 1.218 0.487 0.989 1.476 69
New Caledonia NCL 0.002 0.005 0 0.005 135 −0.132 0.292 −0.302 −0.01 148
New Zealand NZL 0.209 0.504 −0.085 0.419 61 −5.615 9.948 −9.952 −0.004 180
Nicaragua NIC 0.595 0.625 0.256 0.881 37 5.482 7.275 1.926 9.202 36
Niger NER 0.198 0.557 −0.166 0.391 62 4.826 15.275 −5.289 9.986 37
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Table A3. Mean, range, minimum and maximum estimates of country-level annual mean (2011–2021) and cumulative (1950–2021) net
fLULUCF, as derived from three bookkeeping models, and the respective country’s rank. Countries are sorted in alphabetical order. Note that
the rank of the cumulative fLULUCF (in bold) gives the order of countries as they occur in Figs. A9–A18.

Cumulative fLULUCF Annual mean fLULUCF
in 1950–2021 (GtC) in 2011–2021 (MtC yr−1)

Country Code Mean Range Min Max Rank Mean Range Min Max Rank

Nigeria NGA 2.235 1.716 1.452 3.168 8 6.813 9.342 1.421 10.763 32
Niue NIU 0 0.625 0 0 151 0 7.275 0 0 130
Norway NOR 0.045 0.096 0.012 0.109 97 0.533 1.736 −0.265 1.472 83
Oman OMN 0.001 0.002 −0.001 0.002 143 0.043 0.085 −0.011 0.074 113
Pakistan PAK 0.303 0.478 0.119 0.597 49 3.539 3.92 1.953 5.873 47
Panama PAN 0.214 0.187 0.11 0.298 59 1.891 0.265 1.758 2.023 61
Papua New Guinea PNG 0.45 0.055 0.425 0.48 41 9.124 1.3 8.583 9.883 28
Paraguay PRY 1.044 0.232 0.935 1.166 25 19.552 8.934 15.271 24.205 14
Peru PER 1.046 0.586 0.762 1.348 24 12.15 15.182 4.111 19.293 21
Philippines PHL 1.762 0.561 1.397 1.958 16 9.798 7.545 4.819 12.365 27
Poland POL −0.703 1.034 −1.162 −0.128 184 −11.805 15.326 −17.92 −2.594 185
Portugal PRT −0.012 0.068 −0.043 0.025 167 −0.97 0.767 −1.232 −0.465 163
Puerto Rico PRI −0.018 0.044 −0.046 −0.002 171 −0.52 0.761 −1.019 −0.258 160
Qatar QAT 0 0 0 0.001 148 0.003 8.934 0 0.005 124
Romania ROU 0.037 0.364 −0.141 0.223 105 −2.985 3.122 −4.21 −1.088 175
Russian Federation RUS 2.255 6.204 −0.657 5.548 7 6.293 127.326 −54.465 72.861 34
Rwanda RWA 0.122 0.1 0.079 0.179 76 0.508 0.28 0.335 0.615 84
Samoa WSM 0.003 0.004 0.001 0.005 131 0.018 0.136 −0.062 0.075 117
Saudi Arabia SAU 0.004 0.173 −0.107 0.065 130 0.019 1.207 −0.73 0.477 116
Senegal SEN 0.08 0.048 0.056 0.104 85 0.305 2.816 −1.17 1.646 98
Serbia SRB −0.051 0.06 −0.089 −0.029 174 −1.899 2.203 −3.318 −1.115 168
Sierra Leone SLE 0.25 0.28 0.135 0.416 56 3.692 1.143 3.009 4.152 46
Singapore SGP 0.003 0.006 −0.001 0.005 132 0.076 0.085 0.028 0.113 110
Slovak Republic SVK −0.027 0.171 −0.125 0.045 172 −0.582 1.706 −1.525 0.182 161
Slovenia SVN 0.015 0.027 0.001 0.029 122 0.503 0.81 0.088 0.898 85
Solomon Islands SLB 0.026 0.036 0.009 0.045 111 0.894 1.226 0.328 1.555 72
Somalia SOM 0.156 0.163 0.085 0.248 70 4.182 1.355 3.708 5.063 42
South Africa ZAF 0.647 0.829 0.359 1.188 33 0.477 4.063 −1.633 2.43 88
South Sudan SSD 0.185 0.28 0.079 0.36 66 2.058 3.124 0.696 3.82 58
Spain ESP −0.123 0.01 −0.129 −0.118 179 −4.309 1.758 −4.918 −3.16 177
Sri Lanka LKA 0.256 0.315 0.123 0.438 55 2.245 2.344 1.335 3.678 56
St. Lucia LCA 0.001 0.002 0 0.002 142 −0.015 0.015 −0.025 −0.01 139
St. Vincent and the Grenadines VCT 0.001 0 0 0.001 144 −0.002 0.01 −0.008 0.002 132
Sudan SDN 0.607 0.511 0.335 0.847 36 13.14 6.012 10.81 16.822 20
Suriname SUR 0.037 0.028 0.024 0.052 106 0.857 0.201 0.768 0.969 73
Swaziland (now Eswatini) SWZ 0.014 0.033 0.002 0.034 124 0.015 0.243 −0.097 0.145 119
Sweden SWE 0.04 0.244 −0.117 0.127 101 3.306 5.622 1.004 6.625 50
Switzerland CHE −0.015 0.06 −0.055 0.005 169 −0.389 0.879 −0.921 −0.042 157
Syrian Arab Republic SYR 0.015 0.069 −0.016 0.052 121 −0.115 0.108 −0.155 −0.046 147
Tajikistan TJK 0.041 0.081 0.013 0.095 100 0.304 1.105 −0.09 1.015 99
Tanzania TZA 1.984 1.241 1.35 2.591 11 42.549 37.438 30.02 67.458 4
Thailand THA 2.203 2.188 1.421 3.609 10 16.437 18.813 9.827 28.64 16
Timor−Leste TLS 0.05 0.059 0.02 0.079 94 0.736 1.008 0.123 1.131 77
Togo TGO 0.069 0.099 0.019 0.119 90 0.683 1.297 −0.067 1.23 78
Tonga TON 0.001 0.001 0.001 0.002 139 0.011 0.008 0.007 0.015 121
Trinidad and Tobago TTO −0.004 0.016 −0.013 0.003 162 −0.097 0.054 −0.117 −0.064 145
Tunisia TUN 0.044 0.07 0.002 0.072 98 0.193 0.285 0.055 0.341 107
Türkiye TUR 0.406 0.671 0.165 0.836 44 −4.481 9.471 −8.859 0.612 179
Turkmenistan TKM 0.183 0.473 0.022 0.496 67 0.744 2.457 −0.142 2.315 76
Uganda UGA 0.617 0.049 0.595 0.644 34 4.652 3.902 2.072 5.974 38
Ukraine UKR 0.517 0.392 0.336 0.727 39 0.262 6.855 −4.214 2.642 101
United Arab Emirates ARE −0.006 0.016 −0.015 0 164 −0.138 0.318 −0.345 −0.027 149
United Kingdom GBR −0.057 0.349 −0.264 0.084 175 0.219 3.914 −2.335 1.578 106
United States USA −1.027 12.575 −9.116 3.459 186 −26.7 104.577 −92.463 12.115 186
Uruguay URY 0.022 0.13 −0.049 0.081 112 1.83 4.515 −1.041 3.475 62
Uzbekistan UZB 0.145 0.315 0.038 0.353 73 −0.213 2.985 −1.474 1.512 152
Vanuatu VUT 0.019 0.022 0.008 0.029 114 −0.083 0.397 −0.33 0.067 143
Venezuela, RB VEN 0.974 0.606 0.694 1.3 27 10.628 11.413 3.756 15.169 25
Vietnam VNM 1.302 1.102 0.697 1.799 21 29.403 36.544 9.856 46.4 8
Western Sahara ESH −0.001 0.003 −0.002 0 157 0.005 0.805 0 0.008 123
Yemen, Rep. YEM 0.005 0.021 −0.006 0.015 128 −0.1 0.401 −0.31 0.091 146
Zambia ZMB 0.789 0.881 0.401 1.282 28 14.804 11.187 10.109 21.296 19
European Union EU −3.009 7.570 −7.053 0.517 – −50.232 114.972 −108.633 2.268 –
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drained peatlands, also computed at grid cell level, are esti-
mated based on the harmonized world map of Histosols and
the ESA CCI land cover map to identify cropland areas, as-
suming cultivation on peatland area is a proxy for anthro-
pogenic drainage (Conchedda and Tubiello, 2020).

Figure A17. As in Fig. 6 but for the 93 top-emitting countries according to their cumulative emission in 1950–2021, as derived by three
bookkeeping models (remaining countries are shown in Fig. A18). Green-shaded areas highlight net carbon removals. For the official country
names and each country’s rank (order of subplots), refer to Tables A1–A3.
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Figure A18. As in Fig. A17 but showing the lowest-emitting countries and countries with net removals according to their cumulative fluxes
in 1950–2020, as derived by three bookkeeping models. Green-shaded areas highlight of net carbon removals. For the official country names
and each country’s rank (order of subplots), refer to Tables A1–A3.
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