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Abstract. Surface net radiation (SNR) is a vital input for many land surface and hydrological models. However,
most of the current remote sensing datasets of SNR come mostly at coarse resolutions or have large gaps due to
cloud cover that hinder their use as input in models. Here, we present a downscaled and continuous daily SNR
product across Europe for 2018–2019. Long-wave outgoing radiation is computed from a merged land surface
temperature (LST) product in combination with Meteosat Second Generation emissivity data. The merged LST
product is based on all-sky LST retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
onboard the geostationary Meteosat Second Generation (MSG) satellite and clear-sky LST retrievals from the
Sea and Land Surface Temperature Radiometer (SLSTR) onboard the polar-orbiting Sentinel-3A satellite. This
approach makes use of the medium spatial (approx. 5–7 km) but high temporal (30 min) resolution, gap-free
data from MSG along with the low temporal (2–3 d) but high spatial (1 km) resolution of the Sentinel-3 LST
retrievals. The resulting 1 km and daily LST dataset is based on an hourly merging of both datasets through bias
correction and Kalman filter assimilation. Short-wave outgoing radiation is computed from the incoming short-
wave radiation from MSG and the downscaled albedo using 1 km PROBA-V data. MSG incoming short-wave
and long-wave radiation and the outgoing radiation components at 1 km spatial resolution are used together
to compute the final daily SNR dataset in a consistent manner. Validation results indicate an improvement of
the mean squared error by ca. 7 % with an increase in spatial detail compared to the original MSG product.
The resulting pan-European SNR dataset, as well as the merged LST product, can be used for hydrological
modelling and as input to models dedicated to estimating evaporation and surface turbulent heat fluxes and will
be regularly updated in the future. The datasets can be downloaded from https://doi.org/10.5281/zenodo.8332222
(Rains, 2023a) and https://doi.org/10.5281/zenodo.8332128 (Rains, 2023b).
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1 Introduction

The Earth radiation budget describes how the Earth gains
energy from the Sun (short-wave radiation) and loses en-
ergy back to space through its reflection and the emission of
thermal (long-wave) radiation (Dewitte and Clerbaux, 2017;
Kato et al., 2018). Due to the geometry of the Earth’s orbit
around the Sun, the yearly average net radiation at the bottom
of the atmosphere, namely the surface net radiation (SNR),
is positive at the Equator and decreases towards the poles.
This geographical energy imbalance is the main driver of the
global atmospheric and oceanic circulation, which transports
this energy surplus from the Equator towards the poles (De-
witte and Clerbaux, 2017; Kato et al., 2018). SNR is thus a
key driver in explaining the distribution of different climate
regions and ecosystems on Earth (Köppen and Geiger, 1936),
and it dominates the dynamics of biospheric and hydrologi-
cal processes (Chapin et al., 2002). For this reason, SNR is
used as forcing variable in many land surface models, hy-
drological models and satellite-based retrieval algorithms to
estimate (e.g.) evaporation, runoff, soil moisture or surface
heat fluxes.

The top-of-atmosphere radiation components can be de-
rived directly from satellites. However, dynamic atmospheric
(e.g. cloud and aerosol optical depth) and land (e.g. emis-
sivity, land surface temperature (LST), albedo or biomass)
properties make it more challenging to obtain radiation es-
timates at the bottom of the atmosphere, which are much
more relevant to the above-mentioned biospheric and hy-
drological processes. As it is transmitted through the atmo-
sphere, incoming short-wave radiation is scattered and ab-
sorbed by aerosols, gases and clouds, changing the temper-
ature of the atmosphere and its emission of long-wave ra-
diation in all directions. The radiation reaching the surface
is partly reflected, depending on the land cover and surface
conditions, and again interacts with the atmosphere/clouds
once reflected. According to Stephens et al. (2012), on av-
erage, 12 % of the radiation reaching the surface is reflected
back into the atmosphere; this is known as the surface plane-
tary albedo. Then, part of the incoming radiation absorbed at
the land surface is emitted towards the atmosphere as long-
wave radiation, as described by the Stefan–Boltzmann law.
The modelling of these atmospheric and surface processes is
required to obtain the SNR – i.e. the balance between short-
wave and long-wave incoming and outgoing radiation at the
surface – and it makes satellite-based SNR retrievals indirect
and uncertain (Kato et al., 2018).

Over the past decades, numerous satellites/instruments
have been launched to enable the monitoring of the radia-
tion budget. Examples of programmes exploiting these ob-
servations to produce long-term global reliable estimates of
the individual SNR components (i.e. short-wave and long-
wave, and both incoming and outgoing) are the International
Satellite Cloud Climatology Project (ISCCP, Young et al.,
2018) and the Clouds and the Earth’s Radiant Energy Sys-

tem (CERES) project (Wielicki et al., 1996). A compar-
ison between the CERES product and radiation estimates
from global reanalyses is given by Jia et al. (2018). Both
satellite-based and reanalysis SNR products are mostly pro-
vided at a coarse (ca. 0.25◦) spatial resolution. This makes
them suitable for global analysis or as input in global land
surface models but insufficient for most regional-scale stud-
ies. A few studies have already attempted to produce SNR
data at higher spatial resolutions. For instance, Verma et al.
(2016) proposed a method to yield a global 5 km SNR prod-
uct at 8 d resolution by combining high-resolution variables
derived from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) Aqua satellite (including clear-sky LST,
emissivity, aerosol optical depth and albedo) and a radia-
tive transfer model with ancillary datasets from reanalysis.
Also with a resolution of 5 km, Jiang et al. (2016, 2018) de-
veloped the Global Land Surface Satellite (GLASS) daily
daytime net radiation product based on multivariate adap-
tive regression splines, combining incoming short-wave ra-
diation, albedo and normalized difference vegetation index
(NDVI) with further meteorological ancillary variables, such
as wind speed, surface pressure and air temperature. Mean-
while, Jiang et al. (2023) developed a methodology, based
on Landsat data and ancillary datasets, that uses machine
learning to produce the daily net radiation at 30 m resolution.
As an alternative to such methods (which are based on data
from polar-orbiting satellites), to achieve a much higher tem-
poral resolution (sub-daily) at the expense of spatial resolu-
tion, observations from geostationary satellites can be used.
The Satellite Applications Facility (LSAF) programme uses
observations from the SEVIRI instrument onboard the Me-
teosat Second Generation (MSG) satellite to produce a SNR
dataset at a spatial resolution of ca. 5–7 km (Trigo et al.,
2011). These resolutions, however, still appear to be insuf-
ficient for regional water and agricultural management as-
sessments in heterogeneous landscapes.

In this study, we present a 1 km SNR, and LST, dataset
for Europe using MSG and polar orbiting observations. It is
based on combining operationally available hourly incoming
short-wave/long-wave radiation retrievals from the above-
mentioned LSAF programme at moderate (5–7 km) spatial
resolution with hourly LSAF LST estimates as well as higher
resolution (1 km) albedo retrievals from PROBA-V and LST
from Sentinel-3 (Donlon et al., 2012). The novelty of this
study lies in systematically exploiting the advantages, and
mitigating the disadvantages, in terms of the spatial and tem-
poral resolution of available observations, which are well val-
idated, in a physical and consistent manner based on the sur-
face energy balance, and assembling a net radiation dataset
from the individual incoming and outgoing radiation com-
ponents. This includes the development of a 1 km gap-free
LST product for downscaling outgoing long-wave radiation.
All-sky estimates are particularly important for LST, as cloud
cover severely restricts the availability of clear-sky retrievals
and it is temporally highly variable. This is underpinned by a
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number of previous studies which have focused on producing
all-sky LST estimates; see e.g. Xu and Cheng (2021) and Jia
et al. (2023), the latter also exploiting observations from geo-
stationary and polar-orbiting products. 1 km albedo, used for
the computation of outgoing short-wave radiation, is also cal-
culated by combining polar and geostationary observations.
The merged hourly SNR and LST data are resampled to daily
time steps for robustness. The coarse-scale (5–7 km) all-sky
LST estimates provided through the LSAF programme have
only recently been released, and the methodology used here
aims at exploiting these new data in an optimal manner. To
our understanding, a systematic combination of these polar
and geostationary retrievals with the overall goal of calcu-
lating a consistent high-resolution SNR product has not yet
been undertaken. We argue that this approach based on the
surface energy balance is the most consistent and, in theory,
should yield the most accurate results.

The published data presented here is especially meant for
use as a high-resolution forcing dataset for models which
require the SNR, such as The Global Land Evaporation
Amsterdam Model (GLEAM). Such models can also benefit
from high-resolution all-sky LST data, making the inter-
mediate merged LST product equally useful. In principle,
the methodology can be extended to regions where the
same variables are available from other geostationary and
polar-orbiting satellites. The data and method are presented
in detail in Sects. 2 and 3. All input and derived radiation
components are validated against in situ measurements
from sites located across the study domain (Sect. 4) and the
SNR dataset is compared to ERA5-Land (Muñoz-Sabater
et al., 2021). Finally, a discussion with respect to similar
studies and concluding remarks are given in Sects. 5 and
7. The daily SNR and LST datasets are available for sci-
entific use under https://doi.org/10.5281/zenodo.8332222/
https://doi.org/10.5281/zenodo.8332128 as netcdf files
(RNETdaily_lon_lat.nc and LSTdaily_lon_lat.nc); see Rains
(2023a) and Rains (2023b). The spatial domain covered is
−11.5 to 26.5◦ longitude and 35 to 71◦ latitude. The initial
dataset is available for the years 2018–2019.

2 Data

Table 1 provides a general overview of the satellite data prod-
ucts used in this study. Short-wave and long-wave incom-
ing radiation components, SWin and LWin respectively, as
well as the emissivity ε, albedo α and LST are provided by
LSAF (lsa-saf.eumetsat.int) and are based on observations
from the Spinning Enhanced Visible and InfraRed Imager
(SEVIRI) instrument onboard the Meteosat Second Gener-
ation (MSG) geostationary satellite. These MSG products
are provided with 30 min sampling, but to reduce data vol-
umes we base our methodology on hourly data. The spa-
tial resolution across the European domain is approximately
5–7 km depending on the latitude. In addition, 1 km LST

retrievals from the Sea and Land Surface Temperature Ra-
diometer (SLSTR) instrument onboard Sentinel-3 as well as
1 km albedo retrievals from PROBA-V are used to compute
the high-resolution LST dataset and outgoing radiation com-
ponents. For the purpose of validation, we use radiation mea-
surements from sites distributed across Europe belonging to
different international networks. A more detailed description
of the satellite retrievals and in situ data used in the study
is provided in the following subsections. Note as well that
ERA5-Land (Muñoz-Sabater et al., 2021) is also used in
Sect. 4 for comparison purposes.

2.1 Incoming short-wave/long-wave radiation

We use hourly data from the LSAF programme, part of the
distributed Applications Ground Segment SAF network serv-
ing as the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT). The data are based
on observations provided by SEVIRI onboard MSG and ac-
quired at 12 spectral channels with 3 km resolution at nadir
(1 km for the high-resolution visible channel) (Trigo et al.,
2011). A detailed description of the LSAF methodology for
deriving SWin and its validation is given by Carrer et al.
(2019a) and Carrer et al. (2019b). Details on the estimation
and evaluation of LWin are given by Trigo et al. (2010) and
Carrer et al. (2012).

2.2 LST

The LSAF all-sky LST product based on the SEVIRI in-
strument onboard the geostationary Meteosat Second Gen-
eration (MSG, Martins et al., 2019) is a combination of the
clear-sky MSG level 2 product MSLT (LSA-001), based on
a generalised split-window (GSW) algorithm (Trigo et al.,
2008a), and output from an energy balance algorithm which
is also used for the production of the MSG 30 min evapora-
tion (MET-v2, LSA-311) dataset (Ghilain, 2016). The energy
balance algorithm incorporates other LSAF SEVIRI-based
products such as short-wave and long-wave radiation fluxes,
land surface albedo or vegetation, soil moisture based on the
assimilation of scatterometer observations provided by the
Hydrology SAF (H-SAF), and near-surface meteorological
information obtained from the European Centre for Medium-
Range Weather Forecasts (ECMWF) operational forecasts
(Ghilain et al., 2020). Within the model, each pixel is com-
posed of different tiles representing a particular surface type
based on the ECOCLIMAP-II database (Faroux et al., 2013).
Pixel values are computed from the weighted average of the
four most dominant tiles. The advantage of using geostation-
ary satellites is the high temporal resolution, which allows
for the characterisation of the LST diurnal cycle. An assess-
ment of the accuracy of the LST is given by Martins et al.
(2019). The product comes with gridded uncertainty esti-
mates, which are used in the LST merging procedure.
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Table 1. Overview of satellite-based products used in the study, with their respective temporal and spatial resolutions as well as their
coverage, i.e. clear sky vs all sky.

Variable Satellite Orbit Temporal Spatial Coverage

SWin MSG geostationary hourly 5–7 km all sky, clear sky + model
LWin MSG geostationary hourly 5–7 km all sky, clear sky + model
LST MSG geostationary hourly 5–7 km all sky, clear sky + model
LST Sentinel-3A polar 2–3 d 1 km clear sky
ε MSG geostationary daily 5–7 km clear-sky composite
α MSG geostationary daily 5–7 km clear-sky composite
α PROBA-V polar 10-daily 1 km clear-sky composite

Higher-resolution, clear-sky LST estimates are ob-
tained from Sentinel-3. The Sentinel-3 mission consists of
two polar-orbiting satellites (Sentinel-3A/B) launched on
16 February 2016 and 25 April 2018 (Ghent et al., 2017;
Zheng et al., 2019; Nie et al., 2021), both carrying the Sea
and Land Surface Temperature Radiometer (SLSTR) instru-
ment. They have a revisit time of 2–3 d. The instrument has
nine channels, three of them covering the visible and near-
infrared (VNIR) part of the spectrum, three the short-wave
infrared (SWIR) part, and the remaining three the middle-
infrared (MIR and TIR, Nie et al., 2021) part. For this study,
we use the Climate Change Initiative (CCI) LST product
provided at a spatial resolution of 0.01◦ (https://climate.esa.
int/en/odp/#/project/land-surface-temperature, last access: 1
August 2022). Included in the product is the exact overpass
time and, as for the LSAF LST from MSG, the total esti-
mated uncertainty for each retrieval, necessary for the merg-
ing of the polar and geostationary LST data. For this initial
study focusing on 2018–2019, only Sentinel-3A data were
used. Sentinel-3B was launched in April 2018 and flown
in tandem with Sentinel-3A from June to October of the
same year, after which it was moved to its nominal orbit
(Clerc et al., 2020). The approximate local overpass time
of Sentinel-3A and Sentinel-3B thereafter is the same (ca.
10:30 am/pm), with the precise time varying and taken into
account in the merging methodology (see Sect. 3.3).

2.3 Surface emissivity

The land surface ε is required, in conjunction with LST, to
calculate LWout. Methods to retrieve ε can be broadly sep-
arated into those where LST and ε are jointly retrieved and
those where ε is retrieved in isolation. The latter approach
was initially used within the LSAF programme and relied on
spectral data for the various land covers (based on spectral li-
braries) and dynamic land cover fractions (Peres and DaCa-
mara, 2005). To overcome difficulties linked to performing
the retrieval of LST and ε separately under certain condi-
tions, e.g. in semiarid regions, LST and ε are now simulta-
neously retrieved by the LSAF programme, including for the
products we use in this study (Trigo et al., 2008b).

2.4 Albedo

The LSAF α product based on the MSG SEVIRI instrument
is produced in three steps: (1) an atmospheric correction of
top-of-atmosphere measurements to obtain reflectances, (2) a
daily inversion of a semi-empirical model of the bidirectional
reflectance distribution function and then the consideration
of all inversions within a temporal window to reduce the im-
pact of outliers and reduce data gaps, and (3) the angular inte-
gration for each channel and the spectral integration (Geiger
et al., 2008; Carrer et al., 2018). The product thus describes
the hemispherical broadband α. As a second hemispheri-
cal broadband α product, we use 1 km retrievals based on
ProbaV and distributed through the Copernicus Global Land
Service (CGLS). The retrieval follows the same methodology
as for the LSAF α product.

2.5 In situ measurements

For the validation of the merged daily SNR dataset and the
individual radiation components, we use radiation measure-
ments taken at a total of 73 sites distributed across Europe for
the 2-year study period (2018–2019). Measurements are ob-
tained from the Baseline Surface Radiation Network (BSRN)
(Driemel et al., 2018), the European Fluxes Database Clus-
ter (EFDC; http://www.europe-fluxdata.eu, last access: 1 Au-
gust 2022), the Integrated Carbon Observation System
(ICOS) (Heiskanen et al., 2021), the FLUXNET-CH4 net-
work (Delwiche et al., 2021), and SAPFLUX (Poyatos et al.,
2021). Table A1, see Appendix A, provides a comprehensive
list of the in situ sites used for this study. For a number of
sites, all radiation components are available (54), while for
others only a subset is available. The table includes the sta-
tion ID, name, geographic coordinates and the international
geosphere-biosphere programme (IGBP) land cover class as
well as which radiation components are available for valida-
tion. The following land cover classes are covered: cropland
(CRO), closed shrublands (CSH), deciduous broadleaf forest
(DBF), evergreen needleleaf forest (ENF), grassland (GRA),
mixed forest (MF), open shrublands (OSH), savanna (SAV),
urban (URB), wetland (WET) and woody savanna (WSA).
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While the in situ measurements are considered as ground
truth, it is necessary to mention that they have their own
sources of uncertainties. Incoming short-wave and long-wave
radiation are measured by pyranometers and pyrgeometers.
Accuracy targets for the BSRN network measurements (from
2004) are, for example, 2 % or 5 W m−2 for incoming short-
wave radiation and 2 % or 3 W m−2 for incoming long-wave
radiation. Target uncertainties for outgoing short-wave and
long-wave radiation are 3 % and 2 % (or 3 W m−2) respec-
tively (McArthur, 2004). For the measurement of the out-
going radiation components, the pyranometer/pyrgeometer
is installed facing downwards. The target uncertainties are
in line with the achievable accuracy of the pyranometer/pyr-
geometer instruments, although they might not be met un-
der some conditions, e.g. incorrect installation at an angle or
snow cover. The instruments should be calibrated, e.g. every
2 years (Walter-Shea et al., 2019).

3 Methodology

3.1 SNR calculation

SNR is computed using the radiation balance equation (1):

SNR= (SWin+LWin)− (SWout+LWout), (1)

where SWin is the hourly incoming short-wave radiation
(W m−2) and LWin is the hourly incoming long-wave radi-
ation (W m−2), both from LSAF (see Sect. 2). SWout and
LWout are the hourly outgoing short-wave and outgoing long-
wave radiation (W m−2), respectively, calculated as

SWout = SWin ·α (2)

LWout = ε · σ ·LST4
+ (1− ε) ·LWin , (3)

with σ being the Stefan–Boltzmann constant (i.e. 5.67×
10−8 W m−2 K−4). Both SWout and LWout are to a large de-
gree controlled by land surface properties and processes, i.e.
SWout by α (Eq. 2) and LWout by ε and the LST (Eq. 3).
The LST, in particular, dictates the magnitude and variabil-
ity of LWout over different spatial and temporal scales. Note
that the term (1−ε) ·LWin accounts for long-wave reflection
(Maes and Steppe, 2012).

The focus here is on the improvement of the spatial reso-
lution of the LSAF SWout and LWout by using the gap-free
all-sky 1 km α and the LST in Eqs. (2) and (3), respectively.
The details of these datasets are given in Sect. 3.2 and 3.3.
The rationale is based on the assumption that SWout and
LWout, especially on the daily scale which we aggregate to,
are spatially more heterogeneous than the incoming compo-
nents. Therefore, by using higher-resolution α and LST, the
final SNR dataset can better capture the variability induced
by landscape features and conditions.

3.2 Bias correction of albedo

To obtain a spatially and temporally gap-free α dataset at
1 km resolution, we bias correct the daily α from LSAF
towards the retrievals from ProbaV using the mean of the
temporally overlapping retrievals for 2018–2019. Remaining
gaps are filled by linearly interpolating/extrapolating based
on the nearest data points in the temporal domain. Prior to the
bias correction, the α products are regridded using nearest-
neighbour interpolation to a common 0.01◦ grid. Since both
sets of α are based on the same methodology, we assume that
the bias can be largely attributed to the difference in spatial
resolution, but also to the MSG product integrating multiple
observations per day and possibly to the differences in the
channels (ProbaV and SEVIRI response functions).

3.3 Merging of LST

The merging of the hourly LSAF LST (5–7 km) and Sentinel-
3 LST (1 km) relies on the assumption that the diurnal cycle
of LSAF is reliable in relative terms, whereas the Sentinel-3
LST can be trusted in absolute terms. This approach allows
us to benefit from the high temporal resolution of the geosta-
tionary data and the high spatial resolution of the Sentinel-
3 observations. The all-sky LSAF product, which contains
a modelled LST when cloud cover prevents direct retrieval,
enables the merged gap-free LST product with Sentinel-3
resolution. After regridding the LSAF observations, using
nearest-neighbour interpolation, to the 0.01◦ grid of Sentinel-
3 observations, we follow a stepwise approach:

1. Temporal normalisation of Sentinel-3 daytime/night-
time observations on the hour.
The Sentinel-3 LST is available every∼ 2–3 d both dur-
ing daytime (∼ 10:00 am local time) and during night-
time (∼ 10:00 pm local time), conditioned on the pres-
ence of clear skies. However, because of slightly differ-
ing overpass times from day to day, we first normalise
the Sentinel-3 daytime/nighttime observations individ-
ually to be on the hour (e.g. at 10:00 for daytime) us-
ing information from the diurnal cycle described by the
hourly LSAF observations of the same day. For that,
at each grid cell, we convert the on-the-hour daytime
and nighttime overpass time of the Sentinel-3 observa-
tions from local time to UTC. Then, when a Sentinel-3
daytime or nighttime observation is acquired, e.g. prior
to that mean UTC daytime or nighttime overpass hour
t , the observation is corrected through linear interpola-
tion using the LSAF LST retrievals at t and the previous
hour t − 1 on that day:

Sentinel 3LSTnor = Sentinel 3LST+1t
· (LSAFLSTt −LSAFLSTt−1),

with 1t being the difference between the on-the-hour
mean nighttime/daytime overpass time t and the ex-
act overpass time of the specific Sentinel-3 observation

https://doi.org/10.5194/essd-16-567-2024 Earth Syst. Sci. Data, 16, 567–593, 2024



572 D. Rains et al.: High-resolution (1 km) all-sky net radiation over Europe

on that day. We do not perform the linear interpola-
tion if LSAFLSTt−1 and/or LSAFLSTt are not clear-
sky observations, i.e. the pixel is covered by cloud, and
in that case, we disregard the Sentinel-3 observation.
This is based on the assumption that the diurnal cycle
will be less accurate when mixing clear-sky/all-sky es-
timates or only relying on modelled all-sky estimates.
Sentinel-3 observations with a 1t of more than 45 min
(i.e. 1t > 0.75) are also excluded to reduce errors from
the linear interpolation.

2. Bias correction of daytime/nighttime LSAF observa-
tions towards the normalised, high spatial resolution,
Sentinel-3 daytime/nighttime observations.
The previously individually normalised Sentinel-3 ob-
servations (Sentinel 3LSTnor) are used as the basis to
bias correct the geostationary observations at the same
mean on-the-hour overpass time t (daytime and night-
time separately) per grid cell using the means based on
overlapping Sentinel 3LSTnor and LSAFLSTt observa-
tions for the entire 2018–2019 record.

3. Bias correction of the entire hourly geostationary
LSAFLST time series per grid cell by assuming that the
bias corrected for in the previous steps applies to the
subsequent hourly observations too.
We apply the bias that was applied to the geostation-
ary daytime observations at the mean Sentinel-3 over-
pass time to all hours of the same day after the mean
Sentinel-3 overpass time and until the mean Sentinel-
3 nighttime overpass time. We apply the nighttime bias
correction for the hourly observations until the next day-
time overpass time.

4. Assimilation of the normalised Sentinel-3 observations
(Sentinel 3LSTnor) from Step 1 into the bias-corrected
hourly geostationary LSAF LST time series from Step
3.
At a given pixel and point in time when both LSAFLST
and Sentinel 3LSTnor are available, the bias-corrected
geostationary LST (LSAFLST) is updated. This is done
taking into account the uncertainty of both sets of ob-
servations using a Kalman filter:

LSAFLSTa = LSAFLST

+K(LSAFLST−Sentinel 3LSTnor),

where LSAFLSTa is the updated LST at the hour t and
K is the Kalman gain with the range [0, 1], computed
as

K = PH T (HPH T
+R)− 1,

with P being the uncertainty of the geostationary obser-
vation LSAFLST and R the uncertainty of the Sentinel-
3 observation at time step t . Both uncertainties are avail-
able for each individual pixel and time step. H , the ob-
servation operator, is 1 as there is no difference between

model and observation space. Normally, the update in
a Kalman filter is propagated over time through a dy-
namic model. Here, there is no such prognostic model
to predict LST, so we correct all subsequent hourly
LSAFLST observations by the same amount until the
next Sentinel-3 observation is available. Some more de-
tails about the LST merging and the Kalman filtering
step are given in Appendix F.

4 Analysis and validation

4.1 Incoming radiation fluxes

Studies involving comprehensive validation against pyra-
nometer measurements in the literature show the high accu-
racy of the LSAF radiation products; see e.g. Carrer et al.
(2019b) or Lopes et al. (2022). A validation of the LSAF
SWin data by Roerink et al. (2012) against the CarboEurope
flux tower network shows a very high accuracy, corroborated
by comparing the satellite product with available radiation
estimates from about 300 operational weather stations. Our
own validation of both the LSAF SWin and LWin products
shows a similar good performance, with Pearson’s correla-
tion coefficients consistently above 0.9. Figure 1 (top panels)
show the correlation coefficients for all in situ sites in Eu-
rope for the 2018–2019 period. They are generally higher for
SWin than for LWin. In terms of the root-mean-squared error
(RMSE), SWin and LWin perform similarly across all sites.
There are a few stations with a considerably worse match be-
tween observations and in situ data; these are located in Bel-
gium for SWin and around the Alps for LWin. It is fair to con-
sider that the temporal variability of cloud cover determines
the variability of SWin and LWin to a large extent. This is also
the main information provided by satellite data (clouds and
cloud optical depth via top-of-atmosphere reflectances). So,
the generally high R values for both SWin and LWin corrob-
orate that satellite products follow the in situ time series rea-
sonably well. LWin estimates require screen variables (LWin
is more indirectly linked with top-of-atmosphere observa-
tions than SWin), which are derived from numerical weather
prediction models. Therefore, it is not surprising that R and
RMSE are not as good as those for SWin. The accuracy of
screen variables may also explain the worse performance of
LWin in the Alps, given the very high spatial heterogeneity.
Although some orographic corrections are performed, the un-
certainty is generally likely to be larger in mountainous re-
gions. Since the availability of in-situ measurements is al-
ready fairly limited, we argue that also carrying out the val-
idation in challenging terrain benefits the overall accuracy
assessment. Figure 2 shows both SWin and LWin for two ex-
ample sites, namely BE-Dor and IT-Lsn.

Additional seasonal validation statistics for the incoming
radiation components are given in the Appendix (see box-
plots in Figs. B1 and B3). In summary, for SWin, R is con-
sistently high throughout the year, albeit with a higher spread
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Figure 1. Validation of SWin and LWin from LSAF across Europe for 2018–2019 in terms of Pearson’s correlation coefficient (R, (a, b))
and the root-mean-squared error (RMSE, (c, d)).

Figure 2. Daily averages of SWin and LWin from LSAF and the ground truth for two stations, BE-Dor and IT-LSN.

of values for the individual seasons (given that the overall
seasonal amplitude has a lesser impact). The RMSE varies
slightly from season to season, with the highest values occur-
ring in summer (April/May/June and July/August/Septem-
ber). This coincides with generally much higher radiation
values during these months. In terms of the mean square
percentage error (MSPE), the error is highest in the winter
months. A slight bias of 5 W m−2 is observed throughout
the year, although it is less pronounced during winter and
spring. Validation metrics for different land cover types are
also given (Figs. B2 and B4), with the ESA CCI land-cover

product (Harper et al., 2023) being used, as its spatial resolu-
tion (300 m) is more consistent with the spatial resolution of
the data products developed here than the land cover infor-
mation provided by the FLUXNET sites. For LWin (Figs. B2
and B4), R again shows a higher spread for the individual
seasons than for the entire study period. RMSE is highest
in spring. In terms of land cover, all land cover types show
high values for R, whereas the flooded/brackish/water areas
clearly show degraded performance for RMSE, RMSPE and
bias (Fig. B4).
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4.2 Land surface temperature

Extensive validation of the LSAF and Sentinel-3 LST prod-
ucts has already been performed. Both have an average ac-
curacy below 1.5 K, although it varies across space and time.
Our goal is to combine their individual strengths in terms of
spatial and temporal resolution to obtain an enhanced repre-
sentation of landscape heterogeneity. For an in-depth quanti-
tative validation of the Sentinel-3 LST product, we refer the
reader to Pérez-Planells et al. (2021). The LSAF LST prod-
ucts were validated by Trigo et al. (2008a), Göttsche et al.
(2013), Göttsche et al. (2016), Martins et al. (2019) and Trigo
et al. (2021). Here, the validation against in situ data is car-
ried out not directly on LST but on LWout – see Sect. 3.3.
This is because LST validation data are limited and thus a
validation using LWout ground truth measurements is much
more comprehensive. Furthermore, the developed LST prod-
uct primarily serves the purpose of enabling a spatially down-
scaled LWout product for the final calculation of the SNR.

Figure 3 shows a comparison between the mean an-
nual LST for 2018–2019 from LSAF and the merged
LSAF/Sentinel-3 LST for two regions in Europe. The down-
scaled LST product shows significantly more spatial detail,
especially in heterogeneous or topographically complex ar-
eas such as the Central System in Madrid (top row) or the
Rhine Valley and its surrounding mountainous areas (bottom
row). Instead of the 2018–2019 LST average, Fig. 4 shows
the original LSAF LST and the downscaled LST product for
30 June 2018. This day was chosen for no particular reason
and is representative of other dates.

4.3 Land surface albedo

Figure 5 shows the 2018–2019 mean albedo from LSAF and
from the downscaled albedo product across parts of the Rhine
Valley, as well as the values for a single day, analogous to the
LST in Figs. 3–4. The effect of the downscaling in enhanc-
ing the spatial detail in the LSAF albedo retrievals based on
PROBA-V retrievals is evident; see (e.g.) the distinct areas
of low albedo surrounding the Rhine Valley that are covered
by forests and the higher-albedo areas within the valley.

4.4 Outgoing radiation fluxes

SWout estimates resulting from combining LSAF SWin with
either LSAF α or with the downscaled α dataset are vali-
dated against in situ data. SWout, obtained using either the
LSAF LST or the downscaled LST product, is also compared
against in situ data. This validation therefore shows to what
extent the downscaling of SWout and LWout in combination
with emissivity data from LSAF influences the accuracy, not
only the spatial detail, as shown in Sect. 4.2 and 4.3.

On average, the RMSEs for both SWout and LWout are
lower when compared to those obtained using data from
LSAF only, with a mean of 17.1 W m−2 vs 17.8 W m−2 for
SWout and 11.4 W m−2 vs 11.04 W m−2 for LWout). Figure 6

shows the distribution of the RMSE across the available sites
for the 2018–2019 period for SWout and LWout. The absolute
values for the RMSE of LSAF as well as the difference from
the downscaled products are included.

Figure 7 shows the R, MSE, MSPE and bias for LSAF
and the downscaled product across the different CCI land
cover types. For R, both SWout and LWout show lower per-
formance for the water-related land cover types. For MSE,
the same is true only for SWout, and tree-covered areas show
a slight positive bias here, whereas the other land cover types
are on average negatively biased. For LWout, the bias seems
less pronounced and the median land-cover values are gener-
ally above or close to 0.

For a complete picture, the validation metrics are also cal-
culated seasonally (see Fig. C1 in Appendix C). Seasonal
patterns are most pronounced for the RMSPE in SWout,
which is significantly higher during the winter months. One
explanation is that the calculation relies on accurate albedo
values but their retrieval is especially challenging in winter
due to cloud cover. Valid albedo values are linearly interpo-
lated to fill in the data gaps, and snow cover will have an
especially significant impact. High errors for SWout in snow
cover conditions can thus be expected.

4.5 Surface net radiation

Finally, the downscaled SNR dataset resulting from the
hourly SWin and LWin as well as the downscaled hourly
SWout and LWout is validated against the available in situ
data at daily timescales. On average, the downscaled product
has a RMSE of 22.53 W m−2 vs 23.5 W m−2 for the MSG-
only product. Figure 9 shows the distribution of RMSE val-
ues across the study domain. A time series for a single exam-
ple site is shown in Fig. 10. We also analyse how the down-
scaled SNR product performs under cloudy and clear-sky
conditions. Clear-sky conditions were assumed for the daily
SNR product when more than 12 h of LSAF clear-sky LST
observations were available. Figure 8 shows that for clear-
sky conditions, both R and the bias are improved when com-
pared to cloudy conditions. The RMSE is slightly higher for
clear-sky conditions, which is likely linked to seasonality, as
clear-sky conditions are more common during summer, when
the SNR values are also higher.

Figure 11 shows the SNR validation for the different CCI
land-cover types for a LSAF-only-based SNR as well as the
downscaled product. The figure also includes performance
metrics for the ERA5-Land product (Muñoz-Sabater et al.,
2021), which were included to give some context. R is gen-
erally high for all products (ca. 0.95) at all sites with the ex-
ception of the sites with land cover affected by water. There,
ERA5-Land outperforms the LSAF and downscaled SNR
product in terms of R, likely due to a sub-optimal treatment
of these areas in the processing of the input products. In terms
of MSE, ERA5-Land again outperforms the other products
for water-affected land cover. However, for the other land
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Figure 3. Mean LSAF LST (a, c) and merged LSAF/Sentinel-3 LST (b, d) for 2018–2019, showing a part of the Iberian Peninsula (a, b)
and the southern Rhine Valley (c, d).

Figure 4. LSAF LST (a, c) and merged LSAF/Sentinel 3 LST (b, d) for 30th June 2018, showing the centre of the Iberian Peninsula (a, b)
and the southern Rhine Valley (c, d).
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Figure 5. Mean albedo from LSAF (a) and the downscaled dataset (b) for 2018–2019, as well as the retrievals for the 30 June 2018 for
LSAF (c) and the downscaled albedo product (d). The maps depict the southern Rhine Valley, with the river flowing from south to north
through the centre of the landscape shown and then to the north-west.

cover classes, the LSAF SNR and downscaled products per-
form better, with the downscaled dataset showing the lowest
MSE values. In terms of bias, ERA5-Land shows the best
performance, followed by the downscaled product, which
outperforms the LSAF-only SNR.

For the SNR products, we also carry out a seasonal analy-
sis. The results of this are shown in Figs. D1 and D2 in box-
plot form (see Appendix). Tables E1 and E2 list all perfor-
mance metrics for the entire study period as well as season-
ally. For the entire 2018–2019 period, R is very similar for
both datasets, with R = 0.93 for the downscaled product and
R = 0.92 for ERA5-Land. In comparison to ERA5-Land, the
downscaled product has a RMSE of 22.53 vs 25.7 W m−2.
The average bias is lower for ERA5-Land, with −1.56 vs
−6.83 W m−2.

The downscaled product shows better performance in
spring (AMJ) with R = 0.91 vs R = 0.83 and summer (JAS)
with R = 0.93 vs R = 0.86. The same holds true for RMSE
with 27.58 and 22.18 W m−2 for AMJ and JAS respectively,
compared to 34.79 and 29.37 W m−2.

Figure 12 shows, as an example, the SNR for the down-
scaled product and ERA5-Land for 30 June over an area
of western Europe. The increase in spatial resolution and
therefore landscape details is clearly visible. The downscaled
dataset shows both higher and lower values than ERA5-Land
as it is able to resolve finer land surface features due to the
high-resolution merged LST and albedo inputs.

5 Discussion

The methodology described and validated above to produce
the gap-free all-sky SNR at 1 km resolution relies on produc-
ing gap-free 1 km SWout and LWout estimates. The method-
ology used to produce SWout, namely bias correction, is rel-
atively straightforward. The more complex multi-stage ap-
proach taken for the all-sky LST estimates, which are re-
quired to compute LWout, is discussed in some more detail
here with regards to similar studies. Some further remarks
on other available SNR products, a comparison of the SNR
product created here to ERA5-Land, and the validation of the
individual radiation components follow.

Examples of other gap-free LST datasets which have re-
cently been developed are given by Shiff et al. (2021), Xu
and Cheng (2021), Jia et al. (2022) and Wu et al. (2023).
The approach taken by Shiff et al. (2021) was to merge
the clear-sky 1 km MODIS LST with the 0.2◦ modelled air
temperature provided by the National Center for Environ-
mental Prediction (NCEP) from the Coupled Forecast Sys-
tem Model version 2 (CFSv2) system. This was done by
extracting the underlying seasonal behaviour from both in-
put datasets by temporal Fourier analysis and subsequently
adding the CSFv2 anomalies to the MODIS climatology on
days for which no clear-sky MODIS LST observation is
available. Xu and Cheng (2021) demonstrated a multi-step
approach based on infrared Advanced Microwave Scanning
Radiometer 2 (AMSR2) brightness temperatures, MODIS
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Figure 6. Validation of SWout (a, b) and LWout (c, d) in terms of RMSE based on LSAF only (a, c) and the difference from the downscaled
products (b, d); blue colours in panels (b, d) indicate better performance of the downscaled products.

LST as well as MODIS-based ancillary datasets and ele-
vation data. First, the land surface temperature is retrieved
from all the above datasets at 0.1◦ spatial resolution. This
LST dataset is then downscaled from 0.1◦ resolution to 0.01◦

resolution by using the elevation data and MODIS NDVI.
Clear-sky MODIS LST data and the retrieved all-sky LST
data are then bias corrected, allowing for the temporal gap
filling of the clear-sky LST retrievals. Finally, the 0.1◦ LST
retrievals based on AMSR2 are assimilated into the merged
0.01◦ LST dataset by applying a multi-resolution Kalman fil-
tering approach. Jia et al. (2022) have produced all-sky di-
urnal hourly LST estimates at 2 km spatial resolution based
on the surface energy balance. The three-step approach is
based on constructing a spatiotemporal dynamic model of
LST from ERA5 in which clear-sky LST data from the Ad-
vanced Baseline Imager (ABI) are assimilated. As a final
step, the gap-free LST record is updated by superimposing
diurnal cloud effects using satellite radiation products. Wu
et al. (2023) have tested an approach to produce very-high-
resolution, 100 m gap-free LST data from a single Land-
sat 8 acquisition by training a random forest algorithm with

the Landsat-derived LST and ancillary variables, e.g. land
cover, population density and elevation. The LST merging
methodology presented in this paper shares some of the ele-
ments of the above-mentioned studies, i.e. primarily the bias
correction of the coarse-scale LSAF LST observations to-
wards Sentinel-3 (see Sect. 3.3), as well as a Kalman filter-
ing approach. An in-depth validation and quantitative inter-
comparison of the above-mentioned products was not the aim
of this study presented here. We argue, however, that on a
theoretical basis, the methodology proposed here has some
advantages. Most of the above-mentioned approaches rely on
input data with a coarser spatial resolution. Shiff et al. (2021)
and Jia et al. (2022), for instance, use air temperature data
at a 0.2◦ resolution or ERA5 with an approximately 31 km
spatial resolution. Both these datasets are also model output,
albeit from data assimilation systems taking a multitude of
observations into account. The coarsest spatial resolution of
the input datasets used in the methodology presented here
are the LSAF geostationary retrievals, with a pixel size of
ca. 5–7 km, depending on the latitude. While, in particular,
the LSAF all-sky retrievals are also based on modelling and
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Figure 7. Validation of SWout (top) and LWout (bottom) radiation in terms ofR, RMSE, RMSPE and bias for LSAF only and the downscaled
product across different land cover types.

Figure 8. Validation of the SNR for cloudy and clear-sky days in terms of R, RMSE and bias.
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Figure 9. Validation of the SNR in terms of RMSE using LSAF only (a) and the difference from the downscaled product (b); blue colours
in (b) indicate better performance of the downscaled product.

Figure 10. Daily averages of downscaled SNR, LSAF SNR and ground truth for the site IT-Lsn.

require ancillary information, they are optimised for the re-
trieval of the single target variable at high accuracy. They
are also available hourly, like ERA5, whereas e.g. Landsat 8,
used by Wu et al. (2023), is only available every few days,
depending on the cloud cover. Furthermore, our approach
does not rely on using ancillary variables which are not di-
rectly linked to the physical processes to statistically down-
scale the input products, as is for example done in Wu et al.
(2023) by using population density. One of the drawbacks
of the methodology presented here is the lack of a dynamic
temporal model which is able to propagate assimilation up-
dates (provided by the 1 km LST retrievals from Sentinel-
3) over time, which has been achieved by Jia et al. (2022).
Here we thus apply the same update from when a Sentinel-
3 observation is available to the subsequent time steps un-
til the next Sentinel-3 observation is available. An additional
drawback is that e.g. ERA5 and NCEP are globally avail-
able datasets, and the use of MODIS LST retrievals allows
for the production of long time series. In contrast, LSAF is
limited to North Africa and Europe, and Sentinel-3 was only
launched in 2016. The approach can, however, be transferred
to other regions by substituting LSAF with other geostation-

ary retrievals and using MODIS instead of or in addition to
Sentinel-3 to allow for an extension of the time series.

In terms of the calculation of the daily all-sky surface
net radiation dataset, we argue that the approach taken here
is the most straightforward, as it is based on the underly-
ing physical principles of the individual radiation compo-
nents. This is in contrast to studies presenting methods to
produce net radiation at a similar temporal and spatial res-
olution which exploit statistical relationships between some
well-observed components (e.g. incoming radiation compo-
nents from a satellite) and ancillary information (e.g. land
cover or NDVI) or modelled variables. Xu et al. (2022), for
example, train a convolutional neural network using net ra-
diation from a selection of in situ measurements, modern-era
retrospective analysis for research and applications, version
2 (MERRA-2) reanalysis and advanced very high resolution
radiometer (AVHRR) top-of-atmosphere (TOA) data. Jiang
et al. (2023) presented two algorithms based on a random for-
est to downscale the GLASS net radiation product, either by
exploiting the relationship between net radiation and short-
wave radiation as well as ancillary information, including
that from ground measurements, or by linking net radiation
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Figure 11. Validation of the SNR for different CCI land-cover types in terms of R, MSE, MSPE and bias.

Figure 12. The SNR from ERA5-Land (a) and the downscaled dataset (b) for 30 June 2018. The maps shown depict a large part of western
Europe covering France, Germany and Italy. Data gaps around lakes and shorelines due to the relatively coarse resolution of the LSAF inputs
have been filled through bilinear interpolation and a 1 km water mask has been applied.

to TOA observations from the Landsat satellites and ancil-
lary information. The GLASS algorithm itself is based on
the multivariate adaptive regression splines (MARS) model
trained with remotely sensed incoming radiation, NDVI and
albedo as well as mostly MERRA-2 meteorological variables
(Jiang et al., 2016). While such downscaling methodologies
can work very well, and we need to note that no quanti-
tative comparison is performed here, they rely on training
a model which establishes a statistical relationship between
the different input variables. These data-driven approaches
are very sensitive to the training data and e.g. the spatial
or temporal domain for which such a model is established.
Hence, a globally trained model might not capture locally
specific conditions or provide accurate output for time peri-
ods not considered for the training. As in situ training data
are often the limiting factor, established statistical relation-
ships might also only be valid for these specific sites, and
avoiding model overfitting can be very challenging. It can
thus be beneficial if in situ measurements are solely used for

the validation of a methodology rather than the development
itself. Another methodology to produce hourly surface solar
radiation at 5 km spatial resolution was developed by Tang
et al. (2016). In the two-step approach, hourly cloud parame-
ters are estimated with a neural network by combining cloud
products from MODIS with high-temporal-resolution TOA
radiance data from the geostationary Multifunctional Trans-
port Satellite (MTSAT). Subsequently, the cloud information
and other auxiliary information are combined in a radiative
transfer model to retrieve the surface net radiation. Concep-
tually, although it estimates surface radiation primarily based
on cloud properties, it is similar to the approach presented
here in exploiting the advantages of geostationary and polar-
orbiting satellite measurements and being more physically
based. An overview of some further approaches to produce
surface net radiation products is also given by Tang et al.
(2016).

We need to state that in this paper we make no accuracy
comparisons between the different approaches mentioned
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above. Also, in terms of ancillary variables, this study in-
directly relies on these through the use of the chosen input
products. The retrieval of the LST, for instance, especially in
cloudy conditions, relies on modelled processes requiring in-
formation such as the vegetation phenology. In terms of the
validation of the produced SNR product and the individual
radiation components, we also acknowledge that the in situ
measurements have an error (the difference from the “truth”
at the local scale that they sample), but that the pixel to local
representativeness error, i.e. the difference between the pixel
truth that we aim for and the local truth at the smaller tower
footprint, is much larger. Unfortunately, we cannot solve this
issue, but we argue that using as many stations as possible
benefits the validation, particularly within pixels where the
spatial heterogeneity is very large. Finally, by relying on in-
put products that directly represent components of the sur-
face radiation balance, any future enhancements in the source
products should directly lead to improvements in future re-
leases of the 1 km SNR dataset.

6 Data availability

The daily SNR and LST datasets for 2018–
2019 are available for scientific use un-
der https://doi.org/10.5281/zenodo.8332222/
https://doi.org/10.5281/zenodo.8332128 as netcdf files
(RNETdaily_lon_lat.nc and LSTdaily_lon_lat.nc); see Rains
(2023a) and Rains (2023b). The spatial domain covered
by the product is −11.5 to 26.5◦ longitude and 35 to 71◦

latitude.

7 Conclusions

Surface net radiation is a key input variable for many land
surface and hydrological models. With increased efforts to
simulate land surface processes at higher spatial resolution,
the lack of high-resolution gap-free SNR data is an issue. The
heterogeneity of the model output is then primarily driven by
land surface properties for which high-resolution datasets are
more frequently available (e.g. soil texture, vegetation phe-
nology). In this paper, we have presented a methodology to
systematically combine the advantages of frequent geosta-
tionary LST and radiation observations, enhanced with mod-
elled data when cloud cover inhibits the direct retrieval, with
LST and albedo retrievals from polar-orbiting satellites at
high spatial resolution. The resulting gap-free net radiation
dataset, as well as the intermediate all-sky LST dataset, for
2018–2019 across Europe uses operationally available input
datasets, which opens up the possibility of updating the data
on a close to near-real-time basis. Based on the surface en-
ergy balance, and by optimising each radiation component
individually using input datasets that already have a high ac-
curacy, some improvements are achieved in addition to a sub-

stantial increase in spatial heterogeneity and representative-
ness.

While a gap-free LST dataset was developed within this
study, the validation of the dataset was carried out indirectly
based on LWout measurements. This served the purpose of
the study: to ultimately create a SNR dataset.

Conceptually, one of the advantages of the LST merging
methodology developed here within the overall scope of pro-
ducing net radiation is its reliance on one of the LST in-
put products provided by LSAF, thus making the approach
more consistent, as the incoming radiation components are
also LSAF products. The use of Sentinel-3 SLSTR emis-
sivity maps when computing the outgoing long-wave radia-
tion LWout should be considered in future product updates to
make the methodology even more consistent. In addition, the
presented results are based on the use of LST retrievals from
the Sentinel-3A satellite, and data from Sentinel-3B should
be incorporated in the future. Also, the use of Sentinel-3-
based albedo instead of PROBA-V should be explored. A
limitation of the downscaling methodology is that in the as-
similation step performed after the bias correction of LSAF
LST towards Sentinel-3, there is no dynamic model to prop-
agate the updates from the Sentinel-3 LST assimilation at the
daytime or nighttime overpass time to the subsequent hours.
To address this issue, we applied equivalent updates to the
subsequent hourly LSAF observations separately for tem-
poral daytime/nighttime windows. Alternative approaches –
such as the attenuation of the assimilation impact over time
– could be explored based on a more in-depth analysis of the
diurnal cycle. While the validation presented here concen-
trated on daily aggregates, the availability of hourly LST and
radiation products does make it possible to resolve the diur-
nal cycle, which can be a requirement for certain models.

In principle, the approach developed within this study can
be extended to other areas where there are both geostation-
ary and polar-orbiting observations, not necessarily the ones
used for this study. The dataset presented here shall be up-
dated in the future, as we consider it to be an ideal input
dataset for high-resolution land surface applications, e.g. for
the Global Land Evaporation Amsterdam Model (Martens
et al., 2017).
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Appendix A: In situ sites

Table A1. List of all in situ sites used for the validation of the radiation products throughout the paper. The columns show the station ID,
name, geographic coordinates and IGBP land cover (when provided) as well as the measured variables at each site.

ID Name Long (degrees) Lat (degrees) IGBP SW_in LW_in SW_out LW_out

BE-Dor Dorinne 4.968 50.312 GRA x x x x
BE-Lcr Lochristi 3.850 51.112 DBF x x x x
BE-Lon Lonzee 4.746 50.552 CRO x x x x
BE-Maa Maasmechelen 5.632 50.980 CSH x x x x
BE-Vie Vielsalm 5.998 50.305 MF x x x x
CH-Aws Alp Weissenstein 9.790 46.583 GRA x x
CH-Cha Chamau 8.410 47.210 GRA x x x x
CH-Dav Davos 9.856 46.815 ENF x x x x
CH-Fru Früebüel 8.538 47.116 GRA x x
CH-Lae Laegern 8.364 47.478 MF x x
CH-Oe2 Oensingen 7.734 47.286 CRO x x
CZ-Lnz Lanzhot 16.946 48.682 MF x x x x
CZ-RAJ Rajec 16.697 49.444 ENF x x x x
CZ-Stn Stitna 17.970 49.036 DBF x x x x
CZ-Wet Trebon 14.770 49.025 WET x x x x
DE-Akm Anklam 13.683 53.866 WET x x x x
DE-Dgw Dagowsee 13.054 53.151 WET x x x x
DE-Geb Gebesee 10.915 51.100 CRO x x x x
DE-Gri Grillenburg 13.513 50.950 GRA x x x x
DE-Hai Hainich 10.452 51.079 DBF x x x x
DE-HoH Hohes Holz 11.219 52.085 DBF x x x x
DE-Hte Huetelmoor 12.176 54.210 WET x
DE-Hzd Hetzdorf 13.490 50.964 DBF x x x x
DE-Kli Klingenberg 13.522 50.893 CRO x x x x
DE-Obe Oberbärenburg 13.721 50.787 ENF x x x x
DE-RuR Rollesbroich 6.304 50.622 GRA x x x x
DE-RuS Selhausen Juelich 6.447 50.866 CRO x x x x
DE-Tha Tharandt 13.565 50.963 ENF x x x x
DE-Zrk Zarnekow 12.889 53.876 WET x x x x
DK-Sor Soroe 11.645 55.486 DBF x x x x
ES-Abr Albuera −6.786 38.702 SAV x x x x
ES-Cnd Conde −3.228 37.915 WSA x x x x
ES-LM1 Majadas del Tietar North −5.779 39.943 SAV x x x x
ES-LM2 Majadas del Tietar South −5.776 39.935 SAV x x x x
FI-Hyy Hyytiala 24.295 61.847 ENF x x x x
FI-Kmp Kumpula 24.961 60.203 URB x x x x
FI-Kvr Kuivajarvi 24.280 61.847 WAT x x x x
FI-Let Lettosuo 23.960 60.642 ENF x x x x
FI-Sii Siikaneva 24.193 61.833 WET x x x x
FI-Var Varrio 29.610 67.755 ENF x
FR-Aur Aurade 1.106 43.550 CRO x x x x
FR-Bil Bilos −0.956 44.494 ENF x x x x
FR-EM2 Estrees-Mons A28 3.021 49.872 CRO x x
FR-FBn Font-Blanche 5.679 43.241 MF x x x x
FR-Fon Fontainebleau 2.780 48.476 DBF x x x x
FR-Gri Grignon 1.952 48.844 CRO x x x x
FR-Hes Hesse 7.065 48.674 DBF x x x x
FR-LGt La Guette 2.284 47.323 WET x x x x
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Table A1. Continued.

ID Name Long (degrees) Lat (degrees) IGBP SW_in LW_in SW_out LW_out

FR-Mej Mejusseaume −1.796 48.118 GRA x x x x
FR-Pue Puechabon 3.596 43.741 EBF x x x x
IT-BCi Borgo Cioffi 14.957 40.524 CRO x x x x
IT-Cp2 Castelporziano2 12.357 41.704 EBF x x x
IT-Lsn Lison 12.750 45.740 OSH x x x x
IT-MtM Muntatschinig Meadow 10.580 46.687 GRA x x x x
IT-Ren Renon 11.434 46.587 ENF x x
IT-SR2 San Rossore 2 10.291 43.732 ENF x x x x
IT-Tor Torgnon 7.578 45.844 GRA x x x x
RU-Fy2 Fyodorovskoye 32.902 56.448 ENF x x x x
RU-Fyo Fyodorovskoye 32.922 56.462 ENF x x x x
SE-Deg Degero 19.557 64.182 WET x x x x
SE-Htm Hyltemossa 13.419 56.098 ENF x x x x
SE-Lnn Lanna 13.102 58.341 CRO x
SE-Nor Norunda 17.480 60.086 ENF x x x x
SE-Svb Svartberget 19.775 64.256 ENF x x x x
bud Budapest-Lorinc 19.182 47.429 x x x x
cab Cabauw 4.927 51.971 x x x x
car Carpentras 5.030 44.050 x x
cnr Cener −1.601 42.816 x x
lin Lindenberg 14.122 52.210 x x
pal Palaiseau 2.208 48.713 x x
pay Payerne 6.944 46.815 x x x x
son Sonnblick 12.958 47.054 x x
tor Toravere 26.462 58.264 x x x x

https://doi.org/10.5194/essd-16-567-2024 Earth Syst. Sci. Data, 16, 567–593, 2024



584 D. Rains et al.: High-resolution (1 km) all-sky net radiation over Europe

Appendix B: Incoming radiation fluxes

Figure B1. Validation of LSAF SWin in terms of R, RMSE, RMSPE and bias for the entire period as well as seasonally.

Figure B2. Validation of LSAF LWin in terms of R, RMSE, RMSPE and bias for the entire period as well as seasonally.
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Figure B3. Validation of LSAF SWin in terms of R, RMSE, RMSPE and bias for different land cover types.

Figure B4. Validation of LSAF LWin in terms of R, RMSE, RMSEP and bias for different land cover types.
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Appendix C: Outgoing radiation fluxes

Figure C1. Validation of SWout in terms of R, RMSE, RMSPE and bias using LSAF only (R1) and the downscaled product (R2) for the
entire period as well as seasonally.

Figure C2. Validation of LWout in terms of R, RMSE, RMSPE and bias using LSAF only (R1) and the the downscaled product (R2) for the
entire period as well as seasonally.
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Appendix D: Net radiation

Figure D1. Validation of SNR in terms of R, RMSE, RMSPE and bias using LSAF only (R1) and the downscaled product (R2) for the entire
period as well as seasonally.

Figure D2. Validation of ERA5-Land and the downscaled net radiation product against in situ measurements in terms of R, RMSE, RMSEP
and bias for different land cover types.
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Appendix E: Overall validation statistics

Table E1. Performance metrics for radiation components for the 2018–2019 study period.

R MSE MSPE Bias

SWin 0.97 876 7.59 −7.65
LWin 0.93 420 0.06 −6.99
SWout LSAF 0.87 317 7.99 −4.55
SWout RADLST 0.87 293 6.93 −5.5
LWout LSAF 0.97 132 0.029 2.36
LWout RADLST 0.97 122 0.028 0.81
SNR LSAF 0.93 551 17 −9.06
RNET RADLST 0.93 515 15.89 −6.11
SNR ERA5-Land 0.93 654 10.04 −1.89

Table E2. Seasonal performance metrics for radiation components.

R MSE MSPE Bias R MSE MSPE Bias R MSE MSPE Bias R MSE MSPE Bias
Q1 Q1 Q1 Q1 Q2 Q2 Q2 Q2 Q3 Q3 Q3 Q3 Q4 Q4 Q4 Q4

SWin 0.96 535 6.66 −6.88 0.95 1320 1.09 −12.2 0.94 1431 1.91 −8.02 0.95 399 5.97 −4.92
LWin 0.89 598 0.08 −15 0.88 361 0.05 −2.39 0.93 228 0.03 1.05 0.87 433 0.06 −9.29
SWout LSAF 0.84 588 11.5 −9.14 0.87 490 1.99 −3.26 0.89 148 4.63 −2.72 0.8 129 3.36 −4.01
SWout RADLST 0.82 562 9.25 −9.66 0.87 441 1.66 −5.07 0.89 121 3.87 −4.23 0.78 124 3.22 −4.32
LWout LSAF 0.92 114 0.029 0.87 0.94 170 0.03 4.31 0.92 145 0.02 5.94 0.95 96 0.02 0.27
LWout RADLST 0.93 101 0.028 −0.83 0.95 163 0.03 2.87 0.93 134 0.02 4.6 0.96 90 0.02 −1.36
SNR 0.84 527 21 −11.87 0.91 860 1.11 −10.55 0.93 503 1.96 −4.17 0.77 336 22.24 −7.82
RNET RADLST 0.84 481 20 −9.39 0.91 800 1.14 −6.6 0.93 477 2.03 −0.76 0.8 316 19.79 −5.51
SNR ERA5-Land 0.84 407 10.49 47 0.83 1187 1.07 −61 0.86 844 2.43 −50 0.82 274 13.86 53.46
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Appendix F: Downscaling of LSAF LST with
Sentinel-3 LST

Some more detail is given here on the downscaling/merging
of the LSAF with Sentinel-3-based LST retrievals described
in Sect. 3.3. Figure F1 shows, as an example, the mean
Sentinel-3 LST and its bias towards LSAF observations for
daytime (10:00 am local time) observations. Across the do-
main, the bias is neither systematically negative nor positive,
highlighting the generally high agreement between LSAF
and Sentinel-3 observations, and it is more linked to geo-
graphic features. The UTC time of the underlying Sentinel-3
data is different for each pixel/day across the domain, and the
LSAF data the bias is calculated against is thus a composite
from different acquisition times. The Sentinel-3 observations
are normalised to the on-the-hour Sentinel-3 mean overpass
time per pixel to enable a more correct matchup between
Sentinel-3 and LSAF (as the LSAF data are representative of
on-the-hour data). This is done through linear interpolation
using the LSAF LST difference between the full hour be-
fore and that after the exact overpass time of each Sentinel-3
observation. The bias correction is then performed between
LSAF LST and the normalised Sentinel-3 observations for
each pixel individually for the entire study period. A seasonal
bias correction should be considered in the future.

Figure F1. Mean LST of Sentinel-3 daytime (ca. 10:00 am) observations (a) and bias towards LSAF observations (b).

After the full bias correction of the hourly LSAF data,
the normalised Sentinel-3 observations are assimilated into
this time series for each pixel. The respective uncertainties
of both Sentinel-3 and LSAF LST retrievals for each pixel/-
time step are therefore taken into account. Figure F2 shows
the assimilation diagnostics for a single day as an example.
The top row shows the Sentinel-3 LST retrieval (left), the un-
certainty map of the Sentinel-3 observation (middle) and the
uncertainty of the LSAF observations (right). The Kalman
gain (bottom left) is based on the two uncertainties; a value
of 1 corresponds to full trust in the Sentinel-3 observation,
whereas 0 would result in no assimilation update. The differ-
ence, i.e. the innovation, between the Sentinel-3 observation
and LSAF LST is shown in the lower middle plot. The incre-
ment, the actual update, is the innovation multiplied by the
Kalman gain and is shown in the bottom right plot.

Figure F3 shows the 2018–2019 mean assimilation diag-
nostics for the daytime Sentinel-3 assimilation. The innova-
tion (left) is fairly close to 0, showing that the bias correc-
tion results in the Sentinel-3 observations being, on average,
spread evenly around the bias-corrected LSAF time series,
as intended. The mean increment (middle), the actual cor-
rection applied to the LSAF estimates, shows similar spatial
patterns. The mean Kalman gain is shown on the right.
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Figure F2. Sentinel-3 LST retrievals (a), uncertainty of Sentinel-3 LST retrievals (b), uncertainty of LSAF LST retrievals (c), Kalman gain
(d), innovations (e) and increments (f).

Figure F3. Mean innovation (a), increments (b) and Kalman gain (c) for daytime Sentinel-3 LST assimilation.
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