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Abstract. Long-term time series of transpiration, evaporation, plant net photosynthesis, and soil respiration are
essential for addressing numerous research questions related to ecosystem functioning. However, quantifying
these fluxes is challenging due to the lack of reliable and direct measurement techniques, which has left gaps in
the understanding of their temporal cycles and spatial variability. To help address this open challenge, we gener-
ated a dataset of these four components by implementing five (conventional and novel) approaches to partition
total evapotranspiration (ET) and CO2 fluxes into plant and soil fluxes across 47 National Ecological Observatory
Network (NEON) sites. The final dataset (https://doi.org/10.5281/zenodo.12191876; Zahn and Bou-Zeid, 2024)
spans a 5-year period and covers various ecosystems, including forests, grasslands, and agricultural terrain. This
is the first comprehensive dataset covering such a wide spatial and temporal distribution. Overall, we observed
good agreement across most methods for ET components, increasing confidence in these estimates. Partitioning
of CO2 components, on the other hand, was found to be less robust and more dependent on prior knowledge
of water use efficiency. This highlights some limitations of these present methods that we discuss, emphasizing
the broader challenge posed by the lack of an accurate reference method to validate against. Despite these lim-
itations, this dataset has several potential applications, especially in addressing critical questions regarding the
response of ecosystems to extreme weather events, which are expected to become more severe and frequent with
climate change.

1 Introduction

Plant transpiration and photosynthesis are important compo-
nents of the global water and CO2 cycles. At the ecosystem
level, these quantities reflect the complex interactions within
the soil–vegetation–atmosphere continuum. Given the com-
plexity of these interactions and the challenges associated
with measuring or modeling leaf–atmosphere exchanges,
many open questions remain. For instance, the competing ef-
fects of rising CO2 and temperature on plant water use ef-
ficiency (Mengis et al., 2015; Kirschbaum and McMillan,
2018; Dusenge et al., 2019; Baslam et al., 2020; Wang et al.,
2022) are still being debated, together with their response

and resilience to more frequent and intense droughts and
changes in soil moisture conditions (Maxwell and Condon,
2016; Lesk et al., 2021). In addition to the challenges of in-
vestigating such nonlinear processes, one of the main barriers
to advancing research in this area has been the lack of long-
term observations and/or reliable estimates of plant transpi-
ration and CO2 assimilation over various types of vegetation
and soils.

Eddy covariance (EC) is a reliable approach to contin-
uously monitor evapotranspiration (ET) and net CO2 (Fc)
fluxes across ecosystems in a standardized manner. However,
separate measurement of the individual ecosystem compo-
nents, i.e., plant transpiration (T ) and soil evaporation (E),
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together with plant gross primary production (GPP) and
ecosystem respiration (Reco), is still difficult. Traditional
measurement techniques, such as sap flow and lysimeters,
often lack the temporal and spatial resolutions necessary for
capturing ET flux components comprehensively (Kool et al.,
2014; Stoy et al., 2019). Other techniques, such as soil cham-
bers (Kool et al., 2014), stable isotopes (Good et al., 2014),
and carbonyl sulfide as a tracer for plant fluxes (Wohlfahrt
et al., 2011), are not yet deployable at large spatial and tem-
poral scales. Additionally, all of these methods carry their
own uncertainties, can be logistically challenging to imple-
ment, and are often costly to scale up. Partitioning of CO2
fluxes into GPP and Reco can also be done based on night-
time CO2 flux extrapolation (Reichstein et al., 2005) and
light-response curves (Lasslop et al., 2010); this method has
been widely implemented and is part of FLUXNET products
(Pastorello et al., 2020). Nonetheless, it cannot partition ET
components. As a result, there is a scarcity of datasets repre-
senting the temporal and spatial variabilities of both ET and
CO2 flux components across a broad range of ecosystems
and weather conditions.

An alternative approach to obtain long-term time series of
flux components is partitioning of evapotranspiration and net
CO2 exchanges into their respective plant and soil compo-
nents based strictly on the analysis of their turbulent per-
turbation signals. This approach is the focus of this paper,
which applies five recently developed and tested partition-
ing methods to disentangle the contributions of transpiration,
evaporation, net photosynthesis, and soil respiration to the
total ecosystem fluxes measured across all the EC towers of
the National Science Foundation’s National Ecological Ob-
servatory Network (NEON). The methods employed in this
study have been rigorously evaluated in previous studies that
combined experimental data from EC sites and virtual EC
data from large-eddy simulations. Although, as with all par-
titioning approaches, the validation is hindered by a lack of
a universally accepted accurate standard method, previous
research has highlighted conditions under which these tur-
bulence methods agree and are more reliable, together with
conditions under which their partitioning estimates may have
larger errors. In the dataset we produce in this work, we con-
solidate the results from five partitioning methods and calcu-
late their ensemble average, providing a measure of uncer-
tainty for each flux period at each site.

With a total of 47 sites spanning diverse ecosystems in the
United States, this dataset can be an invaluable resource for
future investigation of the spatial variability and ecological
and meteoclimatic drivers shaping flux dynamics across dif-
ferent landscapes. It has the potential to contribute to the ad-
vancement of our understanding of ecosystem processes and
their responses to current and future climates, in turn better
informing ecosystem management and climate change miti-
gation and adaptation practices.

2 Study area and input data

NEON is a comprehensive initiative designed to collect long-
term open-access environmental observations in the conti-
nental United States (Metzger et al., 2019). It operates a net-
work of field sites strategically located to capture the diver-
sity of ecosystems and environmental conditions present in
the country. One of the main features of NEON is the stan-
dardized collection of data across sites, including biological,
hydrological, and meteorological observations. As part of its
effort to understand land–atmosphere exchanges of energy,
water, and CO2, NEON has a total of 47 eddy-covariance
towers spread across 24 states (see Table 1), where most sites
are located in deciduous and evergreen forests (Fig. 1).

For the purpose of implementing the partitioning meth-
ods, we downloaded instantaneous measurements from the
eddy-covariance towers from 2019 to 2023 for all 47 loca-
tions. All sites were equipped with the same gas analyzer
(LICOR LI7200) and sonic anemometers (Campbell Scien-
tific, CSAT-3 3-D) collecting data at a frequency of 20 Hz.
These time series were processed and prepared to be used by
the five partitioning methods, as described in the next sec-
tion. In addition to raw data, we also downloaded the pro-
cessed eddy-covariance data (product level 4) for the same
period (NEON, 2024a, b), which include evapotranspiration
and net ecosystem CO2 fluxes as processed by eddy4R (Met-
zger et al., 2017). Fluxes computed by eddy4R include all
standard corrections, such as high-frequency spectral correc-
tion, some of which are only applied to the final turbulent
fluxes and not the instantaneous time series. Thus, we use
the total turbulent fluxes as quantified by NEON to rescale
all the flux components that we computed (T , E, R, and P ),
ensuring that they are consistent with the corrected fluxes re-
ported by the network.

As the last step of postprocessing, a gap-filling algo-
rithm was implemented to maximize the availability of flux-
partitioning estimates. Additional meteorological variables
were downloaded using the R package neonUtilities (Lunch
et al., 2024) and used as features to implement the Extreme
Gradient Boosting (XGBoost) algorithm. The selected vari-
ables (inputs) included air temperature (NEON, 2024g, h),
incoming solar radiation (NEON, 2024i, j), relative humid-
ity (NEON, 2024e, f), photosynthetically active radiation
(NEON, 2024c, d), and wind speed (NEON, 2024k, l). All
quantities were measured at the top of the tower. The sensible
heat flux and friction velocity, included in the bundled data
products, were also used. Due to the presence of long gaps
and/or noisy measurements, precipitation and soil moisture
were not included as features.

3 Methods

Below, we describe the methods used to partition the data and
the processing steps followed to generate the final dataset.
A diagram summarizing all the preprocessing and postpro-
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Table 1. Description of the 47 sites included in the present paper. In addition to the NEON site identification (ID) and state, the table
lists the geographical coordinates, the ratio between the eddy-covariance measurement height and the mean canopy height (z/h), and the
predominant vegetation type around the tower following Fiorella et al. (2021). The last two columns represent the availability of ET fluxes
during the daytime hours (when solar radiation> 10 W m2) in the 5 years of record and the availability of transpiration estimates, based
on the partitioning approaches used here, in the same period. The range represents the availability according to the different methods (least
available to most available). Availability is computed after gap-filling as described in Sect. 3.4.2.

ID State Latitude Longitude z/h Main vegetation type ET T

availability availability
(%) (%)

ABBY WA 45.76 −122.33 6.0 Evergreen forest 61.3 58.7–61.2
BARR AK 71.28 −156.62 30.0 Tundra shrubland 33.7 24.7–33.7
BART NH 44.06 −71.29 1.8 Mixed forest 76.2 74.2–76.2
BLAN VA 39.03 −78.04 2.0 Farm transitioning to forest 64.7 59.6–64.7
BONA AK 65.15 −147.50 3.0 Mixed forest 56.8 53.5–56.8
CLBJ TX 33.40 −97.57 1.4 Deciduous forest 74.3 72.6–74.3
CPER CO 40.82 −104.75 30.0 Grassland 62.4 61.1–62.4
DCFS ND 47.16 −99.11 8.0 Grassland 72.3 64.3–72.3
DEJU AK 63.88 −145.75 3.6 Evergreen forest 71.1 66.3–71.1
DELA AL 32.54 −87.80 1.4 Evergreen forest 54.1 48.9–54.0
DSNY FL 28.13 −81.44 4.0 Pasture 69.2 65.7–69.2
GRSM TN 35.69 −83.50 1.5 Deciduous forest 65.7 62.9–65.7
GUAN PR 17.97 −66.87 3.8 Evergreen forest 50.7 48.2–50.7
HARV MA 42.54 −72.17 1.7 Deciduous forest 63.9 58.2–63.9
HEAL AK 63.88 −149.21 30.0 Evergreen forest 52.5 49.1–52.4
JERC GA 31.19 −84.47 1.9 Mixed forest 63.9 61.7–63.8
JORN NM 32.59 −106.84 8.0 Desert shrubland 76.9 73.3–76.9
KONA KS 39.11 −96.61 5.3 Cultivated crops 76.7 70.9–76.7
KONZ KS 39.10 −96.56 8.0 Grassland 73.8 67.1–73.8
LAJA PR 18.02 −67.08 8.0 Pasture 46.8 45.6–46.7
LENO AL 31.85 −88.16 1.2 Deciduous forest 43.5 37.1–43.4
MLBS VA 37.38 −80.52 1.5 Deciduous forest 64.2 50.9–64.2
MOAB UT 38.25 −109.39 40.0 Desert shrubland 65.8 64.5–65.8
NIWO CO 40.05 −105.58 13.3 Tundra/alpine shrubland 52.7 48.5–52.7
NOGP ND 46.77 −100.92 20.0 Grassland 63.4 60.0–63.4
OAES OK 35.41 −99.06 5.3 Grassland 71.4 65.3–71.4
ONAQ UT 40.18 −112.45 8.0 Sage shrubland 71.4 67.6–71.3
ORNL TN 35.96 −84.28 1.4 Deciduous forest 69.1 64.3–69.1
OSBS FL 29.69 −81.99 1.8 Evergreen forest 55.5 51.3–55.5
PUUM HI 19.55 −155.32 1.5 Evergreen forest 57.5 41.3–57.5
RMNP CO 40.28 −105.55 2.3 Evergreen forest 78.7 74.4–78.7
SCBI VA 38.89 −78.14 1.7 Deciduous forest 52.2 48.3–52.1
SERC MD 38.89 −76.56 1.7 Deciduous forest 65.5 63.7–65.5
SJER CA 37.11 −119.73 3.2 Mixed forest 63.1 62.0–63.1
SOAP CA 37.03 −119.26 2.1 Evergreen forest 69.3 63.0–69.1
SRER AZ 31.91 −110.84 4.0 Desert shrubland 73.7 72.6–73.6
STEI WI 45.51 −89.59 2.3 Deciduous forest 70.9 68.4–70.9
STER CO 40.46 −103.03 2.7 Cultivated crops 66.1 59.4–66.1
TALL AL 32.95 −87.39 1.4 Mixed forest 63.0 58.5–63.0
TEAK CA 37.01 −119.01 2.2 Evergreen forest 63.6 61.4–63.5
TOOL AK 68.66 −149.37 45.0 Tundra shrubland 45.3 35.5–45.2
TREE WI 45.49 −89.59 1.5 Mixed forest 76.1 69.8–76.1
UKFS KS 39.04 −95.19 1.9 Deciduous forest 73.0 67.9–73.0
UNDE MI 46.23 −89.54 1.7 Mixed forest 74.8 72.5–74.8
WOOD ND 47.13 −99.24 16.0 Grassland 68.9 64.8–68.9
WREF WA 45.82 −121.95 1.4 Evergreen forest 66.0 63.5–65.9
YELL WY 44.95 −110.54 1.1 Evergreen forest 57.4 53.2–57.4
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Figure 1. Locations of the 47 eddy-covariance towers maintained by NEON. Note that Alaska, Hawaii, and Puerto Rico are not scaled
proportionally to the continental US area.

cessing steps is shown in Fig. 2. We implemented five meth-
ods to partition evapotranspiration into soil evaporation and
plant transpiration as well as net CO2 flux into soil respira-
tion and net plant photosynthesis. It is important to note that
these quantities differ from GPP and ecosystem respiration
(see Wohlfahrt and Gu, 2015, for a detailed discussion of the
different definitions of CO2 flux components). Since these
methods are based on principles of turbulent transport, they
do not provide the information needed to separate soil respi-
ration from plant respiration. Instead, the framework effec-
tively partitions below-canopy fluxes, which include respira-
tion and evaporation from soil, roots, and possibly the lower
parts of tree trunks, and above-canopy fluxes, which encom-
pass plant transpiration and net photosynthesis. Thus, none of
these approaches allows for the distinction between canopy
and ground respiration. Another limitation of these models is
that they cannot distinguish between transpiration and evap-
oration of intercepted water on the leaves. Nonetheless, since
EC data are often lost through poor data quality during and
immediately following rainfall periods, many such periods
are likely removed from the time series already. With these
definitions in mind, we refer to net photosynthesis simply as
photosynthesis (P ) and plant transpiration simply as transpi-
ration (T ) in the following sections, while evaporation (E)
and respiration (R) are considered to originate solely from
the ground or soil levels. We advise future users to carefully
note the specific definitions of each component, as this is es-

sential for making meaningful comparisons across different
partitioning products.

3.1 Partitioning approaches

The partitioning methods implemented in this study are
based on the idea of transport similarity between CO2 and
water vapor. It assumes that turbulent structures, or “eddies”,
simultaneously transport evaporation and respiration from
the soil towards the sensor, where the respective concentra-
tions of these “event samples” are measured. Similarly, tur-
bulence also transports air parcels from the canopy, where
net photosynthesis and plant transpiration take place. By sep-
arating the signature of soil and canopy events in the time
series, these methods try to infer the respective magnitude
of each flux component. Note that, while both evapotranspi-
ration components are sources of water vapor (i.e., they are
positive fluxes), CO2 fluxes are a combination of a source
(soil respiration) and a sink (photosynthesis). This feature of
the CO2 flux is what creates this framework, since it works
as a tracer that identifies the origin of water vapor. However,
another consequence of this feature is that, while the com-
ponents E and T are bounded by E+ T , the magnitudes of
R > 0 and P < 0 are not constrained by Fc = R+P . As a re-
sult, partitioning results for CO2 components tend to be more
uncertain. Nonetheless, as will be explained in the next sec-
tion, two of the partitioning methods implemented here re-
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Figure 2. Diagram representing all steps of data processing used to generate the final dataset.

quire the water use efficiency, W = P/T , as an input. While
the need for a parameterization for W is a disadvantage for
the method, the inclusion of W adds a bound to P and R.

In total, five partitioning methods were implemented: flux-
variance similarity (FVS) (Scanlon and Sahu, 2008; Scanlon
and Kustas, 2010; Scanlon et al., 2019), modified relaxed
eddy accumulation (MREA) (Thomas et al., 2008), condi-
tional eddy covariance (CEC) (Zahn et al., 2022), modified
CEC that also utilizes water use efficiency (CECw) (Zahn
et al., 2024), and conditional eddy accumulation (CEA)
(Zahn et al., 2024). The advantage of these models is that
they mostly rely on high-frequency eddy-covariance obser-
vations, requiring no or few input parameters. While MREA,
CEC, and CEA are based solely on statistics computed from
the high-frequency data, FVS and CECw additionally require
water use efficiency as an input.

Three of the methods, FVS, MREA, and CEC, have been
investigated extensively in previous studies (Thomas et al.,
2008; Klosterhalfen et al., 2019; Scanlon et al., 2019; Zahn
et al., 2022). More recently, these three methods were tested
by Zahn et al. (2024) using large-eddy simulations; they also
formulated and tested the CECw and CEA approaches to
probe the assumptions and performance of all the methods.
Their simulation-based analyses indicated that all the meth-
ods result in reliable results for a range of flux combinations
that are expected in real ecosystems. While that study was not
able to pinpoint conditions under which the accuracy of the
results in field experiments can be guaranteed, it delineated
flux combinations that may result in higher uncertainties, it

quantified the impact of errors in W on the results of FVS
and CECw, and it identified the most consequential assump-
tions in the various methods. The broad recommendations of
that study are as follows:

1. The measurement height z, i.e., the height where the EC
system is placed, should be as close as possible to the
mean canopy height, h, to better distinguish between the
soil and plant signals. However, while z/h < 3 is a good
recommendation, we note that the performance also de-
pends on other factors such as canopy density and the
specific method, as some approaches were found to per-
form well even outside this region.

2. All flux components from the soil (evaporation and
respiration) and from the vegetation (transpiration and
photosynthesis) should be non-negligible. This criterion
arises from the water vapor–CO2 coupling, which needs
the CO2 signal to determine the origin of the water va-
por.

3. The (anti)correlation between CO2 and water vapor,
ρc,q , should not be perfect, i.e., |ρc,q |< 1. Perfect cor-
relation or anticorrelation indicates that turbulence fully
mixed the scalars from the soil and from the canopy. In
this case, the framework of all five partitioning models
is no longer valid. Most often, high correlation is seen
when measurements are too far from the canopy top or
when one of the flux components is negligible. Thus,
this condition should be satisfied if points 1 and 2 are
addressed first.
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Overall, by comparing the outputs of the five models and
identifying periods or sites where they consistently agree,
we can increase our confidence in the results obtained, even
without a “true” value for comparison. In addition, the range
of predictions from the various methods can be used to quan-
tify the uncertainty in the overall partitioning.

3.2 Data preprocessing

We downloaded and processed high-frequency eddy-
covariance turbulent exchange (ECTE) data using our in-
house Python routines. The following variables were ex-
tracted from the original datasets for each site: the mixing
ratios of CO2 and water vapor (rc and rq ); the three compo-
nents of the velocity field in the x, y, and z directions (u,
v, and w); the sonic temperature (Ts); and the atmospheric
pressure (P ). In addition, sensor flags describing the quality
of the measurements and signal were used for quality con-
trol (see Table 2 for a description of the variables used). Our
algorithm was implemented following the preprocessing of
daily files as follows:

1. Instantaneous measurements that were assigned 1 (poor
quality) by any of the flags described in Table 2 were
discarded.

2. CO2 and H2O mixing ratio observations were discarded
if the signal strength indicator was smaller than 0.7.

3. Air density (kg m−3) and mass concentrations of CO2
and H2O (mg m−3 and g m−3, respectively) were com-
puted.

4. Daily files with less than 50 % raw high-frequency data
were discarded, with very few cases falling into this cat-
egory. Files that passed this test were split into half-hour
blocks of 36 000 points each (at 20 Hz measurements).

5. Instantaneous observations were checked for physical
plausibility, such as positive scalar concentrations.

6. Outliers were removed using a despiking algorithm
(Zahn et al., 2016).

7. The velocity field was rotated using double-coordinate
rotation.

8. CO2 and H2O mass concentrations, c and q, were lag-
corrected, since the LI7200 is a closed-path sensor with
tubing, using the cross-correlation technique (Rebmann
et al., 2012).

9. Turbulent fluctuations were computed for all the quan-
tities by removing the linear trends for all the respective
variables.

The outcomes of these steps are 30 min time series compris-
ing cleaned turbulence data. In the next section we describe
how these data were used to partition ET and Fc fluxes fol-
lowing the five methods described in Sect. 3.1.

3.3 Implementation of the partitioning methods

Since all partitioning methods are based on turbulence trans-
port and similarity, their implementation requires the com-
putation of turbulent statistics such as covariances and cor-
relation coefficients. Details of their implementation can be
found in Zahn et al. (2022, 2024). These statistics are com-
puted for each 30 min block. Using these turbulence statis-
tics, we first implement the three methods that do not require
extra inputs, i.e., CEC, CEA, and MREA. For each partition-
ing method, we thus obtain Tpart,Epart, Ppart, andRpart, where
the subscript “part” represents any of the three methods. For
instance, for CEC we have TCEC, ECEC, PCEC, and RCEC.

The implementation of FVS and CECw additionally re-
quires an estimate of the water use efficiency W . Note that,
in this context, W is defined as the ratio between net pho-
tosynthesis and transpiration, which again differs from other
definitions. This quantity was also estimated for each 30 min
block using the following expression:

W = 0.65
cc− cs

qc− qs
, (1)

where qc and cc are the H2O and CO2 atmospheric mean
concentrations near the canopy, while qs and cs are the
mean intercellular concentrations. The near-canopy concen-
trations (qc and cc) are obtained using the logarithmic pro-
file and mean concentrations from EC data, while qs is cal-
culated under the assumptions of stomatal saturation (at air
temperature) and a well-coupled leaf. cs, on the other hand,
is the most challenging variable to obtain. Following previ-
ous studies (Wagle et al., 2021; Zahn et al., 2022), we im-
plemented five models for cs, giving a total of five estimates
of W . These parameterizations are summarized in Table 3.
For each 30 min period, FVS and CECw were thus imple-
mented five times, one for each parameterization of W . As
a result, each flux component is estimated five times; for
instance, following the nomenclature presented in Table 3,
after implementing FVS we obtain TFVSCC , TFVSCR , TFVSlD ,
TFVSsD , and TFVSOPT . These five estimates are then averaged
to TFVSMEAN when at least one of the five outputs is available.
The same averaging is done to obtain EFVSMEAN , PFVSMEAN ,
and RFVSMEAN . Likewise, the same procedure is applied to
CECw, which also takes W as an input. Our final dataset in-
cludes the outputs from all five models as well as the aver-
aged values, as described in the next section.

3.4 Data postprocessing

3.4.1 Data cleaning and flux rescaling

The last section described how all five partitioning methods
were implemented to obtain estimates of soil and canopy
fluxes at a 30 min time interval. In postprocessing, we first
eliminated unrealistic high flux magnitudes and counter-
gradient fluxes by discarding periods when any of the fol-
lowing conditions were identified:
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Table 2. Variables used for data preprocessing.

Variable Name in the NEON Description
dataset

rc rtioMoleDryCo2 Mixing ratio molCO2 /moldry air
rq rtioMoleDryH2o Mixing ratio molH2O /moldry air
u veloXaxs Velocity in the x direction (m s−1)
v veloYaxs Velocity in the y direction (m s−1)
w veloZaxs Velocity in the z direction (m s−1)
Ts tempSoni Sonic temperature (K)
P presAtm Atmospheric pressure (Pa)
– ssiCo2 Signal strength indicator for CO2
– ssiH2o Signal strength indicator for H2O
– qfSoniCode Sensor error flag (wrongly embedded sensor code)
– qfSoniComm Sensor error flag (SDM – sensor data management – communication error)
– qfSoniData Sensor error flag (no data available)
– qfSoniSgnlHigh Sensor signal flag (high signal amplitude)
– qfSoniSgnlLow Sensor signal flag (low signal amplitude)
– qfSoniSgnlPoor Sensor signal flag (poor signal lock)
– qfSoniTemp Sensor signal flag (axis TSONIC difference> 4 K)
– qfSoniTrig Sensor error flag (sensor trigger source lost)
– qfSoniUnrs Sensor error flag (sensor unresponsive)

Table 3. Descriptions of all five parameterizations adopted for W . More details can be found in Wagle et al. (2021) and Zahn et al. (2022).
All five parameterizations were used to partition fluxes by FVS and CECw, thus resulting in five partitioning results for each partitioning
approach.

Method Description Variable
name

Constant concentration cs is assumed to be a constant value. WCC
Constant ratio A constant ratio k = cs/cc is assumed. WCR
Linear The ratio k = cs/cc is a linear function of the vapor pressure deficit (VPD). WlD
Square root The ratio k = cs/cc is a square root function of the VPD. WsD
Optimum W is calculated based on the optimization algorithm developed by Scanlon et al. (2019). WOPT

– Tpart < 0 W m−2 or Epart < 0 W m−2;

– Ppart > 0 mg m−2 s−1 or Rpart < 0 mg m−2 s−1;

– Tpart+Epart > 1000 W m−2; and

– |Ppart+Rpart|> 10 mg m−2 s−1.

As previously described, all the partitioning methods re-
lied on high-frequency time series for turbulent statistics and
flux computation. Consequently, the resulting flux compo-
nents lacked certain eddy-covariance corrections commonly
applied to the final fluxes, including high-frequency spectral
adjustments. To address this, we rescaled our fluxes based on
those obtained from the NEON bundled data processed by
eddy4R. We first computed correction factors for the ET and
Fc fluxes as

corET =
ETNEON

ETpart
, (2)

corFc =
FcNEON

Fcpart

, (3)

where ETNEON and FcNEON are the evapotranspiration and net
CO2 fluxes downloaded directly from NEON, while ETpart
and Fcpart are the fluxes computed by our routines using the
high-frequency data following the preprocessing described
in Sect. 3.2. Note that the total fluxes, ETpart = Tpart+Epart
and Fcpart = Ppart+Rpart, are the same for all five partitioning
methods. The corrections were then applied as

Tpart,cor = corETTpart and Epart,cor = corETEpart, (4)
Ppart,cor = corFcPpart and Rpart,cor = corFcRpart. (5)

By rescaling our fluxes based on this comparison, we en-
sure that our fluxes are consistent with NEON products, mit-
igating potential discrepancies arising from variations in data
processing methodologies. For simplicity, we drop the sub-
script “cor” in the remainder of the text and in the data files.
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Additionally, we utilized NEON’s bundled eddy-
covariance products to assess the quality of both evapo-
transpiration and CO2 flux data. Although our initial data
preprocessing removed numerous periods with poor quality,
we refrained from conducting further tests, such as assessing
data stationarity, integral turbulence characteristics, and
spectral analysis. Consequently, we integrated the flags
as outlined in Metzger et al. (2022) into our final dataset.
These flags are classified into two categories: 0, indicating
compliance with all the quality criteria and rendering the
data valid and reliable for analysis, and 1, indicating failure
to meet one or more quality tests and requiring cautious
utilization or possible exclusion. Retaining the original
flags in our dataset facilitates the identification of periods
characterized by high-quality data. Nonetheless, we opted
not to automatically discard data based solely on these flags,
leaving such decisions to the discretion of subsequent users.

3.4.2 Gap-filling

As a consequence of the inherent challenges associated with
eddy-covariance measurements – such as sensor malfunc-
tion, data transmission, or even external factors such as rain
and dust collection – flux time series are often incomplete.
For our dataset, Table 1 shows the availability of ET fluxes
during the 5-year period for each site. Considering only
daytime periods (selected based on incoming solar radia-
tion greater than 10 W m2), this reveals that some sites have
available fluxes only 34 % of the time (BARR), while oth-
ers have daytime ET estimates for up to 77 % of the 5-year
record (KONA).

Due to mathematical constraints and/or invalidity of phys-
ical assumptions, partitioning methods are not guaranteed to
converge to a solution for every 30 min time series, leading
to further gaps in the record of flux components. As a con-
sequence, the dataset generated as described in the previous
sections contains missing periods, with the length of these
gaps depending on the site and method. Table 4 illustrates
that the methods with the lowest convergence rates – defined
as the fraction of solutions found per available period – range
from least to most solutions found as follows: FVS, CECw,
MREA, CEA, and CEC. The lowest rate of convergence for
the FVS method (on average 50 %) is not surprising and has
been discussed in previous studies (Wagle et al., 2021; Zahn
et al., 2022, 2024). Additionally, the low rate of solutions for
FVS and CECw when combined with WOPT is due to the
model for this water use efficiency itself not always converg-
ing (i.e., WOPT was not available).

To increase the availability of periods with valid partition-
ing estimates for each method, we implemented XGBoost
(Chen and Guestrin, 2016) for regression to predict transpi-
ration. By training the algorithm to partition ET intoE and T
based on selected environmental features, the goal is to apply
the trained algorithm to estimate T only when ET is available
but a given partitioning method did not yield a valid esti-

Table 4. Success rate of each partitioning approach in finding a so-
lution, expressed as a percentage of the available half-hour periods
(i.e., only considering cases when the time series was available and
the partitioning methods were implemented). The table shows the
average and standard deviation across all the sites before and after
gap-filling. For FVS and CECw, the convergence using each water
use efficiency parameterization is also shown.

Method Percentage of periods Percentage of periods
with solutions with solutions

before gap- after gap-
filling filling

(mean±SD) (mean±SD)

CEC 99.9± 0.1 100.0± 0.0
MREA 80.3± 7.6 91.4± 4.0
CEA 81.0± 8.6 97.8± 2.4
FVS-WCC 51.9± 10.3 80.8± 21.6
FVS-WCR 52.4± 10.3 80.0± 22.7
FVS-WlD 48.8± 10.9 89.1± 6.8
FVS-WOPT 50.9± 9.9 90.2± 10.8
FVS-WsD 52.1± 10.4 86.5± 15.0
CECw-WCC 86.2± 7.8 96.9± 3.6
CECw-WCR 87.1± 7.5 96.9 ± 3.4
CECw-WlD 72.0± 12.0 93.5± 5.2
CECw-WOPT 49.5± 9.1 91.9± 5.8
CECw-WsD 84.3± 8.0 96.1± 3.7

mate. That is, an XGBoost model is developed for each par-
titioning approach independently and then applied to fill the
gaps in the time series of that approach. Additional machine
learning algorithms, including neural networks and k-means
clustering, were investigated but yielded similar or inferior
results compared to XGBoost. Previous studies focusing on
gap-filling eddy-covariance data also observed superior per-
formance by XGBoost (Huang and Hsieh, 2020; Irvin et al.,
2021). These findings are corroborated by research indicating
that tree-based models outperform deep learning for tabular
data used in regression tasks (Grinsztajn et al., 2022). Thus,
the selected algorithm is robust and a very suitable choice for
the problem at hand.

Only daytime conditions were considered, a constraint im-
posed by selecting periods when the incoming solar radiation
was> 10 W m2. In addition, we ensured that only cases with
positive ET were included. For regression purposes, we fur-
ther filtered out periods where one or more input features
were unavailable. As a result of these criteria, not every seg-
ment of the time series was suitable for gap-filling. Nonethe-
less, this approach maximizes the data availability of T and
E, in particular during daytime, expanding the use of this
dataset for future studies. Note that gap-filling was not ap-
plied to the Fc components. This decision was made due to
the noisier nature of CO2 fluxes. Furthermore, as discussed
later, estimates for respiration and photosynthesis are less
reliable across methods (larger variance between methods),
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and thus gap-filling for these components was not deemed as
robust as with ET components.

To maximize the periods with available data features, we
only selected meteorological variables with short periods
of missing data and high quality. Following tests on dif-
ferent meteorological variables, the following features were
retained: ET, air temperature (TAIR), photosynthetically ac-
tive radiation (PAR), relative humidity (RH), vapor pressure
deficit (VPD), mean wind speed (U ), sensible heat flux (H ),
and friction velocity (u∗). In addition, daily and seasonal cy-
cles were represented as

Xdiurnal =
1
2

sin
(

2π
24

hour−
π

2

)
+

1
2
, (6)

Xyearly =
1
2

sin
(

2π
365

julian−
π

2

)
+

1
2
, (7)

where Xdiurnal and Xyearly represent the diurnal and yearly
cycles corresponding to the hour of the day (in local time)
and the Julian day, respectively. While there are other vari-
ables that could be relevant for this problem, they were ex-
cluded due to poor data quality or availability. Nonetheless,
using only the listed variables resulted in excellent perfor-
mance metrics.

For each site and partitioning method – including the dif-
ferent combinations of the FVS, CECw, and water use effi-
ciency models taken individually – the dataset was divided
into training (60 %), validation (20 %), and testing (20 %)
sets. Across the different cases, the size of the training set
varied between 1700 and 12 000 points. To monitor the per-
formance of the algorithm, we used the coefficient of deter-
mination, R2, defined as

R2
= 1−

∑
(y− ŷ)2∑
(y− y)2 , (8)

where y represents the observed values with average y, while
ŷ represents the predictions. This metric indicates how well
the independent variables explain the variance in the depen-
dent variable. Thus, the upper bound R2

=+1 is expected
only if the selected features explain 100 % of the variance.

After experimenting with different hyperparameters, the
same values for the learning rate (0.01), maximum depth of a
tree (5), and number of trees (1000) were used to train all the
sites and methods individually. Finally, gap-filling was only
performed for a particular case, when its respectiveR2 on the
test set was greater than 0.7. A few cases had an R2 below
this threshold, which was found to correspond most often to
datasets combining FVS and WCC or WCR over shrubland or
tundra sites, combinations which resulted in the lowest num-
ber of valid partitioning estimates (smallest training sets).
Excluding these few exceptions, the majority of the cases
featured R2 > 0.8 (and bias< 1 W m−2) and were deemed
reliable for gap-filling. The final metrics for all the models
and sites can be found in the Supplement. All auxiliary data

used to implement the gap-filling algorithm are also available
in the final dataset.

As expected, the algorithm identified ET as the most rele-
vant variable across all the cases (approximately 80 %). Note
that, in this context, we do not use ET to explain the vari-
ability in E or T in the sense of an environmental forcing.
Instead, ET is used to teach the model how to partition the
fluxes, effectively functioning as a machine-learning-based
partitioning method. In Sect. 6, we briefly explore feature
importance for T and T/ET in the context of environmental
forcings, where only environmental variables are included as
features (excluding ET).

While the variability in feature importance was small
across the vegetation types, a larger variability was observed
between the methods. Notably, FVS combined with the wa-
ter use efficiency models WCC and WCR often attributed a
lower importance to ET (as low as 27 %) and a higher im-
portance to VPD (as high as 25 %). Previous work (Wagle
et al., 2023) has shown that these two water use efficiency
models are very sensitive to the choice of parameters and
greatly overestimate W compared to the other models, espe-
cially early in the morning. While investigating the possible
causes of this discrepancy across water use efficiency mod-
els is beyond the scope of this paper, deeper analyses will be
enabled by this dataset.

Following the algorithm evaluation, transpiration was es-
timated for the missing data periods and defined as T xgb

part ,
where the superscript “xgb” refers to the gap-filled variable
using XGBoost. Only half-hour periods with 0< T xgb

part < ET

were gap-filled. Evaporation was then estimated as Exgb
part =

ET− T xgb
part . For FVS and CECw, we also computed the aver-

age across their different water use efficiency outputs, corre-
sponding to T xgb

FVSMEAN
and T xgb

CECwMEAN
.

The convergence rate to valid solutions after gap-filling is
shown in the last column of Table 4. Most notably, gap-filling
increased the presence of estimates from the FVS method for
80 % to 90 % of the periods when partitioning was applied.
To further illustrate the completeness of the flux-partitioning
record in the 5-year dataset, Table 1 shows the availability
of flux components as a fraction of the total number of half-
hour periods in the record. Overall, all the methods cover
a similar temporal distribution of flux partitioning and are
potential candidates for ensemble averaging.

4 Description of the final dataset

The final dataset is available for download at
https://doi.org/10.5281/zenodo.12191876 (Zahn and Bou-
Zeid, 2024). It is organized into different folders for each
site, with each site containing a .csv file for each method.
This format is selected to be user-friendly and accessible in
various programming languages and software packages. For
FVS and CECw, in addition to their ensemble averages for
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different water use efficiency parameterizations, we include
each individual output. This allows future users to compare
the impact of water use efficiency with the partitioning
output.

All the results are in UTC, where this represents the start
time of measurements for a half-hour period (i.e., starting at
minute “00” or “30”). Each file contains all fluxes in continu-
ous time stamps of 30 min. In cases where a specific variable
was unavailable, the corresponding cell in the .csv file was
left blank. A Python script showing how to read the final data
files is included with the dataset.

In each file, the following variables are included:

– Tpart, transpiration [W m−2];

– Tpart_xgb, transpiration after gap-filling [W m−2];

– Ppart, plant net photosynthesis [mgCO2 m−2 s−1];

– Epart, below-canopy evaporation [W m−2];

– Epart_xgb, below-canopy evaporation after gap-
filling [W m−2];

– Rpart, below-canopy respiration [mgCO2 m−2 s−1];

– Fc, net CO2 flux [mgCO2 m−2 s−1];

– ET, evapotranspiration [W m−2];

– qfFinalCO2, final NEON quality flag for the CO2
flux (0: Fc passed all quality assurance tests; 1: Fc was
flagged by one or more tests); and

– qfFinalH2O, final NEON quality flag for the ET flux
(0: ET passed all quality assurance tests; 1: ET was
flagged by one or more quality assurance tests).

For the flux components, “part” represents any of the meth-
ods. In addition, a separate file, WUEinput.csv, contains the
water use efficiency values from all five parameterizations,
defined as follows:

– const_ppm [kgCO2 (kgH2O)−1];

– const_ratio [kgCO2 (kgH2O)−1];

– linear [kgCO2 (kgH2O)−1];

– sqrt [kgCO2 (kgH2O)−1]; and

– opt [kgCO2 (kgH2O)−1].

Finally, a file named MeteorologicalVariables.csv is also
included, which contains all the auxiliary meteorological
variables used for gap-filling and feature importance analy-
sis. This file is synchronized with the partitioning data file to
contain the same records. The following variables are avail-
able:

– SoilMoisture, soil moisture measured at the second
level below the surface (depth varies by site) [m3 m−3];

– AirTemperature, air temperature [°C];

– SolarRadIn, incoming solar radiation measured at
the top of the tower [W m−2];

– RH, relative humidity (%);

– Rain, accumulated precipitation at the top of the tower
during the 30 min period [mm];

– PAR, photosynthetically active radiation measured at
the top of the tower [µmolec. m−2 s−1];

– fluxTemp, sensible heat flux at the top of the
tower [W m−2];

– ustar, friction velocity at the top of the tower [m s−1];

– WindSpeed, mean wind speed at the top of the
tower [m s−1]; and

– vpd, vapor pressure deficit [kPa].

5 Comparison of the partitioning approaches

A comparison of T/ET across all the seasons for different
types of vegetation is presented in Fig. 3. The averages were
computed over half-hour periods obtained between 06:00 and
18:00 LT (local time). For all the vegetation types, the aver-
age T/ET ratios range from 0.5 in winter to 0.7 in summer.
Except for the results over the tundra locations, there is a no-
table similarity across the five methods, particularly during
spring and fall. In contrast, the dissimilarity across the meth-
ods for tundra is possibly linked to the heterogeneity of these
sites, which breaks down the assumptions of the partitioning
methods more often. A surprising result is that good agree-
ment across the methods was observed regardless of the mea-
surement height. Even above the agricultural sites, where the
ratio z/h can be as large as 30, good agreement was observed
for many locations.

Given the underlying uncertainties with the partitioning al-
gorithms, one route for verifying the reliability of partition-
ing estimates is to compare different methods. In Table 5,
we compare the different transpiration estimates obtained by
CEC, FVS, CEA, and CECw, where the slope α of the lin-
ear regression is shown. The results for MREA were simi-
lar to those for CEC and are not shown. To help interpret
these results, they were separated into four groups: agree-
ment in the 10 % range, i.e., 0.9< α < 1.1; slopes in the
range 0.8< α < 1.2; slopes in the range 0.7< α < 1.3; and
disagreement greater than 30 %, i.e., α < 0.7 or α > 1.3.

Overall, TFVS and TCEA are in very good agreement, with
differences often within the 10 % range across various sites.
Only at two sites (PUUM and BARR) were the slopes found
to be greater than 1.3 (1.55 and 1.39, respectively). Simi-
larly good agreement is seen for the pairs TFVS and TCECw
as well as TCEA and TCECw. The close agreement for these

Earth Syst. Sci. Data, 16, 5603–5624, 2024 https://doi.org/10.5194/essd-16-5603-2024



E. Zahn and E. Bou-Zeid: Observational partitioning of water and CO2 fluxes at NEON sites 5613

Table 5. Slopes of the linear regression for transpiration for all the methods across all the sites. Only half-hour periods between 06:00 and
18:00 LT, without gap-filling, were included. For FVS and CECw, their ensemble average across the water use efficiency options was used.
The sites were grouped according to the dominant vegetation type representing the tower footprint. To facilitate visual inspection of the
results, slopes α in the 10 % range (0.9< α < 1.1) are shown in bold, while slopes in the 20 % range (0.8< α < 1.2) appear in italic.

Site TFVS, TCEC TFVS, TCEA TFVS, TCECw TCECw, TCEA TCECw, TCEC TCEC, TCEA

Evergreen forest

ABBY 1.20 0.85 0.87 1.01 1.43 0.70
DEJU 1.16 0.86 0.82 1.07 1.49 0.72
DELA 1.37 0.94 1.01 0.97 1.42 0.68
GUAN 1.36 0.92 1.08 0.93 1.35 0.68
HEAL 1.26 0.95 0.81 1.18 1.61 0.73
OSBS 1.51 1.04 1.13 0.97 1.43 0.69
PUUM 2.17 1.55 1.39 1.18 1.65 0.71
RMNP 1.33 0.97 0.95 1.04 1.44 0.72
SOAP 1.03 0.77 0.79 0.94 1.34 0.67
TEAK 1.31 0.91 1.04 0.90 1.34 0.67
WREF 0.91 0.73 0.84 0.93 1.24 0.70
YELL 1.27 0.96 0.92 1.08 1.47 0.73

Deciduous forest

CLBJ 1.31 0.94 1.01 0.98 1.35 0.72
GRSM 1.38 0.94 1.03 0.94 1.37 0.69
HARV 1.31 0.91 1.04 0.91 1.28 0.70
LENO 1.32 0.89 1.02 0.93 1.33 0.68
MLBS 1.56 1.12 1.09 1.06 1.48 0.71
ORNL 1.13 0.78 0.89 0.89 1.29 0.67
SCBI 1.33 0.93 1.01 0.96 1.37 0.70
SERC 1.40 0.96 1.09 0.91 1.33 0.69
STEI 1.30 0.96 0.99 1.02 1.37 0.74
UKFS 1.27 0.91 0.98 0.97 1.36 0.72

Mixed forest

BART 1.34 0.95 1.02 0.96 1.34 0.71
BONA 1.26 0.92 0.89 1.07 1.51 0.71
JERC 1.42 0.97 1.07 0.96 1.39 0.69
SJER 1.22 0.84 1.01 0.89 1.34 0.66
TALL 1.24 0.87 0.97 0.95 1.37 0.70
TREE 1.34 0.94 0.98 1.01 1.40 0.71
UNDE 1.39 0.99 1.03 1.00 1.39 0.72

Tundra

BARR 1.73 1.51 1.42 1.10 1.48 0.74
NIWO 1.36 1.08 0.98 1.15 1.61 0.72
TOOL 1.42 1.14 1.02 1.14 1.53 0.75

Shrubland

JORN 1.05 0.79 0.87 0.92 1.24 0.69
MOAB 1.00 0.74 0.81 0.90 1.22 0.69
ONAQ 1.10 0.85 0.81 1.06 1.50 0.70
SRER 1.02 0.79 0.87 0.92 1.23 0.70
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Table 5. Continued.

Site TFVS, TCEC TFVS, TCEA TFVS, TCECw TCECw, TCEA TCECw, TCEC TCEC, TCEA

Grassland

CPER 1.08 0.85 0.90 0.96 1.32 0.70
DCFS 1.50 1.11 1.04 1.13 1.58 0.73
KONZ 1.31 0.94 1.02 0.97 1.38 0.71
NOGP 1.34 0.98 0.94 1.08 1.54 0.72
OAES 1.39 1.00 0.99 1.04 1.46 0.72
WOOD 1.63 1.18 1.14 1.07 1.50 0.72

Agriculture

BLAN 1.16 0.85 0.89 1.00 1.37 0.73
DSNY 1.32 0.93 0.96 1.04 1.49 0.70
KONA 1.04 0.81 0.89 0.94 1.24 0.72
LAJA 1.28 0.93 1.06 0.92 1.27 0.72
STER 0.94 0.75 0.87 0.87 1.12 0.72

Figure 3. T/ET ratios averaged over all the half-hour periods across seasons and sites with similar vegetation types. Only half-hour periods
during the day (06:00 and 18:00 LT) were included, and only when solutions for all the methods were available. For FVS and CECw, the
ensemble averages of outputs with different water use efficiencies were used. For each season or vegetation type, the black dashed line
indicates the average across all the methods.
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three methods was also observed in their average diurnal cy-
cles, in particular between 09:00 and 15:00 LT (Fig. A1),
and even under conditions when z/h� 3. Nonetheless, note
that the diurnal cycles for FVS exhibit higher values early
in the morning and late in the afternoon. Previous studies
have highlighted significant variability among the fiveW op-
tions, with differences that can span 2 orders of magnitude
during the early hours (Wagle et al., 2023), which inevitably
influences the output of the FVS method. Therefore, without
additional information on the actual water use efficiency, we
cannot explain this behavior with certainty.

The good agreement between FVS and CEA is particu-
larly encouraging given that the CEA method does not re-
quire water use efficiency as an input, using only turbulence
information. Moreover, we showed that the outputs of FVS
using WCR and WCC were the ones that differed most from
CEA, the remaining three FVS outputs being more similar;
WOPT produced the estimates closest to CEA (Fig. A2). Fi-
nally, transpiration estimates obtained by CEC tend to dis-
agree more often with other methods (similar trends were ob-
served for MREA; data not shown). Nonetheless, increased
agreement is observed when the data are separated by sea-
sons, as shown in Figs. 3 and A1.

The main challenge of flux partitioning is verifying the ac-
curacy of these results, so we cannot initially assume that
CEC’s results are inherently inaccurate or incorrect. How-
ever, previous numerical experiments (Zahn et al., 2024)
found that CEC and MREA are more restrictive than the
other approaches, being stricter in terms of measurement
height and canopy density. Thus, it is possible that the denser
canopy during summer will directly affect these assumptions,
decreasing these two methods’ performance. They were also
more prone to larger errors when the ratios T/E and P/R
were more dissimilar. Unfortunately, a metric to determine
the “goodness” of partitioning is not feasible since in exper-
iments the true answer is never known. Only estimates of
these partitioned fluxes are available since even the sap flow,
isotope, and flux chamber methods have their limitations.

Given this uncertainty, a prudent recommendation is to im-
plement the ensemble averages of T and E for all the meth-
ods in future studies. Ideally, the results should converge
regardless of the partitioning methods used. However, de-
pending on the specific NEON site or analyses of interest, it
may be advantageous to prioritize the FVS, CEA, and CECw
methods under certain circumstances given their close agree-
ment, potentially adding either CEC or MREA since these
two methods give similar results and should thus be treated as
one member of the ensemble. To this end, the slopes shown
in Table 5 offer a reference.

In contrast to ET flux partitioning, the estimated CO2 flux
components showed more disagreement across the methods
(Table 6). Generally, methods that do not require water use
efficiency (CEC, CEA, and MREA) underestimated P and R
compared to FVS and CECw, where most slopes indicated
less than 10 % agreement. Our previous findings using large-

eddy simulations to test all the methods (Zahn et al., 2024)
found larger errors for CO2 components with CEC, CEA,
and MREA. We found that, while CO2 is essential as a tracer
for H2O in these methods’ formulations, it cannot be reli-
ably partitioned between soil and canopy components given
the lack of an upper bound on Fc components, which com-
bine a positive (respiration) flux and a negative (photosyn-
thesis) flux. In contrast, FVS and CECw limit the magnitudes
of these components by imposing W = P/T , thus adding a
constraint to the magnitude of Fc = R+P . Note, however,
that P (and R) will be subjected to uncertainties present in
the water use efficiency estimate. Overall, these findings in-
dicate that CO2 flux partitioning is more challenging, and
care must be taken when using and interpreting these results.
At present, for CO2 flux components, we thus recommend
taking the ensemble average of CECw and FVS (across all
five W estimates), potentially adding CEA as a third mem-
ber of the ensemble for the selected sites, in particular above
deciduous forests following Table 6.

6 Exploring research opportunities with a
flux-partitioning dataset

The final dataset will enable hydrologists and ecologists to
investigate a variety of research questions related to flux par-
titioning. Considering the dataset’s breadth of coverage, its
spatial and temporal distributions enable comparison across
diverse conditions, encompassing various forest structures,
water availability, climate and weather patterns, and more.
Due to remaining gaps in the final flux time series, evaluation
of long-term budgets over the period of 5 years is not recom-
mended without additional work to complete the temporal
coverage. Nonetheless, budgets over smaller periods and for
specific NEON sites are possible and can be explored. In this
case, for nighttime periods, when most partitioning results
are unavailable, researchers might fill gaps by assuming zero
plant fluxes (e.g., for T and P ), E = ET, and R = Fc.

One relevant research question regarding ecosystem func-
tioning revolves around the main drivers of plant and soil
fluxes. To briefly explore this question, we implemented XG-
Boost to estimate the importance of a few environmental
variables for T and T/ET, where we first averaged the output
from all five partitioning models (excluding gap-filled peri-
ods). Note that this analysis is different from the procedure
used for gap-filling, where ET was used as a predictor. Here,
we simply investigate the importance of each environmental
variable as a driver of plant fluxes, and thus ET is not used as
an input. The selected features were air temperature, photo-
synthetically active radiation, relative humidity, vapor pres-
sure deficit, mean wind speed, sensible heat flux, and friction
velocity.

The importance of each environmental variable is shown
in Fig. 4 for T (top row) and T/ET (bottom row) averaged
across sites with the same vegetation type. The standard de-
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Table 6. Slopes of the linear regression for net primary productivity (P ) for all the methods across all the sites. Only half-hour periods
between 06:00 and 18:00 LT were included. For FVS and CECw, their ensemble averages across the water use efficiency options were used.
The sites were grouped according to the dominant vegetation type. To facilitate visual inspection of the results, slopes α in the 10 % range
(0.9< α < 1.1) are shown in bold, while slopes in the 20 % range (0.8< α < 1.2) appear in italic.

Site PFVS, PCEC PFVS, PCEA PFVS, PCECw PCECw, PCEA PCECw, PCEC PCEC, PCEA

Evergreen forest

ABBY 0.32 0.57 0.87 0.32 0.18 1.64
DEJU 0.09 0.16 0.73 0.07 0.04 1.56
DELA 0.45 0.81 0.95 0.67 0.37 1.52
GUAN 0.53 0.69 1.01 0.29 0.20 1.67
HEAL 0.15 0.21 0.75 0.13 0.08 1.43
OSBS 0.36 0.68 1.05 0.36 0.17 1.74
PUUM 0.60 1.01 1.48 0.14 0.08 1.60
RMNP 0.14 0.21 0.87 0.13 0.08 1.49
SOAP 0.11 0.23 0.80 0.10 0.05 1.69
TEAK 0.30 0.46 0.97 0.24 0.13 1.84
WREF 0.18 0.34 0.82 0.16 0.10 1.57
YELL 0.12 0.24 0.86 0.12 0.07 1.53

Deciduous forest

CLBJ 0.36 0.61 0.92 0.61 0.38 1.45
GRSM 0.53 0.91 1.09 0.57 0.32 1.62
HARV 0.62 1.07 1.06 0.72 0.40 1.59
LENO 0.49 0.92 0.97 0.83 0.44 1.61
MLBS 0.57 0.91 1.11 0.44 0.27 1.47
ORNL 0.47 0.92 0.88 0.80 0.39 1.73
SCBI 0.49 0.85 0.97 0.77 0.44 1.52
SERC 0.60 1.00 1.06 0.79 0.46 1.52
STEI 0.32 0.53 0.95 0.40 0.23 1.43
UKFS 0.34 0.58 0.88 0.45 0.26 1.50

Mixed forest

BART 0.52 0.92 1.03 0.52 0.27 1.58
BONA 0.13 0.25 0.80 0.12 0.06 1.56
JERC 0.30 0.59 0.97 0.52 0.26 1.61
SJER 0.33 0.53 1.04 0.34 0.20 1.74
TALL 0.38 0.65 0.94 0.43 0.23 1.64
TREE 0.40 0.70 0.94 0.55 0.30 1.53
UNDE 0.38 0.67 0.97 0.41 0.22 1.49

Tundra

BARR 0.05 0.10 1.20 0.04 0.02 1.54
NIWO 0.03 0.07 0.84 0.04 0.02 1.48
TOOL 0.05 0.12 0.99 0.07 0.03 1.42

Shrubland

JORN 0.08 0.17 0.84 0.06 0.03 1.81
MOAB 0.01 0.03 0.90 -0.00 -0.00 1.75
ONAQ 0.04 0.10 0.88 0.05 0.02 1.54
SRER 0.10 0.22 0.86 0.12 0.06 1.84

Grassland

CPER 0.06 0.17 0.94 0.08 0.04 1.56
DCFS 0.13 0.22 0.92 0.14 0.09 1.48
KONZ 0.33 0.60 0.99 0.41 0.22 1.51
NOGP 0.17 0.29 0.98 0.17 0.10 1.61
OAES 0.21 0.36 0.95 0.25 0.15 1.48
WOOD 0.22 0.39 1.09 0.22 0.12 1.52

Earth Syst. Sci. Data, 16, 5603–5624, 2024 https://doi.org/10.5194/essd-16-5603-2024



E. Zahn and E. Bou-Zeid: Observational partitioning of water and CO2 fluxes at NEON sites 5617

Table 6. Continued.

Site PFVS, PCEC PFVS, PCEA PFVS, PCECw PCECw, PCEA PCECw, PCEC PCEC, PCEA

Agriculture

BLAN 0.39 0.67 0.92 0.44 0.25 1.54
DSNY 0.35 0.72 0.98 0.34 0.16 1.83
KONA 0.05 0.17 0.91 0.09 0.03 1.50
LAJA 0.43 0.79 0.96 0.71 0.40 1.48
STER 0.05 0.15 0.88 0.05 0.02 1.58

Figure 4. Importance of seven environmental variables as drivers of transpiration (top-row panels) and T/ET (bottom-row panels) across
the vegetation types. From left to right, the legend includes air temperature (TAIR), photosynthetically active radiation (PAR), relative
humidity (RH), vapor pressure deficit (VPD), mean wind velocity (U ), sensible heat flux (H ), and friction velocity (u∗). The pie charts
display the average over all sites with the same vegetation type, where bars represent the standard deviation of feature importance across the
sites ( %). As a reference, the outer circle represents a standard deviation of 20 %.

viation was also computed across the sites and is represented
by the bars in the figure (the outer circle represents a standard
deviation of 20 %). Notably, these seven environmental vari-
ables can explain up to 77 % (R2

= 0.77 over the agricultural
sites) of the variability in transpiration. With the exception of
the tundra sites, where sensible heat was the most important
variable, photosynthetically active radiation, followed by air
temperature, was the most relevant feature. Intersite variabil-
ity was also observed: for instance, the standard deviation of
PAR and TAIR was as large as 20 % for evergreen and mixed
forests. The variability across the methods is not included in
this analysis since the ensemble average was used; nonethe-
less, similar to our discussion regarding gap-filling, we ob-
served that FVS combined withWCC andWCR often differed
from the other methods (results not shown). This discrepancy
is also left to future studies.

The ratio T/ET, on the other hand, is more complex and
dependent on additional variables not included in this analy-
sis. Across the vegetation types, these seven features were
able to explain as little as 23 % (shrublands) or no more
than 48 % (deciduous forests). While relevant environmen-

tal variables such as soil moisture and accumulated rainfall
were not included in our analyses due to availability and/or
data quality, these variables can be included for selected sites
and/or smaller temporal records. By exploring different en-
vironmental forcings, this dataset presents an opportunity to
address specific inquiries, such as the impact of heat waves,
droughts, and other extreme events on plant transpiration.
Research endeavors of this nature are vital, as they contribute
to a deeper comprehension of how present and future climate
conditions affect local water and energy budgets, together
with plant water use efficiency (Hatfield and Dold, 2019).

The link between fluxes and canopy structure features an-
other set of critical scientific questions that can be addressed
using this dataset. Previous work (Wang et al., 2014; Wei
et al., 2017) compiled results from several case studies and
summarized the correlation between T/ET and leaf area in-
dex (LAI), which has been turned into a simple regression
model often used in other studies (Nelson et al., 2020). Fu-
ture investigations could expand this study and utilize NEON
products or satellite imagery to derive seasonal variations in
LAI, thereby enhancing our understanding of how vegetation
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dynamics influence transpiration. By combining the most im-
portant meteorological features and vegetation characteris-
tics, simpler and more accurate partitioning models can be
derived and applied more broadly.

In addition to observational studies, modeling or hybrid
studies (Rafi et al., 2019; Kozii et al., 2020) can also ben-
efit from the dataset compiled here. This approach can be
explored to develop models for transpiration partitioning or
modeling (Bright et al., 2022), where observations can val-
idate the model or help determine relevant parameters, such
as plant conductance. For instance, Schreiner-McGraw et al.
(2022) used transpiration data from FVS to optimize pa-
rameters for ParFlow.CLM, a hydrological model coupling
groundwater flow to a land surface model (Maxwell and
Miller, 2005). This methodology is particularly useful for
evaluating the performance of land surface models, such as
NOAH-MP (Niu et al., 2011; Li et al., 2021) and the Com-
munity Land Model (Lawrence et al., 2007), thereby improv-
ing assessments of their impact on weather prediction and
climate projections (Berg and Sheffield, 2019; Dong et al.,
2022).

Future studies can also expand this dataset by including
additional partitioning models, including the products de-
rived from the CO2 partitioning algorithm proposed by Re-
ichstein et al. (2005) and Lasslop et al. (2010). In terms of ET
partitioning, for instance, different methods have been pro-
posed that take GPP as an input (Perez-Priego et al., 2018;
Zhou et al., 2016; Nelson et al., 2018); such models were
compared by Nelson et al. (2020) across FLUXNET sites.
By comparing different algorithms, we can further explore
their uncertainties and focus on model improvement. Finally,
as more data become available, other options can be used to
train machine learning algorithms, focusing on gap-filling.

7 Code and data availability

The dataset is available at
https://doi.org/10.5281/zenodo.12191876 (Zahn and
Bou-Zeid, 2024). In addition to all the flux components,
it contains the auxiliary meteorological inputs used to
implement the Extreme Gradient Boosting algorithm for
gap-filling and feature importance analysis. The scripts used
to implement all five partitioning methods can be found at
https://doi.org/10.5281/zenodo.13244979 (Zahn, 2024).

8 Conclusions

This paper described the first dataset of flux partitioning
across all NEON eddy covariance sites from 2019 to 2023.
Estimates of transpiration, evaporation, soil respiration, and
plant net CO2 assimilation were obtained using five parti-
tioning approaches. These methods had undergone extensive
testing in both experimental and numerical settings in prior

studies (Zahn et al., 2022, 2024), aiding in understanding
their limitations and reliability.

Overall, ET components exhibited notable consistency
across the methods, which was particularly evident in
FVS, CEA, and CECw, thereby enhancing confidence
in these estimates. In contrast, the CO2 components are
more challenging, and care must be taken when inter-
preting these estimates. The final dataset, available at
https://doi.org/10.5281/zenodo.12191876 (Zahn and Bou-
Zeid, 2024), can be used to address numerous research ques-
tions. We recommend utilizing an ensemble average of the
methods available for a particular site. However, based on
the comparison presented in this study, a combination of the
methods might be adopted for specific analyses or NEON
sites. In any case, the user should keep in mind the following
considerations:

1. None of the methods can estimate plant respiration and
gross photosynthesis separately: only an estimate of
their difference and plant net photosynthesis (i.e., plant
net fluxes) is computed. Similarly, below-canopy respi-
ration – which we assume to be mostly from the soil –
also includes respiration from roots and litter.

2. Evaporation from canopy-intercepted water is ne-
glected.

3. While nighttime fluxes are also included, we do not
recommend the inclusion of nighttime periods, since
CO2 assimilation is not expected at night for C3 and
C4 plants, thus breaking the assumption of CO2–H2O
coupling.

4. Uncertainties inW will be transferred to the partitioning
estimates for FVS and CECw.

5. Given the differences in the method frameworks and
their assumptions, the data gaps vary. Thus, selecting
the periods of interest and the methods to average must
be done with care to avoid biases.

This dataset opens up the many research pathways that we
outlined above and that can be the basis for other derived
datasets. The partitioning approaches can also be applied to
other periods of NEON observations or implemented in the
NEON workflow so that the partitioned fluxes are part of the
standard NEON outputs.

Earth Syst. Sci. Data, 16, 5603–5624, 2024 https://doi.org/10.5194/essd-16-5603-2024

https://doi.org/10.5281/zenodo.12191876
https://doi.org/10.5281/zenodo.13244979
https://doi.org/10.5281/zenodo.12191876


E. Zahn and E. Bou-Zeid: Observational partitioning of water and CO2 fluxes at NEON sites 5619

Appendix A: Diurnal cycle of T/ET

Figure A1. Diurnal cycle of the partitioning ratio T/ET for all the methods across season and vegetation type. Half-hourly estimates during
the daytime hours (06:00 to 18:00 LT) are only included when all the methods have valid solutions. For FVS and CECw, the ensemble
average across the water use efficiency options was used.
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Figure A2. Diurnal cycle of the partitioning ratio T/ET comparing the FVS output from different water use efficiency models (and their
ensemble average) and the CEA method (dashed line). Half-hourly estimates during the daytime hours (06:00 to 18:00 LT) are only included
when all the methods have valid solutions.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-5603-2024-supplement.
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