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Abstract. Air–water gas exchange is essential to understanding and quantifying many biogeochemical pro-
cesses in streams and rivers, including greenhouse gas emissions and metabolism. Gas exchange depends on
two factors, which are often quantified separately: (1) the air–water concentration gradient of the gas and
(2) the gas exchange velocity. There are fewer measurements of gas exchange velocity compared to concen-
trations in streams and rivers, which limits accurate characterization of air–water gas exchange (i.e., flux rates).
The National Ecological Observatory Network (NEON) conducts SF6 gas-loss experiments in 22 of their 24
wadeable streams using standardized methods across all experiments and sites, and publishes raw concentra-
tion data from these experiments on the NEON data portal. NEON also conducts NaCl injections that can
be used to characterize hydraulic geometry at all 24 wadeable streams. These NaCl injections are conducted
both as part of the gas-loss experiments and separately. Here, we use these data to estimate gas exchange and
water velocity using the reaRate R package. The dataset presented includes estimates of hydraulic parame-
ters, cleaned raw concentration SF6 tracer-gas data (including removing outliers and failed experiments), esti-
mated SF6 gas-loss rates, normalized gas exchange velocities (k600; m d−1) and normalized depth-dependent
gas exchange rates (K600; d−1). This dataset provides one of the largest compilations of gas-loss experiments
(n= 339) in streams to date. This dataset is unique in that it contains gas exchange estimates from repeated
experiments in geographically diverse streams across a range of discharges. In addition, this dataset contains
information on the hydraulic geometry of all 24 NEON wadeable streams, which will support future research
using NEON aquatic data. This dataset is a valuable resource that can be used to explore both within- and
across-reach variability in the hydraulic geometry and gas exchange velocity in streams. The data are avail-
able at https://doi.org/10.6073/pasta/18dcc1871ee71cf0b69f2ee4082839d0 (Aho et al., 2024), and the reaRate R
package code is available at https://doi.org/10.5281/zenodo.12786089 (Cawley et al., 2024).
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1 Introduction

Air–water gas exchange contributes to many aquatic pro-
cesses in streams and rivers, including greenhouse gas emis-
sions (Liu et al., 2022; Rocher-Ros et al., 2023), aquatic
metabolism (Aristegi et al., 2009; Hall et al., 2016; Hall and
Hotchkiss, 2017), and reoxygenation rates after wastewater
discharge (O’Connor and Dobbins, 1958). Despite this im-
portance, gas exchange can be difficult to measure and model
(Churchill et al., 1964; Hornberger and Kelly, 1975; Rath-
bun, 1977; Ulseth et al., 2019). According to Fick’s law of
diffusion, gas flux across the air–water boundary depends on
the concentration gradient of the gas and the gas exchange
velocity (k; m d−1):

flux= k
([

gas
]

dissolved−
[
gas

]
equilibrium

)
, (1)

where
[
gas

]
dissolved is the concentration of the gas of interest,

and
[
gas

]
equilibrium is the concentration of the gas at equilib-

rium with the atmosphere.
In streams and rivers, measurements of gas concentrations

are more readily available than estimates of k; resultantly,
estimates of k are often extrapolated from a few measure-
ments. Several methods exist for assessing k, including pre-
dictive models (Raymond et al., 2012), models of gas dynam-
ics through time and space in rivers (Appling et al., 2018),
and direct measurements with tracers (Hall and Hotchkiss,
2017). Here, k refers to exchange of dissolved gases (i.e.,
diffusive and bubble-mediated gas transfer) and does not cap-
ture ebullitive fluxes. Characterizing k from direct measure-
ment of tracer-gas exchange velocities and modeling based
on observed diurnal gas dynamics are likely more accurate
for any particular stream or river than more general predic-
tive models (Appling et al., 2018; Hall and Ulseth, 2020; Ri-
ley and Dodds, 2013).

Gas exchange velocity is spatiotemporally variable; it is
controlled by energy dissipation rate and, therefore, turbu-
lence at the air–water boundary (Zappa et al., 2007). Mod-
els that estimate k at broad spatial scales and in low-versus-
high gradient streams have found that hydraulic variables
(e.g., streambed slope (S; unitless), water velocity (v; m s−1),
mean water depth (z; m), discharge (Q; L s−1)) are the
dominant controls on variation in k (Churchill et al., 1964;
O’Connor and Dobbins, 1958; Rathbun, 1977; Raymond et
al., 2012). Although similar models for within-reach tem-
poral variability are not widely available, hydrology is ex-
pected to control k locally. Existing reach-scale studies have
reported different k responses to Q (Genzoli and Hall, 2016;
Maurice et al., 2017; McDowell and Johnson, 2018) and
point to the importance of quantifying the variable relation-
ships between k and Q on a site-by-site basis. The dataset
presented here leverages a unique set of tracer-gas exper-
iments conducted by the National Ecological Observatory
Network (NEON) that will allow for assessment of within-

and across-reach variability in lotic gas exchange in a wide
variety of streams.

Tracer-gas experiments are an approach to estimating k in
streams and rivers and involve diffusing an inert tracer gas
(e.g., sulfur hexafluoride (SF6)) at a constant rate at the up-
stream end of a stream reach and measuring how concentra-
tions decline downstream of the injection point. Often a con-
servative salt (e.g., sodium chloride (NaCl) or sodium bro-
mide (NaBr)) is also injected with the tracer gas to allow for
correction of dilution from hydrologic inflows (referred to as
“salt correction” hereafter).

Here, we present a continental-scale dataset of gas ex-
change rates for wadeable streams derived from NEON data.
The substantial processing that was required to estimate gas
exchange is described in detail below and archived alongside
the dataset. The dataset presented here contains estimates
of k600, or k normalized to a Schmidt number of 600, and
K600, which is a depth-corrected rate (K600 = k600/z) used
in stream metabolism modeling, for 22 streams and v, z, and
at-a-station hydraulic geometry for 24 streams (Fig. 1).

2 Methods

2.1 NEON tracer-gas experiments

NEON conducts tracer-gas experiments at 22 stream sites,
which are distributed across the United States, from Puerto
Rico to Alaska (Fig. 1). For information about specific
site characteristics, see the NEON website: https://www.
neonscience.org/field-sites/explore-field-sites (last access:
2 October 2024). In general, the NEON streams are rela-
tively small; the median watershed size is 11.5 km2, while
the mean± standard deviation watershed size is 27.5±
58.5 km2. Walker Branch (WALK) drains the smallest wa-
tershed (1.1 km2) while Sycamore Creek (SYCA), an inter-
mittent, desert stream, drains the largest (280 km2). There-
fore, this dataset is only representative of streams and small
rivers and not large rivers. These experiments entail contin-
uous injections of SF6 and a conservative salt tracer (either
NaCl or NaBr) at the upstream end of a≤ 500 m stream reach
(Fig. 2). NEON uses SF6 because it does not occur natu-
rally, is not biologically or chemically reactive, and can be
detected at low concentrations (Cole and Caraco, 1998; Ho et
al., 2011; Maurice et al., 2017; Wanninkhof et al., 1985); al-
though used in very small amounts in these experiments, SF6
is a potent greenhouse gas, and tracer-gas experiments are
ceasing at sites with sufficient hydrologic coverage. When
NaBr is used as the salt tracer, an additional NaCl “slug” in-
jection is performed, which allows for the subsequent calcu-
lation of v and the derivation of z from paired Q measure-
ments (via flowmeter or acoustic Doppler current profiler,
ADCP) and wetted width measurements taken at 30 points
along the study reach. Before the injection, NaCl or NaBr is
collected at each of the four stations along the study reach;
these data can later be used to correct NaCl or NaBr concen-
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Figure 1. Map of NEON stream sites. Blue symbols indicate sites where NEON conducts full tracer-gas experiments and, thus, where we
were able to estimate k600, K600, v, z, and at-a-station hydraulic geometry. Red symbols indicate sites where NEON only conducts NaCl
slug injections and, thus, where we were able to calculate v, z, and at-a-station hydraulic geometry.

Figure 2. Diagram of a model study reach for NEON tracer-gas experiments. Each ∼ 500 m study reach comprises an injection site and
four downstream sampling stations (Stations 1–4). At the upstream injection site, SF6 is diffused into the water column with an air stone,
and NaCl or NaBr is dripped into the stream. After plateau concentrations are reached at the downstream end of the study reach, injection
rates are maintained, and field quintuplicate samples for SF6 and NaCl or NaBr concentrations are collected at four downstream stations
spaced along the study reach. At the upper and lower stations, conductivity sensors are deployed and used to monitor either (1) when NaCl
plateau concentrations are reached (for NaCl continuous injections) or (2) when a NaCl “slug” peaks at each station (for NaBr continuous
injections). Before each experiment, stream discharge is measured with a flow meter or ADCP, and 30 wetted widths are collected across the
study reach. Also, before each injection, background NaCl or NaBr concentrations are collected at all four sampling stations. This diagram
uses modified imagery from the University of Maryland Center for Environmental Science Integration and Application Network.

trations during the injection for background conditions. Once
conductivity during the injection either reaches a plateau (for
constant-rate NaCl injections) or returns to background lev-
els (for NaCl slug injections) at the most downstream station,
five replicate SF6 and NaCl or NaBr samples are collected
at each of the four stations located along the study reach.
Samples for SF6 are collected via headspace equilibration in

60 mL syringes, stored in gas-tight evacuated vials (12 mL,
Exetainer), and run on a gas chromatograph with an electron
capture detector (ECD). Samples for NaCl and NaBr are fil-
tered to 0.7 µm, collected in 60 mL HDPE bottles, and run on
an ion chromatograph. In addition, high-frequency (0.1 Hz)
sensors are deployed to monitor NaCl conductivity at the
upstream and downstream end of the study reach (Fig. 2).

https://doi.org/10.5194/essd-16-5563-2024 Earth Syst. Sci. Data, 16, 5563–5578, 2024



5566 K. S. Aho et al.: Gas exchange velocities, gas exchange rates, and hydraulic geometries for streams and rivers

NEON publishes SF6 mixing ratios, NaCl and NaBr con-
centrations, wetted width data, and conductivity time series
from these experiments as the Reaeration field and lab collec-
tion data product, DP1.20190.001 (NEON, 2024b), and mea-
surements of Q in the Discharge field collection data prod-
uct, DP1.20048.001 (NEON, 2024a). More detailed informa-
tion on NEON’s data collection procedures can be found on
their website, http://www.neonscience.org (last access: 2 Oc-
tober 2024).

NEON has conducted tracer-gas experiments 6–10
times per year for 6–8 years at all 22 sites to capture a
range of discharge conditions. Presently, tracer-gas ex-
periments are ceasing at sites with sufficient hydrograph
coverage (https://www.neonscience.org/impact/observatory-
blog/protocol-change-reaeration-field-and-lab-collection-
dp120190001, last access: 2 October 2024). However, NaCl
slug injections will continue to be performed quarterly to
collect high-frequency conductivity time-series data that
allow for the calculation of v and the derivation of z from
paired Q and wetted-width measurements. Similarly, NaCl
slug injections are and will continue to be conducted for
the two sites where tracer-gas experiments are not collected
(Blue River (BLUE), where wide channel widths and high
discharges make tracer-gas studies challenging, and Arika-
ree River (ARIK), where long travel times make tracer-gas
studies infeasible).

The dataset presented here represents substantial process-
ing of these published data (i.e., SF6 mixing ratios, NaCl
and NaBr concentrations, conductivity time series, wetted
widths, and measurements of Q) to estimate k600 or K600
using the reaRate R package (Cawley et al., 2024). In ad-
dition, this dataset contains estimates of v from NaCl in-
jections, which, as mentioned above, are performed both
during tracer-gas experiments and at quarterly intervals at
sites where tracer-gas experiments are not conducted or have
ceased. Along with the paired Q measurement and the av-
erage wetted width for the study reach (w; m), the estimate
of v was used to derive z. The dataset presented here con-
tains estimates of v and z and at-a-station hydraulic geom-
etry for all 24 NEON wadeable streams. This dataset pro-
vides a large compilation of direct measurements of tracer-
gas experiments and at-a-station hydraulic geometry in small
streams across the United States.

2.2 reaRate R package

The data processing pipeline described below uses the
reaRate R package (Cawley et al., 2024). The package es-
timates k600 and K600 from data available on the NEON data
portal. The package works by fitting an exponential, first-
order decay function to the observed longitudinal decline in
published SF6 concentrations and solving for the longitudi-
nal tracer-gas-loss rate (Kd ; m−1):

Cx = C0e
−Kdx, (2)

where C0 and Cx are tracer-gas concentrations at the top of
the study reach and at a downstream point x, respectively,
and Kd is the average distance traveled by an SF6 molecule
before it is emitted to the atmosphere. For sites where lateral
inflows (e.g., groundwater inputs, overland flow, tributaries)
appear to dilute SF6 concentrations, the ratio of SF6 to NaCl
or NaBr is used to calculate a salt-corrected Kd value. The
Kd values can then be converted to the gas exchange velocity
for the tracer gas (e.g., kSF6 ; m d−1):

kSF6 = zνKd . (3)

This gas-specific k can be normalized to k600 using a Schmidt
number of 600:

k600 = kSF6

(
600

ScSF6

)−n
, (4)

where n is the Schmidt number exponent (0.5 for flowing wa-
ters), and ScSF6 is the temperature-dependent Schmidt num-
ber for SF6 at water temperature T in degrees Celsius (Jähne
et al., 1987; Raymond et al., 2012; Wanninkhof, 1992):

ScSF6 = 3255.3− 217.13T + 6.8370T 2
− 0.086070T 3. (5)

Reporting estimates of k600 is common; it allows for com-
parisons with existing work and can be scaled to other gases,
including CO2 and O2, using the same approach as in Eq. (4)
with gas-specific, temperature-dependent Schmidt numbers:

kgas = k600

(
Scgas

600

)− 1
2
. (6)

Some applications (e.g., metabolism, reoxygenation rates)
explicitly include water depth in their modeling frameworks
and thus require a depth-dependent gas exchange rate (K;
d−1). In these cases, a normalized gas exchange rate (K600)
can be used and is related to k600 by dividing by z for the
upstream reach corresponding to a length of at least 1

Kd
. Us-

ing the same scaling relationships shown in Eqs. (3) and (5),
K600 can be converted to gas-specific Kgas estimates.

The reaRate package uses NaCl breakthrough curves (i.e.,
from either continuous injection or slug injections) to esti-
mate the travel time between the upstream and downstream
stations and then calculates v as the distance between stations
divided by the travel time. Using the continuity equation, z is
calculated by dividing Q by v and w. Finally, kSF6 and KSF6

are calculated from Kd, v, and z (Eq. 3) and then normalized
to k600 and K600 (Eq. 4). The reaRate package includes two
approaches to estimate k600 andK600: an un-pooled frequen-
tist approach and a partially pooled Bayesian approach, both
of which are described in more detail below. Implementa-
tion of the package and all processing described below were
conducted in R 4.2.3 (R Core Team, 2023). More informa-
tion about the package, including details about the individual
functions and a processing pipeline, is provided in Sect. 2.3.
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Figure 3. Overview of data processing to estimate k600 and K600 from NEON tracer-gas experiments.

2.3 Data processing

Substantial processing was required to estimate k600 and
K600 from the NEON data (Fig. 3). All data used were
downloaded from the NEON data portal. Downloads con-
sisted of two NEON data products: Reaeration field and lab
collection (DP1.20190.001) and Discharge field collection
(DP1.20048.001). Data were from RELEASE-2023, in addi-
tion to nine experiments that were provisional but are now in-
cluded in RELEASE-2024 (NEON, 2023a, b, 2024a, b). On a
site-by-site basis, data were merged and formatted using the
def.format.reaeration() function from the reaRate
R package. This function compiles variables from across the
downloaded data into a single data frame. These variables in-
clude Q, w, water temperature, station location as a distance
downstream from the injection point, and SF6 and NaCl or
NaBr concentrations for each station during the experiment.
The function also applies a salt correction to the SF6 data
(e.g., SF6 concentration divided by background-corrected
NaCl or NaBr concentrations). The function removes outliers
(points more extreme than 1.5× IQR below and above the
first and third quartile, respectively) from the quintuplet SF6
and NaCl or NaBr concentrations for each station, calculates
the mean and standard deviation SF6 and NaCl or NaBr con-
centration for each station, and flags stations as “unmixed”
when the coefficient of variation (CV= SD

mean ) of the repli-
cate SF6 and NaCl or NaBr concentrations is greater than
10 %.

Next, SF6 and NaCl or NaBr declines were visualized
and quantified for each experiment and initial quality control
flags were assigned. The gas.loss.rate.plot() func-
tion from the reaRate package was used to visualize and cal-
culate both salt-corrected and uncorrected longitudinal gas-
loss rates over the length of the study reach (Kd). For the
sites requiring a salt correction to account for lateral inflows,
mean SF6 mixing ratios at each station were first divided by

Table 1. Sites and number of experiments.

Site name NEON Velocity Tracer-gas
site ID experiments experiments

(n) (n)

Arikaree River ARIK 22 0
Upper Big Creek BIGC 28 24
Blacktail Deer Creek BLDE 17 15
Blue River BLUE 21 0
Caribou Creek CARI 38 34
Como Creek COMO 37 33
Rio Cupeyes CUPE 41 41
Rio Guilarte GUIL 42 40
Lower Hop Brook HOPB 45 40
Kings Creek KING 19 14
LeConte Creek LECO 37 31
Lewis Run LEWI 46 40
Martha Creek MART 33 31
Mayfield Creek MAYF 43 43
McDiffett Creek MCDI 32 18
McRae Creek MCRA 28 26
Oksrukuyik Creek OKSR 38 34
Posey Creek POSE 44 39
Pringle Creek PRIN 14 13
Red Butte Creek REDB 39 39
Sycamore Creek SYCA 20 19
Teakettle 2 Creek TECR 21 18
Walker Branch WALK 47 43
West St Louis Creek WLOU 39 34

mean background-corrected NaCl or NaBr concentration for
the corresponding station. Station-specific outliers (i.e., val-
ues more extreme than first quartile −1.5× IQR and third
quartile+1.5×IQR) were removed. SF6 concentrations were
then log-normalized, and Kd was calculated from the result-
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ing linear decline. A quality control flag was assigned to an
individual experiment if any of the following criteria applied:

– Visually, the SF6 gas-loss rate over the entire study
reach was unduly affected by anomalous SF6 concen-
trations (potentially indicating contamination, leaked
vials, or analytical error).

– SF6, NaCl, or NaBr concentrations increased in a down-
stream direction between any of the stations (likely in-
dicating incomplete mixing in the water column).

– The salt-corrected Kd was larger than the uncorrected
Kd (a salt correction should correct for overestimation
due to lateral inflows, with the reverse potentially indi-
cating contamination or analytical error).

For each experiment, v was calculated from the conductivity
time series using the def.calc.trvl.time() function.
The function requires that the user manually selects points
bracketing either the rising limb (for constant rate injections)
or the peak concentration (for slug injections). From within
the user-selected bracket, the def.calc.trvl.time()
function smooths the data using a loess function and then
identifies the peak of the breakthrough by finding either
where the first derivative is 0 (for a slug injection) or where
it is at its maximum (for a constant rate injection). This func-
tion then calculates the breakthrough travel time between the
two stations and uses the distance between stations to cal-
culate v. Site-specific relationships between v and Q were
visualized in log–log space, and any anomalous values were
reprocessed with the def.calc.trvl.time() to con-
firm that the user-selected bracketing allowed the function
to pick the correct points on the time series. Finally, z was
calculated using the def.calc.trvl.time() function,
which divides Q by v and w.

Two separate approaches were used to estimate k600 or
K600 values from the formatted data. The first approach used
the def.calc.reaeration() function to multiply Kd
for each individual experiment by the corresponding v and z
values (Eq. 3) to estimate kSF6 , which were then converted
to k600 (Eq. 4). The resulting k600 estimates were converted
to K600 by dividing by water depth. This approach is sub-
sequently referred to as the un-pooled, frequentist approach
and is included in this data descriptor because it represents
the current, prevailing approach for processing this type of
data, is straightforward to implement, and represents the out-
put of the def.calc.reaeration() function included
in the reaRate package.

The second approach used Bayesian multilevel models
that pooled experiments from the same site across releases.
The models, coded in the Stan probabilistic programming
language, used for this approach are also included in the
reaRate package. A Bayesian approach provides flexibility
in specifying models that consider repeat experiments at a
site and current theory surrounding gas exchange. Bayesian

inference allowed partial pooling of k600 estimates across re-
leases in any one stream. Partial pooling reduces the error
in any one estimate of k600 and shrinks all k600 estimates to
the site-level mean (as conditioned on discharge) if error in
measuring SF6, NaCl, and/or NaBr is high.

The Bayesian approach included error at two levels. First,
the models pooled k600 estimates across releases from the
same site to estimateKd from normalized SF6 concentrations
(both salt-corrected and uncorrected). For this step, the rela-
tionship between the SF6 loss rate and the product of Kd and
reach length was assigned a prior normal distribution with
a normally distributed sigma (0, 0.2) and intercept (0, 0.1).
We fully pooled the intercept with a strong prior near 0 be-
cause all SF6 concentrations (i.e., measurements from Sta-
tions 1–4) were normalized to the SF6 concentration at Sta-
tion 1; this approach means that the intercept should be near
1, or 0 when logged. Thus, the model fit can be described as
variable-slope, fixed-intercept linear regression. Second, the
models pooled the estimates of k600 and K600 by Q, using
linear relationships betweenQ and k600 or K600. Priors were
assigned for both the slope and the intercept based on pre-
dictions from an existing scaling model (Eq. 4 in Raymond
et al., 2012). These priors were given large variances when
possible (i.e., 10 for the intercept and 1 for the slope) to allow
for divergence from the model predictions. However, at sites
with a limited number of experiments (e.g., Pringle Creek,
PRIN, and Kings Creek, KING), we used smaller variances
to allow the model to converge. The site-specific priors used
are listed in Table S1.

The two levels described can be referred to as a within-
release model and an among-release model. The within-
release model was a log-transformed (base e) exponential
model. We log-transformed the model because SF6 is always
positive (ambient= 0) and because errors in the measure-
ment of SF6 can scale with the magnitude of the concentra-
tion.

log
(
Si,j

)
= log(S0)−KD,jxi,j + εi,j

and

εi,j ∼ normal (0,σrelease) ,

where Si,j is the SF6 concentration normalized to the concen-
tration at Station 1 for any one release (sample i in release j ),
S0 is the normalized SF6 concentration at Station 1, xi,j is the
distance downstream to which the normalized concentration
corresponds, and εi,j is a normally distributed random vari-
able with µ= 0 and SD= σrelease. We then converted KD,j
to gas exchange velocity kSF6,j using Eq. (3) and normalized
to k600,j using Eq. (4). The among-release model included a
linear model predicting the parameter k600,j as a linear func-
tion of discharge:

log
(
k600,j

)
= a+ b × log

(
Qj

)
+ εj

and

εj ∼ normal (0,σstream) ,
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where a and b are the intercept and slope parameters of a
model regressing log

(
k600,j

)
and log

(
Qj

)
, where Qj is the

discharge during any one release and σstream is the resid-
ual variation. We also fit linear second-level models with
log

(
K600,j

)
, where K600,j is the per-time gas exchange rate.

We fit models using Stan in the RStan package in R (Stan
Development Team, 2023). The models were run for at least
5000 iterations over four chains. Models were assessed ac-
cording to the number of divergent transitions, the effective
sample size (ESS) for each estimated parameter (> 1000),
and posterior predictive checks with the ShinyStan R pack-
age (Gabry et al., 2023). In addition, the model fits for each
experiment were visually assessed (Figs. S1–S2). Finally,
the median estimates for k600 and K600 were visualized in
log(k600)–log(Q) or log(K600)–log(Q) space, respectively,
along with 1000 Markov chain–Monte Carlo (MCMC) esti-
mates of the log(k600)–log(Q) or log(K600)–log(Q) relation-
ship, respectively. If an estimate of k600 and K600 fell out-
side the overallQ relationship and if that experiment’s model
fits showed signs of being unduly influenced by unrealistic
gas-loss patterns (e.g., very little decline indicating the study
reach was too short, an abrupt decline indicating improper
mixing), the experiment was assessed for the QC flags de-
scribed above. If a QC flag had previously been assigned,
then that experiment was removed (e.g., it was identified as
an outlier and could be attributed to experimental error), and
the model was rerun without that experiment.

2.4 Recommended estimates

The processing pipeline outlined above in Sect. 2.3 resulted
in both un-pooled frequentist and Bayesian estimates of k600
and K600, both with and without salt corrections. We include
outputs from all four approaches in the dataset for complete-
ness and to allow future users to decide which estimates best
fit their needs and to compare the two approaches. The com-
plete dataset is available in the gasExchange_ds_v2.csv file
(Aho et al., 2024).

During data processing, we found that the NaCl and NaBr
concentration data also could introduce errors and uncertain-
ties into our estimates of k600 and K600. For instance, back-
ground concentrations at a single station were occasionally
so high that contamination was the likely explanation. Fur-
ther, sometimes samples taken during the constant-rate injec-
tion could vary across the reach in unpredictable ways (e.g.,
increases across the reach, random peaks along the reach in-
stead of the expected stable, declining concentrations), which
was likely the result of incomplete mixing with the water col-
umn. In many cases, the quality of the salt-corrected SF6 data
precluded Bayesian-model convergence. Through assessing
the gas-loss plots and salt concentration declines for all ex-
periments and the failures to produce model convergence for
salt-corrected data, we determined that salt corrections had
the strong potential to either introduce errors into or pre-
clude estimates of k600 andK600. Therefore, we suggest only

using salt-corrected data when clearly necessary (e.g., obvi-
ous lateral inflow) and possible in terms of data quality and
model convergence. We determined that salt correction was
important for five sites: Como Creek (COMO), Rio Cupeyes
(CUPE), Rio Yahuecas (GUIL), Martha Creek (MART), and
Walker Branch (WALK). Notably, several of these sites have
lateral inflows within the study reach under certain hydro-
logic conditions, which explains the necessity for the salt
correction. For completeness, our dataset includes estimates
for both uncorrected and salt-corrected k600 and K600 when
a salt correction is possible.

In addition to the complete dataset of all estimates
(i.e., estimates from both frequentist and Bayesian ap-
proaches for both uncorrected and salt-corrected data), we
also include a curated dataset of recommended estimates
of k600 and K600. These recommended values are called
“best_k600_mPerDay” and “best_K600_perDay” in the ga-
sExchange_ds_v2.csv file. In all cases, the curated selection
uses the Bayesian estimates because pooling across exper-
iments and the use of informative priors resulted in more
meaningful estimates than the non-Bayesian approach. The
choice of whether we recommend an uncorrected or salt-
corrected estimate stems from examining the relationships
between uncorrected or salt-corrected estimates (Fig. S3).

3 Data description

3.1 Hydraulics

Our processing pipeline included calculating hydraulic pa-
rameters (v and z) for each of the NaCl injections and mea-
surements of Q and w. These variables (v, z, Q, and w) for
each NaCl release are available in the hydraulics_v2.csv file
(Aho et al., 2024). Here, we present those data in terms of
at-a-station hydraulic geometries, which are commonly used
to quantify reach-specific relationships between Q and w, z,
and v (Leopold and Maddock, 1953):

w = aQb (7)

z= cQf (8)
v = kQm. (9)

In log–log space, these exponential relationships become lin-
ear relationships (e.g.,w = aQb becomes log(w)= log(a)+
b× log(Q)), where the exponent is the slope log-linear re-
lationship. Future users of NEON data can use these rela-
tionships along with discharge values from either the Con-
tinuous discharge data product (DP4.00130.001) or the Dis-
charge field collection (DP1.20048.001) to approximate w,
z, and v for NEON streams.

The hydraulic relationships are illustrated (Figs. 4–6, Ta-
ble 2). These geometries leverage field measurements of w
(n= 783) and Q (n= 601), estimates of v (n= 618) from
NaCl injections, and estimates of z (n= 581) calculated from
Q/vw. The timing of these measurements is denoted on site-
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Figure 4. At-a-station hydraulic geometries for the relationship between Q and w. The exponent b of the power law relationship w = aQb

is the linear slope of the relationship in log–log space and is denoted on each subplot.

specific hydrographs for each site (Fig. S4), and their cov-
erage of site-specific Q ranges is illustrated on flow duration
curves (Fig. S5). In general, z–Q and v–Q relationships were
the strongest, with all but three relationships havingR2 > 0.5
and relatively narrow 95 % confidence intervals around the
coefficients from these relationships (Table 2). The w–Q re-
lationships are the weakest; 9 of the 24 sites have R2 < 0.5
and large 95 % confidence intervals (Table 2). The w–Q re-
lationships may be weaker because our width estimates rep-
resent an average of 30 measurements across the ∼ 500 m
study reach. It is possible that this across-reach averaging
contributes to the weaker relationships with Q and that per-
haps the relationships would be stronger if the measurement
was only taken at the same location as the Q measurement.
However, this single-point approach would be less compati-
ble with v measured of the entire reach and would alter the
resulting calculations of z.

We assess the quality of our hydraulic parameters by ex-
amining the product of the constants (a× c× k) and sum of
the exponents (b+ f +m) for unity on a site-by-site basis.
These unity relationships stem from the fact that Q= wzv
(Leopold and Maddock, 1953). The products of the constants
ranged from 0.93 to 1.04 and averaged 1.00; the site-specific
sum of the exponents ranged from 0.96 to 1.01 and aver-
aged 1.00. There was one instance where the product of the
constants deviated more than 5 % from unity (0.93, PRIN).
Pringle Creek (PRIN) is a semi-arid, intermittent stream in
Texas, and so the deviation from unity may stem from logis-
tical difficulties in measuring low and non-perennial stream
flows (Seybold et al., 2023; Shanafield et al., 2021). How-
ever, the remainder of the sites had both products of constants
and sums of exponents within 5 % of unity.

We assess the representativeness of our hydraulic param-
eters through comparison to literature values for the expo-
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Figure 5. At-a-station hydraulic geometries for the relationship betweenQ and z. The exponent f of the power law relationship z= cQf is
the linear slope of the relationship in log–log space and is denoted on each subplot.

nents. Previous studies have shown large ranges for all three
exponents, with ranges spanning 0–0.6 for b, 0–0.8 for f ,
and 0–0.8 for m (Park, 1977; Rhodes, 1977). In addition, ex-
ponents have not been shown to vary predictably with re-
gion or climate (Park, 1977) but rather with channel geom-
etry (Ferguson, 1986). Our parameters fall within published
ranges, and our average values for each exponent (b = 0.11,
f = 0.33, m= 0.56) are similar to averages in other stud-
ies that span many streams (b = 0.14, f = 0.30; Morel et
al., 2020; b = 0.12, f = 0.37, m= 0.51; Dingman and Af-
shari, 2018). In sum, the hydraulics dataset and associated
hydraulic-geometry relationships presented here can be used
to characterize w, z, and v for NEON streams.

3.2 k600 and K600 estimates

As described above, k600 was estimated in two ways:
(1) via an unpooled frequentist approach using the
def.calc.reaeration() function to estimate k600 in-
dependently for each experiment and (2) via a partially
pooled Bayesian approach that partially pooled experiments
from the same site according toQ. Both approaches were at-
tempted for raw SF6 concentrations and salt-corrected SF6
concentrations. Salt-corrected SF6 concentrations are only
recommended for the five sites mentioned above (COMO,
CUPE, GUIL, MART, WALK). All estimates are available
in the gasExchange_ds_v2.csv file (Aho et al., 2024).

The relationship between the partially pooled and un-
pooled estimates (with salt correction when appropriate) is
shown in Fig. 7. Any points falling above the 1 : 1 line
are instances when partial pooling resulted in a lower es-
timate than no pooling, and vice versa. Overall, there are
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Figure 6. At-a-station hydraulic geometries for the relationship between Q and v. The exponent of the power law relationship v = kQm is
the linear slope of the relationship in log–log space and is denoted on each subplot.

instances where partially pooled estimates are both higher
and lower than un-pooled estimates, suggesting that partial
pooling successfully regularized estimates. This shrinkage
is more obvious when both estimates are plotted against Q
(Fig. 8). We made recommendations (best_k600_mPerDay
and best_K600_perDay in the gasExchange_ds_v2.csv) of
which estimates to use; this curated dataset includes only
Bayesian estimates, and a salt correction was only recom-
mended for the five sites where it was possible and necessary.

There are 339 estimates of k600 and K600 included in
our recommended dataset (Fig. 9, Table 3) that span large
Q ranges at each site (Figs. S4–S5). The number of es-
timates per site ranges from 4 (Kings Creek (KING) and
Pringle Creek (PRIN)) to 29 (Posey Creek (POSE)). The is-
sueLog.csv file documents the reason that 340 experiments
did not successfully produce gas exchange estimates. These
reasons are grouped into broad categories and summarized in

Table S2. It is possible that some of the experiments that we
removed could produce an estimate of k600 and K600 (e.g.,
if there was incomplete mixing at the first station, one could
remove this station and only estimate k600 and K600 for Sta-
tions 2–4). However, this type of selective cleaning would
have resulted in less comparable estimates (e.g., changing
the length of the study reach), so we chose to include only
the most comparable and high-quality experiments in this
dataset.

The values for recommended estimates of k600 ranged
from 0.1 to 142 m d−1. LeConte Creek (LECO) had the high-
est mean k600 (mean±SD: 53± 35 m d−1), while Pringle
Creek (PRIN) had the lowest mean k600 (mean±SD: 1.1±
0.1 m d−1). Lower Hop Brook (HOPB) had the widest spread
of k600 values, with estimates ranging almost 2 orders of
magnitude (1.5–124 m d−1), while Pringle Creek (PRIN) had
the smallest spread, with estimates only ranging from 0.9 to
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Table 2. Coefficients and exponents from at-a-station hydraulic geometries. The 95 % confidence intervals for each coefficient and exponents
are shown. In addition, the R2 values from the log-linear relationships are also presented.

w = aQb z= cQf v = kQm

Site a 95 % CI b 95 % CI R2 c 95 % CI f 95 % CI R2 k 95 % CI m 95 % CI R2

ARIK 6.7 (3.9,11) 0.04 (−0.11,0.19) 0.03 0.18 (0.06,0.56) 0.15 (−0.17,0.48) 0.08 0.84 (0.24,2.9) 0.80 (0.46,1.2) 0.66
BIGC 4.8 (4.6,5) 0.07 (0.05,0.08) 0.77 0.30 (0.22,0.4) 0.27 (0.18,0.37) 0.60 0.72 (0.55,0.95) 0.67 (0.58,0.76) 0.91
BLDE 4.3 (3.9,4.6) 0.14 (0.1,0.17) 0.78 0.30 (0.28,0.32) 0.34 (0.31,0.38) 0.97 0.79 (0.75,0.83) 0.52 (0.49,0.55) 0.99
BLUE 23 (22,24) 0.01 (−0.03,0.06) 0.06 0.19 (0.17,0.22) 0.53 (0.4,0.67) 0.91 0.23 (0.21,0.25) 0.45 (0.35,0.56) 0.92
CARI 3.3 (3,3.6) 0.10 (0.01,0.18) 0.16 0.50 (0.45,0.55) 0.49 (0.39,0.59) 0.80 0.61 (0.58,0.64) 0.41 (0.37,0.45) 0.94
COMO 2.9 (2.6,3.1) 0.11 (0.09,0.13) 0.82 0.51 (0.41,0.63) 0.42 (0.38,0.47) 0.92 0.68 (0.57,0.82) 0.47 (0.43,0.51) 0.95
CUPE 6.9 (6.3,7.5) 0.13 (0.1,0.16) 0.73 0.32 (0.22,0.47) 0.55 (0.42,0.68) 0.72 0.45 (0.32,0.63) 0.32 (0.2,0.44) 0.52
GUIL 7 (6.1,7.9) 0.11 (0.04,0.18) 0.26 0.45 (0.39,0.53) 0.36 (0.28,0.45) 0.73 0.32 (0.28,0.36) 0.53 (0.46,0.6) 0.90
HOPB 6.9 (6.6,7.3) 0.13 (0.11,0.15) 0.89 0.24 (0.18,0.31) 0.29 (0.2,0.39) 0.64 0.61 (0.47,0.79) 0.58 (0.49,0.66) 0.89
KING 6.5 (5.7,7.4) 0.12 (0.08,0.17) 0.76 0.28 (0.12,0.67) 0.23 (−0.1,0.55) 0.20 0.54 (0.24,1.2) 0.65 (0.35,0.95) 0.70
LECO 8 (7.4,8.6) 0.09 (0.05,0.13) 0.47 0.32 (0.28,0.37) 0.40 (0.34,0.47) 0.87 0.39 (0.35,0.43) 0.51 (0.45,0.56) 0.93
LEWI 4.2 (3.9,4.5) 0.08 (0.06,0.11) 0.51 0.33 (0.26,0.42) 0.33 (0.25,0.4) 0.66 0.72 (0.56,0.93) 0.59 (0.51,0.67) 0.84
MART 6.4 (6,6.8) 0.14 (0.12,0.16) 0.89 0.24 (0.22,0.26) 0.26 (0.22,0.3) 0.90 0.65 (0.6,0.7) 0.58 (0.55,0.61) 0.99
MAYF 5.9 (5.4,6.3) 0.13 (0.1,0.17) 0.68 0.53 (0.42,0.66) 0.30 (0.17,0.42) 0.50 0.32 (0.27,0.4) 0.57 (0.46,0.68) 0.83
MCDI 5.6 (4.7,6.6) 0.06 (0,0.12) 0.22 0.38 (0.14,1) 0.23 (−0.11,0.57) 0.13 0.46 (0.17,1.3) 0.70 (0.35,1) 0.57
MCRA 6.8 (6.1,7.5) 0.09 (0.05,0.12) 0.61 0.22 (0.19,0.27) 0.36 (0.29,0.42) 0.90 0.66 (0.58,0.75) 0.56 (0.52,0.61) 0.98
OKSR 7.3 (7.2,7.5) 0.14 (0.12,0.16) 0.87 0.32 (0.31,0.33) 0.22 (0.18,0.25) 0.85 0.42 (0.41,0.43) 0.64 (0.62,0.67) 0.99
POSE 9.7 (8.1,12) 0.11 (0.07,0.15) 0.46 0.19 (0.15,0.25) 0.39 (0.33,0.45) 0.84 0.54 (0.45,0.66) 0.50 (0.46,0.54) 0.94
PRIN 6.7 (5.1,8.9) 0.15 (0.04,0.25) 0.61 0.33 (0.17,0.61) 0.31 (0.07,0.56) 0.57 0.42 (0.24,0.72) 0.50 (0.26,0.73) 0.79
REDB 3.5 (3.1,4) 0.10 (0.06,0.14) 0.49 0.30 (0.26,0.35) 0.33 (0.28,0.39) 0.86 0.94 (0.84,1.1) 0.56 (0.53,0.6) 0.97
SYCA 6.8 (5.2,8.9) 0.21 (0.11,0.31) 0.65 0.22 (0.18,0.27) 0.36 (0.29,0.44) 0.91 0.67 (0.48,0.93) 0.43 (0.3,0.55) 0.80
TECR 3.3 (2.9,3.8) 0.13 (0.09,0.16) 0.79 0.27 (0.19,0.38) 0.23 (0.14,0.33) 0.62 1.10 (0.85,1.5) 0.64 (0.57,0.71) 0.95
WALK 4.3 (3.8,4.9) 0.05 (0.02,0.08) 0.43 0.16 (0.09,0.27) 0.27 (0.16,0.39) 0.55 1.50 (0.92,2.4) 0.67 (0.57,0.78) 0.90
WLOU 3.1 (2.8,3.3) 0.11 (0.09,0.14) 0.74 0.35 (0.31,0.39) 0.32 (0.29,0.36) 0.91 0.93 (0.85,1) 0.56 (0.53,0.58) 0.98

Table 3. Mean, standard deviation (SD), minimum, maximum, and count for k600 (m d−1) and K600 (d−1) estimates by site.

k600 (m d−1) K600 (d−1)

Site n mean SD min max mean SD min max

BIGC 22 2.1 0.9 0.7 4.1 15.6 7.8 6.2 39.9
BLDE 11 5.9 6.2 1.7 23.4 33 19.9 12.1 83.1
CARI 16 9.5 8.3 3.4 35.6 31.7 32.5 6.1 140.9
COMO 17 26.8 32.1 2.7 94.8 182.7 91.9 66.6 377.3
CUPE 26 6.5 3.1 3.1 15.8 104.7 33.5 47.3 190.1
GUIL 15 9.3 6 3.6 22.4 39.7 21.7 15 83.1
HOPB 19 15 27.8 1.6 123.6 90.7 80.4 29.5 367.6
KING 4 4.3 2 2.8 7.2 34.5 25.6 12.2 62.4
LECO 10 53.2 35.4 21.4 142.2 275.7 94.4 156 481.4
LEWI 21 2.2 1 0.9 4.6 19.2 7.1 9.1 34.5
MART 7 1.2 1.2 0.1 3.4 12.3 13.3 1.3 35.7
MAYF 7 12.3 11 2.8 34.3 39 40.5 9.3 126.9
MCDI 6 4.8 0.8 3.5 5.7 26.8 16.7 10.2 53.2
MCRA 16 10.6 9.9 1.2 33.9 87.8 46.5 27.6 185.9
OKSR 21 4.8 5.8 1.4 29.4 15.4 14.4 4.2 74
POSE 29 3.8 2.6 0.7 11 108.6 35.5 48.9 187.4
PRIN 4 1.1 0.1 0.9 1.2 7.2 1.7 5.7 9.2
REDB 25 14.1 11.3 3 53.9 102.9 40.2 42.4 181.4
SYCA 11 2.3 2.3 0.3 8 30 23.8 3.7 64.6
TECR 15 12 8.4 3.2 28.7 93.5 42 33.9 181.9
WALK 9 2.1 1.1 0.1 3.6 59.9 22.2 6.6 82.2
WLOU 28 31.6 26 9.6 112.9 199.6 83.4 93.8 410
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Figure 7. Comparison of partially pooled Bayesian and unpooled frequentist estimates of k600. Black 1 : 1 lines overlay the points for
reference.

1.2 m d−1. The values for recommended estimates of K600
range from 1.3 to 481 d−1. Like for k600, LeConte Creek
(LECO) had the highest mean K600 (mean±SD: 276±
94 d−1), while Pringle Creek (PRIN) had the lowest mean
K600 (mean±SD: 7.0± 1.9 d−1). Also, Lower Hop Brook
(HOPB) had the widest spread ofK600 values, with estimates
ranging from 30 to 368 d−1, while Pringle Creek (PRIN)
had the smallest spread, with estimates ranging from 5.3 to
9.3 d−1. These ranges, in part, reflect the various ranges ofQ
captured at each site (Table S3). HOPB was among the sites
with the largest range ofQ captured, while PRIN was among
the sites with the smallestQ range captured (Table S3). Over-
all, this large compilation of k600 and K600 estimates indi-
cates high variability both across and within sites.

Finally, to allow future users to scale k600 and K600 with
Q, we include both the slope and intercept for the k600–Q
andK600–Q relationships (Table 4) and the stanfit objects for

the Bayesian models (“Other Entities” in the data release).
The slope and intercept will allow future users a straightfor-
ward way to scale k600 or K600 as a function of Q at each
site. The stanfit objects, on the other hand, will allow future
users to sample from the posterior distribution of slope and
intercept to assess uncertainty in the scaling relationships.

4 Code and data availability

The reaRate R package is available at
https://doi.org/10.5281/zenodo.12786089 (Cawley et al.,
2024). The dataset of hydraulic parameters and gas exchange
estimates is available from the Environmental Data Initiative:
https://doi.org/10.6073/pasta/18dcc1871ee71cf0b69f2ee408
2839d0 (Aho et al., 2024).

Earth Syst. Sci. Data, 16, 5563–5578, 2024 https://doi.org/10.5194/essd-16-5563-2024

https://doi.org/10.5281/zenodo.12786089
https://doi.org/10.6073/pasta/18dcc1871ee71cf0b69f2ee4082839d0
https://doi.org/10.6073/pasta/18dcc1871ee71cf0b69f2ee4082839d0


K. S. Aho et al.: Gas exchange velocities, gas exchange rates, and hydraulic geometries for streams and rivers 5575

Figure 8. Relationship between Q and partially pooled Bayesian and unpooled frequentist estimates of k600. The unpooled estimates are
shown in green, with a green regression line with 95 % confidence intervals, while the partially pooled estimates are shown in purple, with a
purple regression line with 95 % confidence intervals.

5 Conclusions

Here, we present 339 estimates of gas exchange velocity
(k600) and gas exchange rate (K600) from 22 NEON streams.
To our knowledge, this dataset is the largest compilation of
gas exchange estimates from standardized tracer-gas experi-
ments (i.e., standardized methods across all experiments and
sites) published to date. Given the wide geographic spread
of NEON streams (e.g., spanning Puerto Rico to Alaska),
this dataset will enable understanding of gas exchange across
biomes. In addition, in our estimation process, we leverage
new Bayesian multilevel models that allow estimates of gas
exchange to be partially pooled by site according to Q; this
modeling approach can be applied to future studies where re-
peat tracer-gas experiments are conducted to characterize gas
exchange as a function of Q. Here, we also present relation-
ships between discharge and gas exchange (i.e., k600–Q and

K600–Q) from these models that will allow future users to
scale k600 or K600 as a function of Q in NEON streams.

Regarding hydraulics, we present hydraulic geometries for
24 NEON streams. These geometries leverage field measure-
ments of w and Q and estimate v and z. The coefficients and
exponents from at-a-station hydraulic geometries are pre-
sented and can be used in the future, along with Continu-
ous discharge (DP4.00130.001), to estimate w, v, and z at
NEON streams. In sum, this large dataset could allow for
quantification of both within- and across-reach variability in
hydraulics and gas exchange in streams, which could be use-
ful to modeling stream metabolism, greenhouse gas emis-
sions, and other biogeochemical fluxes in NEON streams. In
addition, this dataset may facilitate the development of new
predictive models of gas exchange in small streams.
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Figure 9. Box plots of the test estimates of (a) k600 and (b)K600 by site. Boxes represent the median and interquartile range (IQR), whiskers
mark the lesser of first (third) quartile − (+) 1.5× IQR or minimum/maximum, and points denote outliers more extreme than first (third)
quartile − (+) 1.5× IQR.

Table 4. Coefficients and exponents for k600–Q and K600–Q relationships. Estimates and standard deviations (SD) are given.

k600 = aQ
b K600 = aQ

b

a b a b

Site Estimate SD Estimate SD Estimate SD Estimate SD

BIGC −0.31 1.55 0.11 0.18 3.55 1.57 −0.11 0.19
BLDE −2.11 2.27 0.38 0.24 2.88 2.15 0.05 0.23
CARI 0.06 3.51 0.19 0.34 6.50 3.69 −0.32 0.36
COMO −2.30 0.34 0.69 0.05 3.17 0.32 0.27 0.04
CUPE −2.74 0.54 0.54 0.07 4.84 0.92 −0.03 0.11
GUIL −0.51 2.84 0.27 0.30 4.50 2.58 −0.10 0.28
HOPB −3.83 0.64 0.67 0.07 0.94 0.48 0.39 0.05
KING −1.97 2.47 0.38 0.25 0.06 2.76 0.36 0.30
LECO −5.68 2.21 0.97 0.23 0.66 1.85 0.50 0.19
LEWI −2.18 1.78 0.36 0.23 3.48 1.78 −0.07 0.23
MART −0.55 4.34 0.03 0.55 3.82 4.34 −0.23 0.54
MAYF −3.44 5.44 0.59 0.57 −0.04 5.46 0.35 0.57
MCDI 0.40 2.02 0.13 0.24 0.29 4.06 0.33 0.48
MCRA −3.07 1.06 0.57 0.12 2.37 0.93 0.22 0.11
OKSR −1.41 1.94 0.25 0.18 2.30 2.04 0.02 0.19
POSE −2.90 0.36 0.60 0.05 3.21 0.37 0.21 0.05
PRIN −2.69 0.88 0.30 0.10 2.37 0.97 −0.05 0.11
REDB −2.99 0.70 0.63 0.08 1.97 0.60 0.30 0.07
SYCA −0.73 2.67 0.14 0.32 5.15 2.77 −0.25 0.33
TECR −1.47 0.63 0.48 0.08 2.61 0.71 0.23 0.09
WALK −4.03 3.48 0.73 0.56 0.96 3.09 0.48 0.50
WLOU −2.15 0.30 0.64 0.04 2.48 0.31 0.33 0.04
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Supplement. The supplement related to this article is available
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