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Abstract. Accurate maps of irrigation extent and dynamics are crucial for studying food security and its far-
reaching impacts on Earth systems and the environment. While several efforts have been made to map irrigated
area in China, few have provided multiyear maps, incorporated national land surveys, addressed data discrep-
ancies, and considered the fractional coverage of cropland within coarse-resolution pixels. Here, we addressed
these important gaps and developed new annual maps of China’s irrigated cropland from 2000 to 2020, named
CIrrMap250 (China’s irrigation map with a 250 m resolution). We harmonized irrigation statistics and surveys
and reconciled them with remote sensing data. The refined estimates of irrigated area were then integrated with
multiple remote sensing data (i.e. vegetation indices, hybrid cropland products, and paddy field maps) and an
irrigation suitability map by means of a semi-automatic training approach. We evaluated our CIrrMap250 maps
using ∼ 20 000 reference samples, high-resolution irrigation water withdrawal data, and existing local to nation-
wide maps. Our CIrrMap250 maps demonstrated an overall accuracy of 0.79–0.88 for the years 2000, 2010, and
2020 and outperformed currently available maps. The CIrrMap250-estimated irrigation area explained 50 %–
60 % of the variance in irrigation water withdrawal across China. CIrrMap250 revealed that China’s irrigation
area increased by about 180 000 km2 (or 25 %) from 2000 to 2020, with the majority (61 %) occurring in the
water-unsustainable regions facing severe to extreme water stress. Moreover, our product unveiled a noticeable
northward shift of China’s irrigation area, attributed to substantial expansions in irrigated cropland across north-
eastern and northwestern China. The accurate representation of irrigation extent in CIrrMap250 will greatly
support hydrologic, agricultural, and climate studies in China, aiding in improved water and land resources
management. CIrrMap250 can be accessed at https://doi.org/10.6084/m9.figshare.24814293.v2 (Zhang et al.,
2023a).
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1 Introduction

Irrigation is becoming increasingly important as an adaption
strategy in response to climate change (Zaveri and Lobell,
2019; Bhattarai et al., 2023) and plays a vital role in ensur-
ing food security by reducing both water and heat stresses of
crops (Zhu and Burney, 2022; Zhu et al., 2022). Covering
20 % of global croplands, irrigated agriculture contributes
to 40 % of global food production (UNESCO World Water
Assessment Programme, 2019). However, it uses 60 %–70 %
of total freshwater withdrawals and 80 %–90 % of consump-
tive water uses (Qin et al., 2022; Wu et al., 2022). The ex-
tensive use of irrigation water intensifies water management
and drives a myriad of Earth system and environmental im-
pacts (McDermid et al., 2021, 2023). These impacts include
changes in hydroclimatic and biogeochemical cycling (Kang
and Eltahir, 2018; Mishra et al., 2020; Thiery et al., 2020;
Guo and Zhou, 2022; Yang et al., 2023), depletion of aquifers
and surface waterbodies (Cheng et al., 2014; Noori et al.,
2021), freshwater salinization (Thorslund et al., 2021), and
landslides (Lacroix et al., 2020). Given the vital importance
of irrigation, knowing its precise location and dynamics is
essential. However, this proves to be challenging due to the
hidden nature of irrigation signals and the frequent confusion
between irrigated and rainfed fields (Ozdogan and Gutman,
2008; L. Zhang et al., 2022; Chen et al., 2023).

Remote sensing provides significant opportunities for
cost-effective and spatially explicit mapping of land sur-
faces (Potapov et al., 2021). Over the past decade, there has
been growing interest in using Earth observations to map ir-
rigation extent (Massari et al., 2021). The existing remote
sensing methods for irrigation mapping are generally based
on three indicators: vegetation greenness, soil moisture, and
integrated vegetation–soil moisture. Vegetation indices de-
rived from optical sensors, such as the normalized difference
vegetation index (NDVI) (Rouse et al., 1974), green index
(GI) (Gitelson, 2005), and normalized difference water index
(NDWI) (Gao, 1996; McFeeters, 1996), have been widely
employed to detect irrigated areas based on the underlying
fact that irrigated fields typically exhibit higher productivity
and greenness compared to adjacent rainfed ones, especially
under drought conditions. Techniques used include threshold
splitting (Ozdogan et al., 2010; Zhu et al., 2014; Esmaeili
et al., 2023; Wang et al., 2023), spectral matching (Ozdogan
and Gutman, 2008; Lu et al., 2021), decision trees (Ozdo-
gan and Gutman, 2008; Shahriar Pervez et al., 2014; Am-
bika et al., 2016; Xiong et al., 2017), and supervised clas-
sification (Deines et al., 2017, 2019; Xie et al., 2019). The
soil-moisture-based approach utilizes remotely sensed soil
moisture signals from microwave and optical sensors to de-
tect irrigated areas by using similar techniques like threshold
splitting (Yao et al., 2022) and supervised or unsupervised
classification (Gao et al., 2018; Dari et al., 2021). The ratio-
nale behind this approach is that irrigation alters soil mois-
ture, leading to distinct spatiotemporal dynamics compared

to adjacent rainfed areas. The vegetation–soil moisture inte-
gration approach combines vegetation indices with soil mois-
ture for irrigation detection. This approach has gained atten-
tion and achieved success in recent years (Pun et al., 2017;
Elwan et al., 2022; Longo-Minnolo et al., 2022; Zuo et al.,
2023), leveraging the strengths of both vegetation- and soil-
moisture-based methods for more accurate irrigation map-
ping.

Despite significant advancements, broad-scale mapping of
irrigated areas (e.g. national and global levels) remains chal-
lenging due to substantial variations in irrigation practices,
landscapes, and climatic characteristics (Salmon et al., 2015;
L. Zhang et al., 2022). This challenge is further compounded
by the lack of sufficient ground reference data (Xie et al.,
2019; Xie and Lark, 2021). Consequently, high-quality ir-
rigation maps are still missing in most countries (Chen et
al., 2023; Mpakairi et al., 2023). In recent years, researchers
have sought to address the challenges of large-scale irriga-
tion mapping by integrating remote sensing data, agricultural
statistics, existing irrigation maps, and other relevant datasets
such as those of irrigation suitability (Meier et al., 2018; Xie
et al., 2021; C. Zhang et al., 2022a; L. Zhang et al., 2022).
Researchers have successfully generated new irrigation maps
at the global and national scales, featuring higher spatial res-
olutions and mapping accuracy compared to existing prod-
ucts. These efforts underscore the great potential of multi-
source data fusion techniques for large-scale irrigation map-
ping.

China is a big agricultural country with the largest irri-
gated area in the world (International Commission on Irri-
gation and Drainage, 2018). With only 8 % of the world’s
cropland, China feeds 20 % of the global population and has
a tight connection with the food supply chain of other na-
tions. Therefore, developing reliable maps of irrigated crop-
land is particularly important for sustainable food produc-
tion in China. Despite this, less attention has been devoted to
mapping irrigated areas in China compared to in other coun-
tries with extensive irrigation, such as the United States and
India (Zhu et al., 2014; L. Zhang et al., 2022). It is only
in recent years that maps of irrigated cropland specifically
tailored for China have emerged, facilitated by the integra-
tion of multisource data, including remote sensing, reported
statistics, and existing land use and/or cover maps (Xiang et
al., 2020; Bai et al., 2022; C. Zhang et al., 2022b, c; L. Zhang
et al., 2022).

While previous studies have considerably improved our
understanding of the spatial distribution of irrigated crop-
land in China, limitations remain. First, few studies have
provided annual irrigation maps, hindering the spatiotem-
poral analysis of China’s irrigated areas. As a result, it re-
mains unclear where the changes in irrigation area are water-
sustainable (e.g. irrigation expansion in places without water
stress) (Mehta et al., 2024). Second, irrigation area data from
official statistical bureaus, collected through field-sampling
surveys and bottom-up aggregation, have been extensively
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utilized to constrain the overall extent of irrigated cropland in
previous studies. Besides statistical data, the National Land
Surveys conducted by the State Council of China also pro-
vide estimates of irrigated cropland acreage. The surveys in-
volve many investigators and rely on high-resolution satel-
lite remote sensing imagery and advanced survey techniques
(Chen et al., 2022). Harmonizing irrigation statistics with the
National Land Surveys could potentially help to reduce bi-
ases and uncertainties in each data source (Yu et al., 2021),
but this has rarely been taken into account. Third, the ma-
jority of farms in China are small and fragmented, with the
average farmland size being smaller than 1 ha (Teluguntla et
al., 2018). This leads to the widespread presence of mixed
pixels where cropland and other land use and/or cover types
coexist. However, in most previous studies, binary cropland
masks were used for irrigation mapping. These masks clas-
sify each pixel as either cropland or non-cropland, neglecting
the fractional coverage of cropland within coarse-resolution
pixels. This may lead to the overestimation or underestima-
tion of irrigation extent. Finally, it is worth noting that, apart
from Zhang et al. (2022a), many studies assessed their ir-
rigation maps with a limited number of reference samples,
potentially compromising the reliability of their evaluation
results (Zhu et al., 2014; Xiang et al., 2020; Bai et al., 2022;
L. Zhang et al., 2022). Obtaining sufficient reference samples
is crucial for robust evaluations of national-scale irrigated-
cropland maps, a task that is, however, challenging due to
the substantial cost and time involved.

Building on our previous work (L. Zhang et al., 2022,
2024), this study aims to bridge these gaps and create new
annual maps of irrigated cropland in China (2000–2020) by
integrating remote sensing data (i.e. vegetation indices, hy-
brid cropland maps, and paddy field maps), reported statis-
tics and surveys, and an irrigation suitability map. The newly
developed maps (CIrrMap250) feature a spatial resolution
of 250 m at an annual frequency from 2000 to 2020. Our
maps show the percentage of each 250 m× 250 m pixel that
is covered by irrigated cropland (i.e. pixel value= irrigated
area/pixel area× 100). Other objectives of this study are
as follows: (i) assessing the accuracy of CIrrMap250 us-
ing ∼ 20 000 reference samples and high-resolution irriga-
tion water withdrawal data; (ii) comparing the performance
of CIrrMap250 with four existing local to nationwide irriga-
tion maps, including IrriMap_CN (C. Zhang et al., 2022a),
IAAA (Siddiqui et al., 2016), GFSAD (Thenkabail et al.,
2016), and OPTRAM30 (Yao et al., 2022); and (iii) investi-
gating the spatiotemporal dynamics of China’s irrigation ex-
tent and quantifying the water sustainability of changes in
irrigated area.

2 Data acquisition and processing

2.1 Remote sensing data

We collected the Terra Moderate Resolution Imaging Spec-
troradiometer (MODIS) MOD13Q1 vegetation indices, i.e.
NDVI and enhanced vegetation index (EVI) (Huete et al.,
1997), from NASA’s Earth Science Data Systems (https:
//www.earthdata.nasa.gov/, last access: 6 November 2024).
These indices are generated every 16 d with a 250 m
spatial resolution. Meanwhile, the MODIS band-4 (545–
565 nm) surface reflectance from the MOD09A1 product
was used and resampled from the original 500 to 250 m us-
ing the nearest-neighbour interpolation method (Debeurs and
Townsend, 2008). The resampled data were then used to-
gether with the 250 m and 8 d band-1 (620–670 nm) surface
reflectance from MOD09Q1 to derive the greenness index
(GI) (Table S1 in the Supplement). We extracted MODIS
data for all cropland pixels in China, using only high-quality
data on cloud- and snow- or ice-free pixels (Hilker et al.,
2012). Low-quality MODIS data were excluded based on the
quality band and were interpolated using high-quality data
from the nearest neighbouring cropland pixels.

We created a new 30 m resolution hybrid cropland product
for China (CCropLand30) by fusing state-of-the-art remote
sensing land use and/or cover products with the latest na-
tional land surveys (Zhang et al., 2024). CCropLand30 was
generated at a 5-year interval from 2000 to 2020 and exhib-
ited a higher accuracy compared to existing products (Zhang
et al., 2024). Building upon CCropLand30, we developed
250 m resolution cropland layers for the years 2000, 2005,
2010, 2015, and 2020, which show the cropland proportion
within each 250 m grid. Additionally, we extracted paddy
fields from China’s land use and/or cover dataset (CLUD) for
the years 2000, 2005, 2010, 2015, and 2020 (Liu et al., 2014;
Xu et al., 2018). Paddy fields, which include cultivated land
where rice and lotus roots are grown and supported by wa-
ter and irrigation facilities, were considered to be part of irri-
gated cropland with high confidence (C. Zhang et al., 2022c).

2.2 Irrigation statistics and surveys

2.2.1 Harmonization of irrigation statistics and surveys

We collected annual irrigation area data (2000–2020) from
various statistical yearbooks provided by the National Bu-
reau of Statistics of China and by local statistical bureaus.
These yearbooks include the Provincial Statistical Yearbook,
the Rural Statistical Yearbook, the China Statistical Year-
book for Regional Economy, and the China Water Statistical
Yearbook. The data were sourced from the China Economic
and Social Big Data Research Platform (https://data.cnki.
net/, last access: 6 November 2024). We compiled county-
level irrigation data for over 80 % of the provinces and
prefecture-level data for the rest (L. Zhang et al., 2022),
which provide more irrigation information for China than
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earlier studies (Zhu et al., 2014; Xiang et al., 2020; C. Zhang
et al., 2022b).

In addition to statistical data, we utilized land survey data
to obtain more detailed and reliable information on irri-
gated areas for select years. Currently, China has conducted
three rounds of National Land Surveys (1980s, 2010, and
2020). The surveys engaged a significant number of survey-
ors and utilized high-resolution satellite remote sensing im-
agery, along with advanced survey techniques like mobile
internet, cloud computing, and drones (Chen et al., 2022).
Due to national security concerns, the land survey maps
were not publicly available. However, the Ministry of Nat-
ural Resources recently released the county-level survey re-
sults of the second and third National Land Surveys, includ-
ing data on cropland and its sub-categories (dryland, irrigated
land, and paddy field) (https://www.mnr.gov.cn/, last access:
6 November 2024). Within the dataset, the surveyed irrigated
land and paddy fields reflect the extent of irrigated cropland,
covering the periods 2009–2016 and 2019–2022. For the
years with survey data, irrigation statistics were harmonized
with the survey data at the county scale using Eq. (1). The
data harmonization was based on two assumptions: (1) the
maximum value between statistical and surveyed irrigation
area should be more reliable, and (2) irrigation area should
be smaller than the total cropland area. The first assump-
tion accounts for the underestimation tendency of both sta-
tistical and survey data due to possible insufficient and non-
representative field sampling (C. Zhang et al., 2022a) and
the prevalence of fragmented and small crop fields (Telu-
guntla et al., 2018). Alternative harmonization methods, such
as mean and minimum values, were also tested but performed
worse than the maximum harmonization approach. For years
without survey data, the irrigation area was estimated by
adjusting the harmonized data from adjacent survey years
using relative-change information derived from the irriga-
tion statistics (Eq. 2). This method preserved the interannual
changes observed in statistical irrigation area while enhanc-
ing data consistency across years.

Ats
harm =min(max

(
Ats

stat,A
ts
surv
)
, CAts

surv) (1)

At2
harm =min(Ats

harm× (1+
At2

stat−Ats
stat

Ats
stat

), CAts
surv) (2)

In the above, Aharm, Astat, and Asurv represent the harmo-
nized, statistical, and surveyed irrigation area, respectively;
CA is the surveyed area of cropland; and ts and t2 indicate
the year with and without land surveys, respectively.

2.2.2 Reconciliation between statistical/survey data and
remote sensing data

Cropland area statistics and survey data are inherently in-
compatible with remote sensing data due to different mea-
surement techniques. While statistical and survey data mea-
sure the net area of cropland, remote sensing data represent

the gross area of cropland, including subpixels; non-cropland
features such as field ridges; linear elements; and scattered
features like roads, ponds, and rural houses (Zhang et al.,
2024). As a result, statistical and surveyed cropland areas
exhibit a negative and systematic bias compared to those de-
rived from remote sensing data (Zhang et al., 2021; L. Zhang
et al., 2022). Similarly, as a subset of cropland, irrigated
cropland is also reported in statistics and surveys as a net
area that is different from in remote sensing data. Directly us-
ing the statistical or surveyed irrigation acreage to constrain
remote-sensing-based irrigated cropland would likely result
in underestimating the irrigation extent (Schepaschenko et
al., 2015). To address this discrepancy, we adjusted the har-
monized irrigation area (Sect. 2.2.1) to reconcile the statisti-
cal and survey data with remote sensing data, as shown in
Eq. (3). This adjustment was performed based on the as-
sumption that the proportion of irrigated cropland remains
consistent in the statistical and survey data and the remote-
sensing-derived maps. For instance, if statistical or survey
data indicate that 99 % of the cropland in a given county
is irrigated, the remote-sensing-derived irrigation proportion
should also be approximately 99 %.

At
recon = At

harm×
CAt

RS
CAt

surv
(3)

In the above, At
recon and At

harm are the reconciled and har-
monized irrigation area, respectively, for the year t ; CAt

RS
is the remote-sensing-derived cropland area estimated from
our hybrid cropland product (Zhang et al., 2024); CAt

surv is
the surveyed cropland area; and CAt

RS/CAt
surv denotes the

bias ratio of remote-sensing-derived cropland area relative to
surveys. This ratio was estimated for each county and con-
strained to the median value of all counties in its agricultural
zones (C. Zhang et al., 2022c) to exclude extreme bias ratios
and to ensure a conservative adjustment. In years lacking sur-
vey data, the bias ratio was estimated using a straightforward
nearest-neighbour interpolation method.

2.3 Auxiliary data

This study utilized various auxiliary datasets (Table S2 in
the Supplement), including meteorological and environmen-
tal variables, irrigation water withdrawal, water scarcity
index, and administrative boundaries. Daily meteorologi-
cal observations such as precipitation, relative humidity,
air temperature, and pressure were collected from approxi-
mately 2400 meteorological stations across China, provided
by the National Meteorological Information Center (NMIC,
http://data.cma.cn/, last access: 6 November 2024). These
datasets were combined with the MCD43A3 albedo prod-
uct to compute daily potential evapotranspiration (PET) us-
ing the Priestley–Taylor method (Priestley and Taylor, 1972).
The daily PET values were aggregated to annual values for
the period from 2000 to 2020, which were then used to de-
rive the aridity index, defined as the ratio of precipitation to

Earth Syst. Sci. Data, 16, 5207–5226, 2024 https://doi.org/10.5194/essd-16-5207-2024

https://www.mnr.gov.cn/
http://data.cma.cn/


L. Zhang et al.: Annual maps of China’s irrigated cropland 5211

PET. The environmental variables included elevation, slope,
cropping intensity, soil type, and distance to waterbodies. El-
evation data were sourced from the Shuttle Radar Topog-
raphy Mission digital elevation model (SRTM DEM), and
the slope map was generated from the SRTM DEM data us-
ing the slope function in ArcGIS. The distance to waterbod-
ies was calculated based on the spatial distribution of wa-
terbodies (rivers, lakes, reservoirs, canals, and ponds) using
the Euclidean distance tool in ArcGIS. The above auxiliary
data were partly obtained from the National Tibetan Plateau
(https://data.tpdc.ac.cn/, last access: 6 November 2024), and
the remaining data were obtained from the Resource and En-
vironment Science and Data Center (https://www.resdc.cn/
Default.aspx, last access: 6 November 2024).

Additionally, the prefecture-level irrigation water with-
drawal data for 2009–2011 and 2018–2020 were compiled
from provincial water resource departments and local statisti-
cal bureaus. The prefecture-level data on water scarcity index
(WSI) for 2010–2020 were extracted from our previous study
(Zhang et al., 2023b). WSI is defined as the ratio of total wa-
ter use to water availability, as shown in Table S2 in the Sup-
plement. Total water use encompasses both groundwater and
surface water withdrawals for irrigation, industry, domestic
purposes, forestry, livestock, and fishery. Water availability
refers to the total surface water and groundwater generated
by precipitation.

3 Methodology

In this study, we created annual maps of irrigated cropland
in China by integrating multisource data through a semi-
automatic training approach (Xie et al., 2019; L. Zhang et al.,
2022). After acquiring and processing the data, our method-
ology started with the creation of training samples, as de-
picted in Fig. 1. This step involves three major processes:
(i) generating intermediate irrigation maps through a thresh-
old calibration method, (ii) establishing a training pool (i.e.
potential training data) via overlay analysis of the intermedi-
ate maps, and (iii) generating training samples through ran-
dom sampling from the training pool. Using these training
samples, we classified irrigated and rainfed cropland in each
county annually using the random forest algorithm (Breiman,
2001). The resulting county-level maps were then mosaicked
and post-processed to produce the annual maps of irrigated
cropland in China, referred to as CIrrMap250. Subsequently,
we evaluated the accuracy of CIrrMap250 and compared it
with existing products. Finally, we examined the spatiotem-
poral changes in irrigated croplands and quantified the water
sustainability of irrigation expansion by relating them to wa-
ter stress areas.

3.1 Generation of training samples

We applied a threshold calibration method to automatically
generate the training pool, following previous studies by Xie

et al. (2019, 2021) and L. Zhang et al. (2022). With this
method, cropland pixels with annual peak vegetation green-
ness exceeding an optimized threshold were classified as “ir-
rigated”. The threshold was individually calibrated for each
county and year using available irrigation statistics and sur-
veys. Based on the calculated optimized thresholds, inter-
mediate irrigation maps were generated at the county level.
Pixels consistently classified as irrigated in all intermediate
maps were identified as irrigation candidates, while those
classified as non-irrigated were considered to be potential
non-irrigated samples.

In this study, we first calculated the peak values of vegeta-
tion indices (NDVI, EVI, and GI) for cropland grids in each
year and adjusted them by irrigation suitability. A static ir-
rigation suitability map was created based on the elevation,
slope, and aridity index of cropland. These factors play a cru-
cial role in shaping the spatial distribution of irrigated crop-
land in China, as demonstrated by Liu et al. (2022). Cropland
areas characterized by lower elevation, gentler slopes, and
higher aridity indices were hypothesized to exhibit greater
irrigation suitability and potential, in line with previous stud-
ies (Worqlul et al., 2015, 2017; Li and Chen, 2020; L. Zhang
et al., 2022). Specifically, the irrigation suitability map was
derived by combining irrigation suitability values of eleva-
tion, slope, and aridity index, as in Eq. (4):

Si,j,k =
1
4
w1,kSElevi,j +

1
4
w2,kSSlopei,j +

1
10

w3,kSAridi,j , (4)

where Si,j,k is the irrigation suitability for cropland cell i in
county jof province k; w is the weight of the influencing
factors, which was determined through a trial-and-error pro-
cedure; SElev, SSlope, and SArid are the irrigation suitabil-
ity values of elevation, slope, and aridity index, respectively
(Table S3 in the Supplement). The peak vegetation index
was subsequently adjusted by irrigation suitability (Eq. 5),
with the assumption that irrigated cropland, being greener
and more productive, is also more suitable for irrigation com-
pared to rainfed cropland.

SVIti,j,k = Si,j,k ×Peak (VIg, t
i,j,k) (5)

In the above, SVI denotes the irrigation-suitability-adjusted
peak vegetation index; VI denotes the vegetation index value;
and g and t represent the growth period and year, respec-
tively.

We then generated three intermediate irrigation maps an-
nually from 2000 to 2020 utilizing the SVI (i.e. irrigation-
suitability-adjusted peak NDVI, EVI, and GI) and the paddy
field maps. This was achieved through a threshold-splitting
method (Pervez and Brown, 2010; Zhu et al., 2014; Meier et
al., 2018). Specifically, the SVI values for all cropland pix-
els within each county were ranked in a descending order,
and the cumulative irrigated area was sequentially calculated.
The accumulated area was then compared with the reconciled
irrigation area. The SVI value at which the cumulative irri-
gated area closely matched the reconciled irrigated area was

https://doi.org/10.5194/essd-16-5207-2024 Earth Syst. Sci. Data, 16, 5207–5226, 2024

https://data.tpdc.ac.cn/
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx


5212 L. Zhang et al.: Annual maps of China’s irrigated cropland

Figure 1. Workflow of this study.

identified as the optimal threshold. Notably, for paddy fields,
the SVI value was set to the maximum SVI among crop-
lands within a county, prioritizing these areas as irrigated.
The cropland grids were finally classified into irrigated and
rainfed categories using Eq. (6).

croplandi,j,k =

{
irrigatedt

i,j,k
SVIt

i,j,k
≥ thresholdt

j,k

rainfedt
i,j,k

SVIt
i,j,k

< thresholdt
j,k

(6)

The intermediate irrigation maps were finally overlaid to
identify pixels consistently classified as irrigated or rainfed
cropland across these maps. These pixels were designated as
potential training samples, forming the training pool for each
county and year. From the training pool, we randomly se-
lected 200 rainfed pixels and 200 irrigated pixels to train the
random forest model. This selection ensures a balance be-
tween the need for an adequate number of samples and the
computational efficiency of the classification algorithm (Xie
et al., 2019; L. Zhang et al., 2022).

3.2 Classification of irrigated cropland using random
forest

We employed the random forest algorithm (Breiman, 2001)
to classify irrigated and rainfed cropland using the random
samples extracted from the training pool. The hyperparam-
eters of our model were optimized through a trial-and-error
process, including the number of trees, the minimum number
of observations per node, and the number of variables ran-
domly sampled at each decision split (Table S4 in the Sup-
plement). The input features of our model encompassed both
time-varying variables (i.e. vegetation indices, precipitation,
temperature, PET, and aridity index) and stable environmen-
tal variables (i.e. latitude, longitude, cropping intensity, el-
evation, distance to waterbodies, slope, and soil type). The
classification was conducted independently for each county
per year from 2000 to 2020. After that, we merged the an-
nual, county-level mapping results to generate preliminary
binary irrigation maps in China (i.e. 1 for irrigated and 0 for
non-irrigated).

We then employed a spatial filtering to remove isolated ir-
rigation pixels and to identify potentially omitted irrigated
croplands. Specifically, we first calculated the irrigation pro-
portion within a 7× 7 pixel window for each preliminary ir-
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rigation pixel. Then, all cropland pixels within the moving
window were classified as non-irrigated if the calculated ra-
tio fell below 5 %. Conversely, if the ratio exceeded 95 %,
we assumed all cropland pixels within the moving window
to be irrigated. The spatial-filtering operation preserved the
original spatial resolution of the maps (250 m).

Finally, we multiplied the binary, spatially filtered irriga-
tion maps by their corresponding cropland mask layers to
generate annual irrigation maps for China. The final prod-
uct, CIrrMap250, represents the percentage of a 250 m pixel
covered by irrigated croplands (i.e. pixel value= irrigated
area/pixel area× 100). Unlike simple binary maps, our prod-
uct considers the fractional coverage of croplands within
coarse-resolution MODIS pixels, thereby enhancing the ac-
curacy of irrigation area estimates in China, where farms are
typically small and fragmented.

3.3 Accuracy assessment and intercomparison

3.3.1 Assessment with reference points

We assessed the accuracy of CIrrMap250 using three in-
dependent sets of validation samples. The first validation
dataset was for the year 2000 (Fig. 2a), obtained from Zhu
et al. (2014), primarily derived from the crop growth and
soil moisture dataset provided by the China Meteorological
Data Sharing Service System (https://data.cma.cn/, last ac-
cess: 6 November 2024). The second validation dataset for
the year 2020 (Fig. 2c) was acquired from Chen et al. (2023),
showing the global location of centre pivot irrigation sys-
tems (CPISs). We extracted the CPIS polygons across China
(mainly distributed in northern China) and compared them
with our product. In addition, we retrieved the validation
samples for the year circa 2010 (Fig. 2b) from the provin-
cial land use maps of China’s second National Land Survey
(https://www.mnr.gov.cn/, last access: 6 November 2024).
We georeferenced these land use maps using the georefer-
encing tool in ArcGIS. A total of 234 control points were
selected from high-resolution images and provincial admin-
istrative boundaries for the georeferencing process (Fig. S1
in the Supplement). The irrigation samples were randomly
extracted from irrigated lands and paddy fields, while non-
irrigated samples were taken from dryland patches. As shown
in Fig. 2d, we obtained a total of 20 720 reference sam-
ples. The performance of CIrrMap250 was evaluated quanti-
tatively using the overall accuracy (OA), F1 score, producer’s
accuracy (PA), and user’s accuracy (UA) (Table S5 in the
Supplement).

3.3.2 Assessment with irrigation water withdrawal data

We further assessed the performance of CIrrMap250 by com-
paring its irrigation area with prefecture-level irrigation wa-
ter withdrawal for the years circa 2010 and 2020. Since irri-
gated area is a dominate driver of irrigation water withdrawal

(Lamb et al., 2021; Puy et al., 2021), irrigation water with-
drawal can indirectly evaluate the accuracy of irrigation maps
(C. Zhang et al., 2022a). High-accuracy irrigation maps are
expected to better explain the variations in irrigation water
withdrawal compared to low-accuracy maps. The explana-
tory power of the irrigation area estimates was assessed by
the coefficient of determination (R2) from a linear regression
model fitted to the irrigation water withdrawal data using the
least-squares method.

3.3.3 Comparison with existing products

We evaluated CIrrMap250 using three existing irrigation
maps covering the entirety of China, including IrriMap_CN
(C. Zhang et al., 2022a), IAAA (Siddiqui et al., 2016), and
GFSAD (Thenkabail et al., 2016). IrriMap_CN provides an-
nual irrigation maps across China for the years from 2000 to
2019 at a 500 m resolution and was developed using MODIS
data and machine learning (C. Zhang et al., 2022a). The
IAAA irrigation maps cover Asia and Africa for the years
2000 and 2010 at a 500 m resolution. These maps were
created based on seasonal vegetation variations captured in
MODIS data (Siddiqui et al., 2016). The 2010 global irri-
gation map, GFSAD, has a spatial resolution of 1000 m and
was generated by overlaying dominant crops with remote-
sensing-derived irrigated and rainfed cropland maps (Thenk-
abail et al., 2016).

Additionally, we evaluated our maps for the Hexi Corri-
dor using a field-scale irrigation map specifically created for
the region (Yao et al., 2022). The map, OPTRAM30, has a
30 m resolution and demonstrates an accuracy close to 100 %
when validated against in situ datasets. In addition to assess-
ing CIrrMap250, we also evaluated IrriMap_CN, IAAA, and
GFSAD using OPTRAM30.

3.4 Irrigation area change and its correlation with water
stress areas

We examined the irrigation trends in a spatially explicit man-
ner using our new irrigation maps from 2000 to 2020. The
trends were quantified as the slope of the regression line fit-
ted to the time series irrigation data at the pixel scale using
the least-squares method. Furthermore, we adopted the con-
cept of “centre of gravity” to track the spatial dynamics of
irrigated areas (Zeng and Ren, 2022). The gravity centre of
the irrigated area (X, Y ) is represented as follows:

Xt
=

∑n
i=1IrrAreat

i × xi

IrrAreat
i

, (7)

Y t
=

∑n
i=1IrrAreat

i × yi

rrAreat
i

, (8)

where IrrAreat
i denotes the irrigated area in grid i; xi and yi

are the longitude and latitude of grid i, respectively; n is the
number of irrigated cropland grids; and t is year.
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Figure 2. Spatial distribution of validation samples. (a) Spatial distribution of the third-party samples in 2000. (b) Spatial distribution of the
samples in 2010 retrieved from provincial land use maps of China’s second National Land Survey. (c) Spatial distribution of the third-party
samples in 2020. (d) Numbers of irrigated and non-irrigated samples for different years.

In addition, we quantified the water sustainability of ir-
rigation changes across China. To do so, we first identified
the expansion and decline in irrigated areas between 2000
and 2020 at a 5 km resolution following previous studies
(Deines et al., 2019; Xie and Lark, 2021). Subsequently, we
compared the changes with a prefecture-level water stress
map derived from the mean values of WSI over the period
2010–2020. WSI denotes the fraction of available water re-
sources appropriated by humans and is employed to cate-
gorize water stress into four levels: low (WSI≤ 0.2), mod-
erate (0.2 < WSI≤ 0.4), severe (0.4 < WSI≤ 1.0), and ex-
treme (WSI > 1) (Zhang et al., 2023b). Irrigation expansion
under severe to extreme water stress was designated as un-
sustainable due to the potential of exacerbating the depletion
of surface water and groundwater (Mehta et al., 2024). Con-
versely, the expansion of irrigation under low to moderate

water stress and the shrinkage of irrigation under severe to
extreme stress were deemed to be sustainable.

4 Results

4.1 Accuracy assessment

4.1.1 Pixel-scale assessment

As shown in Fig. 3 and Table S6 in the Supplement, CIr-
rMap250 attains an OA and F1 score of 0.79 and 0.78, re-
spectively, for the year 2000, surpassing the performance
of IrriMap_CN and IAAA. In the year 2010, CIrrMap250
achieves a high OA of 0.79 and an F1 score of 0.71, whereas
the existing maps attain OA values below 0.66 and F1 scores
under 0.63. For the year 2020, CIrrMap250 detects 88 %
of centre pivot irrigated fields, while IrriMap_CN identifies
only 20 % (Fig. 3c and Fig. S2 in the Supplement). Note that
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Figure 3. Performance of CIrrMap250 and existing irrigation maps
(IrriMap_CN, IAAA, GFSAD). Panels (a), (b), and (c) show the re-
sults for 2000, 2010, and 2020, respectively. OA, PU, and UA rep-
resent overall accuracy, producer’s accuracy, and user’s accuracy,
respectively. Irr and NIrr indicate irrigated and non-irrigated sam-
ples, respectively.

both CIrrMap250 and IrriMap_CN achieve a perfect user’s
accuracy for the irrigation class in 2020 because all the ref-
erence points are irrigated samples (Sect. 3.3.1 and Table S7
in the Supplement). For irrigated samples, CIrrMap250 has a
significantly higher producer’s accuracy in 2000, 2010, and
2020 compared to the existing products. CIrrMap250 and
IrriMap_CN perform similarly in terms of user’s accuracy.
For non-irrigated samples, the producer’s accuracy of CIr-
rMap250 is slightly lower than that of IrriMap_CN, but the
user’s accuracy of CIrrMap250 is significantly higher than
that of IrriMap_CN. In terms of the producer’s accuracy and
user’s accuracy, both CIrrMap250 and IrriMap_CN outper-
form IAAA and GFSAD.

4.1.2 Nationwide and regional comparison with existing
products

Figure 4 shows the spatial distribution of irrigated crop-
land from different maps. At the national scale, CIrrMap250
and IrriMap_CN, specifically developed for China, capture
similar irrigation patterns. They both show some irrigation
hotspots (e.g. North China Plain and northwestern China)
and well-known irrigation districts like Hetao, Baojixia, Du-
jiangyan, Qingtongxia, and Fenhe. However, CIrrMap250

shows more widespread irrigation than IrriMap_CN in most
areas of China (Fig. S3 in the Supplement). IrriMap_CN es-
timates irrigation proportion (i.e. the ratio of irrigated crop-
land area to total cropland area) to be 0.47, 0.37, and 0.61 for
China, northern China, and the Xinjiang Uygur Autonomous
Region, respectively (Fig. S4 in the Supplement). In com-
parison, the values derived from CIrrMap250 are 0.58, 0.70,
and 0.96, respectively, which align more closely with the of-
ficial reports (https://gtdc.mnr.gov.cn/, last access: 6 Novem-
ber 2024). Nevertheless, CIrrMap250 tends to yield lower es-
timates of irrigation area in northeastern China (NEC) when
compared to IrriMap_CN, possibly due to inaccurate sta-
tistical and survey data in this region. In contrast to CIr-
rMap250 and IrriMap_CN, IAAA notably underestimates ir-
rigated croplands in northwestern China (NWC) and north-
ern China (NC) but overestimates it in NEC and southwest-
ern China (SWC). This could be explained by the fact that
IAAA was developed using unsupervised classification (Sid-
diqui et al., 2016), limiting its ability to characterize the spa-
tial heterogeneity of irrigation in China (Tian et al., 2024).
GFSAD shows overestimations of irrigated area in the Du-
jiangyan district and the North China Plain but exhibits evi-
dent omission errors in sparsely distributed irrigation regions
like NWC and southern China (SC). The large bias of GF-
SAD is understandable as it is not an irrigation-specific prod-
uct and only covers five irrigated crops (Thenkabail et al.,
2016; Xie et al., 2021).

We further compared CIrrMap250 with existing maps in
four heavily irrigated zones (A–D; locations are shown in
Fig. 4a). Zones A and B are situated in arid regions where
crop growth is not possible without irrigation, while zones C
and D are in humid regions where paddy rice is widespread
and relies heavily on supplemental irrigation. As shown in
Fig. 5, CIrrMap250 accurately portrays the actual distribu-
tion of irrigated cropland in these zones. In contrast, Ir-
riMap_CN underestimates irrigation extent in zones A and
B and lacks detailed information in zones C and D. IAAA
significantly underestimates irrigation area in zone A, in-
correctly identifies it in zone B, and overestimates irrigated
cropland in region C. The GFSAD product, with a relatively
coarse resolution of 1 km, shows the lowest agreement with
other maps.

When examining the Hexi Corridor (Fig. 6), CIrrMap250
exhibits a high agreement with OPTRAM30. While Ir-
riMap_CN captures the general patterns, it tends to underes-
timate the overall irrigation extent, as demonstrated in zones I
and II of the region (Fig. 6d). The IAAA product struggles to
identify irrigated cropland in this area, displaying significant
omission and commission errors. Similarly, GFSAD has a
limited ability to accurately depict irrigated areas in the Hexi
Corridor.
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Figure 4. Spatial distribution of irrigated cropland from different maps for the year 2010. NEC, NC, NWC, SWC, SC, and CSC represent
northeastern China, northern China, northwestern China, southwestern China, southern China, and central southern China, respectively.

4.1.3 Comparison with irrigation water use data

As illustrated in Fig. 7, the CIrrMap250-estimated irrigation
areas exhibit a notable correlation with irrigation water with-
drawals. Irrigation area changes derived from CIrrMap250
account for approximately 50 % and 60 % of the variance
in irrigation water withdrawals circa 2010 and 2020, respec-
tively. In contrast, variations in irrigated area obtained from
IrriMap_CN can only explain 40 % and 48 % of the variance
in irrigation water withdrawals for 2010 and 2020, respec-
tively. As shown in Fig. 7c and f, the irrigated area estimates
from the other two maps (i.e. IAAA and GFSAD) demon-
strate limited explanatory power, explaining only 12 % and
20 % of the variation in irrigation withdrawals for the year
2010. These results indirectly imply a superior performance
of CIrrMap250 over existing maps.

4.2 Spatiotemporal changes in irrigated croplands

As depicted in Fig. 8, our CIrrMap250 revealed that irri-
gation area expanded significantly in NEC and NWC from
2000 to 2020. Conversely, notable decreases in irrigated ar-
eas were identified in the northern parts of SC and CSC, the
northeastern part of SWC, and the southern parts of CSC and
NC. The decline in irrigated areas tended to be concentrated
in populous areas, attributable to the rapid urban expansion
on cropland (Zhang et al., 2024). The gravity centre of irri-
gation was situated on the border of NC and CSC and ex-
hibited a noticeable northward shift during the study period.
This northward trend is likely to exacerbate the water crisis
in northern China (Li et al., 2023), which has only 20 % of
China’s water resources but supports more than half of its
population. The gravity centre showed clear trends in NWC,
NEC, and NC but was insignificant in the remaining subre-
gions (Fig. S5 in the Supplement). In NWC, irrigation signifi-
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Figure 5. Visual comparison of CIrrMap250 with existing maps. The five rows from top to bottom correspond to the Google map, CIr-
rMap250, IrriMap_CN, IAAA, and GFSAD, respectively. Locations of the four selected zones are presented in Fig. 4a.

cantly shifted to the northwest, while in NEC, it significantly
shifted to the northeast. Meanwhile, there was a northward
spatial trend in irrigation in NC.

As shown in Fig. 9, our annual irrigation maps indicated
that all subregions exhibited an increasing trend in irrigated
area from 2000 to 2020, with NEC expanding significantly
faster than the other subregions. More specifically, China’s
irrigation area increased from about 760 000 to 940 000 km2

at an annual rate of 10 000 km2 (or 1.29 % yr−1). Despite
the overall upward trend, changes in the proportion of irri-
gated area varied by subregion, with upward trends in NEC
and NWC and decreasing trends in CSC, SC, and NC. SC
accounted for the largest proportion of irrigated cropland
in China (26 %–29 %), followed by CSC (22 %–24 %), NC
(16 %–17 %), NWC (12 %–14 %), SWC (11 %), and NEC
(7 %–11 %).

4.3 Irrigation changes under different water stress levels

Figure 10 shows irrigation changes under different wa-
ter stress levels. We found a gross irrigation expansion of

∼ 250 000 km2 in China from 2000 to 2020, of which 64 %
was unsustainable from the perspective of water resources
and was in regions with severe to extreme water stress. The
expansion of irrigated area was mainly situated in NWC,
NEC, NC, and the northern parts of CSC and SC. The gross
reduction was about 70 000 km2, of which 72 % was in re-
gions with severe to extreme water stress and could be con-
sidered to be sustainable. This sustainable reduction was pri-
marily located in NC, CSC, and SC, which partly mitigated
the unsustainable expansion in the regions. The net expan-
sion of irrigated area was about 180 000 km2, of which 61 %
was water-unsustainable. The subregions of NEC and NWC
had a larger proportion of unsustainably expanded irrigated
area compared to other subregions, accounting for about
70 % of China’s net unsustainable irrigation expansion. In
contrast, the subregions of CSC and SWC had a greater pro-
portion of sustainable expansion than in other subregions due
to the abundance of water resources and lower water stress
there.
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Figure 6. Comparison of large-scale irrigation maps with the field-scale remote sensing irrigation map (OPTRAM30) in the Hexi Corridor
of northwestern China. Panels (a), (b), (c), (e), and (f) depict the distribution of irrigated cropland in OPTRAM30, CIrrMap250, IAAA,
IrriMap_CN, and GFSAD, respectively. Panel (d) shows the comparisons of CIrrMap250 and IrriMap_CN with OPTRAM30 in two local
zones.

Figure 7. Scatterplots of irrigation water withdrawals against irrigated-area estimates from different products for the years circa 2010 and
2020. The data are presented in logarithmic units to reflect both small and large values.
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Figure 8. Spatiotemporal changes in irrigated area from 2000 to
2020. Pixels exhibiting significant interannual trends (p<0.05) in
irrigated area were labelled as “expansion” or “reduction”, while
those with insignificant changes are denoted as “stable”. Pixels with
less than 5 % irrigated croplands were excluded from the map. The
inset panel on the top of the figure depicts the centre-of-gravity
movement (spatial trend) of China’s irrigated areas at the national
scale.

5 Discussion

5.1 Improvement of CIrrMap250 over existing products

Our CIrrMap250 product provides annual maps of China’s
irrigated cropland from 2000 to 2020, exhibiting higher ac-
curacy compared to existing products. The improved per-
formance of CIrrMap250 can be attributed to several key
factors. First, CIrrMap250 has digested unprecedentedly de-
tailed irrigation statistics and reliable national land surveys
and, at the same time, has reconciled the discrepancies be-
tween statistical and survey data and remote sensing data. We
compiled county-level statistical data for 80 % of provinces
in China, along with prefecture-level data for the remain-
ing provinces. These datasets, for the first time, were harmo-
nized with China’s National Land Surveys, greatly reducing
the errors and uncertainties in reported statistics. The harmo-
nized irrigated-area data were further adjusted to reconcile
the statistical and survey data with remote sensing data to
account for their inconsistencies. Without data harmoniza-
tion and reconciliation, the irrigation extent would be signif-
icantly underestimated, leading to a decrease in irrigation-
mapping accuracy of 8 %–26 % (Fig. S6 in the Supplement).

Furthermore, CIrrMap250 considered the fractional cov-
erage of cropland within coarse-resolution pixels rather than
using binary cropland masks in most existing products. The
majority of farms in China are small and fragmented. We
observed that 37 % of China’s cropland grids had cropland
proportions below 50 % for the year 2020, and only 40 %

of cropland grids showed cropland proportions above 90 %.
Therefore, it becomes crucial to consider the fraction cover-
age of cropland in cropland masks for irrigation mapping. To
underscore this necessity, we conducted an additional exper-
iment, wherein we adopted the 250 m cropland masks that
described cropland distribution in a binary manner (i.e. each
pixel was classified as either cropland or non-cropland) for ir-
rigation mapping. As depicted in Fig. S7 in the Supplement, a
substantial portion of irrigated cropland would be overlooked
if the fractional coverage of cropland were removed, partic-
ularly in southern China. The accuracy of the final irrigation
maps would decrease by approximately 5 %–6 % if we used
such binary cropland masks (Fig. S8 in the Supplement).

Lastly, CIrrMap250 has incorporated an irrigation suit-
ability analysis based on the premise that irrigated cropland
should not only be greener and more productive but also
more suitable for irrigation compared to rainfed cropland. To
demonstrate the importance of integrating irrigation suitabil-
ity into the irrigation-mapping process, we randomly gener-
ated 250 sets of weights (assigned to the influencing factors)
for all provinces in China, resulting in 250 distinct irrigation
suitability maps. Based on these maps, we then created 250
different irrigated cropland maps for the year 2010 using the
method proposed in this study. As shown in Fig. S9 in the
Supplement, regardless of the choice of irrigation suitability
maps, these irrigation maps consistently outperform the base-
line irrigation map, which disregarded irrigation suitability
during the mapping process. Furthermore, there is a narrow
range (0.75–0.77) in the overall accuracy of these irrigation
maps, implying the robustness (low sensitivity) of the map-
ping method in relation to the use of different irrigation suit-
ability maps.

5.2 Uncertainties, limitations, and potential applications
of CIrrMap250

Despite the advancements of CIrrMap250 compared to ex-
isting products, we acknowledge several uncertainties and
limitations associated with the product. CIrrMap250 was de-
veloped by integrating data from multiple sources using a
semi-automatic training method, leveraging joint informa-
tion related to irrigation in each data source. However, each
data source inherently presents uncertainties and deficiencies
(Shahriar Pervez et al., 2014; Tian et al., 2024). Irrigation
area statistics, in particular, can contain significant uncertain-
ties due to technical and political factors, such as variations in
statistical methods and administrative divisions (Thenkabail
et al., 2009; Meier et al., 2018), which have not been well
characterized. These biases and uncertainties would manifest
in CIrrMap250 since our training samples were derived from
these statistics-constrained irrigation maps. In this study, we
addressed this issue by merging reported irrigation statistics
with independent survey results. Nonetheless, uncertainties
related to irrigated areas may remain unresolved in certain re-
gions. For instance, we found considerable discrepancies be-
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Figure 9. Changes in irrigated area across the six subregions of China during 2000–2020. (a) Relative changes in irrigated area. (b) Changes
in China’s total irrigated area, with the contribution of different subregions depicted in the inserted pie chart. (c) Relative changes in propor-
tion of irrigated area. (d) Proportion of irrigated area for the years 2000, 2010, and 2020.

tween the statistical and surveyed irrigation areas in SC and
NEC (Fig. S10a in the Supplement), implying greater uncer-
tainties in these subregions compared to others. Furthermore,
the irrigation statistics and surveys were reconciled with re-
mote sensing data to address inconsistencies between the two
sources. However, the bias ratio may be inaccurately esti-
mated in the reconciliation process, introducing additional
uncertainties into the results.

Cropland mask layers used to distinguish croplands from
non-croplands are another source of uncertainty. These lay-
ers were constructed using our hybrid cropland product
(Zhang et al., 2024), which integrates five state-of-the-art re-
mote sensing land use and/or cover products. This hybrid
product significantly reduced uncertainties associated with
cropland distributions in China. However, remote-sensing-
derived cropland data show large uncertainties in southern
China. As illustrated in Fig. S10b in the Supplement, on av-
erage, only 27 % of croplands in SWC, SC, and CSC are
consistently identified by remote sensing products compared
to 39 % in the northern subregions (NEC, NC, and NWC).
These uncertainties are reflected in our hybrid cropland prod-
uct, which shows greater accuracy in the northern subregions
than in the southern ones (Fig. S10c in the Supplement).
Meanwhile, the temporal resolution of the cropland layers is
5 years, which may not accurately capture changes in crop-
land distribution in regions experiencing rapid changes. The

uncertainties and errors in the cropland mask layer, particu-
larly in southern China, could propagate into CIrrMap250.

An additional source of uncertainty is the MODIS-derived
vegetation indices (i.e. NDVI, EVI, and GI). These indices
are prone to data gaps due to cloud and cloud shadow con-
taminations. In this study, we filled the data gaps by using a
simple nearest-neighbour interpolation method, which may
introduce uncertainties into CIrrMap250. Additionally, irri-
gated croplands in humid southern China are more sparsely
distributed and show weaker contrasts with rainfed fields
compared to northern China. This makes the peak vegetation
indices less effective and more uncertain in distinguishing ir-
rigated from rainfed cropland (Xie et al., 2019; C. Zhang et
al., 2022a). Consequently, our CIrrMap250 product exhibits
higher accuracy in the NEC, NWC, and NC subregions than
in the SC, CSC, and SWC subregions (Fig. S10d in the Sup-
plement).

Lastly, CIrrMap250 has the limitation of a relatively
coarse spatial resolution of 250 m and does not fully address
the mixed-pixel problem. While CIrrMap250 offers a higher
spatial resolution than many existing large-scale irrigation
maps, it may not be suitable for local applications, such as
field or irrigation district levels. The mixed-pixel problem
significantly affects the precision of cropland masks (Zhang
et al., 2024) and weakens the distinction between vegeta-
tion indices for irrigated and rainfed cropland. Even though
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Figure 10. Changes in irrigated area between 2000 and 2020 under different water stress levels. Panels (a) and (b) present the spatial
distribution of gross expansions and reductions in irrigated area under four categories of water stress (i.e. low, moderate, severe, and extreme).
Panel (c) shows the gross and net changes in irrigated area by water stress category for China, while panel (d) presents the results for the six
subregions.

CIrrMap250 considers the fractional coverage of cropland,
it does not differentiate between irrigated and rainfed crop-
lands at subpixel scales, like many other existing irrigation
maps. There are many small and fragmented croplands in
the mountainous regions of southern China. CIrrMap250
should be used with caution in these areas due to the preva-
lence of mixed pixels. Additionally, CIrrMap250 was cre-
ated at an annual frequency and therefore does not provide
monthly and seasonal irrigation information. A pixel is clas-
sified as irrigated if it has been irrigated at any point during
the year, regardless of the specific month or season. While a
growth-season-based irrigation product could be more desir-
able, it faces significant challenges, such as the lack of high-
resolution crop type information (e.g. rice, wheat, maize) and

high-quality training samples with sufficient temporal reso-
lution.

Despite these limitations, CIrrMap250 makes a valuable
contribution to the field of irrigation mapping and is poised to
significantly support agricultural, hydrological, and climate
studies, as well as water resource management in China. On-
going efforts to address these limitations and to explore po-
tential enhancements will undoubtedly improve the accuracy
and utility of our irrigation maps in the future. One of the
major applications of CIrrMap250 will be estimating irriga-
tion water use or requirements, considering the fact that irri-
gated area is a dominate driver of irrigation water withdrawal
(Ozdogan and Gutman, 2008; Puy et al., 2021). Secondly,
the spatial detail provided by CIrrMap250 can be integrated
into crop, hydrological, and climate models to improve the
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simulations of water uses and land–atmosphere interactions
(Uniyal and Dietrich, 2021; McDermid et al., 2023; Yang et
al., 2023). This integration will advance our understanding of
how irrigation practices influence crop yield and of hydrolog-
ical and climatic processes from local to nationwide scales.
Lastly, CIrrMap250 provides insights into irrigation changes
and can assist in optimizing the spatial distribution of irri-
gated croplands (Rosa et al., 2020a, b), thereby supporting
more informed decisions for sustainable water and land use.

6 Data availability

The annual maps of China’s irrigated cropland from
2000 to 2020 (named CIrrMap250) can be accessed at
https://doi.org/10.6084/m9.figshare.24814293.v2 (Zhang et
al., 2023a). All maps are presented in GeoTIFF format,
with the geographic coordinate of WGS84. The pixel size is
0.00225× 0.00225 degrees (∼ 250 m× 250 m at the Equa-
tor). Our maps show the percentage of each 250 m pixel
covered by irrigated cropland (i.e. pixel value= irrigated
area/pixel area× 100). Note that our product accounts for
the fractional coverage of croplands within coarse-resolution
MODIS pixels but does not differentiate between irrigated
and rainfed croplands at subpixel scales. For example, if a
pixel has 50 % cropland coverage, all cropland within that
pixel would be classified as either irrigated or non-irrigated.

7 Conclusions

China, as a big agricultural country with extensive irriga-
tion, underscores the critical importance of developing re-
liable irrigation maps for sustainable land–water–food nexus
management. This study presented new annual maps of ir-
rigated cropland in China spanning from 2000 to 2020, re-
ferred to as CIrrMap250. These maps were developed by
integrating multisource data, including remote sensing data,
reported statistics and surveys, and an irrigation suitability
map. Validation against 20 720 reference samples demon-
strated that our irrigation maps achieved high accuracy and
outperformed the currently available products covering the
entirety of China. The superiority of our product over ex-
isting maps was further confirmed through the assessments
using irrigation water withdrawal data and local-scale vi-
sual comparisons. Based on the 21 years of data, we found
a clear upward trend and northward shift in China’s irriga-
tion area. The irrigation expansion is particularly notable in
water-scarce regions like northeastern China and northwest-
ern China, potentially exacerbating water scarcity concerns.
CIrrMap250 will significantly enhance agricultural, hydro-
logical, and climate studies, as well as water resource man-
agement in China.
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