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Abstract. Grazing activities constitute the paramount challenge to grassland conservation over the Qinghai–
Tibet Plateau (QTP), underscoring the urgency of obtaining detailed information regarding the extent, patterns,
and trends of grazing to enable efficient grassland management and sustainable development. Here, to inform
stakeholders about these issues, we provided the first annual Gridded Dataset of Grazing Intensity (GDGI), with
a resolution of 100 m, from 1990 to 2020 for the QTP. The five most commonly used machine learning al-
gorithms were leveraged to develop a livestock spatialization model, which spatially disaggregates the livestock
census data at the county level into a detailed 100 m× 100 m grid based on seven key predictors from terrain, cli-
mate, vegetation, and socio-economic factors. Among these algorithms, the extreme-tree (ET) model performed
the best in representing the complex nonlinear relationship between various environmental factors and livestock
intensity, with an average absolute error of just 0.081 SUha−2 (where SU denotes sheep units), a rate outper-
forming the other models by 21.58 %–414.60 %. By using the ET model, we further generated the GDGI for the
QTP to reveal the spatio-temporal heterogeneity and variations in grazing intensities. The GDGI indicates that
grazing intensity remained high and largely stable from 1990 to 1997, followed by a sharp decline from 1997 to
2001 and fluctuations thereafter. Encouragingly, compared to other open-access datasets for grazing distribution
on the QTP, the GDGI has the highest accuracy, with the determinant coefficient (R2) exceeding 0.8. Given
its high resolution, recentness, and robustness, we believe that the GDGI dataset can significantly enhance our
understanding of the substantial threats to grasslands emanating from overgrazing activities. Furthermore, the
GDGI product holds considerable potential as a foundational source for other research, facilitating the rational
utilization of grasslands, refined environmental impact assessments, and the sustainable development of animal
husbandry. The GDGI product developed in this study is available at https://doi.org/10.5281/zenodo.10851119
(Zhou et al., 2024).

1 Introduction

Livestock is a crucial contributor to global food systems
through the provision of essential animal proteins and fats
and plays a significant role in supporting human survival
and socio-economic development (Gilbert et al., 2018; God-
fray et al., 2018; Humpenöder et al., 2022; Kumar et al.,
2022). However, the escalating increase in human demand
for meat and dairy products over recent decades has triggered
a livestock boom, which, in turn, has increasingly threatened

grassland ecosystems and placed a heavy burden on the envi-
ronment through overgrazing and land use change (Tabassum
et al., 2016; Wei et al., 2022; Minoofar et al., 2023). It is es-
timated that up to 300 ×106 ha of land is used globally for
grazing and cultivating fodder crops (Tabassum et al., 2016).
Grazing activities could alter vegetation phenology and com-
munity structure (Dong et al., 2020) and could trigger de-
forestation (García Ruiz et al., 2020), grassland degradation
(Sun et al., 2020), soil erosion (Shakoor et al., 2021), and
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associated direct releases of greenhouse gases that lead to
climate change feedback (Godfray et al., 2018; Chang et al.,
2021). Additionally, livestock are responsible for large-scale
dispersion of pathogens, organic matter, and residual medi-
cations into soil and groundwater, thereby contaminating the
environment (Venglovsky et al., 2009; Tabassum et al., 2016;
Hu et al., 2017; Muloi et al., 2022). Consequently, more and
more scholars have called for attention to provide reliable
contemporary datasets to illustrate the spatio-temporal het-
erogeneity and variations of livestock (Petz et al., 2014; Fet-
zel et al., 2017; Zhang et al., 2018; Li et al., 2021).

One of the major challenges in monitoring grazing ac-
tivity at regional or even larger scales is the determination
of the livestock distribution pattern. Despite the importance
of geographical grazing information, high spatio-temporal
grazing datasets remain unavailable, posing the most criti-
cal challenge to grassland management, particularly for vul-
nerable grassland ecosystems in fragile regions grappling
with economic- and sustainable-development contradictions
(Meng et al., 2023; Pozo et al., 2021; Miao et al., 2020;
He et al., 2022). In the early 2000s, the Food and Agricul-
ture Organization of the United Nations (FAO) launched the
Gridded Livestock of the World (GLW) project to facilitate
a detailed evaluation of livestock production, aiming to pro-
vide pixel-scale livestock densities instead of traditional ad-
ministrative unit benchmarks (Nicolas et al., 2016). Conse-
quently, the world’s inaugural dataset of livestock spatial-
ization (GLW1) was released in 2007, providing the first
globally standardized livestock density distribution map at
a spatial resolution of 0.05 decimal degrees (≈ 5 km at the
Equator) for 2002. It was not until 2014 that an updated
GLW2 map with a 1 km resolution for 2006 was released;
this updated map used a stratified regression approach, su-
perior spatial resolution predictor variables, and more de-
tailed livestock census data (Robinson et al., 2014). Further-
more, an evolutionary step in machine learning technology
saw Gilbert et al. (2018) using random forest algorithms to
forge a global livestock distribution map with a 10 km reso-
lution for 2010 (GLW3), succeeding traditional multivariate
regression methods and surpassing the precision of previous
GLW1 and GLW2 maps. Beyond these global mappings, sev-
eral maps with different scales have also been published, in-
cluding ones on intercontinental, national, state or provincial,
and local scales (Neumann et al., 2009; Prosser et al., 2011;
Van Boeckel et al., 2011; Nicolas et al., 2016). However,
these maps are fundamentally coarse due to constraints re-
garding the availability of fine-scale and contemporary cen-
sus data, the grazing-spatialization method, and the identifi-
cation of appropriate indicators, thereby limiting their appli-
cation to local- or regional-scale studies (Nicolas et al., 2016;
Gilbert et al., 2018; Robinson et al., 2014). Hence, there is
an emergent demand for more refined grazing map products
(Mulligan et al., 2020; Martinuzzi et al., 2021).

An example of this need can be observed in the Qinghai–
Tibet Plateau (QTP), the world’s most elevated pastoral re-

gion and an important grazing area in China (Zhan et al.,
2023). It is made up of abundant grassland that spans
1.5×106 km2, accounting for 50.43 % of China’s total grass-
land area, with Yak and Tibetan sheep as the primary graz-
ing livestock (Feng et al., 2009; Cai et al., 2014; Zhan et al.,
2023). Over recent decades, the QTP has undergone esca-
lating grassland degradation, leading to many ecological and
socio-economic problems, which represent the urgent need
for detailed livestock distribution datasets (M. Q. Li et al.,
2022). Unfortunately, despite researchers’ efforts at mapping
the QTP’s grazing intensity, current livestock datasets still
suffer from coarse spatio-temporal resolutions and model-
ing accuracies. Apart from the aforementioned global graz-
ing dataset, several other maps also cover the QTP. For in-
stance, Liu (2021) generated annual 250 m gridded carrying-
capacity maps for 2000–2019 by employing multiple linear
regressions of livestock numbers, population density, net pri-
mary productivity (NPP), and topographic features. Li et al.
(2021) used machine learning algorithms to produce gridded
livestock distribution data at 1 km resolution for 2000–2015
in western China at a 5-year interval based on county-level
livestock census data and 13 factors from land use practice,
topography, climate, and socio-economic aspects, including
grassland coverage, arable land coverage, forest land cover-
age, desert coverage, normalized difference vegetation index
(NDVI), elevation, slope, daytime surface temperature, pre-
cipitation, distance to river, travel time to major cities, popu-
lation density, and gross domestic product (Li et al., 2021). A
contribution by Meng et al. (2023) brought forth longer an-
nual time series grazing maps by using random forest mod-
els, integrating climate, soil, NDVI, water distance, and set-
tlement density to decompose county-level livestock census
data to a 0.083° (≈ 10 km at the Equator) grid for 1982–2015
(Meng et al., 2023). Similarly, Zhan et al. (2023) also used
random forest algorithms to combine 11 influence factors to
provide a winter- and summer-grazing density map at 500 m
resolution for 2020 (Zhan et al., 2023).

However, although these maps have provided good help
in understanding grazing conditions on the QTP, there are
currently still no maps that can satisfy the need for fine-
scale grassland management with a long time span. In ad-
dition, the available livestock distribution maps of the QTP
still need improvement in terms of modeling techniques and
factor selection to obtain high-precision livestock spatializa-
tion data. For example, traditional methods like multiple lin-
ear regression, while having been proven to be fundamental
and widely applicable for livestock spatialization (Robinson
et al., 2014; Ma et al., 2022), are being challenged by the de-
velopment of computational science in recent years. Among
them, machine learning technology is providing new oppor-
tunities for more accurate predictions of livestock distribu-
tion (García et al., 2020). Random forest regression, for in-
stance, is currently widely used to construct global, national,
and regional livestock spatialization datasets and has been
proved to have much better accuracy than traditional map-
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ping techniques (Rokach, 2016; Nicolas et al., 2016; Gilbert
et al., 2018; Dara et al., 2020; Chen et al., 2019; Li et al.,
2021). Nevertheless, other more advanced machine learning
methods with superior feature learning and more robust gen-
eralization capabilities remain largely untapped for modeling
geographic data (Ahmad et al., 2018; Heddam et al., 2020;
Long et al., 2022). Thus, exploring the potential application
of new advanced machine learning technologies in livestock
spatialization remains a critical task. Furthermore, selecting
suitable factors that influence livestock grazing preferences
is also the other critical challenge for enhancing the pre-
cision of grazing-distribution datasets (Meng et al., 2023).
Livestock grazing activities are often affected by abiotic and
biotic resources, including climatic and environmental fac-
tors (Waha et al., 2018), herd foraging and grazing behaviors
(Garrett et al., 2018; Miao et al., 2020), and conservation-
oriented policies (Li et al., 2021). For instance, regions ex-
ceeding elevations of 5600 m or with slopes greater than
40 % are customarily unsuitable for grazing (Luo et al., 2013;
Mack et al., 2013; Robinson et al., 2014; Chen et al., 2019).
Moreover, the livestock generally prefer areas abundant in
water and pasture resources for foraging (Li et al., 2021).
Besides, ecological conservation policies also exert a sub-
stantial influence, significantly affecting grazing distribution
relative to the level of conservation priority. In addition, the
health status of the grassland is an important factor influenc-
ing whether or not livestock choose to feed (Li et al., 2021).
Consequently, indicators related to the above aspects are of-
ten employed to gauge the spatial heterogeneity of livestock
distribution (Allred et al., 2013; Sun et al., 2021; Meng et al.,
2023). Nonetheless, some of the most commonly used in-
dicators like NPP or NDVI can result in misconceptions as
they may not fully characterize the grazing intensity. For ex-
ample, grasslands with high NPP or NDVI are often pre-
ferred by livestock, but this does not necessarily correlate
with grazing intensity in nature reserves due to strict policy
restrictions (Veldhuis et al., 2019; O’Neill and Abson, 2009;
Y. Zhang et al., 2021). Conversely, areas with sparse grass-
land cover may support considerable livestock numbers de-
spite evidence of degradation (B. H. Zhang et al., 2021; Guo
et al., 2015). Accordingly, further investigation into novel
indicators is imperative to enhance the correlation between
grassland and grazing intensity, thereby optimizing the inte-
gration of such influencing factors into grazing-spatialization
models.

In summary, the QTP is in pressing need of a high-spatio-
temporal-resolution grazing dataset to address urgent and re-
alistic challenges. However, the existing livestock datasets
specific to the QTP are fraught with several insufficient
and predominantly concerning rough resolutions, relatively
backward census data, and conventional methods in live-
stock spatialization. Moreover, the discrepancies in terms of
predictive indicators and modeling approaches within these
datasets discourage their application in time series analysis.
Consequently, the generation of high-resolution and high-

quality grazing map products has emerged as the most press-
ing challenge for the QTP. Here, we aim to (1) establish a
methodological framework by using more rational models
and indicators than traditional studies to achieve fine-scale
livestock spatialization; (2) select the grazing spatialization
model with good performance by incorporating multi-source
data with advanced machine learning techniques; and (3) ul-
timately, provide an annual grazing-intensity dataset with
100 m resolution spanning from 1990 to 2020. These maps
can not only provide fundamental datasets with finer spatio-
temporal resolutions to address the limitations of existing
grazing-intensity maps but also enable a better understand-
ing of sustainable management practices, as well as of other
grassland-related issues, across the QTP.

2 Data and methods

2.1 Study area

Known as Asia’s water tower and the world’s third
pole, the QTP is geographically situated between 26°00′–
39°47′ N and 73°19′–104°47′ E, with a total area of about
2.61 ×106 km2 (Fig. 1). Its jurisdiction encompasses 182
counties within six provincial regions of China, includ-
ing the Tibet Autonomous Region, Qinghai Province, Xin-
jiang Uygur Autonomous Region, Gansu Province, Sichuan
Province, and Yunnan Province (Meng et al., 2023). The el-
evation of the QTP predominantly ranges between 3000 and
5000 m, with an average altitude exceeding 4000 m. With
grasslands constituting over half of its land cover, the QTP
emerges as one of the most important pastoral areas in China.
Alpine steppe, alpine meadow, and temperate steppe char-
acterize the main grassland types on the QTP (Han et al.,
2019; Zhai et al., 2022; Y. Y. Zhu et al., 2023). The complex
geographical and climatic conditions of the QTP contribute
to the markedly heterogeneous grassland distribution, which
correspondingly leads to the high heterogeneity in livestock
distribution. Moreover, social and economic developments,
coupled with policy initiatives directed towards grassland
restoration, have noticeably impacted the livestock numbers
on the QTP over recent decades (Li et al., 2021; Li et al.,
2016).

2.2 Data source

2.2.1 Census livestock data

The county-level census livestock data for the period be-
tween 1990 and 2020 were obtained from the Bureau of
Statistics of each county across the QTP (Table 1). The data
include the number of cattle, sheep, horse, and mule, with
the exception of counties in Yunnan Province, which lack
data for the years from 1990 to 2007; counties in Ganzi Pre-
fecture in Sichuan Province, which lacks data for the years
from 1990 to 1999; and Muli County in Sichuan Province,
which lacks data for the years from 1990 to 2007. For these
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Figure 1. The geographic zoning map of the Qinghai–Tibet Plateau (QTP) superposed with grassland vegetation.

Table 1. Summary of the livestock data used in this study.

Variables Scale Time Sources

Livestock numbers County 1990–2020 Statistical bureau
Township 2008–2020 Statistical bureau
Pixel 1990–2021 Literature, questionnaires, and field surveys

counties belonging to the same prefecture, including counties
in Ganzi and Aba prefectures in Sichuan Province, we used
the livestock census data at the prefecture level to carry out
spatialization. For these counties in Yunnan Province, since
they belong to different municipalities, it is not reasonable
to replace them with municipal-level data. For these coun-
ties without livestock census data for some years, we supple-
mented the missing data by linear interpolation with grazing-
density data in available years. In total, livestock data were
available for 182 counties, and 4998 independent records
were finally generated. Furthermore, the respective quantities
of different livestock types are converted to standard sheep
units (SU), in compliance with the Chinese national regula-
tions (Meng et al., 2023).

Due to the difficulty of collecting township-level census
livestock data, the validation data at the township scale col-
lected in this study only involved the townships of Baching
County (2010–2018) and Gaize County (2018–2020) in Ti-
bet and Hongyuan County in Sichuan Province (2008). The
township-level census livestock data cumulatively involve

18 townships with a total of 112 records and were only used
for auxiliary validation of the simulation results.

The validation data at the pixel scale also encompass a to-
tal of 112 records from 68 sites, which were collected from
the literature, questionnaires, and field surveys. Specifically,
93 records at 49 sites spanning the 1990–2021 period were
obtained from 17 literature sources, and 19 records from
19 sites were obtained from the questionnaires and the field
survey in 2021. The detailed information for these records
can be found in Fig. S3 and Table S3 in the Supplement.

2.2.2 Factors affecting grazing activities

Livestock grazing activities are often affected by abiotic and
biotic resources, including climatic and environmental fac-
tors (Waha et al., 2018), as well as herd foraging and graz-
ing behaviors (Garrett et al., 2018; Miao et al., 2020). For
instance, high-altitude and steep hillsides are unsuitable for
grazing due to terrain constraints, and the distribution of
herders directly affects the grazing areas (Luo et al., 2013;
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Table 2. Summary of factors affecting grazing activities on the QTP.

Variables Format Period Time Spatial Source
resolution resolution (m)

Altitude GeoTIFF – – 30 https://www.gscloud.cn (last access: 12 July 2022)
Slope GeoTIFF – – 30 https://data.tpdc.ac.cn (last access: 21 October 2022)
Water source Shapefile 1990–2020 Annual – https://data.tpdc.ac.cn (last access: 21 October 2022)
Population density GeoTIFF 1990–2020 Annual 100 See Supplement
Temperature GeoTIFF 1990–2020 Annual 100 See Supplement
Precipitation GeoTIFF 1990–2020 Annual 100 See Supplement
HNPP GeoTIFF 1990–2020 Annual 100 See Supplement

Mack et al., 2013; Robinson et al., 2014; Chen et al., 2019).
Moreover, the livestock generally prefer areas abundant in
water and pasture resources for foraging (Li et al., 2021).
Therefore, in this study, topography, climatic, environmental,
and socio-economic impacts were considered to be influen-
tial factors in grazing activities (Li et al., 2021; Meng et al.,
2023).

We utilized correlation analysis and the random forest
importance-ranking tool to eliminate redundant environmen-
tal factors and to determine the contribution of each factor.
Ultimately, altitude, slope, distance to water source, pop-
ulation density, air temperature, precipitation, and human-
induced impacts on NPP (HNPP) were selected as indica-
tors (Table 2). Specifically, elevation is derived from the dig-
ital elevation model (DEM) dataset accessible via the Re-
source and Environmental Data Cloud Platform of the Chi-
nese Academy of Sciences (https://www.gscloud.cn, last ac-
cess: 12 July 2022), which also facilitated slope calcula-
tion. Data on rivers and lakes were obtained from the Na-
tional Tibetan Plateau Data Center (https://data.tpdc.ac.cn,
last access: 21 October 2022), and the nearest Euclidean dis-
tance from each pixel to rivers or lakes is calculated accord-
ingly. Meteorological elements such as daily air temperature
and precipitation were downloaded from the China Meteoro-
logical Data Service Center (http://data.cma.cn, last access:
18 April 2022). For the grid dataset that is not conditionally
available, including population density, temperature, precip-
itation, and HNPP, we detailed the creation process in the
Supplement. All datasets utilized in this study were harmo-
nized in relation to consistent coordinate systems and resolu-
tions (WGS 1984 Albers, 100 m).

2.3 Methodological framework

We adopted a comprehensive methodological framework for
mapping high-resolution grazing intensity on the QTP. This
study applied FAO’s assumption that the relationship be-
tween environmental factors and livestock intensity is iden-
tical at both the administrative and pixel level. Three ma-
jor steps are included to predict the distribution pattern of
grazing intensity: (1) identifying factors affecting grazing ac-
tivities and extracting theoretically suitable areas for live-

stock grazing, (2) building a grazing-spatialization model,
and (3) filtering the model and correcting the grazing map.
An exhaustive explanation of each step is provided in Fig. 2.

2.3.1 Identifying factors and theoretically suitable areas
for grazing

In this study, we assumed that grazing activities are con-
fined solely to grassland. Consequently, the potential graz-
ing areas for each year were identified on the basis of grass-
land boundaries, which were extracted from the 30 m annual
land cover dataset (CLCD) (Yang and Huang, 2021). Further-
more, grasslands with slopes over 40 % and elevations higher
than 5600 m were considered to be unsuitable for grazing and
were therefore excluded from the potential grazing area in
the subsequent simulations (Robinson et al., 2014). In ad-
dition, the grasslands with a population density greater than
50 inhabitants per square kilometer were also excluded (Li
et al., 2018). The remaining isolated grasslands were thus
categorized as theoretically feasible grazing regions.

The spatial patterns of abiotic and biotic resources, incor-
porating food availability, environmental stress, and herder
preference, critically affect grazing activities (Meng et al.,
2023). In light of this, seven influencing factors covered by
four categories were selected for grazing-intensity mapping
(Fig. 2.1).

2.3.2 Building a grazing-spatialization model

By assessing regional statistics, the annual average values for
each grazing influence factor were extracted from the theo-
retically suitable grazing areas at the county scale and were
further used as independent variables in the model construc-
tion. The dependent variable for the model was acquired by
determining the livestock density within each county, fol-
lowed by a logarithmic transformation of the values to nor-
malize the distribution of the dependent variable. Conse-
quently, a total of 4998 samples were derived from the afore-
mentioned independent and dependent variables. Of these
samples, 70 % were allocated to model training, while the
remaining 30 % comprised the test sets, serving to validate
the model’s performance. Subsequently, we built grazing-
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Figure 2. Flowchart of creating grazing-intensity maps using different methods and source products.

spatialization models using five machine learning algorithms
at the county scale, including support vector (SV) regres-
sion (Cortes and Vapnik, 1995; Lin et al., 2022), K-nearest
neighbors (KNNs) (Cover and Hart, 1967), gradient-boosting
(GB) regression (Friedman, 2001; Pan et al., 2019), random
forests (RFs) (Breiman, 2001), and extra-tree (ET) regression
(Geurts et al., 2006; Ahmad et al., 2018) (see the Supplement
for details). Lastly, to assess the accuracy of the spatialized
livestock map, the predicted livestock intensity values were
juxtaposed with the livestock statistical data from each re-
spective county.

2.3.3 Correcting the grazing map

We further used the optimal model to predict the geographi-
cal distribution of grazing density across the QTP. To main-
tain better consistency between the predicted livestock num-
ber and the census data, the estimated results were adjusted
using the census livestock numbers at the county scale as a

control according to Eq. (1). Consequently, the corrected and
refined map is presented as the final grazing-intensity map in
this study.

Lcorrection =
LCCensus

LCgrid
×Lgrid (1)

In the above, Lcorrection is the predicted pixel-scale live-
stock number after adjustment, LCgrid represents the esti-
mated livestock number for each county, LCCensus is the cen-
sus livestock number for each county, and Lgrid refers to the
predicted livestock number at the pixel scale.

2.4 Accuracy evaluation

We used three accuracy validation indices, namely coeffi-
cients of determination (R2), mean absolute error (MAE),
and root mean square error (RMSE), to evaluate the perfor-
mance of five machine learning algorithms through a com-
parison of the predicted value with the census data. The def-
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initions of three metrics are presented in Eqs. (2) to (4).

R2
= 1−

n∑
i=1

(Ci −Pi)2

n∑
i=1

(Ci −C)2
(2)

MAE=
1
n

n∑
i=1
|Ci −Pi | (3)

RMSE=

√√√√1
n

n∑
i=1

(Ci −Pi)2 (4)

In the above, Ci and Pi are the census livestock data and
the predicted value for county i, respectively; C represents
the mean census value for all counties; and n gives the total
number of counties.

2.5 Uncertainty evaluation

Uncertainty in our grazing intensity maps can stem from
multiple sources, such as the constraints of cross-scale mod-
eling and the intrinsic inaccuracies of the input data. To
quantify these uncertainties, we utilized the Monte Carlo
(MC) method, conducting 100 iterations of simulation. Sub-
sequently, we evaluated uncertainty through the mean rela-
tive error (MRE) and assessed the model’s robustness using
the standard deviation (SD) following established method-
ologies (Yang et al., 2020; Alexander et al., 2017; McMillan
et al., 2018). The definitions for these metrics are delineated
in Eqs. (5) to (7).

MC=
1
n

n∑
i=1

f (xi) (5)

MRE=
1
n

n∑
i=1

∣∣∣∣xi − x

x

∣∣∣∣ (6)

SD=
1
n

n∑
i=1

f (xi)

√√√√1
n

n∑
i

(xi − x) (7)

In the above, xi are random samples, f (xi) is the function
evaluated at xi , and n is the number of simulations. x repre-
sents the mean value for all simulation maps.

3 Results

3.1 Performances of models

Table 3 summarizes the efficiency of the five machine learn-
ing models used, with a consideration of all three accuracy
evaluators of R2, MAE, and RMSE. It can be seen that the
ET model performs the best, with its R2 exceeding 0.955 and
with its MAE (0.081 SUha−2) and RMSE (0.164 SUha−2)
being significantly lower than the values of RF, GB, KNN,

Table 3. Comparison of mapping accuracy for five machine learn-
ing models based on the same validation datasets.

Models R2 MAE (SUha−2) RMSE (SUha−2)

ET 0.955 0.081 0.164
RF 0.928 0.099 0.208
GB 0.859 0.197 0.300
KNN 0.786 0.186 0.384
SVM 0.380 0.419 0.750

Note that the MAE and RMSE have been calculated using inverse logarithmic
transformation, representing the actual values.

and support vector machine (SVM) models. Figure 3 illus-
trates the correlation between the census livestock data and
the livestock numbers predicted by the model for each county
from 1990 to 2020. It is demonstrated that the ET-predicted
data displayed a distribution pattern consistent with that of
other models, but the scatter points of the ET model were
more convergent in relation to the 1 : 1 diagonal line, indi-
cating a superior fit compared to the other models. These
comparisons suggest that the ET model possesses superior
robustness and can, therefore, provide stable estimations of
livestock intensity on the QTP.

Using the ET model, we projected the spatio-temporal dis-
tribution of grazing intensity across the QTP from 1990 to
2020 at a 100 m× 100 m resolution. To validate the accuracy
of these predictive maps, we upscaled the pixel-level predic-
tions to the county level and compared them against livestock
census data (Fig. 4a and b). The results clearly show a high
degree of consistency between the predicted livestock inten-
sity and the county-level census data, especially in areas with
lower grazing intensity (Fig. 4a and b). Specifically, while
the mean census data indicated 2.983 SUha−2 for livestock
intensity, our county-level predictions yielded an average of
3.106 SUha−2, with an MAE of 0.123 SUha−2, an RMSE
of 0.580 SUha−2, and an R2 value of 0.669. Additionally,
76.31 % of the counties (n= 3814) exhibited data discrepan-
cies of no more than 0.6 SUha−2, and 91.74 % (n= 4585)
had discrepancies under 1.0 SUha−2. Regarding the spa-
tial distribution, areas with data discrepancies of less than
0.3 SUha−2 were predominantly located in the northwestern
and southeastern regions of the QTP. In certain counties of
the northeast and southwest, the variations were even below
1.0 SUha−2 (Fig. 4c).

3.2 Evaluation of uncertainties

We have chosen the mean relative error (MRE) as a key met-
ric for evaluating the simulation accuracy of grazing inten-
sity within the QTP. Employing Monte Carlo simulations
spanning the period from 1990 to 2020, our research find-
ings demonstrate that the average MRE for grazing intensity
across the QTP ranged between 6.84 % and 9.08 % (Fig. 5a).
The spatial distribution of MRE indicates that the majority of
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Figure 3. Scatterplots of model-predicted livestock numbers and census grazing data (scaled by logarithm) at the county level. The solid red
line and the solid black line are the fitting line and the 1 : 1 diagonal line, respectively.

the plateau exhibits low error margins. For example, in 2020,
areas with an MRE of less than 5 % accounted for 35.86 %
of the total grassland area, while those with an MRE below
10 % constituted 75.84 %. Only 3.38 % of the grasslands had
an MRE exceeding 20 %, with these regions being primar-
ily located in the southwestern portion of the QTP (Fig. 5b).
Moreover, the robustness analysis suggests that the majority
of regions within the QTP display relatively stable grazing-
intensity trends. For instance, the overall standard deviation
(SD) in 2020 was 0.059 SUha−2, with the northwestern re-
gion demonstrating remarkable stability, reflected in an SD
of less than 0.005 SUha−2. Although some areas within the
Yarlung Zangbo River basin and in the eastern part of Qing-
hai Province experienced higher variability, their SD was still
maintained below 0.3 SUha−2 (Fig. 5c).

3.3 Validation of the GDGI dataset

After employing the county-level livestock census as a
benchmark for quality control, we obtained the annual Grid-
ded Dataset of Grazing Intensity (GDGI) across the QTP,
spanning 31 years from 1990 to 2020. We firstly con-
firmed the accuracy of the GDGI dataset based on 112
field grazing-intensity records at 68 sites (see Table S3
in the Supplement for details), which ranged from 0 to
5.61 sheep units per hectare (SUha−2) and covered three

main grasslands on the QTP: the alpine steppe (N = 62),
alpine meadow (N = 46), and alpine desert steppe (N = 4).
The GDGI dataset was assessed by undertaking a compar-
ative accuracy assessment with the field grazing-intensity
data (Fig. 6a). It can be seen that, in general, our dataset
was highly consistent with the reference ground-truth val-
idation data, with R2

= 0.804, MAE= 0.572 SUha−2, and
RMSE= 0.953 SUha−2. Moreover, the absolute errors be-
tween the GDGI data and the field grazing-intensity data
were relatively small, with more than half of the records
having an error below 0.3 SUha−2, 78.57 % having an er-
ror below 1.0 SUha−2, and 89.29 % having an error below
1.5 SUha−2 (Fig. 6b).

We further validated the precision of the GDGI dataset us-
ing the township-level livestock census data. Encouragingly,
the evaluation results showed that the GDGI dataset demon-
strates excellent performance at the township scale (Fig. 7a),
with R2 of 0.867, MAE of 0.208 SUha−2, and RMSE of
0.276 SUha−2. In addition, similarly to the census data, the
GDGI dataset indicated that some townships with few grass-
lands areas are still under high grazing pressure (Fig. 7b
and c).
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Figure 4. Accuracy of the ET-predicted grazing-intensity results at a spatial resolution of 100 m from 1990 to 2020. (a) Absolute error (AE)
between the predicted and the census data at the county scale from 1990 to 2020; (b) comparison of the predicted and census data of the
whole QTP from 1990 to 2020; (c) spatial distribution of the mean absolute error (MAE) during 1990 to 2020 for each county.

3.4 Spatio-temporal variations in grazing intensity

In terms of the temporal trends of grazing intensity, overall,
the GDGI dataset exhibited consistent trends with the live-
stock census data (Fig. 8d–f). Specifically, the census data in-
dicated that the livestock numbers remained high and largely
stable from 1990 to 1997, followed by a sharp decline from
1997 to 2001 and then a period of fluctuation post-2001,
which was successfully captured by the GDGI dataset. More-
over, the spatial heterogeneity of grazing intensity within the
counties over the QTP was also effectively reflected by the
GDGI dataset, a characteristic not illustrated by the census
dataset. For example, areas of high grazing intensity were
concentrated in the northeastern and south-central regions
of the plateau, mainly including the eastern part of Qing-
hai Province, the southwestern part of Gansu Province, the
northwestern part of Sichuan Province, and the eastern re-
gion of the Tibet Autonomous Region (Fig. 8e and f).

Over the past 31 years, 63.95 % of the plateau’s grassland
showed a decreasing trend in grazing intensity, with 49.80 %
showing significant decreases, primarily located in the east-
ern Sanjiangyuan area and the southwestern region of the
QTP (Fig. 8e and f). Meanwhile, grazing intensity saw an
increase in 36.05 % of the grassland, but most of these areas

(60.16 %) did not reach the level of significance and were
mainly distributed in the northeastern plateau (Fig. 8e and f).

4 Discussion

4.1 Comparison with other grazing-intensity maps

To further assess the effectiveness and reliability of the de-
veloped GDGI dataset, the mapping results were juxtaposed
with seven publicly available grazing-intensity maps cov-
ering the QTP (Table 4). It can be seen that, despite their
public availability, these maps were lacking in both spatial
and temporal resolutions when juxtaposed with the GDGI
maps. Our analysis was extended to four openly accessi-
ble gridded livestock datasets, including GI-Sun (Sun et al.,
2021), ALCC (Liu, 2021), GI-Meng (Meng et al., 2023) and
GLW (Gilbert et al., 2018). A commonality among all five
maps was the consistency of the spatial patterns of graz-
ing intensity, with prevalent high and low intensities in the
northeastern and northwestern regions, respectively (Fig. 9).
However, these maps differed significantly in terms of accu-
racy. As the grazing intensity maps of GLW and ALCC were
produced based on the livestock census data in 2001 and
2015, an accuracy comparison for the corresponding years
was conducted among the five datasets at both the county
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Figure 5. Uncertainty analysis of grazing-intensity maps based on ET and Monte Carlo methods. (a) MRE of grazing-intensity maps from
1990 to 2020, (b) spatial distribution of MRE, and (c) spatial distribution of SD.

Figure 6. Validation of the GDGI dataset using 112 field grazing-intensity records at the pixel scale: (a) linear fitting results, (b) absolute
error (AE) distribution.

and township scale. Observations at the county scale indi-
cate that all four datasets, with the exception of GI-Sun, are
largely in alignment with the county census data (Fig. 9b).
When examined at the township scale, GI-Sun and GLW

demonstrate the most significant discrepancies, with MRE
values surpassing 68 %. ALCC and GI-Meng follow, record-
ing MREs of 30.69 % and 38.80 %, respectively. Addition-
ally, the GDGI shows the highest degree of accuracy in re-
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Figure 7. Validation of the GDGI dataset using census livestock data at the township level: (a) linear fit of predicted number and census
data, (b, c) logistic fit of grazing-intensity data and grassland area.

Table 4. Summary of map-derived parameters for this study and the seven other public gridded livestock datasets covering the QTP.

Dataset Accessibility Census Temporal resolution Spatial resolution Period (years) Method Livestock type

GDGI Yes County annual 100 m 1990–2020 (31) ET Standard SU
GLW3 Yes Province/sub-province annual 0.083° (≈ 10 km) 2001 (1) RF Cattle, ducks, pigs, and

chickens
GLW4 Yes Province/sub-province annual 0.083° (≈ 10 km) 2015 (1) RF Sheep and goats
GI-Sun Yes County 5-year interval 1 km 1990–2015 (6) LRA Standard SU
ALCC Yes Province/sub-province annual 250 m 2000–2019 (20) MLR Standard SU
GI-Meng Yes County annual 0.083° (≈ 10 km) 1982–2015 (34) RF Standard SU
GI-Li No County 5-year interval 1 km 2000–2015 (4) DNN Cattle and sheep
GI-Zhan No County season 15′ (∼ 500 m) 2020 (2) RF Standard SU

The abbreviations used in the table are as follows: LRA – linear regression analysis; MLR – multivariate linear regression; DNN – deep neural network.

lation to the township census data, as indicated by the low-
est MAE and RMSE values (Fig. 9c). Moreover, the GDGI
dataset spanning 31 years (1990–2020) was earmarked as
a more suitable choice for long-term studies in comparison
to the other four datasets. Regarding spatial distribution, the
overall patterns of these grazing maps are largely consistent,
exhibiting higher density patterns in the southeast and lower
in the northwest. However, notable discrepancies are still ap-
parent in the finer details. In general, in terms of visually
representing the spatial distribution of livestock, the GDGI
maps exhibit the best performance.

Several potential factors may contribute to the improved
accuracy of the GDGI. First, the livestock census data used
in GDGI are more detailed, aiding in enhancing the accu-
racy of the estimation results. Specifically, GI-sun, ALCC,
GI-Meng, and GDGI all use county-level livestock statis-
tics to map grazing intensity, whereas GLW3 and GLW4 are
based on provincial-level census data, which results in their
accuracy lagging significantly behind the other four datasets
(Nicolas et al., 2016; Sun et al., 2021). Second, after ruling

out areas unsuitable for grazing, we estimate grazing inten-
sity by dividing the livestock numbers from statistical data
by the area of suitable grazing regions. However, these maps
differ in terms of their definitions of suitable grazing areas. In
this study, as with the GI-sun and GI-Meng maps, we consid-
ered grazing to occur only on grasslands and further excluded
unsuitable areas such as high elevations and steep slopes.
This kind of definition is clearly more reasonable than the
GLW series, which removed only waterbodies, urban core
areas, and protected areas with relatively tight regulations
regarding human activity (McSherry and Ritchie, 2013; He
et al., 2022). However, the GI-Meng dataset considers the
core areas of protected areas to be grazing-free regions; this
does not match the actual situation on the QTP (Jiang et al.,
2023; T. Li et al., 2022; Zhao et al., 2020). Those different
thresholds for the definition of suitable grazing areas account
for the fact that each map has different theoretical grazing re-
gions. Third, the selection of models and environmental fac-
tors may also be a significant contributing factor, leading to
variations in predictive accuracy. For instance, different algo-
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Figure 8. Validation of the GDGI maps using the census grazing data from 1990 to 2020: (a) violin plot of the census data and the predicted
value, (b, c) spatial distribution (in SU per pixel), (d) temporal change (in SU per year) (only including 124 counties with livestock census
data), (e–f) spatial distribution of SU changes tested by Sen’s slope and Mann–Kendall tests. Note that ESI stands for extremely signifi-
cant increase (slope > 0 and p < 0.01), SI stands for significant increase (slope > 0 and p < 0.05), NSI stands for non-significant increase
(slope > 0 and p > 0.05), ESD stands for extremely significant decrease (slope < 0 and p < 0.01), SigDec stands for significant decrease
(slope < 0 and p < 0.05), and NSD stands for non-significant decrease (slope < 0 and p > 0.05).

rithms were employed, including linear regression and ma-
chine learning methods (Nicolas et al., 2016; Li et al., 2021).
Additionally, the environmental factors considered varied;
specifically, the GDGI utilized the human-induced net pri-
mary productivity (HNPP) to represent grasslands, whereas
other maps relied on net primary productivity (NPP) and the
normalized difference vegetation index (NDVI) (Allred et al.,
2013; Sun et al., 2021; Meng et al., 2023).

4.2 Spatial heterogeneity of grazing intensities

In general, the multiyear average grazing intensity on the
QTP increased from west to east during 1990 to 2020, with
broad spatial heterogeneity (Fig. 8). Highest grazing inten-
sity was found mainly in the northeastern and south-central
regions of the Plateau (mostly higher than 5.0 SUha−2),

while they were lowest in the northwest (mostly less than
1.0 SUha−2). Over the past 31 years, the average grazing
intensity decreased across most of the Plateau, but 36.05 %
of the entire QTP grassland still encountered a continuous
grazing-intensity increase, especially in the northeastern re-
gions (Fig. 8).

The spatial heterogeneity of grazing intensities on the QTP
may be attributed to the following reasons. First, complex ge-
ographic and climatic conditions on the QTP determine the
heterogeneity of grasslands, which in turn affects livestock
distribution (Wang et al., 2018; Wei et al., 2022). In general,
the grazing-intensity patterns shown in the GDGI maps are
basically consistent with the stocking-rate threshold patterns
in the QTP grasslands, which both decreased from east to
west (Q. Zhu et al., 2023). This phenomenon partially re-
flects the heterogeneity of the grasslands as the alpine mead-
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Figure 9. Comparisons of different grazing datasets for the years 2001 and 2015: (a) spatial patterns, (b) predicted livestock number and
census data at county scale, and (c) accuracy evaluation between predicted livestock number and census data at township scale.

ows and the steppes are mainly distributed in the east and the
west, respectively. Second, the dynamics of socio-economic
development are obviously another important factor deter-
mining grazing intensity. In areas falling behind in terms
of the socio-economic indicators, herders prefer to increase
livestock in an effort to improve household incomes, lead-
ing to greater pressure on grasslands in these regions (Fang
and Wu, 2022). In addition, the perceived increases in hu-
man population also resulted in the considerably increased
need for more livestock (Wei et al., 2022).

The grazing-intensity dynamics across the QTP are partly
reflective of the impacts of various management policies that
have been implemented over distinct periods. For example, a
significant increase in grazing intensity on the QTP was ob-
served in the early 1990s, potentially a direct result of the
introduction of the household contract responsibility system.
Moreover, the grazing intensity experienced a pronounced
decline from 1997 to 2001, as illustrated in Fig. 8d, indica-
tive of the adverse effects of natural disasters. Notably, the
severe snowstorms that struck Naqu in the central QTP dur-
ing 1997–1998 are documented to have caused the mortality
of over 820 000 livestock (Ye et al., 2020). Figure 8d fur-
ther delineates a considerable upsurge in grazing intensity on
the QTP between 2000 and 2010, aligning with the trends re-
ported by Sun et al. (2021) and Li et al. (2021). This observed
increase may be attributed to a rebound in grazing activity
following the aforementioned natural disasters. In addition,
Fig. 8d indicates a sustained decrease in grazing intensity

post-2010 across the plateau, which can be predominantly
ascribed to the implementation of extensive ecological con-
servation projects.

4.3 Implications for grazing management

Nearly half of the grasslands on the QTP have been reported
to be degraded over the past 4 decades (Wang et al., 2018;
Dong et al., 2020), with some reports even indicating that the
degraded grassland has reached 90 % (Wang et al., 2021). It
is widely recognized that overgrazing is the predominant and
most pervasive unsustainable human activity continuing to
drive grassland degradation on the QTP (Wang et al., 2018;
Chen et al., 2019). Generally, these degraded grasslands on
the QTP can be effectively restored by adaptive management
(Wang et al., 2022). However, better management of grass-
lands requires a deeper understanding of the anthropogenic
activities, which still remains an important challenge and can
be effectively addressed by the GDGI dataset.

According to the GDGI maps generated in this study, high-
intensity grazing activities are mainly concentrated in the
northeastern and south-central parts of the QTP, with the
grazing intensity in some areas even being nearly more than
10 times the average value of the entire plateau (Fig. 6b),
and have exceeded the stocking-rate threshold of these grass-
lands (Q. Zhu et al., 2023). Population growth and the re-
lated increasing livelihood demands constitute one of the
main reasons for this increase. To meet daily needs and

https://doi.org/10.5194/essd-16-5171-2024 Earth Syst. Sci. Data, 16, 5171–5189, 2024



5184 J. Zhou et al.: Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020

to enhance household incomes, the herders have endeav-
ored to increase livestock, thereby intensifying grazing pres-
sures on the grasslands over the QTP (Fang and Wu, 2022;
Abu Hammad and Tumeizi, 2012). Although the current av-
erage grazing intensity in the northwestern QTP (around
1.0 SUha−2) is below the average stocking-rate threshold
(around 1.5 SUha−2) (Q. Zhu et al., 2023), the grassland
management should still be given adequate attention. The
northwestern QTP, the driest area on the plateau with low
stocking-rate thresholds, has seen an increase in grazing in-
tensity in recent years. Nevertheless, it must be noted that the
stocking-rate threshold may exceed the carrying capacity be-
cause it is predicted to lead to extreme grassland degradation
(Q. Zhu et al., 2023). The GDGI dataset also showed a simi-
lar pattern between the grazing-intensity data and the World-
Pop data near the built-up areas, indicating higher grazing in-
tensity around settlements compared to other regions on the
QTP. In addition, the GDGI dataset also indicates that, from
1990 to 2020, although the grazing intensity of the Plateau
has generally decreased, the hotspot areas for grazing ac-
tivities have remained almost unchanged. This implies that
these regions should be the focus of adaptive grassland man-
agement to effectively prevent grassland degradation, mainly
based on the grass–livestock balance which varies with time
and space.

Encouragingly, the GDGI dataset shows that the grazing
intensity for two-thirds of the entire QTP grassland has de-
creased over the past 31 years, which is also consistent with
the findings of other studies (Sun et al., 2021; Li et al., 2021).
Recent decades of biodiversity protection; active restora-
tion projects; and management measures, such as nature re-
serves, grazing exclusion, partial grazing bans, and fenc-
ing enclosure, are believed to have driven these decreases
(Deng et al., 2017; Li and Bennett, 2019). In addition, most
grassland in eastern Sanjiangyuan, mid-eastern Changtang,
and the northern foothills of the Himalayas showed a sig-
nificant decrease in grazing intensity (Fig. 6e), indicating
the importance of protected areas in preventing overstock-
ing and grassland degradation. Meanwhile, the GDGI maps
also show that the grazing density varies greatly among pro-
tected areas, possibly owing to the difference in policy im-
plementation. For instance, it can be seen from the GDGI
maps that grazing intensity is increasing in some protected
areas, especially in several wetland nature reserves on the
Zoigê Plateau (Fig. 6e). Moreover, the average grazing inten-
sity in all nature reserves on the QTP has increased overall
from 1990 to 2020, although their increase rate is much lower
than that of the non-protected areas (0.0125 SUha−2

· 10a vs.
0.0304 SUha−2

· 10a), which implies that grassland manage-
ment in protected areas still needs to be strengthened on the
QTP.

The grazing initiatives in alignment with the Sustainable
Development Goals (SDGs) on the QTP can benefit from
the GDGI dataset. Firstly, determining a reasonable stocking
rate is vital to prevent overstocking of the pastures, which

will possibly induce extreme grassland degradation (Q. Zhu
et al., 2023). Stocking-rate determination can be optimized
by using our grazing-intensity maps and the stocking-rate
threshold maps of the QTP. Secondly, the GDGI maps can
contribute to strategic placement of fence, which is a com-
mon practice adopted to prevent grassland degradation on
the QTP. Building fences in areas with high grazing inten-
sity and exceeding the carrying capacity can improve the ef-
fectiveness of fence construction (Zhou et al., 2023; Zhang
et al., 2023). Thirdly, the GDGI dataset can provide a solid
support for promoting effective nature reserve management,
with nature reserves covering, in total, nearly one-third of the
entire QTP. For example, the GDGI maps showed that graz-
ing activities still exist in most nature reserves on the Plateau,
although most of them have significantly lower grazing in-
tensities compared with their adjacent non-protected areas.
By using the GDGI maps, the conflict between ecological
protection and grazing activities in nature reserves can be al-
leviated. Finally, our grazing-intensity maps can act as a ba-
sic dataset to support other grassland-related policies. Cur-
rently, these policies on the QTP often adopt a one-size-fits-
all approach to determine the carrying capacity and to carry
out ecological compensation, which may lead to overstock-
ing or an unfair financial distribution (Wang et al., 2022).
The grassland management strategies balancing carrying ca-
pacity and stocking rates are more likely to result in optimal
management choices for policymakers and stakeholders, and
our GDGI maps can contribute to this decision-making pro-
cesses.

4.4 Uncertainties and limitations

Although this study has collected datasets that are as reliable
as possible, users of the GDGI products should be cognizant
of the inherent uncertainties and limitations within these
datasets. Notably, the mean relative error of the GDGI dataset
spanning 1990 to 2020 was recorded at 4.2 % (Fig. 4a), cal-
culated from the average errors across 182 counties within
the QTP that had accessible livestock census data. Further-
more, approximately 8.26 % of grassland areas exhibited a
relative error exceeding 1.0 SUha−2 (Fig. 4b). Such discrep-
ancies arise from several limitations that were subsequently
propagated to the final grazing-intensity maps, thereby con-
tributing to the dataset’s overall uncertainties.

Firstly, the estimations of grazing intensities were funda-
mentally conservative, primarily due to the lack of compre-
hensive input data. Livestock numbers, derived from year-
end data at the county level, inadvertently led to underes-
timations of grazing intensity by not accounting for live-
stock off-take rates. Likewise, the evaluation focused solely
on livestock grazing intensity, excluding wild herbivores and
forage-dependent livestock, which potentially results in an
underestimation of actual grazing pressures on the QTP. Ad-
ditionally, despite identifying seven main factors influenc-
ing livestock distribution, the study did not encompass all
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potential factors, such as fencing, forage availability, road
proximity, and seasonal transformation in grazing practices.
Moreover, to align with county-scale livestock census data,
we averaged the environmental factors at the county scale.
Although this approach has been widely used based on the
hypothesis that a consistent causal relationship between live-
stock intensity and environmental factors persists across var-
ious scales (Robinson et al., 2014; Nicolas et al., 2016; Li
et al., 2021; Meng et al., 2023), this might oversimplify the
intricate dynamics between grazing intensity and lead to a
certain degree of estimation inaccuracies. In addition, the
reliance on linear extrapolation to supplementary missing
gridded 100 m population density data from 1990–1999 in-
troduced further uncertainties due to the limited resolution
(1 km) and interval (5 year) of the ChinaPop dataset.

Secondly, the modeling process for mapping grazing in-
tensity also suffered from several challenges. Specifically,
this study adopted the FAO’s assumption that the relation-
ship between environmental factors and livestock intensity
is uniform across both administrative and pixel levels. How-
ever, it is unlikely that these relationships are entirely consis-
tent across scales, and the county-level model’s approach in-
evitably smooths spatial details, potentially reducing the pre-
cision of the data. Furthermore, the ET model was trained
with a limited sample size of 4998 and was applied to a
vast area consisting of 150 million pixels, which could com-
promise the model’s accuracy. In addition, despite the ET
model’s design being intended to reduce overfitting risks by
using randomly selected features and partitioning decisions,
the potential for overfitting effects still remains, particularly
when faced with a high number of output classes or insuffi-
cient sample sizes (Geurts et al., 2006; Galelli and Castelletti,
2013). In fact, this limitation was evident in this study as the
generalization capability of the ET model was restricted by
the disparity between the number of training samples and the
total number of pixels, leading to predictions that often ex-
ceed actual livestock census (Fig. 4a).

Thirdly, our methodological framework for high-
resolution gridded grazing dataset mapping was developed
based on the assumption that all grasslands were accessible
to livestock. However, in reality, the amount of available
grassland was less due to fencing and grazing bans on the
QTP (Zhan et al., 2023). Moreover, transhumant herders
generally follow a seasonal calendar for summer pastures
and winter pastures on the QTP. However, we did not
consider these seasonal movements due to data limitations,
which further restrict the analysis of seasonal livestock
distribution patterns (Kolluru et al., 2023). Additionally, the
model’s reliance on the human population as a proxy for
livestock locations overlooked the possibility of high grazing
intensity in areas with low human populations on the QTP,
particularly in regions designated for summer pastures.

Finally, it is important to note that gathering livestock cen-
sus data in the Qinghai–Tibet Plateau presents significant
challenges, leading to a scarcity of livestock validation data

in this study, particularly at the township and pixel scales.
This limitation may, to some extent, impact the reliability of
the grazing-intensity data we have presented.

In summary, all these limitations associated with input
data, the modeling process, and the methodological frame-
work collectively contribute to the uncertainties and reduce
the accuracy of the GDGI maps. We henceforth recommend
that future research should aim to incorporate more detailed
data, consider additional influential factors, enhance key
datasets’ time series consistency, and refine the methodolog-
ical framework to improve the accuracy of grazing-intensity
mapping.

5 Data availability

The annual gridded grazing-intensity maps of the QTP span-
ning from 1990 to 2020 are accessible at the following
link: https://doi.org/10.5281/zenodo.10851119 (Zhou et al.,
2024). Each map is catalogued by year and recorded in Geo-
TIFF format, with values represented in SUha−2 yr−1. These
datasets, with a spatial resolution of 100 m and annual tempo-
ral resolution, utilize the WGS 1984 Albers geographic co-
ordinate system. To streamline data transfer and download
processes, the comprehensive 31-year dataset has been com-
pressed into a ZIP file, readily available for download and
compatible with geographic information system (GIS) soft-
ware for viewing.

6 Conclusions

In this study, we introduce a framework utilizing ET machine
learning algorithms to achieve fine-scale livestock spatializa-
tion, subsequently generating the GDGI dataset across the
QTP. The GDGI has a spatial resolution of 100 m and spans
31 years, from 1990 to 2020. It is consistent with county live-
stock census data of the QTP, and the accuracy evaluations at
both the pixel level and township level underscore the out-
standing reliability and applicability of the GDGI dataset,
which can successfully capture the spatial heterogeneity and
variations in grazing intensities in greater detail. Moreover,
comparisons between the GDGI dataset and other existing
grazing map products further proved the robustness and ef-
ficiency of our dataset and demonstrated the validity of the
proposed framework in the research of livestock spatializa-
tion. Nonetheless, it is imperative for data users to recognize
that the GDGI may still contain inherent uncertainties. Our
Monte Carlo simulations have estimated the average MRE
for grazing intensity across the QTP to vary between 6.84 %
and 9.08 %. The GDGI dataset, as presented in this study, can
enhance the understanding of grazing activities on the QTP.
This, in turn, can aid in the rational utilization of grasslands
and facilitate the implementation of informed and sustainable
management practices.
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Supplement. For gridded datasets that are not directly available
or that do not meet the spatio-temporal resolution requirements –
such as those pertaining to population density, temperature, pre-
cipitation, and HNPP – we have delineated the processing or cre-
ation procedures in the Supplement. The supplement related to this
article is available online at: https://doi.org/10.5194/essd-16-5171-
2024-supplement.
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