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Abstract. Recent decades have seen an exponential rise in the application of machine learning in geoscience.
However, fundamental differences distinguish geoscience data from most other data types. Geoscience datasets
are typically multi-dimensional, and contain 1D (drill holes), 2D (maps or cross-sections), and 3D volumetric
and point data (models/voxels). Geoscience data quality is a product of the data’s resolution and the precision of
the methods used to acquire them. The dimensionality, resolution, and precision of each layer within a geoscience
dataset translate into limitations to the spatiality, scale, and uncertainty of resulting interpretations. Historically,
geoscience datasets were overlaid cartographically to incorporate subjective, experience-driven knowledge and
variances in scale and resolution. These nuances and limitations that underpin the reliability of automated inter-
pretation are well understood by geoscientists but are rarely appropriately transferred to data science. For true
integration of geoscience data, such issues cannot be overlooked without consequence. To apply data analytics
to complex geoscience data (e.g. hydrothermal mineral systems) effectively, methodologies that characterise the
system quantitatively at a common scale, using collocated analyses, should be sought. This paper provides re-
search and exploration insights from an innovative district-wide, scale-integrated geoscience data project, which
analysed 1590 samples from 23 mineral deposits and prospects across the Cloncurry district, Queensland, Aus-
tralia. Nine different analytical techniques were used, including density, magnetic susceptibility, remanent mag-
netisation, anisotropy of magnetic susceptibility, radiometrics, conductivity, automated mineralogy based on
scanning electron microscopy (SEM), geochemistry, and short-wave infrared (SWIR) hyperspectral data with
561 columns of scale-integrated data (+2151 columns of SWIR data). All data were collected on 2.2 cm× 2.5 cm
sample cylinders, a scale at which the confidence in the coupling of data from techniques can be high. These data
are integrated by design to eliminate the need to downscale coarser measurements via assumptions, inferences,
inversions, and interpolations. This scale-consistent approach is critical to the quantitative characterisation of
mineral systems and has numerous applications in mineral exploration, such as linking alteration paragenesis
with structural controls and petrophysical zonation. The Cloncurry METAL dataset is made freely available via
the AuScope Data Repository: https://doi.org/10.60623/82trleue (Austin et al., 2024).
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1 Introduction

With the increase in computer power and the algorithmic
advances of the last few decade(s), there has been a new
wave of statistical application to data analytics (Biamonte
et al., 2017), with machine learning steadily gaining pop-
ularity since the turn of the millennium (Fig. 1) and prov-
ing effective for many applications (e.g. retail, finance). Not
surprisingly, this new enthusiasm has spread to data-heavy
fields of science, which has led to an exponential increase
in the adaptation of machine learning to the analysis of geo-
science data since ca. 2010 (Fig. 1). However, there are fun-
damental differences that distinguish geoscience data from
most other data types to which machine-learning methods
are commonly applied.

Geoscience datasets have highly variable precision and
resolution, which drastically affects the resolution at which
datasets can be confidently scaled and correlated. Geoscience
data are also intrinsically multi-scale and are used at a range
of scales. Geoscience data are multi-dimensional, compris-
ing a range of one-, two-, and three-dimensional products
that are typically transformed and collocated to a com-
mon 2D (i.e. map-based) or 3D (i.e. model-based) frame-
work to facilitate interrogation, integration, and application
(Figs. 2, 3). Remote sensing and geophysics provide infor-
mation about a wide range of crustal depths from surface
imagery to near-surface (e.g. electromagnetics (EM), mag-
netics) and deep crustal (e.g. magnetotellurics (MT), gravity)
imaging.

A major application of geoscience data is mineral explo-
ration, which utilises multiple techniques across a range of
resolutions, spatial distributions, depth sensitivities, and pre-
cision levels to vector towards mineralisation, narrowing the
search space from the terrane to deposit scales. Exploration
is guided by geological knowledge, ranging from assump-
tions (e.g. generic deposit characteristics) to qualitative in-
terpretations and hard data. During the early stages of ex-
ploration, the integration of those data is largely qualitative
and map-based (2D) and incorporates multiple scales of data.
The approach is tried and tested, is often effective, and is ap-
propriate given the nature of the data utilised. However, it
is primarily qualitative and can overlook some of the intrin-
sic properties of the data, including sparsity and their multi-
scale, multi-resolution, and multi-dimensional nature. True
integration of geoscience data (e.g. using modern data ana-
lytics such as machine learning) cannot overlook these issues
without consequence.

Figure 1. Google Scholar™ search results for a range of common
data integration phrases used in geology and mineral exploration.
Data for each point on the graph comprise all results for the 2 years
prior to that year. Each dataset is normalised to 2016 to provide
a meaningful comparison of recent trends in the use of different
techniques. Based on Austin et al. (2021a).

Accurate scaling of multi-resolution and multi-
dimensional data can be achieved using geophysics,
provided scale-consistent, collocated ore body knowledge is
available. Such quantitative knowledge of mineral systems
allows conversion of mineral system processes into scalable
properties, which constrain geophysical models, facilitate
true quantitative integration, and underpin predictive mineral
discovery.

Here we present (to our knowledge) the world’s first
publicly available, district-wide, scale-integrated, collocated
geoscience dataset. It incorporates 2712 columns of data
(NB > 2000 of these are hyperspectral data) from nine dif-
ferent techniques and includes detailed petrophysical data,
such as density, magnetic susceptibility, remanent magneti-
sation, magnetic fabrics (anisotropy of magnetic susceptibil-
ity, AMS), radiometrics, and conductivity. It contains com-
prehensive mineralogy, mineral texture, and alteration in-
formation based on TESCAN Integrated Mineral Analyzer
(TIMA)–scanning electron microscopy (SEM) scans. It also
contains comprehensive geochemistry (from both portable
X-ray fluorescence analyses and analyses of powders) and
hyperspectral data. It contains information for 1590 sam-
ples (many with three specimens each), extracted from 23
deposits and prospects: Altia, Artemis, Brumby, Barbara,
Cameron River, Cannington, Canteen, Cormorant, E1 North,
Eloise, Ernest Henry, Great Australia, Kalman, Kulthor, Lit-
tle Eva, Maronan, Merlin, Monakoff, Mt Colin, Osborne,
Starra-276, SWAN/Domain 81, and Trekelano.

This dataset allows all the major techniques used in min-
eral exploration and deposit characterisation to be correlated
and contrasted at the same scale by providing quantitative,
integrated insights into the processes that control geophys-
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Figure 2. Illustration of some of the different scales of data in mineral exploration and some common linkages between scales. (a) The
terrane/regional scale is dominated by geophysics and remote sensing; (b) the camp to deposit scale is dominated by drilling and geophysics,
is multi-dimensional, has mixed resolution, and may involve several feedback loops with the sub-deposit scale; (c) the sub-deposit scale
acquires material from the deposit scale and feeds back constraining information (e.g. petrophysics, mineralogy, rock fabrics).

Figure 3. Schematic illustrating different types of data used across regional exploration (left); resource definition (centre); and deposit
characterisation, linkages between datasets at different scales, and some methods of scaling datasets. The left panel lists techniques by
relative depth effectiveness. The lower panels provide a summary of data integrability. Dashed lines indicate data may be collected as a series
of points (cf. continuous measurements).

ical signatures and better inform our understanding of the
relationships between alteration and structure. This dataset
is integrated by design: it comprises “complex” data (many
columns) and not “big” data (many rows). But, if used to its
full potential, it can enable more effective translation of geo-
chemical, structural, and geological processes into physical

parameters and potentially help make big data tangible in the
mineral resource sector. It can help shift the current paradigm
in mineral exploration (i.e. using a mixture of qualitative and
quantitative data at different scales) towards the fully quan-
titative, scale-consistent datasets that can enable future min-
eral system science. We hope that this dataset will lead to
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new discoveries that are vital to the economy of the Mount
Isa region, Australia, and furthermore hope it provides the
impetus and inspiration for re-thinking the role of data in the
outcomes of data analytics.

2 Background

2.1 Geoscience data

Geoscience datasets have highly variable precision across
different data types and scales, which drastically affect the
resolution at which datasets can be confidently correlated.
They are intrinsically multi-scale and are commonly col-
lected and analysed at a range of different scales. In min-
eral exploration (for example), several different scales are
used, including the terrane, regional, camp, deposit, and sub-
deposit scales (e.g. drill holes, individual samples; Fig. 2).
Scale in this sense may mean the resolution (pixel size) of a
2D image/raster or the voxel size of interpreted or interpo-
lated 3D volume (Figs. 3, 4) but can also refer to the vol-
ume from which an analysis is conducted or the area on
which a measurement is made. Scale varies greatly across
techniques from the > km3 to <mm3 scale. Geochemical
data, spatially, are simple point data relative to the scale and
depth complexities associated with geophysics. However, the
volume/area of those points varies across several orders of
magnitude from metres to micrometres (µm) depending on
the method of analysis (Fig. 4). For example, the measured
volumes of various techniques utilised at sub-deposit scales
(e.g. 1 m composite assay, palaeomagnetic plug, single-point
portable X-ray fluorescence (pXRF) measurement, and laser-
induced breakdown spectroscopy (LIBS)) span 11 orders of
magnitude (i.e. 1× 1011 variation; Fig. 4). Complexities as-
sociated with the scale of different datasets may render data
un-integrable even if they are collocated.

In addition to these scale and resolution issues, geoscience
data are also multi-dimensional, comprising 1D information
(e.g. drill holes), 2D information both on maps and in cross-
sections, and 3D data (e.g. grids and voxels; Fig. 3). This
multi-dimensional aspect is atypical in most other spatial
data. For example, in a demographic dataset used to define
the optimal location of new services, every piece of informa-
tion is related to a single point (e.g. where a person lives)
which has a unique spatial (x, y) location. Although the
demographic data may have a z location, the third dimen-
sion is relatively inconsequential in the context of the demo-
graphic dataset. Many geoscience datasets (e.g. ground geo-
chemistry) are comparable, with each point corresponding to
a specific x, y point on a surface and numerous variables
attributed to each point (e.g. Cu, Pb concentrations). Neither
dataset type has any depth penetration, and the areal coverage
of the data is infinitesimal in relation to the area of investiga-
tion (i.e. each analysis corresponds to a singular point rather
than describing a substantial 3D volume). Interpreting simple
x,y datasets is, not surprisingly, relatively uncomplicated in

regard to dealing with scale and dimensionality, even though
one could use any manner of complex analysis. The addi-
tion of a third dimension, as is common in many geoscience
datasets (e.g. especially mineral and petroleum exploration
data), and uncertainties related to depth sensitivities of differ-
ent techniques add another level of complexity and, with it,
additional data sparsity. This complexity of dimensionality
interacts variably with scale and/or resolution complexities
across a range of data types and acquisition methodologies
(Fig. 3).

Data sparsity is a major factor for all types of geoscience
data but specifically their application, for example, in min-
eral exploration. Sparsity can be defined as a function of
scale, resolution, and dimensionality, but in practice, it is
more typically a function of logistical factors such as project
budget/workforce and site accessibility (e.g. Sect. 4). Scale,
resolution, and by association data sparsity are inherently
linked to mineral exploration strategy (Fig. 4a, b). Explo-
ration typically starts at a terrane scale, using regional-scale
datasets (e.g. geophysics and remote sensing) to define ma-
jor crustal pathways, geodynamic triggers, and indicators of
fertility (Smillie et al., 2017). Successively higher-resolution
datasets and/or more scale- and depth-appropriate technolo-
gies are utilised to reduce the search space by approximately
3–5 orders of magnitude (Fig. 4a, b) to a relatively small
area of perceived favourability (i.e. camp to prospect scales).
The focussing of exploration on the sub-camp scale typically
triggers a shift from low-cost, typically qualitative, predic-
tive methodologies to high-cost, quantitative, direct detec-
tion (Fig. 4a; McCuaig et al., 2010), such as via drilling,
assaying, and surface geochemistry, which hopefully define
a prospect. The switch to detection methodologies at the
camp to prospect scale coincides with a shift to higher-
resolution, multi-scale, multi-modal, and multi-dimensional
data (Fig. 2–4).

To define a statistically valid (e.g. JORC-compliant) re-
source requires high-resolution, quantitative, spatially rep-
resentative data that can be extrapolated/interpolated up-
wards to the deposit scale (Fig. 4b). Hence, to get from the
prospect to the deposit scale effectively requires a switch
from mainly qualitative to quantitative methods and a quan-
tum leap (of approx. 12 orders of magnitude) in scale to the
drill hole/sample scale. Resources are defined by working
backwards from the drill scale to the deposit scale (Fig. 4b).
A resource can only be proven by improving the data vol-
ume (sampling more) to the point where statistical confi-
dence in the upscaling technique (e.g. kriging) is achieved.
This resource definition stage (i.e. the end goal of mineral
exploration) requires the volume sampled (both resource and
waste) to be within 2 orders of magnitude of the volume of
the resource. But at all other scales of exploration, the ratio
of sampled rock to area of interest is effectively infinitesimal.
For example, at the terrane (or mineral system) scale, that
ratio may range from 1× 10−8 (based on 2500 drill holes)
to 1× 10−14 (based on 1500 palaeomagnetic plugs, as sam-
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Figure 4. Schematic illustrating different scales of investigation used in mineral exploration: (a) illustrates the relationships between scale
and cost-effectiveness and the switch from prediction to detection at the camp scale (after McCuaig et al., 2010), (b) extends the insights of
McCuaig et al. (2010) to the deposit characterisation scale and illustrates the quantum leap in data scale required to define a mineral resource,
and (c) illustrates the relative volumes utilised across the three main scales and across a range of measurement techniques used in mineral
exploration and deposit characterisation.

pled here). Therefore, attempting to sample a mineral system
holistically by sampling more will not be effective. Sampling
smarter and better addressing the inherent resolution and di-
mensionality issues and depth limitations when transform-
ing, scaling, and integrating data should be more effective.

2.2 Data scaling and translation

A range of approaches have been developed to address
scaling issues in geographical, geological, and geophysical
data. For example, Google Earth™ imagery (e.g. Gröger
et al., 2005) uses various functions to represent maps and
3D buildings differently depending on the scale to which
the user has zoomed in. This requires the database to have
different-resolution imagery and differently scaled models
available that can be loaded on the fly, and therefore the

approach is multi-scale rather than scalable. Unfortunately,
similar approaches have not yet been widely adopted across
the geosciences, due in part to many of the complexities
outlined above. There are, however, numerous commonly
used statistical approaches used for the up- and downscaling
of geoscience data, including fractal, geostatistical, general
statistical, and machine-learning methodologies; Bayesian-
, process-, and probability-based approaches; and resam-
pling/interpolation (Ge et al., 2019).

Interpolation is commonly used to simultaneously re-scale
raw data (e.g. geophysical surveys) and translate the spatial
dimensionality of those data (e.g. from a grid of points or
series of lines to a surface/raster). In many cases, the res-
olution of the input data varies substantially in the x and
y dimensions; e.g. for aeromagnetic data, an along-line res-
olution of ∼ 8 m and an across-line resolution of 200 m are
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common survey specifications. In most cases, interpolation
of survey data therefore involves downsampling along lines
(i.e. 8× 5 m) and upscaling across lines (i.e. 200 m / 5) to
produce a raster of intermediate resolution. A maximum res-
olution of 40 m can be achieved in this example, but the grid
resolution and methodology for interpolation (e.g. inverse
distance, minimum curvature, kriging) are user choices. Such
methods not only are limited to a degree by the scale of
the data (they are scale-dependent), but also involve hu-
man choices and are therefore inherently non-unique. Al-
though scaled data products are commonly utilised and in-
tegrated as data, they are data products sensu stricto. Scaled
data products, interpolations, and/or interpretations are nev-
ertheless crucial intermediary products that allow disparate
sources to be translated to a common spatial framework (e.g.
maps, models), analysed, integrated, and in some cases (e.g.
drilling, geophysics) interpolated and/or inverted to 3D data
products.

The scaling and translation of multi-scale, multi-
dimensional datasets into 3D can be achieved using a range
of different techniques in two major categories: geostatisti-
cal and geophysical methodologies. A range of geostatisti-
cal techniques are utilised in geosciences to predict variables
based on spatial datasets (Dumakor-Dupey and Arya, 2021).
Inverse distance weighting (IDW) and kriging are commonly
applied to mineral resource estimation to upscale point data
to 3D volumes with calculated ore-grade prediction. A com-
mon methodology used to translate potential field geophysics
into 3D is to adopt a voxel framework and attribute petro-
physical properties to voxels based on inversion of the geo-
physical field data. Whilst convenient, such approaches can
easily overlook issues of scale and the depth of investigation.
For example, gravity and magnetics data can be jointly in-
verted using grid data despite a 100-fold difference in their
resolution. If the resolution and depth sensitivities of the data
used to derive 3D volumes of the sub-surface vary substan-
tially with the scale of investigation, so too should those of
models. Use of voxel inversions in integration also requires
the user to address the inherent issue of non-uniqueness,
which is particularly problematic for the inversion of vec-
tor properties (e.g. remanent magnetisation). This can be un-
dertaken probabilistically (e.g. Giraud et al., 2023) based on
any given number of possible models or geophysically based
on petrophysical constraints (Austin et al., 2019a). Neither
approach is optimal (i.e. probability does not need to hon-
our physics, whereas petrophysical constraints are limited by
sampling), but ultimately geophysical models need to honour
physics and not probability. We therefore need probabilistic
models that can honour petrophysical constraints, but more
importantly we must have those petrophysical constraints in
a form that can be integrated with other geoscience data.

2.3 Data integration

Historically, geoscience datasets have been gathered incre-
mentally, often over extended timescales, by different peo-
ple, in different institutions, and for different purposes. Geo-
logical surveys and companies may have set methodologies
for data collection, but these evolve sporadically, and there
are no universally accepted ways of collecting, analysing, or
even reporting geoscience data.

Traditionally, geoscience data have been overlain in a
manner more similar to cartography than true data integra-
tion. Such map-based integration is more art than science
but nevertheless provides a qualitative means of assimilating
multiple datasets, with different scales, levels of precision,
and depths of analysis, into a common framework. Geosci-
entists undertaking this form of integration may account for
some of the differences in scale and resolution on the fly, but
beyond that, they can overlook the fact that each layer pro-
vides information at different scales/resolutions, often with
variable depths of investigation and large variations in spar-
sity. In this cartographic approach to data integration, over-
looking the scale–resolution–dimensionality issue may not
substantially affect the outcome.

This traditional cartographic approach is utilised by a
range of modern, data-based methodologies for exploration
including various methods of mineral prospectivity map-
ping (MPM), which utilise GIS-based applications to anal-
yse and integrate multi-source and multi-scale exploration
data (Yousefi et al., 2021). Whilst effective at the regional to
camp scale, MPM has struggled to deal effectively with the
complex, multi-scale data used to characterise ore-forming
processes (Porwal and Kreuzer, 2010; Yousefi et al., 2019).
Therefore, the improved characterisation of ore-forming pro-
cesses at multiple scales is essential to improving the effec-
tiveness of MPM (Kreuzer et al., 2020; Yousefi et al., 2021)
and furthermore novel 3D approaches to data integration
(e.g. Li et al., 2024; Deng et al., 2022; Xiang et al., 2020).

Volumetrically, once geoscience data are scaled and trans-
lated to make predictions about 3D geology, it must be ac-
cepted that there are far fewer knowns than unknowns. Much
of our understanding is interpretation, not fact, and conse-
quently, the uncertainty associated with each dataset, in the
context of a large 3D volume of rocks (e.g. the Cloncurry
district), is very high. As we integrate additional data types,
the uncertainty propagates and is often poorly captured in our
models.

The many nuances, limitations, and pitfalls associated
with most types of geoscience data significantly affect the
outcomes of modern data-driven approaches. In many cases,
these issues are well understood by domain experts, but such
knowledge is often not appropriately transferred to data sci-
entists. Some of the main issues include

1. understanding the effects of sample size, resolution, and
dimensionality of different types of data, as well as the
limitations thereof;

Earth Syst. Sci. Data, 16, 5027–5067, 2024 https://doi.org/10.5194/essd-16-5027-2024



J. R. Austin et al.: Integration by design 5033

2. recognition of the differences between various geophys-
ical techniques, imaging techniques, and point sample
analyses (i.e. differences in the intrinsic scale and reso-
lution and implications for the depth of investigation);

3. realising that differences in the way data are scaled (e.g.
simple subjective interpretation, hand contouring, inter-
polation, and inversion) impact the precision of the re-
sultant datasets;

4. knowing that some datasets are partially compatible in
some instances (e.g. magnetics and gravity often over-
lap) but most datasets are not because they often de-
scribe unrelated properties at different scales and/or dif-
ferent crustal levels (e.g. geophysics).

2.4 Integration by design

We must work at a range of scales in geosciences, but the is-
sues highlighted above make holistic approaches to mineral
system knowledge problematic, particularly at larger scales.
Therefore, rather than starting at the large scale, i.e. starting
with a large area and attempting to force disparate datasets
to describe concise voxels (3D pixels) in a model, it may
be advantageous to characterise mineral systems at a scale
where we can be confident of the coupling of the datasets
(i.e. at the small scale). The integrated characterisation ap-
proach builds on traditional approaches used in hard-rock
petrophysics (e.g. Mutton and Shaw, 1979; Brescianini et al.,
1992; Webb and Rowston, 1995; Bishop and Emerson, 1999;
Austin and Blenkinsop, 2008; Austin et al., 2013) by linking
properties to quantitative geological information. Similar ap-
proaches that collect scale-constrained, collocated datasets
are increasingly being adopted globally (e.g. Enkin et al.,
2016, 2020; Dentith et al., 2020; Leväniemi and Hokka,
2022). Although working at the sample scale may not al-
low for extrapolation across large areas or volumes math-
ematically, it does provide quantitative, collocated charac-
terisation of a suite of measurable parameters at a consis-
tent scale. Those measurements are made on a range of dif-
ferent volumes (ranging between palaeomagnetic plugs and
pXRF spots; Fig. 4c). However, using a systematic approach
(e.g. Sect. 4.1), we can ensure samples are both homogenous
and representative of the mineral system. That consistency of
approach circumvents the potential volume issues between
various data streams to a large degree. Cloncurry METAL
(Austin et al., 2024) is therefore a truly integrated dataset
which does not require assumptions, inferences, inversions,
and interpolations prior to integration.

Scale-integrated, collocated datasets can be utilised, with
confidence, for a variety of statistical and machine-learning
approaches to understand the mineral system holistically.
The outcomes from scale-constrained analyses can be
utilised to make better use of a suite of compatible but spa-
tially distinct techniques at expanded scales, where their own
specific nuances of scale, resolution, and dimensionality can

be accommodated more effectively. For example, if a particu-
lar pattern that suggests mineralisation is related to a specific
radiometric and magnetic signature, we can target such pat-
terns in those specific regional datasets. As a by-product, this
approach provides ammunition to make better-informed de-
cisions about which datasets are crucial and where individual
datasets should be improved in terms of coverage, resolution,
depth penetration, and/or precision.

3 Study area

The Cloncurry district (Fig. 5) is a richly endowed region
in northwest Queensland, Australia, that contains a range
of mineral systems which have produced deposits of var-
ious commodities, including base metals, precious metals,
and rare earth elements (REE). It has undergone a protracted
structural and metasomatic history (e.g. Foster and Austin,
2008; Rubenach, 2013). Whilst there is much conjecture as
to the genesis of deposits and timing of different styles of
mineralisation (e.g. Groves et al., 2010; Hitzman et al., 1992;
Hitzman, 2000; Williams et al., 2005), there is general agree-
ment on the broad timing of major structural, metamorphic,
magmatic, metasomatic, and mineralisation events (Fig. 6).

The Cloncurry district is very diverse in terms of the
types and styles of mineralisation present. It is notable as
an iron oxide copper–gold (IOCG) district, but in many
ways, there are few sensu stricto IOCG deposits present
(e.g. Ernest Henry, SWAN, E1 North) based on the earli-
est classifications (e.g. Hitzman et al., 1992). Many deposits
could be referred to as IOCG-related (e.g. Monakoff, Starra,
Osborne), but Broken Hill-type (BHT), skarn, and vol-
canogenic massive sulfide (VMS) deposits are also present.
Various studies have recognised a continuum between differ-
ent mineralisation styles in different deposits (e.g. Williams,
1998; Austin and Blenkinsop, 2009), and the Cloncurry de-
posits comprise components of iron–apatite (Kiruna-style),
magnetite-dominant IOCG, pyrrhotite-dominant iron sulfide
copper–gold (ISCG), and hematite-dominant IOCG assem-
blages. There is also an array of skarn-like assemblages
(Williams and Heinemann, 1993; Williams and Baker, 1995;
Roache et al., 2005). These include dolomite–magnetite–
chalcopyrite (e.g. Starra-276; Patterson et al., 2016c) to
calcite–pyrrhotite–sphalerite–chalcopyrite assemblages (e.g.
Artemis; Austin et al., 2016c; Knorsch et al., 2020),
calcite–pyrrhotite–chalcopyrite assemblages (e.g. Canteen;
Austin et al., 2016i), calcite–pyrrhotite–galena (Maronan;
Austin et al., 2016a), and calcite–baryte–fluorite–magnetite–
chalcopyrite (e.g. Monakoff; Austin et al., 2016e). High-
temperature garnet-, pyroxene-, and amphibole-rich (i.e.
non-carbonate) “skarn-like” varieties are present, predom-
inantly in association with Pb–Zn mineralisation types,
e.g. Cannington (Chapman and Williams, 1998; Roach et
al., 2005), Pegmont (Williams et al., 1998), Maramungee
(Williams and Heinemann, 1993), and Maronan (De Jong,

https://doi.org/10.5194/essd-16-5027-2024 Earth Syst. Sci. Data, 16, 5027–5067, 2024



5034 J. R. Austin et al.: Integration by design

Figure 5. Geological map of the Cloncurry district, featuring deposits from which samples in the database were taken. Modified from Austin
and Blenkinsop (2008). Additional geochronological information based on Foster and Austin (2008).

1995; Austin et al., 2016a). Austin and Blenkinsop (2009)
suggested some of these deposits had characteristics which
were transitional with those generally considered part of
VMS (e.g. Maronan; Austin et al., 2016a) and/or IOCG-style
systems (e.g. Monakoff; Austin et al., 2016e).

Overall, the Cloncurry district is geochemically, struc-
turally, geophysically, and metallogenically complex. It has
long been a challenging terrane for explorers, and many, of-
ten conflicting, interpretations have been generated for the
district over the last century. Geophysical techniques (pri-
marily aeromagnetic surveys) were instrumental in the last

major round of discoveries including Ernest Henry (Webb
and Rowston, 1995), Osborne (Anderson and Logan, 1992),
Cannington (Walters et al., 2002), and Eloise (Brescianini
et al., 1992), but they are becoming less fruitful as bullseye
targets are increasingly exhausted and the search space deep-
ens. GIS-based statistical approaches to mineral prospectiv-
ity mapping (e.g. Mustard et al., 2004; Ford and Blenkinsop,
2008; Austin and Blenkinsop, 2009; Cole et al., 2020) have
provided some new targets but are often poorly constrained
by quantitative mineral system characterisation. Both geo-
physical and mineral prospectivity mapping approaches to
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Figure 6. Condensed and simplified tectonic, metasomatic, depositional, magmatic, and metallogenic history of the Cloncurry district min-
eral system (five upper panels) and the processes observed at each of the deposits and prospects discussed in the study (modified from Austin
et al., 2016f).

exploration may increasingly be failing due to the adoption
of generic deposit models that misrepresent the complexity
of and variability in the mineral system.

Within the global context, the district is unparalleled in
its diversity of mineralisation styles, related alteration as-
semblages, and associated geophysical signatures. It is litho-
logically diverse, preserves a distinct metamorphic gradi-
ent (i.e. upper amphibolite in the SSE to lower greenschist
in the north; Foster and Austin, 2008), exhibits complex

and heterogenous deformation, and consequently exhibits
variable rheological conditions across several mineralising
stages (Fig. 6). The diversity of mineralisation styles pro-
duced is primarily a consequence of rheological, metamor-
phic, and structural inhomogeneity. It is challenging to pi-
geonhole different styles of mineralisation within the district,
but perhaps these seemingly disparate mineral deposits are
part of a larger interrelated mineral system. The dataset that
is presented here provides a unique opportunity to examine
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this complex mineral system through quantitative and scale-
consistent means. We believe that this style of dataset is a
prerequisite to the next paradigm shift in exploration of the
Cloncurry district and will challenge how we use data to ex-
plore in this highly complex piece of the Earth’s crust.

4 Sampling

4.1 Sampling strategy

The aim of this project was to develop a comprehensive sam-
ple suite which is representative of the deposits and prospects
in the Cloncurry district (Fig. 5), with particular focus on the
following significant resources: the Ernest Henry, Starra, Os-
borne, SWAN, Eloise, and Cannington deposits. Systematic
sampling was critical for maximising exploration insights
into the mineral system. Our ability to sample representa-
tively was mainly limited by our access to material and hence
was dependent on maintaining relationships with key stake-
holders including the Geological Survey of Queensland and
collaborating mining and exploration companies.

Ideally, the sampling strategy was driven by or at least
informed by company geologists with a priori understand-
ing of individual deposits. However, holistic sampling is al-
ways limited by where holes are drilled and what core is
available for sampling. In some instances, ideal holes were
drilled early, and sometimes these were degraded via oxida-
tion, were unlocatable, lacked appropriate orientation data,
or were assayed to the extent that little material remained.
Drilling is commonly focussed on the core of a deposit, and
in some instances, there was a lack of drill core material
available to sample through the distal footprint and into the
background and/or along the strike. In such cases, surface
and open-pit sampling was conducted.

Field surface sampling in ancient highly weathered ter-
ranes introduces an additional bias because the availability
of fresh material is a direct function of the competence of the
material. For example, at Starra, differential weathering has
resulted in the competent silicic ironstone forming a promi-
nent ridge of outcrop but minimal (and highly weathered) ex-
posures of host rocks in the footwall and hanging wall. Open
mine pits provide opportunities to sample the local footprint
but also introduce sampling biases. For example, in situ rocks
can only be sampled from pit walls, where they are accessed
by a haul road, and only when they are considered compe-
tent enough to stand under. The core of the system generally
coincides with the base of the pit, which is often filled with
water and/or loose material, making it inaccessible, and in
some cases exposed underground workings and mine wall
instability may render parts of the pit off-limits.

In sampling for petrophysical properties, we must be op-
portunistic, utilising whichever sampling approaches will
provide the best coverage of a specific deposit whilst also
maintaining strict sampling protocols, e.g. not oversampling
mineralised sections.

Several basic criteria should always be adopted, as out-
lined below.

4.1.1 Zonation

The aim of drill hole selection and sampling was to provide a
representative, scale–consistent sample suite across the min-
eral system. Sampling covering the ore zone and proximal,
medial, and distal alteration through to the background in
both the hanging wall and the footwall was conducted for
each deposit or prospect. This is relatively straightforward
for upright linear systems with clearly defined footwalls and
hanging walls such as Starra-276 (Sect. 4.2.4). However,
different deposit styles present different challenges. Breccia
pipes (e.g. Ernest Henry, SWAN, Brumby, E1 North) may
be concentrically zoned, and Broken Hill-type systems may
include complexly folded, zoned stratiform mineralisation in
addition to fault-controlled replacement.

Adequately capturing the mineral system requires appro-
priate coverage both across and along the strike, and several
strategies have been adopted based on the complexity of the
deposit and the material available to sample.

1. For deposits under cover with a wealth of near-mine
drilling (e.g. Ernest Henry; Fig. 7), it was possible to
sample variability in core to distal zonation across and
along the strike using diamond drill core.

2. In open-pit mines with limited drill hole availability
(e.g. Osborne; Fig. 8), we undertook hybrid sampling
of diamond core and open-pit blocks/palaeomagnetic
cores to improve areal coverage.

3. In underground mines where drill holes through the dis-
tal footprint were limited (e.g. Starra-276; Fig. 9), we
undertook hybrid sampling of diamond core and surface
blocks/palaeomagnetic cores.

4. Deposits modified by near-surface alteration (e.g.
Starra-276, E1 North) also required surface-to-depth
sampling to capture possible overprinting effects.

5. For complex, structurally, metamorphically, and meta-
somatically modified deposits with no obvious alter-
ation footprint (e.g. Cannington; Fig. 10), we utilised
local geologists to ensure coverage of all lithologies and
ore types.

4.1.2 Sample spacing

Representative sample spacing downhole throughout a min-
eral system is critical to ensure that a representative view of
the 3D volume of the system is captured in the dataset, but it
is rarely possible due to a range of factors. Inhibiting factors
for drill core sampling include variability in the quality of
core (e.g. due to weathering, shearing, cracking); unsuitable
sample volumes, mainly as a result of assaying (e.g. different
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Figure 7. Simplified 3D structural model of Ernest Henry based on measured AMS fabrics. All drill holes sampled are presented along with
the respective sample numbers. The zonation of the system as it relates to the samples is approximated by titles along the top of the figure.
The model is viewed from the west and looking down at ∼ 45°. The scale varies in this perspective view.

core sizes and with a full, half, or quarter core); and whether
individual lengths of core are oriented. Sample frequency for
surface sampling is mainly limited by where fresh rocks crop
out, and mine sampling is mainly limited by the location of
mine walls and other safety factors. Furthermore, the extent
of zonation in mineral deposits and their alteration halos vary
widely, ranging from < 1 m to kilometres in scale, so the
sampling frequency was varied depending on the size and
complexity of the system locally to capture a representative
suite of samples. In complex and heterogenous lithologies,
the sampling frequency was higher (e.g.< 1 m in mineralised
zones), whereas in more homogenous and distal lithologies,
the sampling frequency was typically reduced (e.g. > 10 m).

4.1.3 Representativity

Samples were selected to be representative of the lithology
of that part of the drill core (i.e. similar to the majority of the
core across several trays) in order to capture the bulk physical
properties of that lithology. Adopting this strategy allows for
upscaling of the physical properties with confidence in geo-
physical modelling. Whilst some of the sampling conducted
adheres to this methodology quite stringently, there are cases
of oversampling through the mineralised zones, cases of un-
dersampling through the mineralised zones where no core re-
mained in the tray, and cases where samples could not be ob-

tained due to a lack of appropriately sized or appropriately
oriented core.

4.1.4 Orientation

Oriented samples are critical for geographic corrections to
both anisotropy of magnetic susceptibility (AMS) and re-
manent magnetisation measurements. In some cases, where
holes are drilled at near-vertical orientations, caution should
be taken when interpreting AMS and palaeomagnetic results
because where the dip approaches 90°, the strike of the orien-
tation becomes increasingly unreliable. However, in general,
holes will tend to lift with depth, and as the plunge decreases,
the orientation becomes increasingly reliable (even at dips of
∼ 85°).

4.2 Sample distribution

The data presented here were gathered from 1590 sam-
ples, taken from 23 mineral deposits and prospects across
the Cloncurry district, Queensland. The sampling under-
taken spanned almost a decade, starting with pilot projects
from 2011–2014 and then under two major Queensland
Government-funded projects: Uncover Cloncurry (2015–
2016) and Cloncurry METAL (2018–2021).
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Figure 8. Sampling of Osborne incorporated (a) diamond drill core
samples combined from two holes, one in the open pit and another
to the east, as well as (b) substantial sampling within the open pit.
Collectively the samples cover a series of ENE-dipping mineralised
ironstones (shown in purple) which extend from the southwestern
pit wall towards the centre of the pit and continue east into the un-
derground mine, with host rocks on either side (i.e. the footwall and
hanging wall).

4.2.1 Uncover Cloncurry samples

The Uncover Cloncurry project collected relatively few sam-
ples per deposit but provided a broad overview of the true
range of mineralisation styles present in the Cloncurry min-
eral system. The deposits and prospect types sampled in-
cluded Broken Hill-type (BHT) deposits, such as Altia Pb–
Zn–Ag; Artemis Zn–Cu; Maronan Pb–Zn–Ag; iron oxide
copper–gold (IOCG) type, including Brumby Cu–Au, E1
Cu–Au, Kalman Cu–Au–Mo, Monakoff Cu–Au, Trekelano
Cu–Au, and related breccia sulfide ores (e.g. Merlin Mo–

REE); iron sulfide copper–gold (ISCG) type, including Can-
teen Cu–Au and Cormorant Cu–Au; and skarns (e.g. Mount
Colin). Sampling was undertaken on only one or two dia-
mond drill holes for many of these deposits and prospects,
and in some cases, the sampling may not be sufficiently rep-
resentative. However, in many cases a significant number of
diamond drill holes were sampled (e.g. Maronan, Brumby),
and in some cases blocks and hand-drilled samples were ex-
tracted from mine pit walls (e.g. Monakoff, E1). Information
on the location and geological context of those samples can
be found in the Uncover Cloncurry reports, e.g. Austin et
al. (2016a, c, d, e, f, g, h, i), Gazley et al. (2016a, b, 2017),
and Patterson et al. (2016a, b), and/or is discussed further
below.

4.2.2 Ernest Henry Cu–Au deposit

Ernest Henry is the most comprehensively sampled deposit
in this dataset, with samples from 10 diamond drill holes
(Fig. 7). The bulk of the holes intersect the core of the deposit
(e.g. EH691, EH550, and EH435), with representative holes
intersecting the proximal (e.g. EH631), medial (e.g. EH632),
and distal (e.g. EHMT001) parts of the alteration footprint
across the strike to the southeast. Other holes are intended to
sample the proximal (e.g. EH147), medial (e.g. EH242), and
distal zones (e.g. MMA002 and MMA003) along the strike
to the northeast of the deposit. Sampling of Ernest Henry
was completed in four phases. Initial sampling of EH691
was completed on-site at the Ernest Henry Mine in 2015.
Phases 2–4 were completed as drill holes were made avail-
able at the GSQ core facility in Zillmere, Queensland, Aus-
tralia. A summary of the drill holes sampled is provided in
Fig. 7, and detailed descriptions of the samples and their
context within the deposit and its environs are provided in
Schlegel et al. (2021, 2022) and Austin et al. (2021b).

4.2.3 Osborne Cu–Au deposit

Osborne was sampled both from diamond drill cores and
from within the open pit (Fig. 8). The two sampled drill holes
(OSHQ0067 and TTNQ0364, total of 42 samples) cut across
the mineralised zone in the near-surface region and towards
the base of the underground mineral resource, respectively.
Hand-drilled cores and oriented block samples (52 in total)
were collected from several traverses across key sections of
the open pit, providing excellent coverage of the deposit (par-
ticularly the lower and upper ironstone horizons). Numerous
samples were also taken outside the mineralised horizons.
However, it was not possible to apply a representative sam-
pling grid due to several factors including ground instability
(i.e. the large debris slope in the middle of the mine), which
contributed to the lack of samples between the two main
ironstone horizons. Other complicating factors included risks
associated with working under high/steep pit walls and re-
stricted access to areas in which underground workings were
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Figure 9. (a) A 3D view of © Google Earth imagery draped on a DEM over an ironstone ridge cropping out between Starra-257 and Starra-
276. The majority of surface samples were silicified hematite-dominant ironstones used to examine the relationships between redox and
mineral zonation along the strike. (b) An underground 3D view of Starra-276, and the location of samples. The turquoise body is a 0.75 %
equivalent copper-grade shell. Underground sampling provides excellent east-to-west and surface-to-depth coverage across the Starra system
and can be used to understand the relationships between redox and mineralisation across the strike and to depth.

exposed. All the samples were accurately surveyed courtesy
of the Chinova mine surveyor, and further information on
samples and their context within the deposit and its environs
is provided in McFarlane et al. (2021b).

4.2.4 Starra-276 Au–Cu deposit

Starra-276 was sampled from the surface and also from three
drill cores. The surface sampling was intended as a pilot
study to assess the feasibility of weathered samples for map-
ping regional alteration zoning. However, the local outcrop is
so dominated by highly competent (silicified) hematite iron-
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Figure 10. A 3D model of the Cannington ore body, with sam-
ples covering the northern and southern mineralised zones, all seven
ore types, the alteration zone adjacent to the ore body, and all host
lithologies (including psammite, schist, gneiss, and amphibolite).

stones that very few samples could be obtained from the in-
competent, weathered, and eroded units on either side. This
resulted in 27 hand-drilled and block samples from the sur-
face at Starra-276 (Fig. 9a). Most of the surface samples were
obtained from the ironstones, cropping out above and to the
north and south of Starra-276. These were collected to assess
along-strike geochemical variability in the ironstone and for
comparison with samples from depth to test the vertical zona-
tion within the system (e.g. super- or hypogene enrichment).
The remaining samples are from three diamond drill holes
which form an E–W cross-section through the system, with
38 samples from STQ1095 (Patterson et al., 2016c) comple-
mented by a further 61 drill core samples from two scissor
holes (STQ1098, STQ1099W1) covering the footwall and
hanging wall of the deposit (Fig. 9b). Whilst on-site, detailed
magnetic susceptibility logs for the scissored drill holes were
acquired, which can be used for comparison with geochem-

ical data. Further information on sampling and their context
within the deposit and its environs is provided in McFarlane
et al. (2021a).

4.2.5 Cannington Ag–Zn–Pb deposit

Ten drill holes were sampled at the Cannington Mine site,
aiming to cover the deposit from north to south and shal-
low to deep (Fig. 10). The 190 samples collected provide a
representative suite of the seven different styles of minerali-
sation found at Cannington, i.e. the Kheri, Cuckadoo, Broad-
lands, Glenholme, Burnham, Inveravon, and Nithsdale types,
and a representative selection of the host rocks of the deposit
in both the northern and the southern zones. Samples were
taken from outside the system into the core mineralisation
types to assess the proximal-to-distal footprint of the system.
Although there are uncertainties regarding the extent of the
footprint of the Cannington deposit (many suggest a small
alteration footprint), we aimed to obtain a representative se-
lection of what the local geologists interpret as the alter-
ation footprint, referred to as SHMU (sillimanite–muscovite
schist). Drill hole CAD934, which skims the periphery of the
system from shallow levels to beneath the body, provides an
opportunity to test the extent of the deposit footprint. Further
information on samples and their context within the deposit
and its environs is provided in Pearce et al. (2021).

4.2.6 SWAN Cu–Au deposit

The SWAN-Mount Elliott camp was sampled from four drill
cores: three from the SWAN system and one from Mount El-
liott∼ 900 m to the east. MEQ1215 (56 samples) was drilled
into the hanging wall of the SWAN system, dipping to the
southwest through the main ore/breccia body. Additional
holes were selected to generate a representative E–W cross-
section through the SWAN deposit, intersecting the distal and
proximal alteration zones through the main ore/breccia body.
Drill holes MEHQ07105 (8 samples) and MEHQ011130 (52
samples) are to the east of MEQ1215 and are scissored holes
which cut through the main breccia body from the east and
west, respectively. MEQ-95-208 is sampled from ∼ 195 m
depth in the Mount Elliott hanging wall, through a “skarnoid”
mineralised zone and into the footwall. Further information
on samples and their context within the deposit and its envi-
rons is provided in Stromberg et al. (2021) and Patterson et
al. (2016a).

4.2.7 Eloise Au–Cu deposit

Eloise was sampled at a 30 m average sample interval from
numerous drill cores for a total of 58 samples. Sampling
focussed on Eloise Deeps and three satellite deposits. Sev-
eral short intervals from Eloise Deeps (drill holes ED62 and
ED60) and Macy (MA03E), Chloe (EN003), and Middle
West (EAM130) were sampled. A long drill hole through
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the main ore body at Eloise Deeps (ED126) was systemat-
ically sampled. The samples selected at each of the four min-
eralised bodies are representative of the main lithologies that
host the deposits, capture their proximal-to-distal footprints,
and intersect the various lodes. Further information on sam-
ples and their context within the deposit and its environs is
provided in Birchall et al. (2021).

5 Methods

5.1 Sample preparation

The samples were extracted from surface and mine sampling
(Starra-276, Osborne, Monakoff, E1) and diamond drill holes
as outlined in Sect. 4, producing a range of different physi-
cal samples that required different initial preparation prior to
analyses.

1. The 25 mm diameter cores, drilled in situ with a petrol-
powered rock drill, were oriented in situ using a sun
compass which was unaffected by extreme local mag-
netic fields present at many sites. In some cases these
samples needed to be re-assembled and glued before be-
ing marked with orientation lines.

2. The 10–50 cm blocks extracted by cold chisel and ham-
mer from the surface outcrops and open pits were also
oriented using a sun compass in the field. The sun com-
pass orientation marks were used to draw azimuth lines
on the block surface. The block was then drilled perpen-
dicularly to the orientation surface using a 25 mm dia-
mond coring drill. The orientation mark was thus trans-
ferred from the block surface to the top of the 25 mm
core.

3. The 10–30 cm pieces of either 1/2 NQ (48 mm diam-
eter) or 1/4 HQ (63 mm diameter) core sampled from
diamond drill holes were oriented using a method that
differed from the standard palaeomagnetic method, with
marks pointing downwards along the base of the hole
(Fig. 11). Therefore, orientations were re-marked to the
standard palaeomagnetic system prior to re-drilling and
cutting (Fig. 11). In this system, the palaeomagnetic az-
imuth= the diamond drill dip azimuth− 90° and the
palaeomagnetic dip= 90°− the diamond drill plunge.
Once re-marked, a coring drill was used to drill down
the axis of each sample to produce 25 mm cores.

All samples were sawn into 22 mm long segments referred to
as palaeomagnetic plugs or “rounds” (Figs. 11, 12). Cylin-
ders of this dimension provide a good approximation of a
dipole magnetic source (Riisager and Abrahamsen, 2003). At
least three rounds were made from each sample where pos-
sible to provide statistically reasonable mean values for the
petrophysical measurements. Preparing three samples also
allowed for one sample to be used for geochemistry and min-
eralogy and one for alternating field demagnetisation (AFD),

Figure 11. Diagram illustrating palaeomagnetic sample mark-up
procedure for oriented diamond core.

with one reserved for future analyses (e.g. geochronology;
Portela et al., 2024). Samples were labelled with unique spec-
imen codes and re-marked with orientation lines (Fig. 11) to
enable measurements of vector information, e.g. palaeomag-
netic vectors and magnetic fabrics (i.e. anisotropy of mag-
netic susceptibility; AMS). A range of analytical techniques,
illustrated in Fig. 12 and outlined in Sect. 5.2, were applied
to up to three specimens per sample.

5.2 Techniques (methods, instrumentation, data
processing, and pitfalls)

5.2.1 Density measurements

The density of an object is defined as mass per unit vol-
ume, but it is commonly assumed to be the weight in air of
a unit volume of an object at a specific temperature (Johnson
and Olhoeft, 2017). Petrophysical studies routinely consider
sample weight to be equivalent to mass due to the minimal
discrepancy. “Density” may refer to either dry bulk density,
in which the solid material and pore space are considered,
or saturated bulk density (grain density), in which only the
volume of solid material is considered, or both. Bulk den-
sity, especially of sedimentary rocks, varies significantly with
fluid content (water) within pore spaces (Johnson and Ol-
hoeft, 2017), but in most cases crystalline igneous, metamor-
phic, and metasomatic rocks (i.e. almost all rocks observed
in this study) preserve sufficiently low porosity for the dry
and saturated bulk densities to be effectively equivalent (i.e.
within 0.001 g cm−3). Densities should be stated in SI base
units (kg m−3) but are more commonly reported in g cm−3

(3 orders of magnitude smaller), mainly for ease of use.
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Figure 12. Schematic illustrating the concept of integration by design, the range of techniques used, and data outputs.
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Figure 13. Mettler Toledo MS204TS analytical balance with hang-
ing basket suspended in distilled water.

Specific gravity, as measured in study, is the density rela-
tive to a standard substance (commonly water). Based on the
Archimedes principle, specific gravity (SG) is calculated as
the ratio of the weight/mass of a rock sample in air at a stated
temperature to the weight/mass in air of a unit in a volume
of gas-free distilled water at a stated temperature (Johnson
and Olhoeft, 2017). In this study, SG values were calculated
based on weight measurements made using a Mettler Toledo
MS204TS analytical balance, which is designed specifically
for making SG measurements of this kind (Fig. 13). An
earlier version of the same instrument, the Mettler Toledo
AG204, was utilised for some legacy samples (see column U
in the database).

Samples were initially weighed in air and then subse-
quently weighed in distilled water.

The SG and volume of each sample were calculated using
the following equations:

ρ =
A× ρL

A−B
, (1)

V =
A

ρ
, (2)

where ρ is density, A is the sample weight in air, B is the
sample weight in liquid, ρL is the density of the liquid, and
V is the sample volume.

SG values for up to three specimens per sample (columns
P–R in the database) were used to derive mean SG values
(column S) and an associated standard deviation (column T).
Although SG is dimensionless, being a ratio of two densi-

ties, we report it here in density units (g cm−3) because the
denominator (the density of water) is effectively a constant
(approximately 1 g cm−3), and therefore the SG is effectively
equivalent to bulk density.

Volume results determined using the Archimedes princi-
ple are utilised to make volume corrections to other petro-
physical parameters, specifically magnetic susceptibility and
natural remanent magnetisation (NRM) measurements.

5.2.2 Magnetic susceptibility measurements

Magnetic susceptibility measurements are the most common
type of petrophysical quantity collected in mineral explo-
ration, and along with measurements of remanent magnetisa-
tion, they allow for determination of the in situ magnetisation
of different lithologies and alteration styles that can be used
to constrain forward modelling and inversion. Magnetic sus-
ceptibility measurements were made using an AGICO MFK-
1A Kappabridge magnetometer. However, for legacy sam-
ples, other instruments may have been utilised (see column
AA in the database).

The MFK-1A Kappabridge apparatus consists of the pick-
up unit, control unit, and computer and represents a high-
precision fully automatic inductance bridge. It automatically
zeroes between readings, automatically compensates for the
thermal drift of the bridge, and automatically switches to an
appropriate range. The measuring coils are designed as sixth-
order compensated solenoids with high field homogeneity.
The instrument is based on micro-electronic components,
with two microprocessors controlling all functions of the
Kappabridge, and is fully controlled by an external laptop
computer. The output signal from pick-up coils is amplified,
filtered, and digitalised, and raw data are transferred directly
to the computer in the form of .ran files and/or .ams files,
which are native formats for AGICO’s Anisoft™ 4.2 and 5.0
software packages.

Bulk susceptibility measurements were taken with the
field strength set at 200 A m−1 to maximise the dynamic
range of the sensor. The MFK-1A apparatus calculates mag-
netic susceptibility values based on a nominal sample volume
of 10 cm3, and therefore the results were later corrected using
volumes calculated during density measurements.

Users should be aware that in magnetite-rich rocks with
susceptibilities greater than 0.1 SI (especially above 1 SI), the
self-demagnetisation effect considerably suppresses the in-
trinsic magnetic susceptibility of a rock (e.g. Austin et al.,
2014). The measured magnetic susceptibilities reported in
Austin et al. (2024) incorporate both the intrinsic suscepti-
bility and suppression due to the self-demagnetising field.
However, our measurements are also limited by the mea-
surement range of the MFK-1A instrument, which can real-
istically only measure 10 cm3 samples up to susceptibilities
of approx. 2.25 SI. Measurements of magnetite-rich and/or
mushketovite-rich ironstones (which may have intrinsic sus-
ceptibilities of 10–20 SI; Clark, 1988) are likely beyond the
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detection limits of the instrument and may therefore be sup-
pressed to some degree.

Magnetic susceptibility measurements were made on up
to three specimens for each sample (columns V–X in the
database) to derive a mean magnetic susceptibility value (col-
umn Y) for the sample and an associated standard deviation
(column Z). Magnetic susceptibility is commonly plotted rel-
ative to density to compare the properties of different deposit
types and their alteration halos. A linear plot is used here
for ore deposits mainly because it provides a clear indica-
tion of the relative magnetic mineral contents relative to a
linear magnetite trend (Fig. 14). A Henkel plot (logarithm of
magnetic susceptibility against density; Enkin et al., 2020)
is used to better differentiate more weakly magnetic sam-
ples from the alteration footprint (Fig. 15). The data corre-
late well with similar studies, e.g. the Great Bear IOCG de-
posits (Enkin et al., 2016), with IOCG deposits (e.g. Ernest
Henry and SWAN) plotting just above the quartz–feldspar–
calcite+magnetite line of Enkin et al. (2020).

5.2.3 Remanent magnetisation measurements

The direction of remanent magnetism is important in under-
standing the overall magnetisation strength and direction in
highly magnetised mineralised bodies (e.g. Peculiar Knob;
Schmidt et al., 2007). Understanding remanent magnetism is
crucial to determining confidence in resultant 3D magnetic
forward models and inversions because it facilitates a reliable
estimation of the impact of remanent magnetisation on the
overall (i.e. induced+ remanent) magnetisation of the body.
Where magnetised rocks have a high Koenigsberger ratio (a
high ratio of remanent to induced magnetisation) and where
the remanent magnetisation direction is significantly oblique
to the inducing field, anomalies will be incorrectly modelled
if they do not account for the remanent magnetisation.

At least two rounds from each sample underwent natural
remanent magnetisation (NRM) measurements. The process
requires the input of the sample orientation data to correct the
measured magnetisation direction to geographic coordinates.
For the Cloncurry METAL project, all samples were mea-
sured using an AGICO JR-6 spinner magnetometer. How-
ever, many of the legacy samples which are included in the
Cloncurry METAL database (Austin et al., 2024) were mea-
sured on a 2G Enterprises 755R three-axis cryogenic mag-
netometer and/or a custom-made CSIRO three-axis spinner
fluxgate magnetometer.

The JR-6 spinner magnetometer is the world’s most sen-
sitive and accurate instrument for measurement of the re-
manent magnetisation of rocks based on classical (non-
cryogenic) principles and is the standard for palaeomag-
netism worldwide (AGICO, 2021). It functions by rotating
the rock specimen at a constant angular speed inside the pick-
up unit inside a pair of coils. An alternating current (AC)
voltage is induced in the coils, whose amplitude and phase
depend on the magnitude and direction of the remanent mag-

netisation (RM) vector of the specimen. The resultant voltage
is amplified, filtered, and digitised. Using harmonic analysis,
the computer calculates two rectangular components of the
projection of RM vector into the plane perpendicularly to the
axis of rotation. The JR-6A version used has an automatic
specimen holder which changes the position of the specimen
during measurement to obtain the complete vector automati-
cally. The measurement process is fully controlled by a PC,
and the data are interpreted using AGICO’s Rema6 software.

The 2G cryogenic magnetometer uses three
superconducting-quantum-interference devices (SQUIDs)
to measure the three components of the magnetic field with
magnetic dipole moment noise of less than 1×10−12 A m−1.
Unfortunately, this system does not have the dynamic
range necessary to measure strongly magnetised specimens.
Strongly magnetised specimens therefore had to be mea-
sured on the three-axis spinner magnetometer. The three-axis
spinner utilises a fluxgate magnetometer positioned adjacent
to the sample spinning mechanism. The results of the NRM
measurements yielded a magnitude, declination, and inclina-
tion of the magnetisation direction. The data extracted from
the 2G and custom spinner magnetometers are recorded in a
simple ASCII file which required substantial re-formatting
before interpretation using Pmag software developed by
Phil Schmidt (CSIRO). Remanent magnetisation and the
Koenigsberger ratio are commonly plotted relative to density
(Fig. 16) and/or magnetic susceptibility to characterise
the dominant magnetic minerals within deposits and their
footprints (e.g. hematite, magnetite, and pyrrhotite) which
generally form under different redox conditions.

5.2.4 Conductivity

Minerals act as semiconductors or insulators (silicates and
oxides) in crustal rocks. In metal exploration, unlike for fluid-
saturated rocks in petroleum petrophysics, conductivity is not
primarily related to ions in pore fluids. Instead, conductiv-
ity is heavily dependent on the presence and interconnectiv-
ity (fabric) of metal-bearing minerals, e.g. chalcopyrite and
galena.

Conductivity measurements were carried out for up to
three rounds per sample using a KT-20 handheld susceptibil-
ity and conductivity meter which was set to 100 kHz, provid-
ing sensitivity as low as 0.1 S m−1. The equipment is widely
used in the industry for susceptibility measurements but is
prone to providing ambiguous results due to the placement of
the sensor. A custom-made holder was utilised to counter am-
biguity by ensuring the measurements always had the flat end
of the round centred on the sensor. The results were quality-
checked directly on the instrument display during collec-
tion and imported into the accompanying GeoView program.
Subsequently, they were exported as discrete records in .csv
format, which were collated for the database using a .bat
script and then cross-checked against a measurement log.
Users of these data should be aware that electrical resistivity
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Figure 14. Plot of density vs. magnetic susceptibility data, a common method for differentiating the abundances of major ore-forming
minerals, e.g. hematite, magnetite, and pyrrhotite, providing knowledge that can be used to constrain geophysical inversions and also insights
into the chemical factors controlling mineralisation, such as redox (Austin 2021b; Austin et al., 2021d). The first three letters of the labels
correspond to deposit codes, and the remainder is a lithological description. Modified from Austin (2021a).

and conductivity measurements are highly scale-dependent
(Fitzpatrick, 2006). Fitzpatrick (2006) suggests conductivity
should be measured on 1 m diamond cores to achieve reliable
results. Whilst conductivity is measured at a consistent scale
across all samples, the sample size is sub-optimal, and our
conductivity measurements should be considered useful esti-
mations of where sulfide occurs. Chargeability is not scale-
dependent and would be a more suitable type of data to col-
lect on small cores such as those used in this study.

5.2.5 Radiometrics

Radioactive isotopes have played an important role as a heat
source during the Earth’s history, and heat generation from
intrusions is often included in mineral system models. Mea-
surable parameters for heat production in rocks are the ra-

dioactive isotopes of uranium (238U), thorium (232Th), and
potassium (40K). The heat generated per second by these el-
ements (µWkg−1) would be presented as concentrations cU,
cTh, and cK, respectively; the total Qr is the heat produced
by radioactivity in the rock (Rybach, 1976, 1988):

Qr = 95.2cU+ 25.6cTh+ 0.00348cK. (3)

Radiometric measurements were conducted with a Radiation
Solutions RS-332 gamma-ray spectrometer and a custom-
made tray holding up to three rounds per measurement. For
most samples, all three slots were used for assay mode mea-
surements collected over 300 s (5 min) of run-time. The ac-
companying RS Analyst program was used to catalogue and
export the data. Results were tabulated with K (40K), U (ura-
nium and radium), Th (232Th), the dose, and the dose rate,
using respective data units (%, ppm, nSv, nSv h−1). The data
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Figure 15. Plot of magnetic susceptibility vs. density for a selection of host rocks and distal alteration assemblages from the Cloncurry
district; shading indicates appropriate ranges for some common lithological classes. The first three letters of the labels correspond to deposit
codes, and the remainder is a lithological description. Modified from Austin (2021a).

were imported into the database together with the measure-
ment ID and the number of rounds in each of the measure-
ments (N ). Standard radiometric ratios, K/U, K/Th, U/Th,
Th/K, U/K, and U2/K, were calculated and are also listed
in the database. These ratios are a means of normalising the
relative proportions of K, Th, and U in different rock types,
independent of their total count, to differentiate K, Th, and U
anomalism. It has long been recognised that uranium anoma-
lism in airborne radiometric data correlates with mineralisa-
tion and fluid pathways at numerous sites within the study
area (Lambourn and Shelley, 1972). However, gamma-ray
spectrometry at the sample scale provides a petrophysical
means of integrating mineralogical and geochemical under-
standing of ore formation, providing knowledge that can be
used to better interrogate airborne radiometric datasets (e.g.

Austin 2021b; Austin et al., 2021d). Uranium-anomalous
specimens (i.e. those with U2/K> 10 in Fig. 17) have dis-
tinct mineralogical properties. They all occur in IOCG or
ISCG deposits and prospects and contain carbonates (cal-
cite and/or dolomite) and apatite. They are mineralogically
complex and preserve mixed feldspar, titanium, iron oxide,
and iron sulfide assemblages (e.g. they contain magnetite and
pyrrhotite, magnetite and hematite, and/or titanite± rutile
and ilmenite). Walshe et al. (2016) have argued that the distri-
bution of andesine–ilmenite assemblages versus K-feldspar–
titanite assemblages can be used to define pH and/or redox
gradients in IOCG systems.
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Figure 16. The Koenigsberger ratio plotted relative to density; this is one tool petrophysicists use to characterise the dominant magnetic
minerals within deposits and their footprints. Fe-oxides and sulfides such as hematite, magnetite, and monoclinic pyrrhotite all have charac-
teristic petrophysical properties which provide information about the chemical conditions leading to mineralisation (e.g. redox and/or pH).
The first three letters of the labels correspond to deposit codes, and the remainder is a lithological description. Modified from Austin (2021a).

5.2.6 Structural fabrics

Methods

Anisotropy of magnetic susceptibility (AMS) is a second-
order symmetric tensor that maps alignment of iron in the
crystal lattice (Biedermann et al., 2015) and therefore maps
mineral alignment in rocks (Fig. 18). AMS is often used as
a proxy for mineral texture in geologic applications (Bieder-
mann et al., 2015). AMS fabrics have been related to numer-
ous events through a range of temperature–pressure condi-
tions, from viscous flow in magmas (e.g. Knight and Walker,
1988; Ferré et al., 2002) through to folding and ductile–
brittle shearing during relatively late stages of orogenesis
(e.g. Torsvik et al., 1992; Greiling and Verma, 2001; Austin
et al., 2019b).

Anisotropy of magnetic susceptibility (AMS) measure-
ments were made on most samples using an AGICO MFK-
1A Kappabridge magnetometer. The MFK-1A apparatus ef-
fectively measures the axes of maximum, intermediate, and
minimum susceptibility that relate to the fabric of the mag-
netic grains within the rock.

For legacy samples (Uncover Cloncurry), 64 measure-
ments are taken while spinning the specimen about the x, y,
and z axes individually, using a conventional single-axis ro-
tator attachment. The field sensor is zeroed after the sample
is inserted into the pick-up coil, thereby eliminating any field
bias from the measurements made as the sample is rotated.
Then one bulk susceptibility value is measured along one
axis, and the complete susceptibility tensor is combined from
these measurements. For Cloncurry METAL measurements,
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Figure 17. A plot of U2/K sorted from high to low suggests that
U anomalism is associated with characteristic mineralogical prop-
erties.

a 3D-rotator attachment was used. The 3D rotator spins the
specimen simultaneously about two axes with different ve-
locities, enabling the determination of 320 directional sus-
ceptibilities during a single measurement phase (constitut-
ing an excellent 3D distribution within a sphere). Once the
specimen is inserted into the rotator, measurement is fully
automated, requiring no additional manipulation to measure
the full AMS tensor and halving the time for measurement.
The output signal from pick-up coils is amplified, filtered,
and digitalised, and raw data are transferred directly to the
computer in the form of .ran files and/or .ams files, which
are native formats for AGICO’s Anisoft software packages
(Chadima and Jelinek, 2009), used to view and analyse the
data.

Data

The AMS data are displayed for each specimen separately in
the database: Specimen A, columns CG–DC; Specimen B,
columns DD–DZ; and Specimen C, columns DD–DZ. The
resulting data are comprised of a bulk susceptibility (column
CH in the case of Specimen A) and three orthogonal tensors
that together define the AMS ellipsoid. The three tensors are
a long axis (K1), an intermediate axis (K2), and a short axis
(K3). Each of these tensors is comprised of a relative inten-
sity (i.e. a multiplier of the bulk susceptibility) for that tensor
(e.g. column CJ), a declination (or dip azimuth, e.g. column
CM), vector inclination (or plunge, e.g. CP), and α 95 % er-
rors for each (in degrees; e.g. CS and CV). The AMS el-
lipsoid is geographically corrected relative to drill hole or
surface sample orientation and can be visualised using stere-
onets.

Anisoft 4.2 was used to assess the quality and clustering,
whether the magnetic fabrics within specific lithologies or

structures have a preferred orientation overall, and whether
the distribution of orientations reflect a specific type of fab-
ric within that rock (e.g. axial, axial planar, or planar dis-
tributions; Závada et al., 2017). Three main parameters, in-
troduced by Jelinek (1981), are commonly calculated from
the results to differentiate the style of fabrics present. P
(e.g. column DA) is equal to K1 /K3 and corresponds to
the anisotropy factor. Rocks with high P values are highly
anisotropic, whereas rocks with P ≈ 1 are isotropic. L (e.g.
column CY) is equal to K1 /K3 and defines the extent to
which a rock has lineation (i.e. if K1>K2≈K3, the ellip-
soid is prolate and the rock has lineation). F (e.g. column
CZ) is equal to K2 /K3 and defines the extent to which a
rock is foliated (i.e. if K1≈K2>K3, the ellipsoid is oblate,
and the rock has foliation). Other Jelinek (1981) parameters
included are Pj (e.g. column DB), the corrected degree of
anisotropy which takes the shape parameter into considera-
tion, and T (e.g. column DC), the shape parameter (where
0= isotropic, +1> T > 0= oblate (planar) ellipsoid, and
−1< T < 0= prolate (linear) ellipsoid). An example data
output from Anisoft 4.2 software and an interpretation of
those data are presented in Fig. 19.

Processing

The data collection process involved individual analyses of
up to three specimens (i.e. sub-samples) for most petrophys-
ical properties (e.g. magnetic susceptibility), simultaneous
analysis of up to three specimens for radiometrics, and scan-
ning of one specimen for mineralogy (TIMA). It is not prac-
tical to present these data in a database, due mainly to the
extent of additional calculations and metadata required by
each of the individual techniques. The Cloncurry METAL
“database” (Austin et al., 2024) is therefore provided as a
single spreadsheet.

Vector properties and tensors such as AMS ellipsoids re-
quired trigonometric vector addition to calculate weighted
mean lineations (i.e. K1 vectors, columns FK–FL) with cor-
responding intensity (column FM) and weighted mean fo-
liations (i.e. inverse weighted planes perpendicular to K3,
columns FO–FP) with corresponding intensity (column FQ)
for each sample. These calculations, which incorporate both
vectors and the relative intensity of the fabrics of up to three
specimens, provide weighted mean foliation and lineation
data for each sample, which are compatible with traditional
measurements used in structural geology.

The mean length is also calculated for the mean lineation
(column FN) and mean foliation (column FR) as a measure of
certainty of the results. The mean length is the vector sum of
two or more vectors divided by the sum of the vector lengths
(i.e. a measure of the parallelism of the vectors), which pro-
vides an effective measure of the relative textural homogene-
ity of the sample. Samples with a mean length > 90 % are
considered texturally consistent. Whilst samples with a mean
length < 90 % have fabrics that are inconsistent to at least
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Figure 18. (a) Anisotropy of magnetic susceptibility at the grain scale corresponds to the preferred crystallographic axes of a magnetic grain
referred to as K1 (which represents the long axis of the grain and the vector of maximum susceptibility), K2 (the intermediate axis), and
K3 (the short axis). (b) Visualisation of the alignment of grains within a rock, which illustrates whether that rock is isotropic or anisotropic.
Isotropic rocks generally have randomly oriented grain, which collectively have no preferred alignment, whereas in anisotropic rocks the
grains are preferentially aligned. (c) Grain alignment, which corresponds to the measured AMS fabric, validated using micro-computed
tomography (from Austin et al., 2016c).

Figure 19. Example of AMS data for samples from the hanging-wall shear zone, Ernest Henry deposit. (a) Stereonet in which the three
AMS tensors are plotted for each specimen. (b) Summary of the structural information derived from the AMS data. (c) Plot of P (anisotropy
factor (K1 /K3) vs. magnetic susceptibility. (d) Plot of L (lineation) vs. F (foliation). From Austin et al. (2021i).

some degree, the user should note that the result is highly
dependent on the number of vectors used in the calculation.
Regardless of the number of vectors included in the calcu-

lation, a mean length of 100 % indicates all vectors are par-
allel. Where two vectors are used in the calculation, a mean
length of 95 % approximates two vectors of equal intensity
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that are 30° offset from each other, a mean length of 85 % ap-
proximates two vectors of equal length offset 45° from each
other, and a mean length of 50 % approximates two vectors of
equal length offset 90° from each other. Where three vectors
are used in the calculation, a mean length of 92 % approxi-
mates three vectors of equal intensity that are 30° offset from
each other, a mean length of 80 % approximates three vec-
tors of equal intensity offset 45° from each other, and a mean
length of 33 % approximates three vectors of equal intensity
90° offset from each other. Where three vectors are used in
the calculation, a mean length of zero is possible (but highly
unlikely) if three vectors of equal intensity are offset 120°
from each other.

5.2.7 Automated mineral mapping

Sample preparation

After the petrophysical analyses were completed, samples
were polished for automated mineral mapping. Where pos-
sible, the rounds were polished on the side opposite to the
palaeoazimuth markings (see Sect. 3.1) and without resin im-
pregnation on the surface; however resin was required for
more porous samples.

Automated mineral mapping was conducted using a TES-
CAN™ MIRA field emission gun (FEG) scanning electron
microscope, coupled with three EDAX energy-dispersive
X-ray spectroscopy (EDS) detectors, a backscatter electron
(BSE) detector, and the TESCAN Integrated Mineral Ana-
lyzer (TIMA) software package. The automated modal min-
eralogy setting on the scanning electron microscope utilises
a 25 keV, 6 nA, 26 nm electron beam, and a 10 µm pixel size
was chosen for analyses with a required minimum of 1000 X-
ray counts per pixel. Standard electron beam alignment, fo-
cussing, and instrument calibration, including BSE and EDS
detector calibration, were carried out before each analysis
run of up to 22 samples.

An area of ∼ 23 mm in diameter of the polished surface
was scanned, with an average analysis time of 1 h and 50 min
at 10 µm pixel resolution, producing mineral phase and BSE
data for each sample. If the scanning electron microscope
scans an unrecognised mineral phase, a grain boundary, or
poorly polished section due to the presence of clay miner-
als or sample fractures, unclassified (black) pixels will occur
in the dataset and in the phase panoramas. Any unrecognised
genuine phases can be added later to the mineral library in the
TIMA software. While the TIMA SEM system is operating
in modal mineralogy mode, it produces volume percent min-
eral abundances down to 0.01 vol. % detection limits, which
can be exported in .csv format along with the mineral-phase
.png images (e.g. Fig. 20) that are integral to interpreting al-
teration mineral assemblages and the textural relationships of
each sample.

Figure 20. One of the more interesting TIMA images: sample
CAN003 is a micro-breccia from the Canteen prospect, with sodic-
altered clasts in a matrix of monoclinic (magnetic) pyrrhotite and
calcite. The matrix displays classic Durchbewegung textures, which
result from ductile flow in pyrrhotite, which mills and rotates the
breccia clasts.

Mineral classification methods

For each of the deposits studied in this project, a CSIRO-
developed X-ray spectral-matching mineral classification li-
brary was generated. The “legacy” Uncover Cloncurry sam-
ples were considered in the development of each library and
were reprocessed accordingly. The new mineral classification
libraries have improved previously misclassified or unclassi-
fied phases (e.g. scapolite and plagioclase at Ernest Henry
and sillimanite/andalusite and pyroxenes at SWAN) found
in the Uncover Cloncurry datasets. On average, each of the
deposit-specific mineral classification libraries includes more
than 150 minerals, which have been generated from interna-
tional standards from Web Mineral’s Mineralogy Database;
semi-quantitative electron backscatter diffraction (EBSD)
analyses, which were acquired with an Oxford detector on
TIMA SEM; or microprobe standards. Any minerals that
were imported directly from the international Web Mineral
database were imported in consultation with the available lit-
erature for each of the deposits and in-built spectral-matching
and spectral-quantification calculators in the TIMA software.

In the mineral classification library, each mineral is con-
strained by its mineral chemistry (Fig. 21) and, furthermore,
the expected X-ray count range per element within the min-
eral. The X-ray count ranges are guided by the reference
spectra but generally need to be refined for each mineral as
the computed ranges can be misleading. Additional elemen-
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Figure 21. Mineral-phase panorama from sample EHM006, Field D08, highlighting the mineral classification library at the pixel scale and
(a) X-ray spectra from albite in the sample and (b) X-ray spectra from K-feldspar in the sample. These minerals are constrained by not only
their key elemental expression but also elements that set them apart from similar phases – i.e. albite will be constrained not only by O, Na,
Al, and Si, but also by Ca and K – to differentiate them from more calcic feldspars and from K-feldspar along with other elements where
overlaps may occur.

tal constraints with low-to-background X-ray count values
are often added when minerals of similar composition need
to be differentiated (Fig. 22). Due to many minerals exist-
ing as variations of their solid solutions, in some cases, small
impurities such as Fe and Mg in muscovite (Fig. 22) are al-
lowed into the mineral definition. The primary and secondary
constraints are particularly important for minerals that have
undergone multiple stages of alteration and include com-
mon and unusual impurities, for example the grossular- and
spessartine-rich almandine garnet species found at the Can-
nington deposit (Pearce et al., 2021).

5.2.8 Geochemistry

Portable X-ray fluorescence data were collected using an
Olympus Vanta pXRF instrument, which has a 50 kV, 4 W
rhodium (Rh) X-ray tube and a large-area silicon drift de-
tector. Analytical beam times were 20 s and utilised a 10 and
40 kV beam in Geochem mode. Measurements were checked
against five known (matrix-matched) diamond core standards
and a silica blank to check efficacy and instrument drift
during data acquisition. However the data presented in the
database (Austin et al., 2024) are uncalibrated against the

standards as the instrument measurements closely matched
the standard values. The instrument drift was also monitored
by repeating one unique standard and a blank every 20 anal-
yses. Measurements were taken on the polished surface of
the TIMA rounds, apart from samples which were set us-
ing resin prior to polishing due to poor rock quality/friabil-
ity (e.g. some SWAN samples). The resin has a significant
impact on the pXRF results due to signal attenuation and
interference, and so measurements were undertaken on the
unresined back of the samples. The front resined sides were
also measured for a small test set of 23 samples from SWAN,
confirming that the data are unusable as all elemental concen-
trations are attenuated by as much as 2 orders of magnitude.
All pXRF data in the database (columns NY to QQ) include
the proportion of the element present and associated read-
ing error (1 standard error), both of which are displayed in
parts per million (ppm). Light elements, defined as those with
atomic number < 11 (i.e. Na and lighter), cannot be quanti-
fied by pXRF, and so the total proportion of all light elements
(LE_concentration) is presented in column QP, with the re-
spective error in column QQ (both in ppm).
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Figure 22. Mineral-phase panorama from sample EHM248, Field I03 (1) and P05 (2), highlighting spectra from potentially competing
mineral phases such as scapolite, andesine, and alteration mineral muscovite. While the X-ray spectra from scapolite in (1a) are similar
to the andesine spectra in (2a) they are able to be distinguished by adding a strict Cl constraint into both mineral classifications. (1b) The
endmember composition of muscovite does not contain any Fe or Mg; however, it is a common impurity in white micas, and therefore the
muscovite classification has been edited to allow a small amount of Fe and Mg. After a specified limit, increases in Mg or Fe (and a decrease
in Al and increase in Si) would see the phase classified as phengitic muscovite.

5.2.9 Hyperspectral data

Data collection

Hyperspectral data in the visible and near-infrared and short-
wave infrared (VNIR–SWIR; 350–2500 nm) spectral regions
were collected using an ASD (Analytical Spectral Devices)
FieldSpec 4 spectrometer. Data were collected on the pol-
ished TIMA round surfaces for 100 averages, and the instru-
ment was calibrated using a standard white reference mate-
rial. Spectra were viewed and analysed in The Spectral Ge-

ologist (TSG) software. Collecting spectral data on a pol-
ished surface is not the ideal measurement condition and im-
parts some noise onto the spectra due to scattering effects,
which are largely related to the mineral assemblage present
(e.g. sulfide-richer or iron-oxide-richer samples are generally
noisier). However, hyperspectral measurements were not a
component of the original Uncover datasets and were added
as a database component for the METAL datasets midway
through sampling, and so a significant number of METAL
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samples as well as the ∼ 500 Uncover Cloncurry samples
were already polished prior to the onset of data collection.

A key component of creating a fully scalable and inte-
grable geoscience database is that all the data are measured in
a consistent manner with measurements from different meth-
ods on the same sample surface. Therefore, a suite of 23 test
samples from Ernest Henry were measured pre- and post-
polishing to evaluate the impact of polished vs. unpolished
samples on the spectral results. The primary difference be-
tween the spectra from the rough and polished surface is in
the overall shape of the spectral background, which is ob-
served as systematically lower vs. albedo (reflectance albedo
over 450–2450 nm) and higher SWIR spectral-contrast pfit
(range of reflectance over [1300, 2500] nm, de-trended by a
third-order polynomial fit) in the polished samples (Fig. 23).
A minor but systematic difference is also observed in the
spectral outputs from polished and unpolished samples for
commonly used scalars (e.g. 2250D and 2200D). However,
the outcome is the same trend across the sample suite for
both the polished and the unpolished sample, and negligi-
ble changes to the qualitative TSA (The Spectral Assistant;
uTSA) outputs were observed (Fig. 23). Given the test sam-
ple results and that the bulk of the samples (including all of
the Uncover samples) were already polished, the remaining
samples were also measured on the polished surface for con-
sistency across the database so that all measurements (TIMA,
pXRF, ASD) were representative of the same surface. The
exception is for samples which were set using resin prior
to polishing due to poor rock quality/friability (e.g. some
SWAN samples). As with the pXRF data, the backside of the
resined samples was measured to avoid interferences from
the resin.

Processing and data outputs

Spectral mineralogy outputs were generated in the TSG
(The Spectral Geologist) software using a series of CSIRO-
developed batch scalars (system, user-published, and file) as
well as the inbuilt TSA (The Spectral Assistant) function of
TSG. These standard outputs were included for each deposit
dataset regardless of their efficacy for a given deposit or min-
eral system. This is so that every deposit has consistent out-
puts for use in advanced data analytics and relies on the user
for evaluation of which outputs to use in making interpreta-
tions. All the spectral outputs have been created using TSG
Version 8.0.7.4 and TSA Version 7 (released May 2020).

TSA is an algorithm for automated spectral unmixing
which uses its training library to match the spectrum against
a single mineral or model a simulated mixture of two to four
minerals that most closely resembles that of the input spec-
trum (Berman et al., 2011) (Fig. 24). TSA mineralogy out-
puts are one of the most common outputs derived from hy-
perspectral data using TSG and should be used with caution
as they are only a best approximation of the top three con-
tributing minerals to a given SWIR, VNIR, or thermal in-

frared (TIR) spectrum and represent relative abundances. The
quantification of any spectral parameters requires the concur-
rent collection of validation data for calibration of the spec-
tral data, e.g. quantitative X-ray diffraction (XRD; Haest et
al., 2012; Laukamp et al., 2017) or EPMA (electron probe
microanalysis; Lypaczewski and Rivard, 2018). Regardless,
TSA unmixing results are commonly used by geologists as
the data are exported as relative weights of a given min-
eral (Fig. 24); however, these results and their reliability are
highly dependent on the reference library used, as well as
the mineral assemblage present (Laukamp et al., 2017). It
should also be noted that the mineral assemblages present
in the Cloncurry METAL and Uncover samples are domi-
nated by SWIR-inactive minerals, including oxides and sul-
fides, whereas the SWIR-active mineral assemblages relevant
for vectoring towards mineralisation are typically dominated
by chlorite, biotite, and calcite mineral species (e.g. Ernest
Henry), which are challenging to distinguish between in the
SWIR due to their overlapping spectral absorption features,
namely the ∼ 2250 nm “Mg–OH” and the ∼ 2340 nm car-
bonate feature (Laukamp et al., 2017; Lypaczewski and Ri-
vard, 2018) (Fig. 24).

TSA results have been exported into the Cloncurry
METAL database (Austin et al., 2024) at both the mineral
group scale (QW to RJ) and the mineral scale (RK to TE) to
allow for application at different levels of detail. However,
the mineral group results are more robust, and the mineral
scale of TSA outputs should be approached with caution (e.g.
Laukamp et al., 2017). Parameters related to the quality of
the fit have also been included to assist the user in evaluating
the quality of the results (QS to QV) (Fig. 24). The minerals
included in the TSA library for a given deposit are informed
by the TIMA automated mineralogy results with domain ex-
pert input to evaluate the rate of false positives and misclassi-
fications. Given the limited number of SWIR-active minerals
in the samples, the libraries used for the TSA unmixing do
not change significantly between deposits. For all samples,
the albedo threshold in the TSA setting was changed from its
standard setting of 0.04 to 0.01 to accommodate the darkness
of the rocks and the lower albedo of the polished samples
with respect to unpolished or powdered samples. This also
reduced the number of null TSA results.

As discussed above, for the purpose of the database out-
puts and their application in advanced data analytics, the
TSA libraries have been minimally changed between de-
posits, and the TSA settings have been kept consistent. How-
ever, the TSA outputs for a given deposit may be improved
(null results reduced) for certain mineral phases with the
addition of deposit-specific custom external reference li-
braries and further tweaking of the TSA settings. The chang-
ing of TSA settings is something which is generally not
recommended and was tested for Ernest Henry with well-
constrained TIMA mineralogy and domain knowledge input.
While the number of null results was reduced, the results
were often unreliable, as would be expected when remov-
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Figure 23. ASD spectra of sample EHM047B before and after polishing; note the decrease in overall reflectance (vs. albedo) in the pol-
ished sample from a maximum reflectance of 0.3 to 0.132 as well as the negligible change in the qualitative TSA (The Spectral Assistant)
mineralogy output.

ing constraints from the unmixing model, and in general re-
sulted in an overrepresentation of chlorite across the dataset
(e.g. EHM025 in Fig. 24), and so the results are not included
in the database. Another approach to improving unmixing
results is to expand the mineral library using external ref-
erence libraries which include spectra of minerals known to
be in the dataset. This approach was tested with the Ernest
Henry dataset using a custom external library which included
a larger number of biotite spectra, as biotite and chlorite are
difficult to unmix, as well as scapolite, which is known to
occur in the samples (from the TIMA data). The applica-
tion of this library did not result in a significant improve-
ment in the unmixing results (e.g. no scapolite identification)
and in many cases resulted in more misclassifications, and so
the results are not included in the database. The presence of
known phases (from previous GSQ work and CSIRO TIMA
datasets) such as scapolite and piemontite was also probed
using a spectral-matching method (aux-match in TSG). This
method outputs the results of curve matching between spec-
tra in the project dataset and spectra in an AUX (custom li-
brary) dataset and yielded no significant matches despite the
presence of scapolite in abundances of up to ∼ 50 wt % in
some samples.

This highlights the inherent difficulties in mineral iden-
tification in mixed samples from SWIR spectra using end-
member library spectra. Another limitation of conventional
unmixing methods (like TSA) is that it uses only the SWIR
region of the spectra (1400–2500 nm) and does not consider
the entire spectral range of the instrument (350–2500 nm)
(Fig. 24). This is important when considering that the assem-
blages present in the Cloncurry samples are dominated by
“SWIR-inactive” minerals and that the mineralised assem-
blages are iron-oxide-rich (Fig. 24). While SWIR-inactive

mineral such as feldspars do not have distinctive spectral
features in the SWIR, they contribute to the spectral back-
ground, and the VNIR region of the spectrum is sensitive to
the presence of iron oxides and transition metals. It is for
this reason that the entire raw spectrum is included in the
database.

Given the inherent complications with spectral unmixing
results, many spectral geologists (e.g. Laukamp et al., 2021)
prefer to probe individual spectral features in a dataset by
looking at, for example, the depth, wavelength, or shape
of a well-understood spectral absorption feature such as
the 2200 nm “Al–OH” feature (e.g. Haest et al., 2012) or
the 2250 nm “Mg–OH” feature (e.g, Sonntag et al., 2012)
(Fig. 24). Figure 24 provides a good example of how the
2250D (batch system) scalar, which provides a measure of
the depth of the 2250 nm feature, relates to the abundance of
chlorite in three samples and is an improvement on the TSA
outputs. Scalar is the term used by TSG to refer to any set
of calculated values related to loaded spectral data. The out-
puts included in the database are what are referred to as batch
scalars. These are pre-written, well-established, and in most
cases published scripts for spectral parameters which probe
the position or depth of a given spectral absorption feature
(see Laukamp et al., 2021, for an overview). The outputs in
the database are split into three categories, TSG batch sys-
tem scalars (scalar name_SS), TSG batch user scalars (scalar
name_US), and batch file scalars (scalar name_FS). Batch
system scalars commonly use a three-band polynomial fit,
while the user scalars employ a multiple-feature extraction
method for their outputs, so they are much more restrictive
(Fig. 25). Details of the scalars’ names, applications, and ref-
erences are included the database explanatory notes and are
also described in Laukamp et al. (2021). Not all of the scalars
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Figure 24. ASD spectra (a, c, e) and corresponding user TSA outputs and TSA-modelled spectra (coloured) overlain on the sample spectrum
(black) for the SWIR spectral region (b, d, f) for three samples (EHM022, EHM026, EHM025). The TSA-modelled spectra are coloured by
error with the top sample (EHM022) having the lowest error. TIMA mineralogy results are provided for comparison as well as the output of
the 2250D base scalars, which approximates the abundance of chlorite (and biotite) and provides an improved proxy for chlorite abundance
compared to the TSA results.

in the database will be relevant or even trustworthy for every
deposit but have been included so that each dataset in the fi-
nal database (Austin et al., 2024) has the same outputs for
use in advanced data analytics. It is also important to note
that the system scalars (_SS) do not have any masking ap-
plied to them and that the user should consider this in their
application (Fig. 25).

5.3 Dataset collation and integration

For ease of use, our dataset is provided as a single Excel
spreadsheet or as separate spreadsheets for individual de-
posits. It comprises numerous outputs from a variety of dif-
ferent sensors, which are processed on numerous software
platforms, and required additional pre-processing, integra-
tion, and assimilation steps for some of the methods.

The format was modified from the previous version (Un-
cover Cloncurry; Gazley et al., 2016c), which had three to
four lines per sample, each corresponding to a different sub-
sample (specimen). This format was difficult to use because
most data were missing from most lines. In the updated ver-
sion, all data from each sample (up to three specimens) are
included in one row, and extra calculations have been added
to better summarise the data. In general, these are simple av-
erages. However, in the case of vector quantities (e.g. AMS
and remanent magnetisation), the average direction of three
vectors coupled with the average intensity of the vector can
provide a poor summary of the data and the associated er-
rors. Calculating vector means (i.e. adding the three vectors
together trigonometrically) is a far more accurate summary
of the data, and the associated mean length metric provides
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Figure 25. Schematics for derivation of the batch system 2200D scalar and the batch user White_Mica_Smectite_Abundance scalar, both of
which probe the 2200 nm Al–OH spectral absorption feature.

an excellent measure of the consistency of the three vectors
used in the calculation.

To make the Cloncurry METAL data (Austin et al., 2024)
easy to use, a range of metadata (descriptions of which are
outlined on Sheet 2 of the database) are provided.

1. Information on the structural context and system zona-
tion has been included. Structural context is ascertained
by examination of the position of the samples relative
to mineralisation (determined from Leapfrog interpo-
lation) and relative to the established structural frame-
work of deposits (if they exist). Where possible, previ-
ous work, including 3D geophysical and geochemical
models and cross-sections in a 3D GIS (e.g. Discover
3D™, Geoscience ANALYST™, or Leapfrog™), was
assembled. System zonation was determined by exam-
ination of the alteration assemblages present in TIMA
imagery and was also determined relative to previous
work. An example of how these contextual metadata are
used is provided in relation to structure, geophysics, and
geochemistry in some of the major outputs of this study
(e.g. Schlegel et al., 2021; Austin et al., 2021b, d; Mc-
Farlane et al., 2021a, b; Stromberg et al., 2021).

2. Accurate three-dimensional location data (x, y in me-
tres relative to the GDA zone 54 map grid; GDA is
the Geocentric Datum of Australia; z is relative to sea
level) for each sample are also provided. xyz data were
calculated from collar location and survey information
from confidential company drilling data and downhole
depth information collected during sampling and com-
puted using the “Drillholes” function of MapInfo Dis-
cover™.

3. General geological descriptions based on company logs
(where available), from sampling notes (where avail-
able), and/or from TIMA imagery are also included.
It should be noted that these data are highly qualita-
tive, especially from the former two sources. Whilst the
TIMA images are quantitative, consistent representa-
tions of the lithology of the rock and the interpretations
of the rock type, alteration, and texture are still quali-
tative. Until complex variables such as protolith, textu-
ral fabrics, and relative proportions of alteration prod-
ucts can be determined autonomously from TIMA im-
agery using data analytics, these descriptions will have
to suffice. However, they should be used with caution,
and users of the database are encouraged to review the
TIMA imagery themselves and revise the structural and
alteration framework to suit their specific needs or, bet-
ter still, devise an automated method.

5.4 QA/QC

Each of the input datasets for this project was produced using
proprietary instrumentation and software, and as such much
of the quality assurance and checking were undertaken using
these software packages prior to export. Some of the main
problems identified at this stage of the process included the
following:

1. false parallelism of NRM directions due to the sample
rotator not working correctly on the JR-6 magnetome-
ter,

2. subdued magnetic susceptibility readings in magnetite-
rich samples due to self-demagnetisation effects,
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3. large percentages of “unknown” minerals in TIMA re-
sults due to TIMA mineral library limitations.

These issues and others of a similar nature were easily ad-
dressed by minor changes to the set-up of various instru-
ments, modifying instrument settings, and/or improving ref-
erence spectra, as required.

The processing and assimilation of these individual data
streams, however, present far more opportunities to introduce
errors via mistranslation of proprietary data formats into text,
misplacement of data, or misapplication of functions (e.g. us-
ing the wrong columns to calculate averages and ratios). By
and large, these kinds of errors presented as obvious bipolar
contrasts in resultant outputs, typically with variances of or-
ders of magnitude. These were (hopefully) all fixed prior to
publication.

In some cases, the data passed QA/QC but still had a major
flaw that made them difficult to integrate effectively. These
flaws were encountered in a subsequent data analytics project
(Williams et al., 2022), in which the entire dataset produced
a suspicious bi-modal clustering on one axis of several non-
linear data reduction projections. After individually assess-
ing each of the various components which correlated with a
key axis of the dimension reduction projection, two major
problems were identified. Both were related to underlying
collection and processing issues.

1. There was an approximately 10 % difference in the ra-
diometric dose, mainly correlated with a consistent dif-
ference of ∼ 25 % between the potassium percentage
of two groups of samples. Those with a lower dose
rate were all measured at our North Ryde laboratory
in around November 2018, whereas the samples with
the higher dose rate were all measured at our relocated
Lindfield laboratory in around April 2020. Williams et
al. (2022) found that all samples measured at each site
shared the same flaw and inferred that the contrast in the
mean radiation level was due to the background radia-
tion of the different laboratory environments. This cali-
bration error was amended by normalising each channel
of radiometric data relative to the mean measurements
from each site.

2. Williams et al. (2022) also found instances in which
similar rocks with similar mineralogy plotted at oppo-
site ends of a dimensionally reduced projection. In this
case it was found that the main difference between the
two clusters was related to the methodology used to
generate the TIMA mineralogy maps. One of these clus-
ters was comprised of earlier Uncover Cloncurry sam-
ples (Gazley et al., 2016c), which were measured us-
ing a previous version of the TIMA software and pro-
cessed with a slightly different TIMA library. The pre-
vious TIMA library did not include phases such as fay-
alite, almandine, epidote, fluorite, and scapolite. Thus,
during processing of the data, one mineral could eas-

ily be incorrectly classified as another; e.g. andesine
in the earlier data was instead classified as scapolite
in the later data. In some instances, the same min-
eral was also mapped using different names; e.g. potas-
sic feldspar was mapped as microcline in the Uncover
Cloncurry mineral library but as K-feldspar in the Clon-
curry METAL library (Williams et al., 2022). This ma-
jor oversight has been amended in the updated version
of the data. In general, however, the use of a differ-
ent TIMA library may dramatically affect several min-
eral phases, and in this case variances in the volume
of actinolite, scapolite, and K-feldspar all affected the
projection dramatically. Because of the updated soft-
ware, it was not feasible to individually reprocess all
results, and so legacy samples were only reprocessed
for deposits studied in the Cloncurry METAL project
(i.e. Cannington, Ernest Henry, SWAN, Starra-276, Os-
borne, and Eloise).

The use of different mineral libraries meant some of the more
uncommon assemblages from the earlier study could not be
easily integrated with data from the latter, highlighting that
the processes by which data are collected, reduced, and rep-
resented have profound impacts on any big-data approaches
to geoscience. This is a particular issue for categorical data
(e.g. mineralogy), which may not be precisely identified or
may correspond to mixtures of multiple endmembers, but it
is a common problem across all spectral/elemental imaging
and scanning analyses where data need to be “unmixed”. To
best address such issues across different rock suites using
quantitative mineralogy approaches (e.g. TIMA SEM), it is
critical to (1) have access to raw data, (2) customise data re-
duction approaches, and (3) use smarter and/or more flexible
approaches to classification and estimation of mineral-phase
proportions.

Data collection issues almost certainly have a greater im-
pact on outputs than data analytics methodologies. The issues
identified here are detectable, are resolvable, and have rela-
tively small impacts due to the scale-integrated nature of the
data, the high quality of the data, and consistency of the sam-
pling and analytical tools used. However, the use of datasets
assimilated from different scales, resolutions, precision lev-
els, and tools more generally would almost certainly lead to
far more serious issues, which could be substantially less de-
tectable and which no amount of buffering, filtering, recali-
bration, or conversion could adequately suppress. The con-
sistency and quality of inputs are paramount.

6 Applications

The data collected by this study span a range of geoscience
applications, including understanding deposit paragenesis
(Schlegel, 2021; Schlegel et al., 2021, 2022); integrated in-
sights into the geochemical, mineralogical, and petrophysi-
cal footprints of mineral deposits (e.g. Austin et al., 2021d);
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Figure 26. Venn diagram illustrating how different techniques are
integrated to produce scale-consistent mineral system exploration
and targeting tools. Mineralogy, at the centre, is the key link to all
other techniques and tools and aligns with the major geoscience
fields. The inner areas of overlap are tools and observations we use
to link mineralogy to other areas of geoscience. The outer areas of
overlap are primarily where different areas of geoscience can be
integrated to provide insights into the key mineral system charac-
teristics, e.g. the five questions of mineral system science (Walshe
et al., 2005).

quantifying the structural controls (Austin et al., 2021b;
McFarlane and Austin, 2021); and geophysical expression
(Austin, 2021a, b; Austin et al., 2021b) of mineral systems.
The resulting knowledge can be applied to three broad func-
tions: mineral exploration techniques, mineral system sci-
ence and characterisation, and novel approaches to each us-
ing data analytics.

6.1 Mineral exploration and mineral system
characterisation

The data produced have applications across a range of green-
field and brownfield exploration toolkits as visualised by
the Venn diagram in Fig. 26. At the core of this capabil-
ity is the TIMA SEM quantitative mineralogy technology.
TIMA SEM provides quantitative information about miner-
alogy, lithology, rock texture, and metamorphic-grade and al-
teration paragenesis, much of which is only collected qual-
itatively and very subjectively in mineral exploration. Fur-
thermore, TIMA SEM provides contextual information that
can be used to constrain our understanding of the other tech-
niques (i.e. surrounding TIMA in the Venn diagram, Fig. 26)
producing camp-scale exploration targeting criteria which
can be exploited using conventional core-shed tools (e.g.

Fig. 27). The resultant data also provide quantitative con-
straints across a range of geoscience disciplines, which ad-
dress the five questions of mineral systems science (Walshe
et al., 2005), outlined as follows: (1) what is the role of geo-
dynamics? (2) What is the role of the architecture of the
system? (3) What are the roles of fluids, their sources, and
reservoirs? (4) What are the fluid flow drivers and pathways?
(5) What are the metal transport and deposition processes?
The applications of these data are discussed below, citing ex-
amples within this framework.

6.1.1 Geodynamics

Insights into the geodynamics of the mineral system can be
gained via interrogation of the mineralogical and textural in-
formation derived from the TIMA SEM imagery. The min-
eralogy data provide information about the relative abun-
dance of metamorphic indicator minerals (e.g. sillimanite,
andalusite, kyanite pseudomorphs) as well as information
about the temporal juxtaposition of metamorphic and meta-
somatic reaction assemblages. Textural information from
TIMA SEM also provides insights into tectono-metamorphic
evolution by differentiating primary sedimentary and igneous
textures from metamorphic, metasomatic, and tectonic tex-
tures. This mineralogical and textural quantification of rocks
provides valuable information for the reconstruction of sedi-
mentary, magmatic, metamorphic, tectonic, and metasomatic
history, i.e. the geodynamic evolution, of a terrane. In gen-
eral, for the Cloncurry terrane, mineralisation typically post-
dates the major metamorphic and tectonic episodes, coin-
ciding instead with late magmatic hydrothermal activity and
strike-slip tectonics. However, there are examples in which
our data provide critical insights into the earlier metamorphic
history of the Cloncurry district. For example, the work by
Pearce et al. (2021) integrating metamorphic petrology and
REE geochemistry data from the Cannington deposit identi-
fies a complex history of pervasive Fe and Ca–Fe alteration
that was subsequently exposed to high-grade (> upper am-
phibolite facies) metamorphism and later hydrated to form
the complex assemblages observed. The TIMA imagery on
its own provides future studies with an ideal launching plat-
form, allowing researchers to readily locate minerals of in-
terest for interpreting broad crustal processes (e.g. REE pro-
files), thermobarometry (e.g. garnet, pyroxenes, amphiboles,
sillimanite), and geochronology (e.g. monazite, zircon, and
allanite; e.g. Portela et al., 2024).

6.1.2 Architecture

The mineralogical and textural quantification of rocks pro-
vided by TIMA SEM can be integrated with quantitative in-
formation on rock fabrics provided by anisotropy of mag-
netic susceptibility (AMS) data to provide valuable infor-
mation about the architecture of the system. The AMS
technique allows differentiation of isotropic and anisotropic
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Figure 27. Examples of core-shed tools that can be used for mineral system characterisation and targeting: a portable X-ray fluorescence
analyser (pXRF), portable reflectance spectrometer (ASD), magnetic susceptibility and conductivity meter, and gamma-ray spectrometer.

rocks, thereby assisting in the differentiation of rock types
and providing insights into their role in the development of
regional- to deposit-scale architecture. For example, Austin
et al. (2021b) found that dioritic intrusions in the distal foot-
wall and hanging wall of Ernest Henry had isotropic (i.e. un-
deformed) fabrics, consistent with them acting as rigid but-
tresses that focussed strain during deformation. AMS pro-
vided information on the nature of fabrics within different
rock types, in particular on whether fabrics are lineation or
foliation dominant and the strength of those fabrics. Such
information allows us to differentiate primary sedimentary
and magmatic fabrics from tectonic fabrics and furthermore
quantify the bulk rotations in those fabrics related to fold-
ing (e.g. McFarlane et al., 2021a, b) and/or rotation of rigid
blocks within an incompetent substrate (e.g. Austin and Pat-
terson, 2020). The technique furthermore allows us to con-
trast lineation and foliation fabrics within a cluster of sam-
ples to produce information on the kinematics of a deposit.
Such insights can be integrated with conventional structural
geology, lineament interpretation based on geophysical filter
products, and 3D geophysical models to characterise regional
architecture and palaeo-kinematics.

6.1.3 Fluids (metasomatism)

Fluid composition (including contained elements such as
gold, copper, iron, sulfur, and carbonate carbon) and fluid
properties (including oxygen fugacity/redox and acidity
(pH)) are important factors that control mineralisation.
Whilst technically not directly characterised by the data ob-
tained in this study, valuable insights into fluid composition,
redox, and the acidity of the fluids involved in mineralisation
can still be obtained via understanding of alteration paragen-
esis and deposit zonation. The main tools for understanding
these properties include TIMA SEM mineralogy and SWIR
hyperspectral data.

The Cloncurry METAL datasets identified several mineral
zoning patterns and compositional trends related to Clon-
curry district IOCG systems, many of which are non-unique
and have applications to district-scale exploration. These in-
clude

1. feldspar mineral zonation at Ernest Henry (e.g. Schlegel
et al., 2021) and Eloise (e.g. Birchall et al., 2021);

2. zonation in white mica and carbonate abundance and
chemistry at Starra-276 (McFarlane et al., 2021b);

3. chlorite and biotite distribution and/or chemistry at
Eloise (Birchall et al., 2021) and Osborne (McFarlane
et al., 2021a);

4. chlorite–biotite–white mica zonation at Ernest Henry
(Schlegel et al., 2021) and Mount Elliott (Stromberg et
al., 2021);

5. apatite halos around the mineralised zones at SWAN
(Stromberg et al., 2021), Ernest Henry (Schlegel et al.,
2021), and Eloise (Birchall et al., 2021).

Hyperspectral data are sensitive to most mineral species
(apart from sulfides), and different spectral ranges are sen-
sitive to different mineral species (Laukamp et al., 2021).
While hyperspectral mineralogy is a surface technique, it
can be used to map alteration from the sub-sample to re-
gional scale and thus can be easily integrated with other geo-
science datasets such as those of radiometrics and magnetics
to inform our understanding of alteration footprints and fluid
pathways (e.g. Sect. 6.1.4). Stromberg et al. (2021) provide
an excellent example, combining high-resolution SEM-based
mineral mapping from four drill holes at SWAN-Mount El-
liott with continuous downhole hyperspectral HyLogger3™
datasets to present an updated alteration paragenesis of the
system. Their work describes the role of successive fluids in
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localising mineralisation and developing the associated alter-
ation footprint.

The role of fluids in localising mineralisation can also be
examined at much finer scales using TIMA SEM coupled
with geochemistry data. Schlegel et al. (2021) and McFar-
lane et al. (2021a) highlighted the role of acid–base reactions
in controlling mineralisation at Ernest Henry and Starra-276.
Schlegel (2021), Schlegel et al. (2022) furthermore high-
lighted how the TIMA SEM mineral mapping approach can
be used to understand the role of fluids in generating porosity
in hydrothermal systems. They suggested that mineral zona-
tion resulted from sodic alteration, potassic and iron meta-
somatism, shearing, and brecciation, followed by regressive
hydrolytic alteration and carbonisation. Hydrolytic alteration
resulted in the variable replacement of magnetite by hematite
and also resulted in volume reduction/porosity creation (ev-
ident now as late carbonate infill and veining), which made
way for the late high-grade copper mineralisation.

6.1.4 Pathways

Insights from conventional structural geology, geophysics-
based lineament interpretation, and 3D geophysical mod-
elling provide rigid constraints on the architecture of the sys-
tem and its palaeo-kinematics. Structures are commonly as-
sumed to be fluid pathways. In reality, however, all structures
have unique histories, have different kinematics, and are ac-
tive at different times. Whilst the interaction of structure and
alteration can be constrained at the sample-to-deposit scale
using METAL data, it is more difficult to differentiate the role
of regional structures in localising mineralising fluids based
purely on conventional structural geology and lineament in-
terpretation. To differentiate fluid pathways from other struc-
tures, new methods are required that can highlight fluid–rock
interactions within those structures, not only at the sample
scale to core scale, but also at the district scale.

Research on IOCG deposits (Austin et al., 2016a, d, f, i;
Austin, 2021b; Austin et al., 2021d) has identified associ-
ations between mineral deposition and redox reactions, re-
flected in transitions between magnetite and pyrrhotite or
hematite-bearing lithologies. That work illustrated that tran-
sitions between these key deposit-forming minerals coincide
with elevated uranium on the more oxidised side of the gra-
dient (i.e. magnetite in a reduced system or hematite in an
oxidised system). This association is mappable at the sam-
ple scale using the METAL approach and at the drill core/de-
posit scale using a handheld susceptibility meter and gamma-
ray spectrometer. At a regional scale the association of Fe-
oxide and uranium (i.e. the redox gradient) can be mapped
using a combination of airborne magnetic and radiometric
data (e.g. Austin, 2021b). This technique allows the differ-
entiation of fluid pathways from un-involved structures at
several IOCG deposits across the Cloncurry district includ-
ing SWAN, Starra-276, Monakoff, Cormorant, and Canteen
(Austin, 2021b; Austin et al., 2024). The recognition of such

processes provides an ideal proxy for oxidised fluid pathways
within IOCG mineral systems because they allow us to con-
vert chemical reactions into physical properties that can be
recognised in geophysical data. In contrast to mineralogical
or chemical properties, these physical properties can be read-
ily scaled from sample and drill-core scale to deposit and
district scale, allowing us to trace fluid pathways from the
deposit into the district.

6.1.5 Mineral deposition

Mineral deposition in hydrothermal systems is typically a
function of several processes, usually the chemical reactiv-
ity potential of the host and fluid, coupled with the avail-
able porosity (e.g. Sect. 6.1.3) and structural controls. The
Cloncurry METAL database (Austin et al., 2024) provides
insights into each process. Information on structural fabrics
within a mineralised system is derived primarily from AMS
data (discussed in Sect. 6.1.2), which are upscaled using
geophysical modelling and lineament interpretation and inte-
grated with insights from radiometrics to constrain fluid path-
ways (discussed in Sect. 6.1.4). This knowledge of the struc-
tural controls is coupled with insights into different fluid–
rock reactions and alteration paragenesis from TIMA SEM
(discussed in Sect. 6.1.3) to characterise mineral deposition.
In essence, the processes involved in mineral deposition are
interdependent; that is, fluid pressure impacts structural rhe-
ology, which impacts porosity generation, which impacts
chemical reactivity. These processes are all linked, and the
great advantage of the METAL methodology for data inte-
gration is that our data are integrated by design, and therefore
the methodology describes these processes holistically.

Austin and McFarlane (2021) provided an example of how
insights into structural controls can be integrated with an un-
derstanding of the metallogenic history to understand min-
eral deposition. Their work demonstrated that the juxtapo-
sition of tectonic lineations and foliations at Ernest Henry
suggested anticlockwise rotation of the strain direction, caus-
ing a transition from pure reverse movement to sinistral
strike slip from ca. 1550–1500 Ma. They interpreted that as
the system evolved into strike-slip-dominant tectonics, N–S-
oriented near-surface structures linked with reactivated sub-
parallel basement structures, facilitating fluid flow between
the lower and upper crust. The AMS technique has further-
more identified that the majority of structurally controlled
hydrothermal deposits plunge parallel to the measured K1
(lineation) vector (e.g. Austin et al., 2016b, e, h, 2021b, d;
McFarlane and Austin, 2021; Birchall et al., 2021). This al-
lows us to predict the plunge of most mineral deposits in the
Cloncurry district, demonstrating its value as an exploration
tool if utilised early in a greenfield drilling campaign to accu-
rately plan follow-up drilling (McFarlane and Austin, 2021).
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Figure 28. UMAP projection of all samples from all deposits (using only the petrophysical, mineralogical, and hyperspectral properties),
highlighting three main endmembers and major intermediate host lithologies. Note that as the projection is developed from a network
representation of similarities between samples, samples plotting intermediately between other identifiable groups do not necessarily exhibit
a precisely intermediate character (as could be concluded if plotting the original features), and rather they have similarities to both groups.
However, in some cases the projection has indeed highlighted some key geological features which can be related to the projection axes (x, y,
z). Figure from Williams et al. (2022). Note that the term PC refers to five principal components defined by Williams et al. (2022, Table 1)
based on combinations of TSG scalars and TIMA mineralogy data.

6.2 Machine learning

Williams et al. (2022) developed targeted workflows to make
use of the range of geoscience data within the reference
database and investigated options for pre-processing, trans-
formation, and the construction of unsupervised and su-
pervised predictive models. These workflows were imple-
mented in Python and were presented as a package of config-
urable scripts, which can be readily integrated and extended
with widely used open-source machine-learning packages.
A range of software tools and algorithms have been used,
adapted, and created to make use of specific types of geo-
science data in machine-learning workflows and for configu-
ration of model generation and interrogation.

The multi-property nature and dimensionality of the
dataset presented a challenge for use in machine-learning
workflows. However, targeted dimensionally reduced pro-
jections were found to be more useful for unravelling com-
plex geology than bivariate, ternary, or three-dimensional di-
agrams. Williams et al. (2022) identified the prominent fea-
tures and signatures which define the larger-scale structure
of these projections, providing a geological framework for

the clustering models developed. Dissection of dimension-
ally reduced projections also assisted in identifying a series
of QA/QC issues related to the reference dataset itself, which
otherwise may have been more difficult to identify or diag-
nose.

The models developed can efficiently represent complex
geology as described by geologists and suggest that some
degree of predictive analytics for exploration is feasible. The
project provided a reference framework (Fig. 28), allowing
explorers to contextualise future exploration results relative
to known mineral system signatures in the region and in so
doing further build the reference framework.

7 Data availability

Data described in this paper can be accessed via the AuScope
Data Repository: https://doi.org/10.60623/82trleue (Austin
et al., 2024).
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8 Conclusions

Cloncurry METAL set out to push the boundaries of big
data by critically examining the role of the data, in partic-
ular the pitfalls of incompleteness, inhomogeneities of scale,
and specific scale dependencies of different data types (e.g.
contrasting depth of resolution of magnetic vs. gravity in-
versions). We recognised that one way to bridge the gap
between large-scale, low-resolution datasets and the frac-
tal (i.e. multi-scale) nature of geological systems was to
develop a scale-consistent (sample-based) methodology for
data collection and translate knowledge into physical pa-
rameters which are readily scalable. The outcome of this
has led to the world’s first fully integrated petrophysical–
mineralogical–geochemical–structural–metasomatic charac-
terisation dataset, across over 20 deposits from one of the
most geologically complex mineral systems on Earth.

This paper presents data from this innovative district-
wide, scale-integrated geoscience data project, which anal-
ysed 1590 samples from 23 mineral deposits and prospects
across the Cloncurry district, Queensland. Nine different
analytical techniques, including density, magnetic suscep-
tibility, remanent magnetisation, anisotropy of magnetic
susceptibility, radiometrics, conductivity, modal mineralogy
from TIMA SEM, geochemistry, and short-wave infrared
(SWIR) hyperspectral data, resulted in 561 columns of scale-
integrated data (+2151 columns of SWIR data). All data
were collected on 2.2 cm× 2.5 cm sized sample cylinders,
a scale at which the spatial coupling of the techniques was
assured. These data are integrated by design, eliminating
the need to downscale coarser measurements using assump-
tions, inferences, inversions, and interpolations. This scale-
consistent approach is critical to quantitative characterisation
of mineral systems and has numerous applications to mineral
exploration, such as linking alteration paragenesis with struc-
tural controls and petrophysical zonation.

Whilst the database is not 100 % complete (i.e. it is miss-
ing data for some samples), it is, to our knowledge, the most
complete dataset of its kind. It is a unique dataset which
paves the way for a completely different approach to mineral
exploration, to understanding mineral systems, and to ad-
vancing the use of data analytics in the geosciences. Our team
has extracted significant value out of these new integrated
data as demonstrated by the examples contained herein. But
we have only scratched the surface of the potential applica-
tions of this approach, and there is much to be revealed by
the wider geoscience community. These data and associated
imagery, modelling, and insights provide an optimal platform
for further studies by providing comprehensive characterisa-
tion of the deposits, their footprints, and host rocks. They
describe a mineral system at the sample scale.

This project highlights the need to think carefully about
how geoscience data are collected and how collection and
processing impact upon automated interpretation. The con-
sistency of the scale, resolution, and depth of investigation of

Figure 29. The integration of domain expertise is critical to under-
standing how different vectors to mineralisation are integrated in
practice. This geological understanding is critical to underpinning
sensible utilisation of advanced data analytics.

input data is paramount and should be carefully considered
in order to best capture geoscience data that are meaningful
to data analytics. It is crucial to recognise that very few of
the datasets utilised in geoscience (especially mineral explo-
ration) are truly spatially coincident, truly quantitative (at all
scales), or compatible (in terms of describing identical vol-
umes). To make big data work in geosciences, changing how
we approach the data will lead to improved outputs from data
analytics rather than the analytics themselves. Data must first
be integrable to be integrated.

Ultimately, the most important aspects of data integration
will always be tied to people. The integration of ideas and the
linking of domain expertise are critical to aligning the min-
eral vectors provided by different techniques (Fig. 29). Get-
ting domain experts together in the field, core shed, labora-
tory, and conference room is critical to developing improved
methodologies for unlocking mineral potential and maximis-
ing the utility of data analytics. We hope this publication pro-
vides a platform for innovative research into a unique and
complex mineral system and is a catalyst for adoption of this
approach across mineral districts globally.

Author contributions. This project and its predecessor were con-
ceptualised by JRA, MG, and JW. Project funding, leadership, and
administration were undertaken by JRA and VL, with mentorship
from JW. Sampling was undertaken by JRA, MG, BP, RB, CD, JW,
TS, and HM. Data collection was undertaken by BP, AB, and JRA
(petrophysics and AMS); RB, TDS, MLG, and MG (TIMA SEM);
and JS, RB, and TDS (pXRF and ASD). Data curation and valida-
tion were undertaken by JRA, RB, BP, AB, and JS. Data visualisa-
tion and graphics were primarily by JRA with contributions from
RB and JS. Investigation and analysis were undertaken by JRA, TS,

Earth Syst. Sci. Data, 16, 5027–5067, 2024 https://doi.org/10.5194/essd-16-5027-2024



J. R. Austin et al.: Integration by design 5063

HM, JW, JS, RB, MG, BP, and AB. Draft preparation, editing, and
review (pre-submission) were by BP, RB, MG, JS, and JRA. Post-
review editing and revision were by JRA.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors acknowledge the thoughtful
and constructive reviews of Randy Enkin (Geological Survey of
Canada) and Hanna Leväniemi (Geological Survey of Finland),
which have added substantially to the quality of this paper. We
also acknowledge the in-kind support from mineral explorers in the
Cloncurry district, who provided accommodation, site access, sam-
ples, and data for this project.

Financial support. This research has been supported by the Ge-
ological Survey of Queensland (GSQ) and the Commonwealth Sci-
entific and Industrial Research Organisation (CSIRO).

Review statement. This paper was edited by Kirsten Elger and
reviewed by Randolph Enkin and Hanna Leväniemi.

References

AGICO: AGICO Company Webpage, https://www.agico.cz/text/
products/jr6/jr6.php (last access: 11 October 2024), 2021.

Anderson, C. G. and Logan, K. J.: The history and cur-
rent status of geophysical exploration at the Osborne Cu
& Au deposit, Mt. Isa. Exploration Geophysics, 23, 1–8,
https://doi.org/10.1071/EG992001, 1992.

Austin, J. R.: Petrophysically constrained targeting of Iron Oxide
Copper-Gold, Iron Sulphide Copper-Gold, Skarn and Broken
Hill Type systems, CSIRO, Australia, http://hdl.handle.net/102.
100.100/429914?index=1 (last access: 11 October 2024), 2021a.

Austin, J. R.: Mapping IOCG Fluid Pathways with Radiometrics:
Case Studies, Tools and Exploration Strategy, CSIRO, Australia
http://hdl.handle.net/102.100.100/435119?index=1 (last access:
11 October 2024), 2021b.

Austin, J. R. and Blenkinsop, T. G.: The Cloncurry Lineament: geo-
physical and geological evidence for a deep crustal structure in
the Eastern Succession of the Mount Isa Inlier, Precambr. Res.,
163, 50–68, https://doi.org/10.1016/j.precamres.2007.08.012
2008.

Austin, J. R. and Blenkinsop, T. G.: Local to regional
scale structural controls on mineralization and the impor-
tance of a major lineament in the eastern Mount Isa In-

lier, Australia: Review and analysis with autocorrelation
and weights of evidence, Ore Geol. Rev., 35, 298–316,
https://doi.org/10.1016/j.oregeorev.2009.03.004, 2009.

Austin, J. R., Schmidt, P. W., and Foss, C. A.: Magnetic mod-
eling of iron oxide copper-gold mineralization constrained by
3D multiscale integration of petrophysical and geochemical
data: Cloncurry District, Australia, Interpretation, 1 T63–T84,
https://doi.org/10.1190/INT-2013-0005.1, 2013.

Austin, J. R., Geuna, S., Clark, D. A., and Hillan, D.: Rema-
nence, self-demagnetization and their ramifications for mag-
netic modelling of iron oxide copper-gold deposits: An exam-
ple from Candelaria, Chile, J. Appl. Geophys., 109, 242–255,
https://doi.org/10.1016/j.jappgeo.2014.08.002, 2014.

Austin, J. R., Gazley, M. F., Godel, B., Hawkins, S., and
le Gras, M.: The Maronan Pb- Ag deposit: Integrated
Petrophysical and Geochemical analyses, in: Uncover Clon-
curry, edited by: Gazley, M., CSIRO, Australia, pp. 50.
https://doi.org/10.4225/08/585820ef41b35, 2016a.

Austin, J. R., Gazley, M. F., Ibrahimi, T., Walshe, J. L., Patterson,
B. O., and le Gras, M.: Uncover Cloncurry – The E1 North Cu-
Au deposit: Integrated Petrophysical and geochemical analyses,
in: Uncover Cloncurry, edited by: Gazley, M., CSIRO, Australia,
pp. 50, https://doi.org/10.4225/08/585820bbc7223, 2016b.

Austin, J. R., Gazley, M. F., Patterson, B., leGras, M.,
and Walshe, J. L.: The Artemis Zn-Cu deposit: Integrated
Petrophysical and Geochemical analyses, in: Uncover Clon-
curry, edited by: Gazley, M., CSIRO, Australia, pp. 45,
https://doi.org/10.4225/08/5858211087845, 2016c.

Austin, J. R., Gazley, M. F., Patterson, B. O., le Gras, M.,
and Walshe, J.: Uncover Cloncurry – The Cormorant Cu-Au
Prospect: Integrated petrophysical and geochemical analyses, in:
Uncover Cloncurry, edited by: Gazley, M., CSIRO, Australia,
https://doi.org/10.4225/08/585820f9410a7, 2016d.

Austin, J. R., Gazley, M. F., Walshe, J. L., Godel, B., leGras,
M., and Patterson, B. O.: The Monakoff Cu-Au-U deposit: In-
tegrated Petrophysical and Geochemical analyses, in: Uncover
Cloncurry, edited by: Gazley, M., CSIRO, Australia, pp. 50,
https://doi.org/10.4225/08/585821240c01c, 2016e.

Austin, J. R., Gazley, M. F., Walshe, J. L., and Patterson, B. O.: Un-
cover Cloncurry – Summary: Integrated structural, metasomatic
and metallogenic history of the Cloncurry District, CSIRO, Aus-
tralia, pp. 45. https://doi.org/10.4225/08/5858208ac5528, 2016f.

Austin, J. R., Hawkins, S., Gazley, M. F., Patterson, B. O., leGras,
M., and Walshe, J.: The Mount Colin Au-Cu deposit: Inte-
grated petrophysical and geochemical analyses, CSIRO, Aus-
tralia, https://doi.org/10.4225/08/585820d2990d3, 2016g.

Austin, J. R., Walshe, J. L., Gazley, M. F., Ibrahimi, T., Patterson,
B. O., and leGras, M.: The Ernest Henry Cu-Au deposit: In-
tegrated Petrophysical and Geochemical analyses, in: Uncover
Cloncurry, edited by: Gazley, M., CSIRO, Australia, pp. 56,
https://doi.org/10.4225/08/585820dc26de0, 2016h.

Austin, J. R., Walshe, J. L., Gazley, M. F., Sisson, M., leGras,
M., and Godel, B.: The Canteen Cu-Au prospect: Integrated
Petrophysical and geochemical analyses, in: Uncover Clon-
curry, edited by: Gazley, M., CSIRO, Australia, pp. 51,
https://doi.org/10.4225/08/5858212d5c7de, 2016i.

Austin, J. R., Björk, A., and Patterson, B. O.: Struc-
tural controls of the Ernest Henry IOCG deposit: In-
sights from integrated structural, geophysical and min-

https://doi.org/10.5194/essd-16-5027-2024 Earth Syst. Sci. Data, 16, 5027–5067, 2024

https://www.agico.cz/text/products/jr6/jr6.php
https://www.agico.cz/text/products/jr6/jr6.php
https://doi.org/10.1071/EG992001
http://hdl.handle.net/102.100.100/429914?index=1
http://hdl.handle.net/102.100.100/429914?index=1
http://hdl.handle.net/102.100.100/435119?index=1
https://doi.org/10.1016/j.precamres.2007.08.012
https://doi.org/10.1016/j.oregeorev.2009.03.004
https://doi.org/10.1190/INT-2013-0005.1
https://doi.org/10.1016/j.jappgeo.2014.08.002
https://doi.org/10.4225/08/585820ef41b35
https://doi.org/10.4225/08/585820bbc7223
https://doi.org/10.4225/08/5858211087845
https://doi.org/10.4225/08/585820f9410a7
https://doi.org/10.4225/08/585821240c01c
https://doi.org/10.4225/08/5858208ac5528
https://doi.org/10.4225/08/585820d2990d3
https://doi.org/10.4225/08/585820dc26de0
https://doi.org/10.4225/08/5858212d5c7de


5064 J. R. Austin et al.: Integration by design

eralogical analyses, ASEG Extended Abstracts, pp. 1–5,
https://doi.org/10.1080/22020586.2019.12073161, 2019a.

Austin, J. R., Hillan, D., and Foss, C. A.: Remanent magnetiza-
tion mapping: A tool for greenfields magmatic Ni-Cu-PGE ex-
ploration undercover: Part 2, Ore Geology Reviews, 109, 290–
302, https://doi.org/10.1016/j.oregeorev.2019.04.017, 2019b.

Austin, J. R. and Patterson, B. O.: Deciphering deformation in ultra-
mafic intrusions via magnetic fabric (AMS) and palaeomagnetic
studies, Savannah Ni-PGE camp, NW Australia, Tectonophysics,
793, 228608, https://doi.org/10.1016/j.tecto.2020.228608, 2020.

Austin, J. R., Birchall, R., Stromberg, J., Patterson, B., Bjork,
A, Dhnaram, C., Lisitsin, V., Walshe, J. Gazley, M., leGras,
M., Shelton, T., Spinks, S., Pearce, M., Schlegel, T., and
McFarlane, H.: The Cloncurry METAL Geodatabase mk1: A
scale-integrated relational geodatabase for Cloncurry District,
Northwest Queensland, Brisbane, Qld: Geological Survey of
Queensland, csiro: EP2021-0324, http://hdl.handle.net/102.100.
100/429916?index=1 (last access: 11 October 2024), 2021a.

Austin, J. R., McFarlane, H. B., Schlegel, T. U., Patterson, B., Bir-
chall, R., Walshe, J., Bjork, A., and Shelton, T. D.: Tectono-
metasomatic history and structural controls of the Ernest Henry
deposit: Insights from integrated mineralogy and magnetic fab-
ric studies: Part IV: Cloncurry METAL final report 2018/2021,
edited by: Austin, J., CSIRO, Australia pp. 66, http://hdl.
handle.net/102.100.100/429915?index=1 (last access: 11 Octo-
ber 2024), 2021b.

Austin, J. R., Patterson, B., Birchall, R., Björk, A., Walshe, J.,
Schlegel, T., Stromberg, J., McFarlane, H., Shelton, T. D., and
Pearce, M.: Metasomatic controls on petrophysical zonation in
IOCG mineral systems: An example from Ernest Henry, Clon-
curry District: Part III: Cloncurry METAL Final Report 2018/21,
edited by: Austin, J., CSIRO Australia, http://hdl.handle.net/102.
100.100/421957?index=1 (last access: 11 October 2024), 2021c.

Austin, J. R., Schlegel, T. U., Walshe, J., Bjork, A., and Foss,
C.: Geophysical proxies for redox gradients in IOCG systems:
Cloncurry District, Qld, Australia. Australian Society of Explo-
ration Geophysicists Extended Abstracts, Volume 2021, 3rd Aus-
tralasian Exploration Geoscience Conference, Brisbane, 2021,
Zenodo [data set], https://doi.org/10.5281/zenodo.7687590,
2021d.

Austin, J. R., Birchall, R., Stromberg, J., Patterson, B., Bjork,
A, Dhnaram, C., Lisitsin, V., Walshe, J. Gazley, M., leGras,
M., Shelton, T., Spinks, S., Pearce, M., Schlegel, T., and
McFarlane, H.: Cloncurry METAL: multimodal integrated
mineral system characterisation data, AuScope [data set],
https://doi.org/10.60623/82trleue, 2024.

Berman, M., Bischof, L., Lagerstrom, R., Guo, T., Hunting-
ton, J., Mason, P.: An unmixing algorithm based on a
large library of shortwave infrared spectra, CSIRO, Australia,
https://doi.org/10.4225/08/584c433f7ab79, 2011.

Biamonte, J., Wittek, P., Pancotti, N., Wiebe, N., and Loyd,
S.: Quantum machine learning, Nature, 549, 195–202,
https://doi.org/10.1038/nature23474, 2017.

Biedermann, A. R., Kunze, K., Zappone A. S., and Hirt, A. M.:
Origin of magnetic fabrics in ultramafic rocks. IOP Conference
Series: Materials Science and Engineering, vol. 82, 17th Interna-
tional Conference on Textures of Materials (ICOTOM 17), Dres-
den, Germany, https://doi.org/10.1088/1757-899X/82/1/012098,
2015.

Birchall, R., Austin, J. R., Stromberg, J. M., Schlegel, T. U., Shel-
ton, T. D., Björk, A., Woodall, C. E., and McFarlane, H. B.: A
revised alteration paragenesis for the Eloise Au-Cu deposit: Re-
sults of integrated TIMA mineralogy and hyperspectral studies.
Part IX: Cloncurry METAL Final Report 2018/21, edited by:
Austin, J., CSIRO, Australia, pp. 59, http://hdl.handle.net/102.
100.100/433371?index=1 (last access: 11 October 2024), 2021.

Bishop, J. R. and Emerson, D. W.: Geophysical properties of
zinc-bearing deposits, Australian J. Earth Sci., 46, 311–328,
https://doi.org/10.1046/j.1440-0952.1999.00706.x, 1999.

Brescianini, R. F., Asten, M. W., and McLean, N.: Geophys-
ical characteristics of the Eloise Cu/Au deposit north-
west Queensland, Exploration Geophysics, 23, 33–42,
https://doi.org/10.1071/EG992033, 1992.

Chadima, M. and Jelinek, V.: Anisoft 4.2: Anisotropy Data Browser
for Windows, Agico, Inc., http://hdl.handle.net/11104/0163273
(last access: 11 October 2024), 2009.

Chapman, L. H. and Williams, P. J.: Evolution of pyroxene–
pyroxenoid–garnet alteration at the Cannington Ag–Pb–Zn De-
posit, Cloncurry District, Queensland, Australia, Econ. Geol., 93,
1390–1405, https://doi.org/10.2113/gsecongeo.93.8.1390, 1998.

Clark, D. A.: Magnetic properties and magnetic signatures of
the Trough Tank and Starra copper-gold deposits, Eastern
Mount Isa Block, AMIRA Project 78/P96B: Applications
of Rock magnetism, https://confluence.csiro.au/display/cmfr/
Historic+Publications (last access: 11 October 2024), 1988.

Cole, D., McCalman, L., Metelka, V., Otto, A., Robert-
son, J., Rodger, A., and Steinberg, D.: NWMP Data-
Driven Mineral Exploration and Geological Mapping,
https://geoscience.data.qld.gov.au/data/dataset/cr113697/
resource/geo-doc1055039-cr113697 (last access: 11 Octo-
ber 2024), 2020.

De Jong, G.: Post metamorphic alteration and mineralisation in a
highly deformed Proterozoic terrain: the eastern Selwyn Range,
Cloncurry District NW Queensland, Unpublished Ph.D. Thesis,
James Cook University, Townsville, Qld., Australia, 1995.

Deng, D., Zheng, Y., Chen, J., Yu, S., Xiao, K., and Mao, X.:
Learning 3D mineral prospectivity from 3D geological models
using convolutional neural networks: Application to a structure-
controlled hydrothermal gold deposit, Comput. Geosci., 161,
105074, https://doi.org/10.1016/j.cageo.2022.105074, 2022.

Dentith, M., Enkin, R. J., Morris, W., Adams, C., and Bourne, B.:
Petrophysics and mineral exploration: a workflow for data analy-
sis and a new interpretation framework, Geophys. Prospect., 68,
178–199, https://doi.org/10.1111/1365-2478.12882. 2020.

Dumakor-Dupey, N. K. and Arya, S.: Machine Learning – A Re-
view of Applications in Mineral Resource Estimation, Energies,
14, 4079, https://doi.org/10.3390/en14144079, 2021.

Enkin, R. J., Corriveau, L., and Hayward, N.: Metasomatic Alter-
ation Control of Petrophysical Properties in the Great Bear Mag-
matic Zone (Northwest Territories, Canada), Econ. Geol., 111,
2073–2085, https://doi.org/10.2113/econgeo.111.8.2073, 2016.

Enkin, R. J., Hamilton, T. S., and Morris, W. A.: The Henkel
petrophysical plot: Mineralogy and lithology from physical
properties, Geochem. Geophys. Geosyst., 20, e2019GC008818,
https://doi.org/10.1029/2019GC008818, 2020.

Ferré, E. C., Bordarier, C., and Marsh, J. S.: Magma flow inferred
from AMS fabrics in a layered mafic sill, Insizwa, South Africa,

Earth Syst. Sci. Data, 16, 5027–5067, 2024 https://doi.org/10.5194/essd-16-5027-2024

https://doi.org/10.1080/22020586.2019.12073161
https://doi.org/10.1016/j.oregeorev.2019.04.017
https://doi.org/10.1016/j.tecto.2020.228608
http://hdl.handle.net/102.100.100/429916?index=1
http://hdl.handle.net/102.100.100/429916?index=1
http://hdl.handle.net/102.100.100/429915?index=1
http://hdl.handle.net/102.100.100/429915?index=1
http://hdl.handle.net/102.100.100/421957?index=1
http://hdl.handle.net/102.100.100/421957?index=1
https://doi.org/10.5281/zenodo.7687590
https://doi.org/10.60623/82trleue
https://doi.org/10.4225/08/584c433f7ab79
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/1757-899X/82/1/012098
http://hdl.handle.net/102.100.100/433371?index=1
http://hdl.handle.net/102.100.100/433371?index=1
https://doi.org/10.1046/j.1440-0952.1999.00706.x
https://doi.org/10.1071/EG992033
http://hdl.handle.net/11104/0163273
https://doi.org/10.2113/gsecongeo.93.8.1390
https://confluence.csiro.au/display/cmfr/Historic+Publications
https://confluence.csiro.au/display/cmfr/Historic+Publications
https://geoscience.data.qld.gov.au/data/dataset/cr113697/resource/geo-doc1055039-cr113697
https://geoscience.data.qld.gov.au/data/dataset/cr113697/resource/geo-doc1055039-cr113697
https://doi.org/10.1016/j.cageo.2022.105074
https://doi.org/10.1111/1365-2478.12882
https://doi.org/10.3390/en14144079
https://doi.org/10.2113/econgeo.111.8.2073
https://doi.org/10.1029/2019GC008818


J. R. Austin et al.: Integration by design 5065

Tectonophysics, 354, 1–23, https://doi.org/10.1016/S0040-
1951(02)00273-1, 2002.

Fitzpatrick, A. D.: Scale dependent electrical properties of sul-
phide deposits, PhD thesis, University of Tasmania, https://
figshare.utas.edu.au/articles/thesis/Scale_dependent_electrical_
properties_of_sulphide_deposits/23210849?file=40908593 (last
access: 11 October 2024), 2006.

Ford, A. and Blenkinsop, T. G.: Combining fractal analysis of min-
eral deposit clustering with weights-of-evidence to evaluate pat-
terns of mineralisation: Application to Cu deposits of the Mount
Isa Inlier, NW Queensland, Australia, Ore Geol. Rev., 33, 435–
450, https://doi.org/10.1016/j.oregeorev.2007.01.004, 2008.

Foster, D. R. W. and Austin, J. R.: The 1800 to 1610 Ma
stratigraphic and magmatic history of the Eastern Suc-
cession, Mount Isa Inlier, and correlations with adjacent
Paleoproterozoic terranes, Precambrian Res., 163, 7–30,
https://doi.org/10.1016/j.precamres.2007.08.010, 2008.

Gazley, M., Patterson, B., Austin, J., and Walshe, J.: Uncover
Cloncurry – Osborne Cu-Au deposit: Integrated petrophys-
ical and geochemical analyses, CSIRO, Australia, pp. 25,
https://doi.org/10.4225/08/585820e576d1f, 2016a.

Gazley, M., Sisson, M., Austin, J. R., Patterson, B., le Gras,
M., and Walshe, J.: The Trekelano Cu-Au deposit: Inte-
grated petrophysical and geochemical analyses, in: Uncover
Cloncurry, edited by: Gazley, M., CSIRO, Australia, 21 pp.,
https://doi.org/10.4225/08/5858211a8e914, 2016b.

Gazley, M., Patterson, B., Austin, J., and Godel, B.: Background
on techniques and methods, CSIRO, Australia, Kensington, WA,
https://doi.org/10.4225/08/58582106f07d6, 2016c.

Gazley, M., Sisson, M., Patterson, B., Austin, J. R., and Walshe, J.:
The Cameron River prospect: Integrated petrophysical and geo-
chemical analyses, in: Uncover Cloncurry, edited by: Gazley, M.,
CSIRO, Australia, https://doi.org/10.4225/08/5aa17a27b1147,
2017.

Ge, Y., Jin, Y., Stein, A., Chen, Y., Wang, J., Wang, J., Cheng, Q.,
Bai, H., Liu, M., and Atkinson, P. W.: Principles and methods
of scaling geospatial Earth science data, Earth-Sci. Rev., 197,
102897, https://doi.org/10.1016/j.earscirev.2019.102897, 2019.

Giraud, J., Seillé, H., Lindsay, M. D., Visser, G., Ogarko, V.,
and Jessell, M. W.: Utilisation of probabilistic magnetotel-
luric modelling to constrain magnetic data inversion: proof-
of-concept and field application, Solid Earth, 14, 43–68,
https://doi.org/10.5194/se-14-43-2023, 2023.

Greiling, R. and Verma, P.: Strike-slip and tectonics granitoid em-
placement: an AMS fabric study from the Odenwald Crys-
talline Complex, SW Germany, Mineral. Petrol., 72, 165,
https://doi.org/10.1007/s007100170032, 2001.

Gröger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., and
Plümer, L.: Integrating versions, history and levels-of-detail
within a 3D geodatabase, in: Proceedings of the 1st interna-
tional ISPRS/EuroSDR/DGPF-Workshop on Next Generation
3D City Models, edited by: Gröger, G., Kolbe, T. H., 21–22 June
2005, Bonn, EuroSDR, pp. 35–40, https://mediatum.ub.tum.de/
1453849 (last access: 11 October 2024), 2005.

Groves, D. I., Bierlein, F. P., Meinert, L. D., and Hitzman, M.
W.: Iron Oxide Copper-Gold (IOCG) Deposits through Earth
History: Implications for Origin, Lithospheric Setting, and Dis-
tinction from Other Epigenetic Iron Oxide Deposits, Econ. Geol.,

105, 641–654, https://doi.org/10.2113/gsecongeo.105.3.641,
2010.

Haest, M., Cudahy, T., Laukamp, C., and Gregory, S.: Quantita-
tive Mineralogy from Infrared Spectroscopic Data. I. Validation
of Mineral Abundance and Composition Scripts at the Rocklea
Channel Iron Deposits in Western Australia, Econ. Geol., 107,
200–228, https://doi.org/10.2113/econgeo.107.2.209, 2012.

Hitzman, M. W.: Iron oxide-Cu-Au deposits: what, where, when
and why?, in: Hydrothermal Iron Oxide Copper-gold and Related
Deposits: A Global Perspective, vol. 1, edited by: Porter, T. M.,
Australian Mineral Foundation, 9–25, https://portergeo.com.au/
full_text/Hitzman_IOCG_Overview-PGC_Publishing.pdf (last
access: 11 October 2024), 2000.

Hitzman, M. W., Oreskes, N., and Einaudi, M. T.: Geologi-
cal characteristics and tectonic setting of Proterozoic iron ox-
ide (Cu-U-Au-REE) deposits, Precamb. Res., 58, 241–287,
https://doi.org/10.1016/0301-9268(92)90121-4, 1992.

Jelinek, V.: Characterization of the magnetic fabric of rocks,
Tectonophysics, 79, 63–67, https://doi.org/10.1016/0040-
1951(81)90110-4, 1981.

Johnson, G. R. and Olhoeft, G. R.: Density of rocks and minerals,
in: Handbook of Physical Properties of Rocks, CRC Press, 1–38,
https://doi.org/10.1201/9780203712030, 2017.

Knight, M. D. and Walker, G. P.: Magma flow directions in
dikes of the Koolau Complex, Oahu, determined from mag-
netic fabric studies, J. Geophys. Res.-Sol. Ea., 93, 4301–4319,
https://doi.org/10.1029/JB093iB05p04301, 1988.

Knorsch, M., Deditius, A. P., Xia, F., Pearce, M. A., and
Uvarova, Y.: The impact of hydrothermal mineral replacement
reactions on the formation and alteration of carbonate-hosted
polymetallic sulfide deposits: A case study of the Artemis
prospect, Queensland, Australia, Ore Geol. Rev., 116, 103232,
https://doi.org/10.1016/j.oregeorev.2019.103232, 2020.

Kreuzer, O. P., Yousefi, M., and Nykänen, V.: Introduction to the
special issue on spatial modelling and analysis of ore forming
processes in mineral exploration targeting, Ore Geol. Rev., 119,
103391, https://doi.org/10.1016/j.oregeorev.2020.103391, 2020.

Lambourn, S. S. and Shelley, E. P.: Cloncurry detailed air-
borne magnetic and radiometric survey, Queensland 1970,
Record 1972/110, Geoscience Australia, Canberra, http://
pid.geoscience.gov.au/dataset/ga/12791 (last access: 11 Octo-
ber 2024), 1972.

Laukamp, C., Mason, P., Lau, I., Warren, P., and Rodger, A.: A min-
eral dataset for testing methods of SWIR interpretation, CSIRO
EP175248, 10 pp., https://doi.org/10.25919/5f1f243e51b33,
2017.

Laukamp, C., Rodger, A., LeGras, M., Lampinen., H., Lau, I.,
Pejcic, B., Stromberg, J., Francis, N., and Ramanaidou, E.:
Mineral Physicochemistry Underlying Feature-Based Extraction
of Mineral Abundance and Composition from Shortwave, Mid
and Thermal Infrared Reflectance Spectra, Minerals, 11, 347,
https://doi.org/10.3390/min11040347, 2021.

Leväniemi, H. and Hokka, J.: Petrophysical target characterization
with lithogeochemical clustering: the Metsämonttu Zn–Pb–Cu
deposit, southern Finland, Near Surf. Geophys., 20, 637–660,
https://doi.org/10.1002/nsg.12182. 2022.

Li, X., Chen, Y., Yuan, F., Jowitt, S. M., Zhang, M.,
Ge, C., Wang, Z., and Deng, Y.: 3D mineral prospectiv-
ity modeling using multi-scale 3D convolution neural net-

https://doi.org/10.5194/essd-16-5027-2024 Earth Syst. Sci. Data, 16, 5027–5067, 2024

https://doi.org/10.1016/S0040-1951(02)00273-1
https://doi.org/10.1016/S0040-1951(02)00273-1
https://figshare.utas.edu.au/articles/thesis/Scale_dependent_electrical_properties_of_sulphide_deposits/23210849?file=40908593
https://figshare.utas.edu.au/articles/thesis/Scale_dependent_electrical_properties_of_sulphide_deposits/23210849?file=40908593
https://figshare.utas.edu.au/articles/thesis/Scale_dependent_electrical_properties_of_sulphide_deposits/23210849?file=40908593
https://doi.org/10.1016/j.oregeorev.2007.01.004
https://doi.org/10.1016/j.precamres.2007.08.010
https://doi.org/10.4225/08/585820e576d1f
https://doi.org/10.4225/08/5858211a8e914
https://doi.org/10.4225/08/58582106f07d6
https://doi.org/10.4225/08/5aa17a27b1147
https://doi.org/10.1016/j.earscirev.2019.102897
https://doi.org/10.5194/se-14-43-2023
https://doi.org/10.1007/s007100170032
https://mediatum.ub.tum.de/1453849
https://mediatum.ub.tum.de/1453849
https://doi.org/10.2113/gsecongeo.105.3.641
https://doi.org/10.2113/econgeo.107.2.209
https://portergeo.com.au/full_text/Hitzman_IOCG_Overview-PGC_Publishing.pdf
https://portergeo.com.au/full_text/Hitzman_IOCG_Overview-PGC_Publishing.pdf
https://doi.org/10.1016/0301-9268(92)90121-4
https://doi.org/10.1016/0040-1951(81)90110-4
https://doi.org/10.1016/0040-1951(81)90110-4
https://doi.org/10.1201/9780203712030
https://doi.org/10.1029/JB093iB05p04301
https://doi.org/10.1016/j.oregeorev.2019.103232
https://doi.org/10.1016/j.oregeorev.2020.103391
http://pid.geoscience.gov.au/dataset/ga/12791
http://pid.geoscience.gov.au/dataset/ga/12791
https://doi.org/10.25919/5f1f243e51b33
https://doi.org/10.3390/min11040347
https://doi.org/10.1002/nsg.12182


5066 J. R. Austin et al.: Integration by design

work and spatial attention approaches, Geochemistry, 126125,
https://doi.org/10.1016/j.chemer.2024.126125. 2024.

Lypaczewski, P. and Rivard, B.: Estimating the Mg# and AlVI
content of biotite and chlorite from short wave infrared re-
flectance spectroscopy: Predictive equations and recommenda-
tions for their use, Int. J. Appl. Earth Obs., 68, 116–126,
https://doi.org/10.1016/j.jag.2018.02.003, 2018.

McCuaig, T. C., Beresford, S., and Hronsky, J. M. A.: Trans-
lating the mineral systems approach into an effective ex-
ploration targeting system, Ore Geol. Rev., 38, 128–138,
https://doi.org/10.1016/j.oregeorev.2010.05.008, 2010.

McFarlane, H. B. and Austin, J. R.: Anisotropy of Magnetic Suscep-
tibility (AMS): A powerful tool for quantifying IOCG structural
controls and predicting ore body geometries, CSIRO, Australia,
2021.

McFarlane, H. B., Austin, J. R., Schlegel, T. U., Birchall, R,
Bjork, A., Stromberg, J., Walshe, J., Shelton, T., and Pearce, M.:
Starra 276 and 251: Redox Gradients and Structural Controls –
Integrated petrophysical, structural and mineralogical analysis:
Part V: Cloncurry METAL Final Report 2018/2021, edited by:
Austin, J., CSIRO, Australia, http://hdl.handle.net/102.100.100/
429198?index=1 (last access: 11 October 2024), 2021a.

McFarlane, H. B., Bjork, A., Stromberg, J., Austin, J. R., Bir-
chall, R., Schlegel, T. U., Shelton, T. D., and Patterson, B.: Min-
eralogical, petrophysical and structural characterisation of Os-
borne Cu-Au deposit: Part IIX: Cloncurry METAL Final Re-
port 2018/2021, edited by: Austin, J., CSIRO, Australia, pp. 53,
http://hdl.handle.net/102.100.100/433817?index=1 (last access:
11 October 2024), 2021b.

Mustard, R., Blenkinsop, T., McKeagney, C., Huddleston-Holmes,
C., and Partington, G.: New perspectives on IOCG de-
posits. Mt Isa Eastern Succession, northwest Queensland, Ex-
tended abstracts, SEG 2004 Conference, pp. 281–284, https:
//researchonline.jcu.edu.au/3539/ (last access: 11 October 2024),
2004.

Mutton, A. J. and Shaw, R. D.: Physical property measurements as
an aid to magnetic interpretation in basement terrains, Explor.
Geophys., 10, 79–91. https://doi.org/10.1071/EG979079, 1979.

Patterson, B., Austin, J. R., Gazley, M., and Walshe, J.: The SWAN
Cu-Au deposit: Integrated petrophysical and geochemical analy-
ses, in: Uncover Cloncurry, edited by: Gazley, M., CSIRO, Aus-
tralia, https://doi.org/10.4225/08/5858209427c32, 2016a.

Patterson, B., Gazley, M., Austin, J. R., and Walshe, J.: The Merlin
Mo-Re deposit: Integrated petrophysical and geochemical analy-
ses, in: Uncover Cloncurry, edited by: Gazley, M., CSIRO, Aus-
tralia, 30 pp., https://doi.org/10.4225/08/585821367807e, 2016b.

Patterson, B., Austin, J. R., Walshe, J. Gazley, M., leGras,
M., and Godel, B.: The Starra Cu-Au deposits: Inte-
grated petrophysical and geochemical analyses. in: Un-
cover Cloncurry, edited by: Gazley, M., CSIRO, Australia,
https://doi.org/10.4225/08/586fdb2db600b, 2016c.

Pearce, M., Austin, J., McFarlane, H., Birchall, R., and Spinks, S.:
Cloncurry METAL Final Report Part VII: Cloncurry METAL Fi-
nal Report 2018/2021, edited by: Austin, J., CSIRO, Australia,
pp. 46, http://hdl.handle.net/102.100.100/429788?index=1 (last
access: 11 October 2024), 2021.

Portela, L., Siégel, C., Allen, C., and Austin, J.: Allanite U-Th-Pb
geochronology of IOCG and Zn-Ag-Pb deposits in the Mount
Isa Inlier, Australia. Society of Economic Geologists 2024 con-

ference proceedings, Windhoek, Namibia, http://hdl.handle.net/
102.100.100/636762?index=1 (last access: 25 October 2024),
2024.

Porwal, A. K. and Kreuzer, O. P.: Introduction to the
special issue: mineral prospectivity analysis and quantita-
tive resource estimation, Ore Geol. Rev., 38, 121–127,
https://doi.org/10.1016/j.oregeorev.2010.06.002, 2010.

Riisager, P. and Abrahamsen, N.: Palaeomagnetic errors related to
sample shape and inhomogeneity, Earth Planets Space, 55, 83–
91, 2003.

Roache, T. J., Williams, P. J., Richmond, J. M., and Chapman, L. H.:
Vein and Skarn Formation at the Cannington Ag–Pb–Zn Deposit,
northeastern Australia, The Canadian Mineralogist, 43, 241–262,
2005.

Rubenach, M.: Structural Controls of Metasomatism on a Regional
Scale, in: Metasomatism and the Chemical Transformation of
Rock, Lecture Notes in Earth System Sciences, Springer, Berlin,
Heidelberg, 2013.

Rybach, L.: Radioactive heat production in rocks and its relation to
other petrophysical parameters, Pure Appl. Geophys., 114, 309–
318, 1976.

Rybach, L.: Determination of heat production rate, in: Handbook of
Terrestrial Heat Flow Density Determination, edited by: Haenel,
R., Rybach, L., and Stegena, L., Kluwer Academic Publishers,
Dordrecht, pp. 486, 1988.

Schlegel, T. U.: Mapping Mineral Zonation using Integrated
TIMA Mineralogy and Geochemistry: Vectoring to Grade,
CSIRO, Australia, pp. 8, http://hdl.handle.net/102.100.100/
433707?index=1 (last access: 11 October 2024), 2021.

Schlegel, T. U., Birchall, R., Stromberg, J. M., McFarlane, H., Shel-
ton, T., Godel, B., Bjork, A., Pearce, M. A., Walshe, J. L., and
Austin, J.: Mineral System Knowledge via Integration of Min-
eralogy, Geochemistry and Petrophysics – A case study on the
Ernest Henry IOCG deposit. Part II: Cloncurry METAL final re-
port 2018/2021, edited by: Austin, J., CSIRO, Australia, pp. 46,
CSIRO, Australia, 2021.

Schlegel, T. U., Birchall, R., Shelton, T. D., and Austin, J.
R.: Mapping the mineral zonation at the Ernest Henry iron
oxide copper-gold deposit: Vectoring to Cu-Au mineraliza-
tion using modal mineralogy, Econ. Geol., 117, 485–494,
https://doi.org/10.5382/ECONGEO.4915, 2022.

Schmidt, P. W., McEnroe, S. A., Clark, D. A., and Robin-
son, P.: Magnetic properties and potential field modeling of
the Peculiar Knob metamorphosed iron formation, South Aus-
tralia: An analog for the source of the intense Martian mag-
netic anomalies?, J. Geophys. Res.-Sol. Ea., 112, B03102,
https://doi.org/10.1029/2006JB004495, 2007.

Smillie, R., Hill, M., Martin, A.P., Rattenbury, M., and Turnbull, R.:
A Mineral Systems Approach for New Zealand: New Opportu-
nities for Exploration, in: Proceedings Australasian Institute of
Mining and Metallurgy 50th New Zealand Branch Annual Con-
ference, edited by: Fergusson, D., Australasian Institute of Min-
ing and Metallurgy, 306–313, 2017.

Sonntag, I., Laukamp, C., and Hagemann, S. G.: Low potassium
hydrothermal alteration in low sulfidation epithermal systems as
detected by IRS and XRD: An example from the Co-O mine,
Eastern Mindaneo, Phillipines, Ore Geol. Rev., 45, 47–60, 2012.

Stromberg, J. M., McFarlane, H. B., Birchall, R., Schlegel, T. U.,
Austin, J. R., Pearce, M. A., and Shelton, T. D.: SWAN and

Earth Syst. Sci. Data, 16, 5027–5067, 2024 https://doi.org/10.5194/essd-16-5027-2024

https://doi.org/10.1016/j.chemer.2024.126125
https://doi.org/10.1016/j.jag.2018.02.003
https://doi.org/10.1016/j.oregeorev.2010.05.008
http://hdl.handle.net/102.100.100/429198?index=1
http://hdl.handle.net/102.100.100/429198?index=1
http://hdl.handle.net/102.100.100/433817?index=1
https://researchonline.jcu.edu.au/3539/
https://researchonline.jcu.edu.au/3539/
https://doi.org/10.1071/EG979079
https://doi.org/10.4225/08/5858209427c32
https://doi.org/10.4225/08/585821367807e
https://doi.org/10.4225/08/586fdb2db600b
http://hdl.handle.net/102.100.100/429788?index=1
http://hdl.handle.net/102.100.100/636762?index=1
http://hdl.handle.net/102.100.100/636762?index=1
https://doi.org/10.1016/j.oregeorev.2010.06.002
http://hdl.handle.net/102.100.100/433707?index=1
http://hdl.handle.net/102.100.100/433707?index=1
https://doi.org/10.5382/ECONGEO.4915
https://doi.org/10.1029/2006JB004495


J. R. Austin et al.: Integration by design 5067

Mount Elliot Cu-Au Systems – Multi-scale Investigation of Calc-
Silicate Alteration Mineralogy. Part VI: Cloncurry METAL Final
Report 2018/2021, CSIRO, Australia, http://hdl.handle.net/102.
100.100/428686?index=1 (last access: 11 October 2024), 2021.

Torsvik, T. H., Sturt, B. A., Swensson, E., Andersen, T. B., and
Dewey, J. F.: Palaeomagnetic dating of fault rocks: evidence
for Permian and Mesozoic movements and brittle deforma-
tion along the extensional Dalsfjord Fault, western Norway,
Geophys. J. Int., 109, 565–580, https://doi.org/10.1111/j.1365-
246X.1992.tb00118.x, 1992.

Walshe, J. L., Cooke, D. R., and Neumayr, P.: Five questions for
fun and profit: A mineral system perspective on metallogenic
epochs, provinces and magmatic hydrothermal Cu and Au de-
posits, in: Mineral Deposit Research: Meeting the Global Chal-
lenge, edited by: Mao, J. and Bierlein, F. P., Springer, Berlin,
Heidelberg, https://doi.org/10.1007/3-540-27946-6_124, 2005.

Walshe, J. L., Gazley, M. F., Austin, J. R., and Patterson, B. O.:
Chemical gradients in the Cloncurry Mineral System: Vectors to
grade?, in: Uncover Cloncurry, edited by: Gazley, M., CSIRO,
Australia, https://doi.org/10.4225/08/585820a819235, 2016.

Walters, S. G., Skrzeczynski, B., Whiting, T., Bunting, F., and
Arnold, G.: Discovery and Geology of the Cannington Ag-Pb-Zn
Deposit, Mount Isa Eastern Succession, Australia: Development
and Application of an Exploration Model for Broken Hill-Type
Deposits, in: Integrated Methods for Discovery: Global Explo-
ration in the Twenty-First Century, edited by: Goldfarb, R. J. and
Nielsen R. L., https://doi.org/10.5382/SP.09.05, 2002.

Webb, M. and Rowston, P.: The Geophysics of the Ernest Henry
Cu-Au Deposit (N.W.) Qld, Exploration Geophysics, 26, 51–59,
https://doi.org/10.1071/EG995051, 1995.

Williams, M. J., Schlegel, T. U., Austin, J., Lisitsin, V., Francis,
N., Armstrong, D., Wathen-Dunn, K., and Dhnaram, C.: Signa-
tures of Key Mineral Systems in the Eastern Mount Isa Province,
Queensland: New Perspectives from Data Analytics, CSIRO,
Australia, 109 pp., https://doi.org/10.25919/gv7t-xr02, 2022.

Williams, P. J.: Metalliferous economic geology of the Mt Isa East-
ern Succession, Queensland, Australian J. Earth Sci., 45, 329–
341, https://doi.org/10.1080/08120099808728395, 1998.

Williams, P. J. and Baker, T.: Regional-scale association of Skarn
alteration and base metal deposits in the Cloncurry District,
Mount Isa Inlier, Queensland, Australia. Transactions of the In-
stitute of Mining and Metallurgy Section B (Applied Earth Sci-
ence), 104, 189–192, https://minabs.americangeosciences.org/
vufind/Record/2001069649 (last access: 11 October 2024), 1995.

Williams, P. J. and Heinemann, M.: Maramungee; a Protero-
zoic Zn skarn in the Cloncurry District, Mount Isa In-
lier, Queensland, Australia, Econ. Geol., 88, 1114–1134,
https://doi.org/10.2113/gsecongeo.88.5.1114, 1993.

Williams, P. J., Pendergast, W. J., and Dong, G.: Late orogenic al-
teration in the wall rocks of the Pegmont Pb–Zn deposits, Clon-
curry District, Queensland, Australia, Econ. Geol., 93, 1180–
1189, https://doi.org/10.2113/gsecongeo.93.8.1180, 1998.

Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., de
Haller, A., Mark, G., Oliver, N. H. S., and Marschik, R.: Iron ox-
ide copper-gold deposits: Geology, Space-time distribution, and
possible modes of origin: Econ. Geol., 100th Anniversary Vol-
ume, 371–405, https://doi.org/10.5382/AV100.13, 2005.

Xiang, J., Xiao, K., Carranza, E. J. M., Chen, J., and Li, S.: 3D
Mineral Prospectivity Mapping with Random Forests: A Case
Study of Tongling, Anhui, China, Nat. Resour. Res., 29, 395–
414, https://doi.org/10.1007/s11053-019-09578-2, 2020.

Yousefi, M., Kreuzer, O. P., Nykänen, V., and Hronsky, J. M. A.:
Exploration information systems – a proposal for the future use
of GIS in mineral exploration targeting, Geol. Rev., 111, 103005,
https://doi.org/10.1016/j.oregeorev.2019.103005, 2019.

Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hron-
sky, J. M. A., and Mihalasky, M. J.: Data analysis methods for
prospectivity modelling as applied to mineral exploration tar-
geting: State-of-the-art and outlook, J. Geochem. Explor., 229,
106839, https://doi.org/10.1016/j.gexplo.2021.106839, 2021.

Závada, P., Calassou, T., Schulmann, K., Hrouda, F., Štíp-
ská, P., Hasalová, P., Míková, J., Magna, T., and Mixa,
P.: Magnetic fabric transposition in folded granite sills in
Variscan orogenic wedge, J. Struct. Geol., 94, 166–183,
https://doi.org/10.1016/j.jsg.2016.11.007, 2017.

https://doi.org/10.5194/essd-16-5027-2024 Earth Syst. Sci. Data, 16, 5027–5067, 2024

http://hdl.handle.net/102.100.100/428686?index=1
http://hdl.handle.net/102.100.100/428686?index=1
https://doi.org/10.1111/j.1365-246X.1992.tb00118.x
https://doi.org/10.1111/j.1365-246X.1992.tb00118.x
https://doi.org/10.1007/3-540-27946-6_124
https://doi.org/10.4225/08/585820a819235
https://doi.org/10.5382/SP.09.05
https://doi.org/10.1071/EG995051
https://doi.org/10.25919/gv7t-xr02
https://doi.org/10.1080/08120099808728395
https://minabs.americangeosciences.org/vufind/Record/2001069649
https://minabs.americangeosciences.org/vufind/Record/2001069649
https://doi.org/10.2113/gsecongeo.88.5.1114
https://doi.org/10.2113/gsecongeo.93.8.1180
https://doi.org/10.5382/AV100.13
https://doi.org/10.1007/s11053-019-09578-2
https://doi.org/10.1016/j.oregeorev.2019.103005
https://doi.org/10.1016/j.gexplo.2021.106839
https://doi.org/10.1016/j.jsg.2016.11.007

	Abstract
	Copyright statement
	Introduction
	Background
	Geoscience data
	Data scaling and translation
	Data integration
	Integration by design

	Study area
	Sampling
	Sampling strategy
	Zonation
	Sample spacing
	Representativity
	Orientation

	Sample distribution
	Uncover Cloncurry samples
	Ernest Henry Cu–Au deposit
	Osborne Cu–Au deposit
	Starra-276 Au–Cu deposit
	Cannington Ag–Zn–Pb deposit
	SWAN Cu–Au deposit
	Eloise Au–Cu deposit


	Methods
	Sample preparation
	Techniques (methods, instrumentation, data processing, and pitfalls)
	Density measurements
	Magnetic susceptibility measurements
	Remanent magnetisation measurements
	Conductivity
	Radiometrics
	Structural fabrics
	Automated mineral mapping
	Geochemistry
	Hyperspectral data

	Dataset collation and integration
	QA/QC

	Applications
	Mineral exploration and mineral system characterisation
	Geodynamics
	Architecture
	Fluids (metasomatism)
	Pathways
	Mineral deposition

	Machine learning

	Data availability
	Conclusions
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

