
Earth Syst. Sci. Data, 16, 4817–4842, 2024
https://doi.org/10.5194/essd-16-4817-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A globally distributed dataset of coseismic landslide
mapping via multi-source high-resolution remote

sensing images

Chengyong Fang1, Xuanmei Fan1, Xin Wang1, Lorenzo Nava2, Hao Zhong1,3, Xiujun Dong1, Jixiao Qi1,
and Filippo Catani2

1State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,
Chengdu University of Technology, 610059 Chengdu, China

2Machine Intelligence and Slope Stability Laboratory, Department of Geosciences,
University of Padua, 35129 Padua, Italy

3College of Information Science and Technology,
Chengdu University of Technology, 610059 Chengdu, China

Correspondence: Xuanmei Fan (fxm_cdut@qq.com)

Received: 18 June 2024 – Discussion started: 18 July 2024
Revised: 4 September 2024 – Accepted: 9 September 2024 – Published: 24 October 2024

Abstract. Rapid and accurate mapping of landslides triggered by extreme events is essential for effective emer-
gency response, hazard mitigation, and disaster management. However, the development of generalized ma-
chine learning models for landslide detection has been hindered by the absence of a high-resolution, globally
distributed, event-based dataset. To address this gap, we introduce the Globally Distributed Coseismic Land-
slide Dataset (GDCLD), a comprehensive dataset that integrates multi-source remote sensing images, includ-
ing PlanetScope, Gaofen-6, Map World, and uncrewed aerial vehicle (UAV) data, with varying geographi-
cal and geological background for nine events across the globe. The GDCLD data are freely available at
https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024). In this study, we evaluated the effectiveness of
GDCLD by comparing the mapping performance of seven state-of-the-art semantic segmentation algorithms.
These models were further tested by three different types of remote sensing images in four independent regions,
with the GDCLD-SegFormer model achieving the best performance. Additionally, we extended the evaluation to
a rainfall-induced landslide dataset, where the models demonstrated excellent performance as well, highlighting
the dataset’s applicability to landslide segmentation triggered by other factors. Our results confirm the superi-
ority of GDCLD in remote sensing landslide detection modeling, offering a comprehensive database for rapid
landslide assessment following future unexpected events worldwide.

1 Introduction

Landslides triggered by extreme events such as earthquakes
and heavy precipitation are responsible for most of the dam-
age to mountainous settlements (Huang and Fan, 2013). In
some cases, landslides can be even more disastrous than the
triggering events themselves as they can render emergency
responses ineffective by cutting off roads and other trans-
portation lifelines (Cigna et al., 2012; Huang et al., 2012;
Valagussa et al., 2019; Chau et al., 2004). Therefore, the

rapid and accurate identification of landslides after extreme
events is crucial for timely and quantitative assessment of
disasters. This is especially important for emergency rescue
operations and subsequent risk management in mountainous
areas with complex environments and possibly inconvenient
transportation routes (Cigna et al., 2018; Chau et al., 2004;
Gorum et al., 2011).

Conventional landslide mapping efforts rely on traditional
surveying methods such as topographic total stations, field
observations to collect essential data on slope stability and
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terrain morphology (Brardinoni et al., 2003; Coe et al., 2003;
Zhong et al., 2020). These methods may not capture the full
extent of terrain dynamics due to their static nature (Metter-
nicht et al., 2005). Consequently, these methods are not effec-
tive for detailed landslide mapping, especially when travers-
ing the affected and unstable regions for field surveys is not
possible. This was particularly true for the Wenchuan co-
seismic landslides, which mobilized large amounts of ma-
terial that obstructed roads, complicating disaster response
efforts as well as surveying and mapping activities (Gorum
et al., 2011). With the development of remote sensing tech-
nology in the past decades, landslide investigation has been
supported by digital mapping, which reduces time and la-
bor costs (Fiorucci et al., 2011, 2019; Gao and Maro, 2010;
Guzzetti et al., 2012). This mapping has also been enhanced
by various modalities of sensors, such as synthetic aperture
radar (Mondini et al., 2021; Nava et al., 2021), multi-spectral
(Udin et al., 2019), and hyper-spectral (Ye et al., 2019) im-
agery. However, visual identification is highly subjective due
to operator experience, and the interpretation of events in-
volving numerous landslides is still time-consuming. There-
fore, this subjectivity and the time-consuming nature of in-
terpretation hinder the reliability and efficiency of land-
slide mapping, for example, after major events such as the
Wenchuan, China (2008), and Gorkha, Nepal (2015), earth-
quakes.

Generally, the ideal solution is to develop automated mod-
els or tools that can save time and costs while ensuring an
objective protocol in the mapping process (Casagli et al.,
2023). While some researchers have endeavored to employ
machine learning or deep learning in constructing these mod-
els, most of them lack the generalization capability for appli-
cation across diverse environmental backgrounds and remote
sensing images (Burrows et al., 2019; Bhuyan et al., 2023;
Li et al., 2016; Liu et al., 2022; Lu et al., 2019; Luppino
et al., 2022; Meena et al., 2021; Soares et al., 2022; Yang
et al., 2022b; Mohan et al., 2021; Ss and Shaji, 2022; Li
et al., 2024). To improve such models, more abundant data
that consider the diverse geomorphological and climatic set-
tings where landslides occur are essential. The Bijie land-
slide dataset, based on Map World imagery, presents a small-
scale dataset of mountainous landslides, filling the gap in
landslide detection tasks for the first time (Ji et al., 2020).
Landslide4Sense, based on Sentinel-2 imagery, introduces
a multi-spectral landslide dataset, pioneering semantic-level
annotation of landslides (Ghorbanzadeh et al., 2022). The
HR-GLDD and GVLM datasets, based on PlanetScope and
Google Earth imagery, respectively, represent global-scale
high-resolution landslide datasets (Meena et al., 2023; Zhang
et al., 2023). However, these datasets are limited by their
reliance on a single remote sensing data source, restrict-
ing the applicability of models across different sensors and
resolutions. The CAS Landslide dataset introduces a moun-
tain landslide dataset containing various remote sensing data
sources (Xu et al., 2024). However, due to its limited an-

notated landslide quantity, high image overlap, and lack of
negative samples (background/non-landslide), it is still in-
sufficient to effectively generalize to automatic landslide
mapping tasks in various complex environments, especially
where signatures of landslides often resemble nearby terrain.

Therefore, there is an urgent need to develop a carefully
curated and diverse dataset. Such a dataset would facilitate
the rapid and accurate mapping of landslides using available
prior knowledge. Hence, we present a comprehensive land-
slide dataset derived from nine earthquake-triggered land-
slide events, encompassing multi-sensor images from 3 m
PlanetScope, 2 m Gaofen-6, 0.5 m Map World, and 0.2 m un-
crewed aerial vehicle (UAV). This work addresses the short-
comings of existing datasets in terms of accuracy and gener-
alization for training large and complex deep learning mod-
els. It is of great significance for accurate, rapid, and au-
tomatic mapping of landslides occurring anywhere in the
world, providing strong support for efficient geohazard emer-
gency response and investigation.

The paper is structured as follows: Sect. 2 reviews exist-
ing high-quality landslide datasets to provide an overview of
the current state of research. Section 3 introduces the data
collection and preparation process to showcase the exten-
sive research events and scientific methodology behind our
data production. Section 4 describes the semantic segmenta-
tion algorithms, loss functions, and parameter settings used
in this study and shows the rationale behind their use. Sec-
tion 5 presents the results, including the training, validation,
and testing outcomes of the dataset, as well as the generaliza-
tion ability of the model trained by the Globally Distributed
Coseismic Landslide Dataset (GDCLD) in independent re-
gions. Section 6 discusses the innovation and effectiveness of
GDCLD, illustrating its effective application in several land-
slide events.

2 Related work

The most effective approach to landslide mapping currently
involves image segmentation, and computer vision segmen-
tation tasks depend heavily on high-quality data to build ac-
curate models. However, landslide segmentation tasks have
developed relatively recently compared to other computer
vision applications, resulting in only a limited number of
studies that have constructed datasets for various landslide
events. In this section, we review some of these landslide seg-
mentation datasets and provide detailed information on each
(Table 1).

The Bijie landslide dataset comprises high-resolution
satellite images captured in landslide-prone areas of Guizhou
province, China. The dataset includes 770 landslide samples
and 2003 non-landslide samples. The positive samples con-
sist of rockfalls, rockslides, and a small number of debris
avalanches, while the negative samples include mountains,
villages, roads, rivers, and farmland among others. The im-
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age resolutions vary from 61×61 to 1239×1197 pixels, with
RGB channels. There are a total of 7.23×106 pixels assigned
to landslide within the dataset (Ji et al., 2020).

The Landslide4Sense dataset consists of multi-spectral
satellite images captured across four distinct regions. This
dataset comprises 3799 images, each with a dimension of
64× 64 pixels and a spatial resolution of 10 m. Each image
contains 14 bands, including 12 bands from the Sentinel-2
satellite and two bands from digital elevation model (DEM)
data. The dataset includes negative background samples such
as bare soil, rivers, and buildings. There are a total of 1.76×
106 pixels assigned to landslides within the dataset (Ghor-
banzadeh et al., 2022).

The HR-GLDD spans 10 distinct geographic regions, cap-
turing landslide instances across various geographical en-
vironments in south Asia, southeast Asia, east Asia, South
America, and Central America. HR-GLDD comprises a to-
tal of 1756 image patches, each standardized to a size of
128× 128 pixels, with a spatial resolution of up to 3 m.
The dataset is sourced from four spectral bands of the Plan-
etScope satellite. It includes a variety of negative samples,
such as non-landslide terrain features, buildings, and roads,
ensuring a comprehensive representation for model training.
There are a total of 2.96× 106 pixels assigned to landslides
within the dataset (Meena et al., 2023).

The GVLM dataset spans six continents and 17 different
landslide sites. GVLM covers a diverse range of geological
and climatic conditions, from the lush landscapes of Asia to
the rugged terrain of South America. Comprising 17 pairs
of dual-temporal very high-resolution (VHR) images, each
image pair boasts a spatial resolution of 0.59 m, ensuring
a detailed capture of landslide features and their surround-
ing environments. GVLM incorporates various negative sam-
ples, including non-landslide landforms, infrastructure such
as buildings, and transportation networks, providing a holis-
tic training ground for models. Image sizes within the GVLM
dataset range from 1861× 1749 to 10828× 7424 pixels.
There are a total of 3.24× 107 pixels assigned to landslides
within the dataset (Zhang et al., 2023).

The CAS Landslide dataset covers nine different geo-
graphic regions spanning south Asia, southeast Asia, east
Asia, South America, and Central America. Comprising
20 865 image patches, each standardized to a size of 512×
512 pixels, the dataset offers a spatial resolution ranging
from 0.2 to 5 m. During the cropping process, an overlap set-
ting parameter of 0.5 was used. These images are sourced
from uncrewed aerial vehicles (UAVs) and satellite plat-
forms, integrating data from the PlanetScope satellite and
other sources. The dataset removes background images that
do not contain landslide pixels and therefore lacks sufficient
background noise as negative samples to enhance the robust-
ness of the model. There are a total of 1.95× 108 pixels as-
signed to landslides within the dataset (Xu et al., 2024).

In summary, comparing with other remote sensing detec-
tion tasks such as land cover/use, the currently available land-

slide datasets are exceedingly scarce, predominantly com-
prising single remote sensing images with low spatial res-
olutions. Most crucially, these datasets lack sufficient anno-
tations of landslide instances, exhibit high overlap, and suffer
from a dearth of diverse negative samples. As a result, they
are ill-equipped to tackle the challenges of mapping land-
slides in large-scale areas with complex background objects,
especially those sharing spectral and textural characteristics
with landslide surfaces, such as bare soil and rocks. Further-
more, they fail to provide adequate data sources for effec-
tively training large-scale neural network baseline models.

3 Globally Distributed Coseismic Landslide Dataset
(GDCLD)

The creation of the GDCLD dataset can be broadly divided
into two main components: landslide data collection and re-
mote sensing data processing. In the first part, we compiled
recent landslide events triggered by earthquakes worldwide
over the past 7 years and obtained the corresponding remote
sensing images. The second part details the process of an-
notating landslide labels and the methodology used to create
the standard dataset. The workflow is illustrated in Fig. 1.

3.1 Data collection

Our dataset encompasses a catalog of landslides triggered
by nine seismic occurrences delineated across the Himalayan
seismic belt and the Circum-Pacific belt as depicted in Fig. 2.
These regions have actively witnessed seismic events with
magnitudes over 5.9, triggering numerous landslides (Ta-
ble 2). We obtained data of these locations from various re-
mote sensing sources. This section delineates the particulars
of the seismic events and the provenance of the remote sens-
ing data.

3.1.1 The 2017 Jiuzhaigou earthquake-triggered
landslides

On 8 August 2017, a Mw 6.5 earthquake struck Jiuzhaigou
in Sichuan province, China (102.82° E, 33.20° N), trigger-
ing 2498 landslides that were predominantly shallow sur-
face slides and collapses. The largest landslide covered ap-
proximately 2.3×105 m2 (Fan et al., 2018). Jiuzhaigou, situ-
ated on the northeastern margin of the Qinghai–Tibet Plateau
within the tectonically active zone north of the Longmenshan
fault, is part of the Mediterranean–Himalayan seismic belt
(Fan et al., 2018). The region’s average elevation exceeds
3000 m with a maximum relief of 2228 m and a vegetation
cover surpassing 70 % (Yi et al., 2020; Chen et al., 2019).
Exposed geological formations include various gray–white
sandstones and dolomites from the Devonian, Carboniferous,
Permian, Triassic, and Tertiary periods (Fang et al., 2022).
After the earthquake, we acquired multiple remote sensing
images: a 0.2 m resolution UAV image (Phase One iXU1000)
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Table 1. Existing landslide dataset statistics.

Dataset Bands Events Tiles Landslide number Labeling pixels

Bijie landslide 3 1 2773 770 7.23× 106

Landslide4Sense 14 4 3799 > 30000 1.76× 106

HR-GLDD 4 13 1756 7193 2.96× 106

GVLM 3 17 17 – 3.24× 107

CAS Landslide 3 9 20 865 – 1.95× 108

Figure 1. The workflow of producing GDCLD.

on 22 September 2017, a 3 m resolution PlanetScope image
on 13 October 2017, and a 0.5 m resolution from Map World
(Fig. S1 in the Supplement).

3.1.2 The 2017 Mainling earthquake-triggered
landslides

On 18 November 2017, a magnitude 6.4 earthquake struck
Mainling (95.02° E, 29.75° N), resulting in three injuries
and affecting 12 000 individuals. The earthquake triggered
over 1000 landslides, obstructing numerous watercourses
and covering a total area of 33.61 km2, with the largest land-
slide spanning 4.9 km2 (Hu et al., 2019). Mainling, located
on the southeastern margin of the Qinghai–Tibet Plateau
within the Yarlung Zangbo Grand Canyon, is part of the
Mediterranean Himalayan seismic zone. This region, with
altitudes ranging from 800 to 7782 m and an average eleva-
tion of 2500 m, features a maximum elevation differential of
2000 m and a robust vegetation coverage of 60 % (Gao et al.,
2023; Chen et al., 2019). The monsoonal climate here brings
annual rainfall of between 1500 and 2000 mm (Huang et al.,
2021). Following the earthquake, we acquired 3 m resolution

PlanetScope images on 17 December 2017 and 8 April 2018
to interpret the landslides (Fig. S2).

3.1.3 The 2018 Hokkaido earthquake

On 6 September 2018, a Mw 6.6 earthquake struck Hokkaido,
Japan (142.01° E, 42.69° N), resulting in 44 fatalities and
over 660 injuries. Approximately 80 % of the casualties were
due to coseismic landslides. The earthquake triggered over
7800 landslides, causing extensive damage to infrastructure.
The total area affected by landslides was 23.77 km2, with the
largest individual landslide covering 0.5 km2 (Wang et al.,
2019). The region, which receives an annual precipitation of
1200–1800 mm – relatively low compared to other parts of
Japan (Yamagishi and Yamazaki, 2018) – is characterized by
sandstone, mudstone, siltstone, and shale formations overlaid
by substantial volcanic sediments (Wang et al., 2019). Fol-
lowing the Hokkaido earthquake, we acquired PlanetScope
imagery with a 3 m resolution on 12 December 2018 and
Map World imagery with a 0.5 m resolution (Fig. S3).
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Table 2. Summary table of landslide event information in GDCLD.

Events Mw Time Geographic coordinates Landslide number Total landslide area [km2]

Jiuzhaigou 6.5 2017 (102.82° E, 33.20° N) 2498 14.5
Mainling 6.4 2017 (95.02° E, 29.75° N) 1448 33.6
Hokkaido 6.6 2018 (142.01° E, 42.69° N) 7962 23.8
Palu 7.5 2018 (119.84° E, 0.18° S) 15 700 43.0
Mesetas 6.0 2019 (76.19° W, 3.45° N) 804 8.5
Nippes 7.2 2021 (73.45° W, 18.35° N) 4893 45.6
Sumatra 6.1 2022 (100.10° E, 0.22° N) 602 10.6
Lushan 5.9 2022 (102.94° E, 30.37° N) 1063 7.2
Luding 6.8 2022 (102.08° E, 29.59° N) 15 163 28.53

Figure 2. Distribution of earthquake-triggered landslide events.

3.1.4 The 2018 Palu earthquake

On 28 September 2018, the Palu region of Sulawesi, Indone-
sia, was struck by a Mw 7.5 earthquake with a focal depth
of 10 km (0.18° S, 119.84° E). A detailed analysis by Shao
et al. (2023) identified approximately 15 700 coseismic land-
slides across a 14 600 km2 area, with a combined landslide
area of about 43.0 km2. These landslides were predominantly
concentrated in the mountainous canyon regions south of the
epicenter. This study provides a semantic-level interpreta-
tion of these landslides, which were mainly shallow disrup-
tions (Shao et al., 2023). However, some larger-scale flow
slides, rockfalls, and debris flows were also observed. High-
resolution Map World imagery (1 m) was utilized to support
this analysis (Fig. S4).

3.1.5 The 2019 Mesetas earthquake

The research site is located in the eastern foothills of the
Colombian Eastern Cordillera. On 24 December 2019, the
Mesetas earthquake, with a magnitude of 6.0, struck this
region as documented by Poveda et al. (2022). The earth-
quake’s epicenter was located at 76.19° W, 3.45° N, trigger-
ing approximately 800 coseismic landslides. The distribution
and predominant orientation of these landslides were influ-
enced by the shear zone confined within the Guapecito Fault,
a subsidiary offshoot of the Algeciras Fault (Poveda et al.,
2022). High-resolution PlanetScope images (3 m) were ac-
quired on 5 January and 12 February 2020 to analyze these
phenomena (Fig. S5).

https://doi.org/10.5194/essd-16-4817-2024 Earth Syst. Sci. Data, 16, 4817–4842, 2024



4822 C. Fang et al.: GDCLD mapping via multi-source high-resolution remote sensing images

3.1.6 The 2021 Nippes earthquake

On 14 August 2021, a Mw 7.2 earthquake struck the Nippes
mountains in Haiti (73.45° W, 18.35° N). This seismic event,
compounded by heavy rainfall from Hurricane Grace on 16–
17 August, triggered numerous secondary geological haz-
ards across the Tiburon Peninsula. The disaster resulted in
at least 2246 fatalities and injured over 12 763 individuals
(Calais et al., 2022). There were a total of 4893 earthquake-
induced landslides, covering an estimated 45.6 km2, with
the largest individual landslide spanning 3.1×105 m2 (Zhao
et al., 2022b). The affected area, with elevations of up to
2300 m (Alpert, 1942), consists mainly of volcanic rocks,
such as basalts, and sedimentary formations, particularly
limestones (Harp et al., 2016). After the earthquake, we uti-
lized 3 m resolution PlanetScope imagery (29 August 2022)
and 0.5 m resolution Map World imagery to assess the dam-
age (Fig. S6).

On 14 August 2021, a seismic event registering Mw 7.2 hit
in the Nippes mountains of Haiti (73.45° W, 18.35° N). This
seismic activity coupled with substantial rainfall from Hurri-
cane Grace between 16 and 17 August precipitated a signifi-
cant number of secondary geological hazards in the Tiburon
Peninsula. The calamity resulted in a tragic loss of at least
2246 lives and inflicted injuries upon more than 12 763 indi-
viduals (Calais et al., 2022). The earthquake triggered a total
of 4893 landslides, covering an estimated area of 45.6 km2,
with the maximum individual area reaching 3.1× 105 m2

(Zhao et al., 2022b). The study area, characterized by eleva-
tions reaching up to 2300 m above sea level (Alpert, 1942).
Comprised predominantly of volcanic rocks, such as basalts,
and sedimentary formations, notably limestones (Harp et al.,
2016). In addition to obtaining 3 m resolution PlanetScope
imagery after the Nippes earthquake, we also acquired 0.5 m
resolution Map World imagery (Fig. S6).

3.1.7 The 2022 Sumatra earthquake

On 25 February 2022, a Mw 6.1 earthquake struck West
Sumatra, Indonesia, at a shallow depth of 4.9 km. The epicen-
ter was located approximately 20 km from Mount Talakmau
(100.10° E, 0.22° N), a compound volcano rising to about
3000 m. Mount Talakmau, active during the Holocene, con-
sists of andesite and basalt from the Pleistocene–Holocene
epochs (Basofi et al., 2016). The earthquake induced ex-
tensive landslides over a 6 km2 area on the volcano’s east-
ern and northeastern flanks. High-resolution PlanetScope im-
agery (3 m) from 5 March and 24 April 2022 captured these
landslides (Fig. S7).

3.1.8 The 2022 Lushan earthquake

On 1 June 2022, a Mw 5.9 earthquake (102.94° E, 30.37° N)
struck Lushan County, China, resulting in four fatalities
and 42 injuries, affecting 14 427 individuals. The seismic
event triggered 1063 landslides over a total area of 7.2 km2,

with the largest landslide covering 0.3 km2 (Zhao et al.,
2022a). This region, located on the southeast margin of
the Qinghai–Tibet Plateau, features an average elevation ex-
ceeding 2000 m, with altitudes ranging from 557 to 4115 m
(Tang et al., 2023). It is characterized by lush vegetation
covering 80 % of the area and experiences a subtropical
monsoon climate with annual rainfall of between 1100 and
1300 mm (Chen et al., 2019). The geological composition
predominantly consists of exposed sandstones and mud-
stones (Zhao et al., 2022a). High-resolution imagery, includ-
ing 3 m resolution PlanetScope images, 0.5 m resolution Map
World images, and 0.2 m resolution UAV images acquired on
13 June 2022 was collected using a Sony ILCE-5100 for the
affected region (Fig. S8).

3.1.9 The 2022 Luding earthquake

On 5 September 2022, a Mw 6.8 earthquake struck Luding
County, China (102.08° E, 29.59° N), resulting in 93 fatali-
ties. The seismic event triggered approximately 15 000 land-
slides over an area of 28.53 km2, with the largest individual
landslide covering 2.4× 105 m2 (Dai et al., 2023). This re-
gion lies on the southeastern margin of the Qinghai–Tibet
Plateau within the Y-shaped Xianshuihe fault system (Yang
et al., 2022a). The geological composition predominantly in-
cludes limestone, sandstone, dolomite, and some intrusive
rocks (Dai et al., 2023). In the aftermath of the earthquake,
rapid rescue operations and data collection were undertaken,
utilizing 0.2 m resolution UAV imagery (acquired on 7 Oc-
tober 2022 via Phase One IXU1000), PlanetScope imagery
(3 m) (acquired on 25 September 2022), Map World imagery
(0.5 m), and Gaofen-6 imagery (2 m) (Fig. S9).

3.2 Preprocessing of landslide dataset

In the aforementioned nine events, the available public data
primarily focused on geological analysis rather than tasks
related to semantic segmentation. After performing multi-
source data spatial registration, atmospheric correction, and
radiometric calibration on remote sensing images, we used
QGIS for landslide interpretation. These labels were de-
lineated with reference to pre-earthquake remote sensing
imagery and post-earthquake multi-source remote sensing
image. By comparing spectral disparities and analyzing
morphological attributes between bi-temporal images, we
mapped the semantic landslide labels. (Fig. 3). The map-
ping of landslide polygons for these nine events was primar-
ily conducted by a team of five researchers, including the
authors. All team members possess expertise in geology or
remote sensing and were involved in a year-long process of
detailed interpretation.

Moreover, we actively participated in the emergency re-
sponse and field investigation after these major earthquakes
in China. This further improved the reliability of the land-
slide inventories. Figure 4 showcases photographs captured
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Figure 3. Remote sensing images before and after the earthquake and landslide interpretation results (landslides marked in red).

on site after the Jiuzhaigou earthquake, Lushan earthquake,
and Luding earthquake. Specifically, Fig. 4a1 and b1 were
taken in Luding, Sichuan, depicting the extensive devasta-
tion caused by concentrated coseismic landslides, impact-
ing the village of Wandonghe and resulting in severe de-
struction of local infrastructure. Corresponding aerial pho-
tos with a resolution of 0.2 m (Fig. 4a2 and b2) offer a
comprehensive perspective of the affected area. Figure 4c1,
taken in Lushan, Sichuan, captures the consequences of the
earthquake-triggered large landslide dam, which obstructed
the river channel. The corresponding PlanetScope image,

Fig. 4c2, provides an overhead view of the altered landscape.
Furthermore, Fig. 4d1, taken at the Jiuzhaigou Panda Sea, il-
lustrates a significant volume of landslide deposits reaching
the sea, with the accompanying UAV image at a resolution
of 0.2 m (Fig. 4d2), offering detailed insights. Lastly, Fig. 4e
presents a fieldwork photo involved in these surveys. These
field investigations serve to enhance comprehension and sub-
sequent calibration on our remote sensing interpretation.

To obtain semantic-level annotations for landslide labels,
all remote sensing images were converted into RGB im-
ages (8 bit). The preprocessing stage was conducted through
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Figure 4. Comparison of field survey photos and remote sensing images: panels (a1) and (a2) show the Wandong landslides induced by the
2022 Luding earthquake, (b1) and (b2) show the Dadu River bridge landslide induced by the 2022 Luding earthquake, (c1) and (c2) show
the Baoxing landslides induce by the 2022 Lushan earthquake, (d1) and (d2) show the Panda sea landslides induced by the 2017 Jiuzhaigou
earthquake, and (e) shows a photo of fieldwork at Jiuzhaigou.

three steps: binary mask generation, data sampling, and im-
age patching. First, utilizing the Rasterio library in Python,
landslide vector labels for each selected region were trans-
formed into binary masks, where 1 denoted a landslide and 0
represented the background. Subsequently, regions densely
populated with landslides were sampled, and both remote
sensing images and masks were patched and cropped into
regular grids, yielding patches of 1024×1024 pixels. To mit-
igate interference among patches, the overlap parameter was
set to 0. Given the obvious imbalance between non-landslide
and landslide areas, we manually removed most of the im-
ages without any landslide pixel annotations. The ratios of
positive landslide samples and negative non-landslide sam-
ples were 8.01 % and 91.99 %, respectively. Table 3 presents
detailed information regarding different remote sensing data
sources for each study case.

Additionally, to enhance the robustness and generalization
capability of deep learning models, a subset of background
noise elements such as clouds, roads, buildings, bare land,
and rocks were manually selected as negative non-landslide
samples. The negative samples can be outlined as follows:
diverse roads (Fig. 5e, k, m, n, p, and s), river channels
(Fig. 5e, k, n, s, and t), clouds (Fig. 5o and r), and barren land
(Fig. 5c, h, and q). Additionally, human-engineered struc-
tures and buildings are also considered (Fig. 5e and k).

4 Experimental setup

After the completion of dataset construction, the experi-
mental phase follows. In this section, we introduce several
semantic segmentation algorithms used for validating the
dataset, the loss functions and accuracy evaluation metrics
employed in the experiments, as well as various hyperparam-
eter settings utilized during the experiments.

4.1 Segmentation algorithms

In this section, we have selected seven of the most popular se-
mantic segmentation networks, including four models based
on the CNN architecture and three based on the transformer
architecture. These seven algorithms have medium- to large-
scale parameter sizes and computational complexities, and
show excellent performance in a variety of remote sensing
semantic scenarios, making them suitable for precision com-
parison and validation of novel datasets.

1. U-Net. As one of the earliest and most renowned se-
mantic segmentation models, U-Net is distinguished by
its unique U-shaped architecture (Ronneberger et al.,
2015). This design facilitates efficient learning and pre-
cise localization by combining high-resolution features
from the contracting path with upsampled outputs from
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Figure 5. Display of landslide sample data from different study areas and different remote sensing data sources: Jiuzhaigou UAV (a),
Jiuzhaigou PlanetScope (b), Mainling PlanetScope (c), Hokkaido PlanetScope (d), Hokkaido Map World (e), Palu Map World (f), Mesetas
PlanetScope (g), Haiti Map World (h), Haiti PlanetScope (i), Sumatra PlanetScope (j), Lushan PlanetScope (k), Lushan UAV (l), Luding
UAV (m–q), Luding Map World (r), Luding PlanetScope (s), and Luding Gaofen-6 (t). The “Label” column refers to the binary landslide
mask, whereas the “Ground Truth” column illustrates the concordance between the annotated and actual landslide in images.

https://doi.org/10.5194/essd-16-4817-2024 Earth Syst. Sci. Data, 16, 4817–4842, 2024



4826 C. Fang et al.: GDCLD mapping via multi-source high-resolution remote sensing images

Table 3. Detailed information of each event in GDCLD.

Events Data sources Resolution Number of tiles

Jiuzhaigou, 2017 UAV 0.2 m 2288
(Mw of 6.5) PlanetScope 3 m 176

Mainling, 2017 (Mw of 6.4) PlanetScope 3 m 118

Hokkaido, 2018 Map World 0.5 m 796
(Mw of 6.6) PlanetScope 3 m 123

Palu, 2018 (Mw of 7.5) Map World 1 m 335

Mesetas, 2019 (Mw of 6.0) PlanetScope 3 m 144

Haiti, 2021 PlanetScope 3 m 238
(Mw of 7.2) Map World 0.5 m 404

Sumatra, 2022 (Mw of 6.1) PlanetScope 3 m 110

Lushan, 2022 UAV 0.2 m 210
(Mw of 5.9) Map World 0.5 m 182

PlanetScope 3 m 110

Luding, 2022 (Mw of 6.6) UAV 0.2 m 9252
Map World 0.5 m 1540
Gaofen-6 2 m 496
PlanetScope 3 m 190

Sum – – 16 712

the expanding path. Both the encoder and the decoder
in U-Net are composed purely of convolutional neural
networks (CNNs) structures (O’Shea and Nash, 2015).
This simplicity, along with a relatively small number
of parameters, allows U-Net to achieve exceptional ac-
curacy and rapid inference using small datasets. Con-
sequently, it is widely utilized in applications such as
small-scale object classification, change detection, and
medical imaging.

2. ResU-Net. ResU-Net is an advanced variant of the U-
Net model, incorporating residual connections to en-
hance its performance and learning efficiency (Diako-
giannis et al., 2020). The key innovation in ResU-Net
is the integration of residual blocks within both encoder
and decoder paths, which addresses the vanishing gra-
dient problem and enables the training of deeper net-
works (He et al., 2016). These residual blocks allow
the network to learn identity mappings, facilitating gra-
dient flow through the network and improving conver-
gence rates. Similar to U-Net, ResU-Net maintains a U-
shaped architecture that combines high-resolution fea-
tures from the contracting path with upsampled outputs
from the expanding path, ensuring precise localization
and context capture. The combination of residual con-
nections improves feature reuse and learning efficiency,
enabling ResU-Net to effectively improve recall and

small-target detection capabilities in semantic segmen-
tation tasks.

3. DeepLabV3. DeepLabV3 is a semantic segmentation
model known for its sophisticated use of atrous convo-
lution or dilated convolution (Chen et al., 2018). This
technique allows the network to capture multi-scale
contextual information without losing the spatial reso-
lution, addressing the limitations of traditional convolu-
tional networks in dense prediction tasks. DeepLabV3
incorporates atrous spatial pyramid pooling to robustly
segment objects at multiple scales by applying atrous
convolution with different rates in parallel. This model
also integrates features from both encoder and decoder
paths, enhancing the precision of boundary delineation.
In addition, the architecture of DeepLabV3 utilizes
batch normalization and depth-separable convolution.
This design can effectively reduce the complexity and
computational cost of the model while enabling the
model to have stronger feature extraction capabilities
and generalization than simple networks such as U-Net.

4. HRNet. High-Resolution Net (HRNet) is noted for its
innovative approach to maintaining high-resolution rep-
resentations throughout the network (Wang et al., 2020).
Unlike traditional models that gradually down-sample
the input to extract features, HRNet preserves high-
resolution features by maintaining parallel high- and
low-resolution subnetworks. This design allows HRNet
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to integrate multi-scale information effectively, ensur-
ing precise localization and robust feature representa-
tion. The network continuously exchanges information
across different resolutions, resulting in superior accu-
racy and detailed segmentation results. Due to its abil-
ity to retain fine-grained spatial information and adapt
to various scales, HRNet excels in complex tasks such
as fine-grained terrain classification, semantic segmen-
tation in urban scenes, and fine-grained visual detection.

5. UPerNet. UPerNet employs a pyramid feature extrac-
tion method, integrating multi-scale information to cap-
ture contextual details across different resolutions (Xiao
et al., 2018; Liu et al., 2022). It utilizes a feature
pyramid network (FPN) backbone for hierarchical fea-
ture extraction, enhanced by a global context inte-
gration module to enrich overall scene understanding.
Additionally, UPerNet incorporates lateral connections
for efficient communication between feature pyramid
levels, ensuring seamless information flow and accu-
rate segmentation. This sophisticated architecture en-
ables UPerNet to achieve superior segmentation perfor-
mance, particularly in challenging scenarios with com-
plex scenes and diverse object scales.

6. SwinU-Net. Built upon the Swin transformer architec-
ture, SwinU-Net blends self-attention mechanisms with
U-Net for exceptional performance (Cao et al., 2022). It
inherits Swin transformer’s hierarchical feature extrac-
tion for capturing both local and global contextual infor-
mation efficiently (Liu et al., 2021). The self-attention
mechanism enables capturing nuanced relationships in
data. SwinU-Net integrates U-Net’s contracting and ex-
panding paths in decoding, emphasizing spatial detail
preservation. This combination empowers SwinU-Net
to excel in tasks requiring precise localization and ro-
bust contextual understanding.

7. SegFormer. SegFormer represents a significant ad-
vancement in semantic segmentation by leveraging a
transformer-based architecture (Xie et al., 2021). Un-
like traditional CNN approaches, SegFormer employs
a hierarchical transformer encoder to capture multi-
scale contextual information effectively without rely-
ing on complex designs such as positional encodings
or large pre-training datasets. The decoder in Seg-
Former integrates features from different scales using
lightweight multi-layer perceptron, ensuring efficient
and precise segmentation. This innovative design en-
ables SegFormer to achieve excellent segmentation re-
sults with medium-sized parameters and fast inference
speed in high-resolution complex scenes.

4.2 Loss function and accuracy evaluation

Since the landslide detection is a two-class semantic segmen-
tation task, we choose the binary cross-entropy (De Boer
et al., 2005) as the loss function for model training, whose
mathematical expression is as follows:

L
(
y, ŷ

)
=−

1
N

∑N

i=1
[yi log

(
ŷi

)
+ (1− yi) log(1− ŷi)], (1)

where L is the loss function, N is the number of samples,
yi is the true label (0 or 1) of the ith sample, and ŷi is the
predicted probability of the ith sample.

For accuracy evaluation, the following accuracy indica-
tors are calculated through confusion matrices (Townsend,
1971): precision, recall, F1 score (Chicco and Jurman, 2020),
and mean intersection over union (mIoU) (Rezatofighi et al.,
2019). Their calculation formulas are as follows:

precision=
TP

TP+FP
, (2)

recall=
TP

TP+FN
, (3)

F1 =
2× precision× recall

precision+ recall
, (4)

mIoU=
1
N

∑N

i=1

TPi

TPi +FPi +FNi

, (5)

where TP is the true positive, FP is the false positive, TN is
the true negative, and FN is the false negative.

4.3 Equipment and parameter

The deep learning framework employed in this study is con-
ducted based on PaddlePaddle 2.3.2 (Ma et al., 2019), with
the environment configured for Python 3.8, CUDA 11.2, and
CuDNN 8.3.0. The experimental setup encompasses an In-
tel Xeon CPU, W2255, 3.7 GHz, equipped with 256 GB of
system memory. The GPU infrastructure consists of a Tesla
V100, with 32 GB of video memory. The operating system
employed is Ubuntu 20.04. The model’s optimizer is selected
as AdamW (Loshchilov and Hutter, 2017), with an initial
learning rate of 0.0006 and beta1 is set to 0.9, beta2 to 0.999,
weight decay to 0.01, and epoch to 100.

5 Results

To validate the accuracy of the GDCLD dataset, this study
selected four types of remote sensing images (UAV, Plan-
etScope, Map World, and Gaofen-6) from five seismic events
(Luding, Jiuzhaigou, Hokkaido, Mainling, and Nippes) as
training and validation datasets for model construction and
accuracy evaluation. The ratio of the training dataset to the
validation dataset is 3 : 1. To further assess the generalization
ability of this dataset, we chose three types of remote sens-
ing images (UAV, PlanetScope, and Map World images) from
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four independent seismic events (Lushan, Mesetas, Sumatra,
and Palu) as the test dataset. Considering the geographical
distribution, these four regions, located on different conti-
nents and characterized by distinct tectonic settings and cli-
matic conditions, ensure complete independence from the
training dataset. From the perspective of data sources, the
four study areas represent three major types of remote sens-
ing imagery: PlanetScope, UAV, and Map World. Addition-
ally, the UAV sensor used in the Lushan area is different from
those used in other regions. This data partitioning strategy is
designed to rigorously evaluate the generalization capability
of the GDCLD-trained model.

We conducted evaluations on our dataset utilizing the
aforementioned seven semantic segmentation algorithms.
After each model is trained for 100 epochs, we meticulously
examine the performance of the GDCLD dataset in landslide
identification. We present the performance of the seven algo-
rithms on the validation dataset in Table 4.

Among these seven algorithms, U-Net, ResU-Net,
DeepLabV3, and HRNet serve as neural network models
with convolutional structures, whereas UPerNet, SwinU-
Net, and SegFormer are based on transformer-based neu-
ral network architectures. From Table 4, it is evident that
transformer-based semantic segmentation models exhibit su-
perior performance compared to models based on convolu-
tional structures. Overall, the mIoU of the seven algorithms
of the GDCLD validation set spans from 71.07 % to 85.06 %.
Notably, U-Net demonstrates the lowest level of detection,
with the mIoU and F1 score of 71.07 % and 79.54 %. In con-
trast, SegFormer yields the best performance, with an accu-
racy of 91.35 %, recall of 91.70 %, F1 score of 91.52 %, and
mIoU of 85.06 %. Figure 6 illustrates the detection results of
different models across various remote sensing data sources.
It can be seen that transformer-based semantic segmentation
models achieve superior segmentation outcomes.

To demonstrate the robustness and generalization capabil-
ity of the dataset-trained models in other environment, we
conducted testing using four independent events, as illus-
trated in Table 5. Overall, the mIoU performance of the algo-
rithms trained on GDCLD ranges from 56.09 % to 72.84 %.
SegFormer exhibits the best performance, achieving preci-
sion of 77.09 %, recall of 87.09 %, F1 score of 81.88 %, and
mIoU of 72.84 %. We present detailed results of six types of
remote sensing images in these four events in Table 6. The
overall mIoU ranges from 69.01 % to 82.31 %, while the F1
ranges from 80.63 % to 89.30 %. Furthermore, we noticed
a remarkable imbalance between recall and precision in the
predicted results. The recall is always higher than the pre-
cision as it is crucial to not miss any important landslides
for disaster assessment and rescue operations. From the per-
spective of remote sensors, except for the Sumatra incident,
higher resolution was directly related to better landslide de-
tection performance.

Figures 7 to 10, respectively, illustrate the detection re-
sults for Mesetas (PlanetScope), Sumatra (PlanetScope),

Palu (Map World), and Lushan (UAV). The F1 score of the
Mesetas event model is 80.63 %, with recall and precision
exhibiting relative balance. As observed in Fig. 7, our model
demonstrates strong capabilities in detecting and segmenting
the majority of landslides, particularly in regions of moun-
tainous slopes (Fig. 7d). In areas affected by mountain shad-
ows (Fig. 7b, c, and e), this is as expected since pixel signa-
tures of shadows are very different than those of landslides.
While the model successfully identifies the majority of land-
slide pixels, it displays some omissions, particularly in por-
tions of the landslides that are obscured by shadows. Addi-
tionally, smaller landslides in these shadowed areas are oc-
casionally entirely missed. In the Sumatra event, we attained
remarkably excellent detection results, with an F1 score of
89.30 %, recall of 97.45 %, and precision of 83.57 %; recall
is 13.88 % higher than precision. As illustrated in Fig. 8, the
model effectively identifies nearly all landslides (Fig. 8b and
c). However, there are instances of missed landslide detection
in the lower-right corner of Fig. 8a. This is due to the appar-
ent confusion between the landslide accumulation area and
river channels, resulting in sub-optimal detection. In the Palu
event, our F1 score yielded a result of 81.40 %, with recall
reaching 91.24 % and precision 73.48 %; recall is 17.76 %
higher than precision. As depicted in Fig. 9, the detection
outcomes effectively discriminate between numerous cloud
obscuration, bare lands, and buildings, underscoring the pos-
itive efficacy of augmenting negative samples in our dataset
to improve the model’s detection capabilities. Similarly, for
the Lushan event captured by UAV, we achieved an F1 score
of 81.80 %, with recall and precision values of 90.35 %
and 74.72 %, respectively, and recall exceeding precision by
15.63 %. As shown in Fig. 10, in the UAV data, the model
demonstrates exceptional segmentation capabilities for large-
scale landslides (Fig. 10b, c, and d), while its detection per-
formance for some small-scale disasters is less satisfactory.
Overall, the model trained based on GDCLD demonstrated
excellent generalization capabilities across four independent
test datasets. It successfully detected all major landslides
and effectively segmented landslide boundaries. More im-
portantly, the model effectively excluded background noise
from the river channels, bare ground in residential areas, and
cloud region, showcasing its remarkable robustness.

6 Discussion

6.1 Sample richness of GDCLD

The GDCLD dataset stands out as the most extensive and
comprehensive repository of landslide data currently avail-
able, encompassing landslide data from various geographic
environments and multiple remote sensing sources. The an-
notated landslide labels within this dataset tally up to approx-
imately 1.39× 109 pixels, roughly 6 times as many annota-
tions as all the other publicly accessible landslide datasets
(Fig. 11). Additionally, this dataset includes a variety of neg-
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Figure 6. Comparative results of different algorithms using the validation dataset.
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Table 4. Comparison of results with the GDCLD validation dataset. The highest scores are highlighted in bold.

Method Backbone Precision [%] Recall [%] F1 [%] mIoU [%]

U-Net – 77.05 82.01 79.54 71.07
ResU-Net ResNet-50 78.17 86.48 82.11 71.94
DeepLabV3 ResNet-50 81.27 86.96 84.02 74.61
HRNet HRNet-48 81.88 87.21 84.46 75.19
UPerNet ViT-B16 88.18 90.64 89.39 81.97
SwinU-Net – 89.78 92.01 90.72 83.68
SegFormer MiT-B4 91.35 91.70 91.52 85.06

Table 5. Comparison of results with the test dataset. The highest scores are highlighted in bold.

Method Backbone Precision [%] Recall [%] F1 [%] mIoU [%]

U-Net – 61.69 61.22 61.45 56.09
ResU-Net ResNet-50 66.56 64.46 65.49 57.06
DeepLabV3 ResNet-50 65.26 67.75 66.48 59.73
HRNet HRNet-48 65.52 72.03 68.62 61.79
UPerNet ViT-B16 69.96 78.08 73.80 65.42
SwinU-Net – 71.56 82.26 76.54 67.18
SegFormer MiT-B4 77.09 87.09 81.88 72.84

ative samples with optical characteristics similar to land-
slides, which can significantly enhance the model’s gener-
alization capability. In contrast to other datasets, which are
limited to training small-scale semantic segmentation mod-
els like U-Net and DeepLabV3 (Xu et al., 2024; Meena et al.,
2023; Ghorbanzadeh et al., 2022), the GDCLD dataset can
effectively train large-scale semantic segmentation models
such as transformers. Moreover, unlike Sentinel-2 and Land-
sat satellite imagery, where moderate spatial resolutions can
limit the accurate delineation of landslide boundaries, GD-
CLD provides remarkably high spatial resolutions (0.2–3 m)
and diverse spectral characteristics. This dataset not only per-
forms well in landslide mapping across diverse geographi-
cal settings, but also serves as a baseline dataset for transfer
learning in landslide detection.

6.2 Enhancement in model generalization

In the GDCLD dataset, a general selection of remote sens-
ing data from multiple sources enhances the overall gener-
alization capability of the landslide identification model. To
substantiate this assertion, we conduct a comparative anal-
ysis between models trained by single- and multi-source
datasets. The datasets from different sensors are segregated,
and the SegFormer, which is an advanced and widely used
transformer-based algorithm, is applied to train the landslide
models. Their performance was verified by their respective
test dataset as well as an independent event of Lushan earth-
quake.

The accuracy metrics for the validation dataset are pre-
sented in Table 7. Across four remote sensing sources – Plan-

etScope, Gaofen-6, Map World, and UAV – models trained
on single-source datasets consistently demonstrate higher
performance on test samples, with mIoU indices surpassing
those of multi-source datasets by 2.26 %, 1.63 %, 0.64 %,
and 0.13 %, respectively. However, a noteworthy observa-
tion emerges when models are transferred to the indepen-
dent Lushan earthquake case (Table 8). The model trained
on the multi-source dataset achieves significantly enhanced
performance compared to the model derived from the single-
source counterpart. The mIoU of UAV-, Map World- and
PlanetScope-based datasets is improved by 8.16 %, 7.95 %,
and 0.09 %, respectively. As depicted in Fig. 12, the mod-
els trained by multi-source images exhibit higher recalls, ac-
curate landslide boundaries, and robust resistance to inter-
ference. The yellow circle highlights the enhancements of
models trained by multi-source images compared to single-
source images. From the perspective of data sources, Map
World contains different types of images (such as Gaofen and
Jilin), encompassing a multitude of spectral responses across
these sensors. The UAV imagery in the Lushan event utilizes
the sensor different from those in the Luding and Jiuzhaigou
event, resulting in noticeable spectrum differences in images.
Consequently, compared to a single remote sensing source,
the generalization capability of the models trained by multi-
source images demonstrates a more pronounced improve-
ment. In contrast, PlanetScope imagery, obtaining data from
the same satellite sensors, exhibits smaller spectral variations
in various images. As a result, models trained on both single-
and multi-source datasets achieve similar performance. This
highlights the importance of datasets with diverse images
sources for enhanced model performance in landslide map-
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Table 6. Detection results of SegFormer in different events.

Events Image type Precision [%] Recall [%] F1 [%] mIoU [%]

Lushan
UAV 74.72 90.35 81.80 72.96
Map World 76.18 87.35 81.38 71.92
PlanetScope 81.50 82.28 81.78 69.05

Palu Map World 73.48 91.24 81.40 71.12
Mesetas PlanetScope 80.26 80.97 80.63 69.01
Sumatra PlanetScope 83.57 97.45 89.30 82.31

Figure 7. Mesetas PlanetScope dataset. (a) Regional aerial view. (b–e) Detection results of four magnified areas.

ping. This indicates that the utilization of multi-source re-
mote sensing datasets enables the model to learn the spectral
characteristics of the images from diverse sensors. Hence, the
model trained by GDCLD possesses an enhanced generaliza-
tion ability and robustness, enabling it to effectively perform
landslide mapping in independent cases without prior knowl-
edge.

6.3 Comparison with existing landslide datasets and
models

To assess the robustness and generalization capabilities of
the GDCLD dataset, we employ SegFormer trained on the
GDCLD dataset (GDCLD-S model) to identify landslides
within three distinct datasets: HR-GLDD, GVLM, and CAS
Landslide. Initially, we standardize the data from these three
datasets to 1024× 1024-pixel remote sensing tiles. Subse-
quently, utilizing the GDCLD-S model, we conduct land-
slide identification across all these datasets. Table 9 demon-

strates favorable performance of the model across these di-
verse datasets. For instance, in the HR-GLDD dataset, which
shares similarities with the PlanetScope imagery in GDCLD,
the model achieves an mIoU of 76.97 %, indicating a bal-
ance between precision and recall metrics. Similarly, when
applied to the GVLM dataset, leveraging Map World im-
agery, our dataset exhibits robust predictive outcomes, result-
ing in a comprehensive mIoU of 70.07 %. Likewise, for the
CAS Landslide dataset, GDCLD demonstrates strong gener-
alization capabilities, yielding an outstanding comprehensive
metric with mIoU= 76.91 % alongside balanced recall and
precision metrics.

Although all landslide samples contained in GDCLD
are induced by seismic activity, our model demonstrates
good detection capabilities for rainfall-induced landslides.
These two categories exhibit distinct spectral characteristics
from their surrounding environments. Consequently, mod-
els trained on GDCLD exhibit proficient detection capabil-
ities for rainfall-induced landslides. We present the identifi-
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Figure 8. Sumatra PlanetScope dataset. (a) Regional aerial view. (b–c) Detection results of two magnified areas.

Table 7. GDCLD performances on validation dataset through single- and multi-source dataset. The highest scores are highlighted in bold.

Data source Data type Precision [%] Recall [%] F1 [%] mIoU [%]

Single source
UAV 92.20 92.90 92.54 87.07
PlanetScope 87.98 87.81 87.89 80.11
Map World 86.49 90.01 88.21 80.66
Gaofen-6 91.25 88.04 89.62 83.61

Multiple sources
UAV 91.91 92.64 92.27 86.94
PlanetScope 85.01 87.79 86.37 77.85
Map World 86.42 89.12 87.74 80.02
Gaofen-6 90.49 85.20 87.77 81.98

cation performance of a GDCLD-based model for rainfall-
induced landslides from the GVLM dataset in Table 9 and
Fig. 13. Figure 13 underscores the excellent detection per-
formance of the GDCLD-S model on rainfall-induced land-
slides in the GVLM dataset. Despite occasional misclassifi-
cations of small-size targets, the model effectively delineates
the majority of rain-induced landslides. The precision met-
rics in Table 8 affirm this observation with an mIoU reaching
78.22 % and both recall and precision exceeding 85 %. This
highlights the robust generalization capability of the model
trained by our dataset, enabling effective identification of
rainfall-induced landslides.

In addition to the aforementioned analyses, we compare
the performance of GDCLD with other two datasets, GVLM
and CAS Landslide. Specifically, we train landslide detection
models using the SegFormer algorithm on the GVLM and
CAS Landslide datasets, denoted as GVLM-S and CAS-S,
respectively, with identical training parameters as previously
described. Furthermore, we also use DeepLabV3 to train the

CAS-D model based on the CAS Landslide dataset and use
it for the comparison of landslide detection (Xu et al., 2024).
Subsequently, the GDCLD-S, CAS-S, CAS-D, and GVLM-
S models were applied to identify landslides in the Lushan
area using three distinct remote sensing data sources: UAV,
PlanetScope, and Map World. The results of this compari-
son are presented in Table 10. From Table 10, it is evident
that the GDCLD-S model outperformed CAS-S, CAS-D, and
GVLM-S across all three remote sensing datasets, achiev-
ing mIoU values of 72.96 %, 69.05 %, and 71.92 % for UAV,
PlanetScope, and Map World, respectively. In contrast, CAS-
S records mIoU values of 62.03 %, 56.86 %, and 60.35 % for
the same datasets, respectively, which is better than the CAS-
D model trained with DeepLabV3 and also illustrates the ad-
vantages of the transformer architecture over the CNN archi-
tecture. Notably, GDCLD-S exhibited a significantly higher
recall than the other two models and also demonstrated an
advantage in precision. Overall, GDCLD-S, along with CAS-
S, exhibited superior performance compared to the single-
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Figure 9. Palu Map World dataset. (a) Regional aerial view. (b–c) Detection results of two magnified areas.

Table 8. GDCLD performances on an unseen dataset through single- and multi-source dataset. The highest scores are highlighted in bold.

Data source Data type Precision [%] Recall [%] F1 [%] mIoU [%]

Single source
UAV 64.92 90.68 75.67 64.80
PlanetScope 81.25 82.29 81.75 68.96
Map World 68.39 80.16 73.81 63.97

Multiple sources
UAV 74.72 90.35 81.80 72.96
PlanetScope 81.50 82.28 81.78 69.05
Map World 76.18 87.35 81.38 71.92

source data model GVLM-S, particularly in handling multi-
source remote sensing images. The extensive landslide data
and negative samples included in GDCLD-S further con-
tributed to its enhanced robustness against noise and im-
proved recall in landslide detection.

6.4 Practical applications of GDCLD

To evaluate the practical applicability of the GDCLD, we
selected two significant landslide-triggering events that oc-
curred in April 2024 for rapid landslide identification.
These events include landslides induced by heavy rainfall
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Figure 10. Lushan UAV dataset. (a) Regional aerial view. (b–d) Detection results of three magnified areas.

Table 9. Validation results of other public datasets.

Dataset Precision [%] Recall [%] F1 [%] mIoU [%]

HR-GLDD 84.88 86.81 85.84 76.97
GVLM 72.83 87.54 80.68 70.07
CAS 82.95 86.35 84.62 76.91
GVLM rainfall 85.88 86.71 86.29 78.22

Figure 11. Statistical comparison of landslide pixels in different
landslide datasets.

in Meizhou, China, and landslides triggered by an earth-
quake in Hualien, China. In both cases, PlanetScope im-
agery was employed for experimentation. For the Meizhou
case, we obtained the image on 14 May 2024 and applied

the SegFormer model trained on GDCLD data to identify
landslides triggered by heavy rainfall. The results, shown in
Fig. 14, demonstrate that the GDCLD-trained model effec-
tively mapped newly induced landslides with a total area of
8.49 km2. The model exhibited excellent accuracy in avoid-
ing false positives such as buildings, roads, and rivers. In
terms of the Hualien event, we acquired post-event im-
ages from 17 to 29 April 2024. The rapid identification re-
sults, displayed in Fig. 15, indicate that the GDCLD-trained
model effectively eliminates false positives such as roads,
buildings, bare ground, and rivers, with an identified land-
slide area of 90.9 km2. The original PlanetScope images
and landslide recognitions of the two events are available at
https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024).

7 Future research directions

The current GDCLD primarily comprises landslide samples
from regions with significant vegetation coverage, with lim-
ited representation from areas with low vegetation cover,
such as loess landslides. To address this, we have updated
the database with high-resolution UAV data (0.1 m resolu-
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Figure 12. Comparison of the results of ablation experiments between multi- and single-source imagery of (a) UAV, (b) Map World, and
(c) PlanetScope.

Table 10. Performance comparison of GDCLD-S, GVLM-S, CAS-S, and CAS-D using the Lushan dataset. The highest scores are high-
lighted in bold.

Model Data type Precision [%] Recall [%] F1 [%] mIoU [%]

CAS-D
UAV 72.73 55.34 62.88 57.91
PlanetScope 52.07 56.05 53.93 52.86
Map World 61.79 70.50 64.9 58.11

GVLM-S
UAV 73.03 54.84 57.67 53.41
PlanetScope 60.13 53.40 54.82 51.52
Map World 77.71 66.40 71.56 63.97

CAS-S
UAV 74.08 67.05 69.95 62.03
PlanetScope 58.56 76.57 66.40 56.86
Map World 75.02 64.65 68.37 60.35

GDCLD-S
UAV 74.72 90.35 81.80 72.96
PlanetScope 81.50 82.28 81.78 69.05
Map World 76.18 87.35 81.38 71.92

tion) of loess landslides triggered by the Mw 6.2 earthquake
in Jishishan, Gansu, China, in December 2023 (Chen et al.,
2024). Incorporating these loess landslide samples enhances
the dataset’s diversity and improves the generalization capa-
bility of landslide detection models. Ongoing efforts to track

and integrate data from landslides triggered by future ex-
treme events, including strong earthquakes, heavy rainfall,
and hurricanes, will further enrich the dataset.

In addition to expanding the GDCLD dataset, developing
a large-scale vision model for landslide detection, such as a
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Figure 13. Detection results of rainfall landslides by the GDCLD-S model. Map credit: GVLM.

Segment Anything Model tailored for landslide identification
and trained on GDCLD, is a crucial step forward in advanc-
ing AI-based landslide detection. This model will be used
for the intelligent recognition of landslides in multi-source
remote sensing images on a global scale.

Note that GDCLD is generally more applicable to seman-
tic segmentation rather than instance segmentation for the
landslide identification task. Unlike other instance segmenta-
tion tasks, landslide segmentation presents unique challenges
due to the frequent mixing of the “deposit” areas of adja-
cent landslide bodies (Hungr et al., 2014). In most cases, we
can only intuitively identify the “source” area of a landslide.
This phenomenon is commonly observed in events such as
the landslides triggered by the 2022 Luding earthquake in

China (Fig. S10). Under these circumstances, it is often not
feasible to directly separate individual landslides from 2D
optical images. Instead, it is necessary to consider the move-
ment characteristics of each object from a 3D perspective
(Bhuyan et al., 2024; Marc and Hovius, 2015) and com-
bine this with topographic data to create accurate landslide
labels, for instance, for segmentation. However, generating
such datasets requires high-resolution digital elevation mod-
els (DEMs) and UAV or direct use of point cloud data. Given
the global limitations in publicly available DEMs (30 m),
achieving such fine distinctions is challenging. Therefore,
our current study primarily focuses on semantic segmenta-
tion tasks. In future research, we plan to prepare landslide
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Figure 14. Detection results of rainfall-induced landslides for Meizhou, China. In panel (a) is the aerial view of the whole area, and in panels
(b), (c), and (d) are the partial details. Map credit: PlanetScope.

labels and develop specialized algorithms for the landslide
instance segmentation task based on a lidar dataset.

8 Code and data availability

The data are freely available at
https://doi.org/10.5281/zenodo.13612636 (Fang et al.,
2024). The repository contains compressed folders – namely,
train_dataset.zip, val_dataset.zip, and test_dataset.zip. The
train_dataset.zip file contains 11 162 TIFF-format RGB im-
ages and their corresponding binary label data, each image
with dimensions of 1024× 1024 pixels. The val_dataset.zip
file comprises 4459 TIFF-format RGB images and binary
label data, with each image also sized at 1024× 1024 pix-
els. The test_data.zip file includes seven original remote

sensing images from four landslide events, with images in
TIFF-format RGB and labels in TIFF-format binary data,
though the image dimensions vary. The “Future work”
folder contains some remote sensing data that will be added
later. For each label, 0 indicates the background, while 1
denotes a landslide. In addition, the other original data of
UAV, Map World, and Gaofen-6 are non-public data. Both
Map World and Gaofen-6 datasets were accessed under an
image license acquired by our team. The UAV data are under
the usage rights of the laboratory affiliated with our team.
If you need to use them, please contact the corresponding
author. The original PlanetScope data were obtained through
the Planet Education and Research Program. You can get
original imageries at https://www.planet.com/ (Planet Team,
2019). The code used to produce data described in this paper
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Figure 15. Detection results of earthquake-triggered landslides for Hualien, China. In panel (a) is the aerial view of the whole area, and in
panels (b), (c), and (d) are the partial details. Map credit: PlanetScope.

as well as to create figures and tables can be accessed at
https://doi.org/10.5281/zenodo.13956757 (Fang, 2024).

9 Conclusion

Landslide mapping across extensive geographic areas using
remote sensing has proven to be a significant challenge. Al-
though previous attempts have produced landslide datasets
and advanced automation and intelligence, they have not
been able to overcome limitations of specific events and
data sources. In this research, we proposed the Globally Dis-
tributed Coseismic Landslide Dataset (GDCLD), an innova-
tive resource crafted to autonomously and precisely tackle
the intricacies of landslide mapping. We made three signifi-
cant contributions in this world. Firstly, we meticulously in-
terpreted multi-source remote sensing data to create a com-
prehensive dataset for landslide detection. This dataset con-
tains 1.39× 109 annotated landslide pixels and remote sens-

ing images at four different resolutions spanning nine global
regions. It successfully addresses the crucial lack of large-
scale datasets in current landslide identification research.
Secondly, we utilized a GDCLD-trained model to showcase
its robustness and generalization in landslide identification
across diverse geographical contexts. Our proposed dataset
shows a great potential in the rapid response and emer-
gency management of geological hazards. Although the land-
slide samples are obtained from seismic events, the trained
model enables capturing and learning the characteristic dif-
ferences between the landslides and the surroundings, mak-
ing them suitable for landslide mapping beyond seismic-
triggered events, such as those caused by rainfall. The com-
parative analyses with existing datasets highlight its effec-
tiveness as the database of a deep learning model in mapping
landslides across various global regions. Finally, we demon-
strate the superiority of the transformer architecture over the
conventional CNN architecture in the task of landslide iden-
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tification using multi-source remote sensing imagery. The
GDCLD-S model further highlights the enhanced general-
ization capabilities of multi-source data compared to single-
source data. This work has great practical implications for the
prevention and mitigation of geological hazards worldwide.
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