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Abstract. Long time series of spatiotemporally continuous phytoplankton functional type (PFT) data are es-
sential for understanding marine ecosystems and global biogeochemical cycles as well as for effective ma-
rine management. In this study, we integrated artificial intelligence (AI) technology with multisource marine
big data to develop a spatial–temporal–ecological ensemble model based on deep learning (STEE-DL). This
model generated the first AI-driven global daily gap-free 4 km PFT chlorophyll a concentration product from
1998 to 2023 (AIGD-PFT). The AIGD-PFT significantly enhances the accuracy and spatiotemporal coverage of
quantifying eight major PFTs: diatoms, dinoflagellates, haptophytes, pelagophytes, cryptophytes, green algae,
prokaryotes, and Prochlorococcus. The model input encompasses (1) physical oceanographic, biogeochemical,
and spatiotemporal information and (2) ocean colour data (OC-CCI v6.0) that have been gap-filled using a dis-
crete cosine transform–penalized least squares (DCT-PLS) approach. The STEE-DL model utilizes an ensemble
strategy with 100 residual neural network (ResNet) models, applying Monte Carlo and bootstrapping methods to
estimate the optimal PFT chlorophyll a concentration and assess the model uncertainty through ensemble means
and standard deviations. The model’s performance was validated using multiple cross-validation strategies –
random, spatial-block, and temporal-block methods – combined with in situ data, demonstrating STEE-DL’s
robustness and generalization capability. The daily updates and seamless nature of the AIGD-PFT data prod-
uct capture the complex dynamics of coastal regions effectively. Finally, through a comparative analysis using
a triple-collocation analysis (TCA) approach, the competitive advantages of the AIGD-PFT data product over
existing products were validated. The complete product dataset (1998–2023) can be freely downloaded from
https://doi.org/10.11888/RemoteSen.tpdc.301164 (Zhang and Shen, 2024a).

1 Introduction

Marine phytoplankton contribute to approximately half of
the Earth’s primary productivity (Field et al., 1998), driv-
ing the operation of marine ecosystems (Beaugrand et al.,
2010). These minute organisms are classified into different
phytoplankton functional types (PFTs), playing a crucial role
in global biogeochemical cycles, biodiversity, and climate
feedbacks (Le Quéré et al., 2005; Gruber et al., 2019). Com-
prehensive monitoring and research with respect to the spa-

tiotemporal distribution patterns of PFTs are foundational for
understanding marine ecosystems and predicting the impacts
of climate change (Kramer et al., 2024; Falkowski, 2012).
Particularly, for the accurate quantification of global ocean
carbon fluxes and the improvement of biogeochemical mod-
els (Guidi et al., 2016), long-term, high-resolution PFT data
are a scientific priority (Nair et al., 2008). Furthermore, as
human reliance on marine resources increases, ensuring the
sustainability of fisheries (Chassot et al., 2010), the effective
management of coastal areas, and the protection of these re-
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gions from the risks posed by harmful algal blooms (Xi et
al., 2023a) all underscore the value of the phytoplankton di-
versity data represented by PFTs (Henson et al., 2021).

For the quantification of global PFTs, many analytical
techniques and inversion algorithms have been developed in
recent years. Among the field sampling analysis methods
for quantifying the global phytoplankton community com-
position from water samples, including optical microscopy
(Karlson et al., 2010), flow cytometry (Veldhuis and Kraay,
2000), and recent genomics (Catlett et al., 2020), the sepa-
ration of phytoplankton diagnostic pigments through high-
performance liquid chromatography (HPLC) with the assis-
tance of diagnostic pigment analysis (DPA; Vidussi et al.,
2001) or CHEMTAX (Mackey et al., 1996) algorithms re-
mains the most cost-effective and quality-controlled method
to date (Swan et al., 2016). The advent of ocean colour
satellites has enabled continuous global observation. In situ
HPLC pigment data and ocean colour satellite data have laid
the foundation for the development of remote sensing in-
version methods, primarily including abundance-based and
spectral-based approaches (Mouw et al., 2017; Bracher et
al., 2017). Abundance-based indirect methods use the chloro-
phyll a (Chl a) concentration as model input, modelling the
statistical relationship between the Chl a concentration and
diagnostic pigments to retrieve PFTs globally (Hirata et al.,
2011; Uitz et al., 2006). Spectral-based methods directly con-
struct relationships between remote sensing reflectance, or
absorption spectra, scattering spectra, and the concentrations
of different functional types, incorporating spectral transfor-
mation strategies, such as principal component analysis (Xi
et al., 2020) and differential spectra (Bracher et al., 2009), to
improve inversion accuracy (Sun et al., 2022). Considering
that marine ecological environmental variables (e.g. temper-
ature and nutrients) shape the distribution of different func-
tional types through their impact on phytoplankton growth,
physiology, and competition, introducing more marine envi-
ronmental covariates into ecological approaches (Zhang et
al., 2023; Raitsos et al., 2008; El Hourany et al., 2024; Li
et al., 2023) has become a current research focus: further in-
troducing other biogeochemical and physical oceanographic
data on the basis of ocean colour satellite data and integrating
advanced machine learning methods like random forests and
ensemble learning can significantly enhance the accuracy of
PFT modelling.

Based on the aforementioned approaches, several global
PFT Chl a concentration products have been developed (Ta-
ble 1), including the following: (1) a global seasonal sur-
face marine climatology dataset based on CHEMTAX and
a global HPLC dataset (Swan et al., 2016); (2) the OC-
PFT product based on abundance (Hirata et al., 2011);
(3) the PhytoDOAS product based on phytoplankton dif-
ferential optical absorption spectroscopy (Bracher et al.,
2009); (4) the synergistic product SynSenPFT that in-
tegrates satellite multispectral information with retrievals
based on high-resolution PFT absorption properties de-

rived from hyperspectral satellite measurements (Losa et
al., 2017a); (5) the EOF-PFT product based on remote
sensing reflectance and the empirical orthogonal functions
(EOFs) algorithm (Xi et al., 2020), along with its modi-
fication, the EOF-SST hybrid algorithm (Xi et al., 2021),
which incorporates sea surface temperature (SST). In addi-
tion to these remote sensing products, the NASA Ocean Bio-
geochemical Model (NOBM, https://gmao.gsfc.nasa.gov/
reanalysis/MERRA-NOBM/data/data_description.php, last
access: 21 October 2024) has been developed, which couples
circulation and radiative models (Gregg and Casey, 2007).

Despite advancements in current algorithms for the re-
trieval of PFTs, significant challenges persist in terms of
prediction accuracy, spatial coverage, and spatiotemporal
resolution. First, abundance-based methods, which rely on
Chl a remote sensing products and empirical formulas to de-
duce the composition of various PFTs, are computationally
straightforward but suffer from limited accuracy and robust-
ness globally (Bracher et al., 2017). Spectral-based meth-
ods encounter challenges because of the spectral resolution
limitations of current ocean colour satellites, which restrict
their ability to detect weak phytoplankton signals in optically
complex waters. In such environments, non-algal particulate
absorption and significant near-infrared water reflectance can
obscure diagnostic pigment absorption, potentially rendering
spectral-based methods ineffective (Nair et al., 2008). An-
other significant limitation is the presence of data gaps due
to unfavourable conditions, such as orbital configurations,
cloud cover, sunlight contamination, and large sensor view-
ing angles (Mikelsons and Wang, 2019). For instance, the
probability of cloud-free conditions over the global ocean
for MODIS is only between 25 % and 30 % (Liu and Wang,
2018). Although merging images from different satellite mis-
sions (e.g. MODIS, VIIRS, and OLCI) into merged products,
such as OC-CCI (Sathyendranath et al., 2019) and CMEMS
GlobColour (Garnesson et al., 2019), has effectively reduced
data gaps, the issue of data loss remains severe. This not
only results in numerous voids in PFT Chl a products but
may also introduce biases in trend analysis, obscuring key
signals of environmental change and hindering a compre-
hensive understanding of marine ecosystem dynamics. Such
limitations restrict potential applications in climate change
research and marine health monitoring. Monthly averaging
of data can mitigate the issue of missing data to some ex-
tent. However, this approach may conceal significant short-
term ecological changes, such as ocean heat waves (Chauhan
et al., 2023) and algal blooms (Sadeghi et al., 2012). Addi-
tionally, the absence of data also limits the full utilization
of on-site data: due to the incompleteness of remote sens-
ing data, many in situ data cannot be effectively paired with
them. This results in the potential inability of models to fully
utilize on-site sampling data for calibration or optimization,
thereby wasting expensive sampling resources and possibly
diminishing the model’s generalization capability (Xi et al.,
2020). While biogeochemical models offer a global, spa-
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Table 1. Summary of existing open-source PFT Chl a data products.

Product Method Spatial resolution Time resolution Reference

CHEMTAX-PFT Application of CHEMTAX to a
global climatology of pigment
data

1°× 1° global grid points Seasonal clima-
tology

Swan et al. (2016)

OC-PFT Synoptic relationships between
Chl a and its fractional contri-
bution from PFTs

∼ 4 km Daily Hirata et al. (2011)

PhytoDOAS Differential optical absorption
spectroscopy (DOAS)

0.5° Monthly Bracher et al. (2009)

SynSenPFT Synergistically combine OC-
PFT and PhytoDOAS

∼ 4 km Daily Losa et al. (2017a)

EOF Empirical orthogonal functions
(EOFs), using CMEMS Glob-
Colour merged products

∼ 4 km Monthly Xi et al. (2020)

EOF-SST EOF-SST hybrid algorithm ∼ 4 km Monthly Xi et al. (2021)

NOBM NASA Ocean Biogeochemical
Model

1.25° longitude, 2/3° latitude Daily, monthly Gregg and Casey
(2007)

tiotemporally continuous PFT modelling approach, their spa-
tial resolution often lacks the detail necessary to accurately
reflect local changes and the dynamic characteristics of ma-
rine ecosystems.

In summary, although there have been positive develop-
ments, current PFT models and products have an imbalance
in accuracy, spatiotemporal resolution, spatial coverage, and
temporal span when compared with existing requirements,
suggesting that there is still room for improvement in terms
of practicality. The advent of the ocean big-data era, coupled
with the rise of artificial intelligence technologies such as
machine learning, offers new prospects for overcoming the
inherent challenges faced by PFT inversion models that cur-
rently rely solely on ocean colour satellite data (Zhang et al.,
2023). Algorithms for data reconstruction and the integration
of multisource data can effectively bridge the observational
gaps caused by clouds or orbital configurations, enhancing
data utilization efficiency and the continuity of global phy-
toplankton community monitoring. Furthermore, the appli-
cation of machine learning and deep learning technologies
has the potential to improve the extraction of useful informa-
tion from vast oceanic datasets. These technologies, capable
of processing and analysing large-scale datasets to identify
complex patterns and trends, hold the promise of developing
high-precision PFT Chl a data products.

Here, we propose a novel spatial–temporal–ecological
ensemble model based on deep learning (STEE-DL), de-
signed to produce a long-time-series PFT Chl a data prod-
uct. STEE-DL leverages an ensemble of 100 residual neu-
ral network (ResNet) models, incorporating inputs from re-
constructed missing ocean colour data, physical reanalysis,

and biogeochemical and spatiotemporal information. Utiliz-
ing the STEE-DL model, we have produced the first AI-
driven global daily gap-free 4 km resolution phytoplank-
ton functional type data product (AIGD-PFT), including
eight major PFTs (i.e. diatoms, dinoflagellates, haptophytes,
pelagophytes, cryptophytes, green algae, prokaryotes, and
Prochlorococcus) from 1998 to 2023. The STEE-DL model’s
accuracy has been tested using three types of cross-validation
(CV): standard, spatial-block, and temporal-block CV. More-
over, we have performed a comprehensive comparison and
validation of the AIGD-PFT against other products using
triple-collocation analysis (TCA).

2 Methodology

2.1 Overall framework

The structure and function of phytoplankton communities
are influenced by numerous environmental factors, such as
sunlight, nutrient concentration/supply, temperature, carbon
chemistry characteristics, and their fluid dynamic environ-
ment. We regard the inversion process of PFTs as a nonlinear
mapping (fx) problem, aiming to overcome the limitations
of relying solely on bio-optical algorithms for predicting the
spatial distribution of phytoplankton. This process integrates
environmental predictive factors (p), including bio-optical
properties, biogeochemical parameters, physical conditions,
and spatiotemporal factors, as shown in Eq. (1):

PG= fx
(
pBio-optical,pBiogeochemical,pPhysical,pSpatiotemporal

)
. (1)

Building on the work of Zhang et al. (2023), this study fur-
ther modifies and constructs a STEE-DL model based on a
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ResNet ensemble to establish fx . An overview of the pro-
posed approach is shown in Fig. 1. It specifically includes
the following:

1. Based on the global in situ HPLC dataset compiled by
Zhang et al. (2023), this study has expanded and up-
dated the aforementioned dataset to increase the quan-
tity and diversity of the in situ data.

2. To address the issue of missing OC data, we utilized
the discrete cosine transform–penalized least squares
(DCT-PLS) method to reconstruct the data and fill in
the missing pixel values.

3. We have integrated multiple sources of marine environ-
mental data as input variables for the regression model.

4. Addressing the complex supervised regression problem
encountered in multisource data processing, we trained
an ensemble of 100 ResNet models, named the STEE-
DL model, to generate daily PFT Chl a data products
for the period from 1998 to 2023.

2.2 Input datasets and preprocessing

We first compiled and integrated in situ data obtained by
HPLC and then collected predictor data including ocean
colour data, physical oceanography data, and biogeochem-
istry data for model training and product generation.

2.2.1 HPLC pigment data

Building upon the updates presented by Zhang et al. (2023),
this study integrates additional, newly available HPLC pig-
ment data collected between 1998 and 2023 (refer to Fig. 2
for details). These data were primarily sourced from open-
access data repositories such as SeaBASS (https://seabass.
gsfc.nasa.gov/, last access: 21 October 2024), PANGAEA
(https://www.pangaea.de/, last access: 21 October 2024),
the British Oceanographic Data Centre (BODC, https://
www.bodc.ac.uk/, last access: 21 October 2024), the Aus-
tralian Ocean Data Network (AODN, https://portal.aodn.org.
au/, last access: 21 October 2024), and Google Dataset
Search (https://datasetsearch.research.google.com/, last ac-
cess: 21 October 2024). This initiative has resulted in
the acquisition of further HPLC open-source data, lead-
ing to the creation of a new global in situ HPLC pig-
ment database spanning the years from 1998 to 2023 (see
Table S1 in the Supplement). In cases of duplicate sam-
ples, whether across spatial or temporal dimensions, the
average of the replicates was calculated. By utilizing an
updated diagnostic pigment analysis (DPA) methodology,
along with newly adjusted weighting coefficients, we con-
ducted DPA to ascertain in situ PFT Chl a concentra-
tions. Following conventional practice in the field (Xi et
al., 2020, 2021), this analysis includes eight major PFTs:

diatoms, dinoflagellates, haptophytes, pelagophytes, crypto-
phytes, green algae, prokaryotes, and Prochlorococcus. The
adjusted coefficients for DPA were referenced from Alvarado
et al. (2022) and Xi et al. (2023a), with specifics avail-
able at https://doi.org/10.1594/PANGAEA.954738 (Xi et al.,
2023b). From these global HPLC pigment datasets, we se-
lected six long-term observation sites as independent valida-
tion data. The locations of these sites are shown in Fig. 2.

2.2.2 Ocean colour data and missing value filling

Satellite ocean colour remote sensing data are currently the
most important source for the retrieval of PFTs. We obtained
daily merged ocean colour data from the Ocean-Colour Cli-
mate Change Initiative (OC-CCI, version 6.0, https://www.
oceancolour.org/, last access: 21 October 2024) for the pe-
riod from 1998 to 2023. These data combine measurements
from the SeaWiFS, MERIS, MODIS-Aqua, and VIIRS sen-
sors and have a spatial resolution of 4 km (Sathyendranath et
al., 2019). The raw daily OC-CCI dataset exhibits consider-
able instances of missing data: Fig. 3a illustrates the percent-
age of valid pixels in the OC-CCI dataset, based on per-pixel
statistics spanning the years from 1998 to 2023. The results
indicate that the majority of marine areas exhibit less than
50 % coverage of valid observations, with pronounced gaps
particularly evident at higher latitudes.

Given the importance of ocean colour data in generating
seamless space–time PFT Chl a data products, they are es-
sential to reprocess missing pixels to fill gaps, thereby max-
imizing the availability of in situ and remote sensing data.
Previous studies have developed various methods for re-
constructing missing pixels in remote sensing data, such as
DINEOF (data interpolation empirical orthogonal function;
Alvera-Azcárate et al., 2011; Liu and Wang, 2022), optimal
interpolation (Liston and Elder, 2006), and Kriging (Gunes et
al., 2006). However, these methods are very time-consuming
when dealing with large datasets. For long-term and daily
product reconstructions, balancing accuracy and computa-
tional efficiency is crucial. Therefore, we adopted the DCT-
PLS algorithm, which was initially proposed for the auto-
matic smoothing of multidimensional incomplete data (Gar-
cia, 2010). The primary advantage of the DCT-PLS is its
faster speed; moreover, it requires only a small amount of
memory storage and achieves high reconstruction accuracy,
making it suitable for processing large datasets. It has been
successfully applied to fill data gaps in soil moisture (Wang
et al., 2012), NDVI (normalized difference vegetation index;
Yang et al., 2022), coastal ocean surface current (Fredj et al.,
2016), and Chl a (Wang et al., 2022) products. To further
improve the computational efficiency of the DCT-PLS algo-
rithm, we modified the original DCT-PLS code, utilizing the
built-in fast Fourier transform (FFT) computation in PyTorch
for GPU-accelerated DCT operations.
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Figure 1. Schematic flow of the methodological approach in this study.

Based on the DCT-PLS algorithm, we designed a gap-
filling process (as shown in Fig. 4), which is briefly sum-
marized as follows:

1. Data preparation. The original ocean satellite data (e.g.
OC-CCI remote sensing reflectance Rrs, Chl a concen-
tration, and diffuse attenuation coefficient Kd490) are
stored in a three-dimensional spatiotemporal data cube.

To avoid seams, we directly input the entire global 30 d
data cube, with dimensions of 4320× 8640× 30, rep-
resenting spatial resolution and a 30 d date–time span,
without using regional segmentation.

2. Normalization. To minimize differences in dimensions
and magnitudes of data across different spatial regions,
the dataset is standardized by dividing by the spatial
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Figure 2. Panel (a) depicts the spatial distribution of in situ HPLC pigment datasets, with red hexagons and numbers indicating the locations
of six independent stations with long-term time series. Panel (b) presents a ridge plot of the probability density distribution for eight types of
PFTs.

Figure 3. (a) Percentage of valid pixels in the OC-CCI v6.0 daily dataset. Hovmöller diagrams of (b) original OC-CCI data and (c) data
after gap filling using the DCT-PLS method. (d) Comparison of the number of valid pixels between reconstructed and original data.

mean. The spatial mean is calculated from the entire
dataset spanning from 1998 to 2023.

3. DCT-PLS completion. The DCT-PLS method is
used to fill in missing values for the target day. We
modified the original code of Garcia (2010) (https:
//www.mathworks.com/matlabcentral/fileexchange/
27994-inpaint-over-missing-data-in-1-d-2-d-3-d-nd-arrays?

s_tid=prof_contriblnk, last access: 21 October 2024) to
a GPU-accelerated form, significantly improving speed
compared with the original MATLAB-based code. The
entire 30 d time series of data underwent 100 iteration
cycles in the DCT-PLS process to fill in the missing
values for the target date.
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4. Rolling filling. To enhance the robustness of the filling
effect, we adopt a rolling filling strategy. Specifically,
for each target day, a 30 d time window is progressively
moved forward day by day until the data window moves
past that day. This process is repeated 30 times for each
target day, with the average of these fillings taken as the
final result for the target day.

5. Long-time-series filling. Following the process de-
scribed, the entire dataset is traversed and filled day by
day, ultimately resulting in a daily continuous and spa-
tially complete data cube from 1998 to 2023.

This method effectively utilizes time-series information to
estimate missing values while avoiding discontinuities that
might be introduced by data segmentation. Through iteration
and averaging, it further improves the accuracy and stabil-
ity of the filled data. Additionally, via GPU acceleration, this
method achieves higher efficiency compared with traditional
methods (such as DINEOF). It is important to note that these
data will be directly removed (as demonstrated in the video
example available at https://doi.org/10.5446/67366, Zhang,
2024) in high-latitude areas (above 75°) with extremely high
missing rates (exceeding 80 %), as reconstruction under such
conditions is impractical.

2.2.3 Ocean physics, biogeochemistry data, and
spatiotemporal information

Incorporation of physical oceanographic data, including sea
surface temperature (SST) and sea surface salinity (SSS),
alongside biogeochemical data (Table 2) was performed.
These data are provided by the Copernicus Marine Data
Store (https://data.marine.copernicus.eu/products, last ac-
cess: 21 October 2024). The SST data are sourced from the
ESA SST CCI (Climate Change Initiative) and C3S (Coper-
nicus Climate Change Service) global Sea Surface Tem-
perature Reprocessed product (https://doi.org/10.48670/moi-
00169, Copernicus Marine Service, 2023a), covering the pe-
riod from January 1998 to October 2022, and the Global
Ocean OSTIA Sea Surface Temperature and Sea Ice Analy-
sis (https://doi.org/10.48670/moi-00165, Copernicus Marine
Service, 2023b), covering the period from November 2022 to
December 2023. The SSS data are obtained from the Global
Ocean Physics Reanalysis (https://doi.org/10.48670/moi-
00021, Copernicus Marine Service, 2023c). Biogeochemi-
cal data include the nitrate concentration (NC), phosphate
concentration (PC), silicate concentration (SC), and dis-
solved oxygen (DO). These variables are critical for under-
standing the nutrient dynamics in marine ecosystems, which
are fundamental factors influencing phytoplankton growth
and distribution. The data for these biogeochemical vari-
ables are sourced from the multiyear Global Ocean Biogeo-
chemistry Hindcast products (https://doi.org/10.48670/moi-
00019, Copernicus Marine Service, 2024). All data undergo
the preprocessing steps outlined in the following. First, all

data are resampled to a 4 km resolution using the pysample li-
brary (https://doi.org/10.5281/zenodo.3372769, Hoese et al.,
2024). The inverse distance weighting (IDW) method was
employed for spatial interpolation. IDW identifies all avail-
able pixels around a target pixel based on a search radius
of eight pixels, and the weights of the identified available
pixels are then calculated by the reciprocal of the square of
the distance between the target pixel and the available pixels.
This resampling process may lead to missing pixels, which
are then filled using the nearest-neighbour method. Second,
data are standardized. For Rrs, L2-norm normalization is
performed, meaning each band (i.e. Rrs412, Rrs443, Rrs490,
Rrs510, Rrs560, and Rrs665) is divided by the square root of the
sum of squares of all bands. For Chl a and Kd490, as well
as NC, PC, SC, DO, SST, and SSS, standardization is carried
out using the StandardScaler function from the scikit-learn li-
brary (https://scikit-learn.org/, last access: 21 October 2024).

Incorporating spatial–temporal encoding into models is
an effective strategy to enhance prediction accuracy, allow-
ing for better capture of complex spatial–temporal interac-
tions within the data (Yang et al., 2022; Wei et al., 2023).
The spatial term is characterized in Euclidean space us-
ing three spherical coordinates [S1, S2, S3] to reflect auto-
correlation and spatial differences. These coordinates rep-
resent a point’s position in three-dimensional space, cal-
culated as follows: (1) S2 describes the component in the
east–west direction, calculated by longitude, with the for-
mula S1 = sin

(
2π long

360

)
; (2) S2 combines longitude and lati-

tude to provide the position in the north–south direction and
the vertical distance from the Equator, calculated as S2 =

cos
(

2π long
360

)
sin
(

2π lat
180

)
; (3) S3 represents the straight-line

distance from the centre of the Earth to the point, calculated
as S3 = cos

(
2π long

360

)
cos

(
2π lat

180

)
. Furthermore, the tempo-

ral term (T ∼ [T1, T2]) is represented by two sine and cosine
functions of the day of the year (DOY), enabling the cap-
ture of both daily variations and seasonal patterns in the PFT.
Here, T1 = cos

(
2π · DOY

Nday

)
and T2 = sin

(
2π · DOY

Nday

)
, where

Nday is the total number of days in the corresponding year.

2.3 Spatial–temporal–ecological ensemble model based
on deep learning

In the previous research by Zhang et al. (2023), the focus was
primarily on the generation of monthly PFT Chl a data prod-
ucts, for which the STEE (spatial–temporal–ecological en-
semble) model was developed. The STEE model integrates
three complex machine learning methods aimed at achiev-
ing high prediction accuracy. However, when the present
study shifted from monthly to daily predictions, the compu-
tational demand increased significantly, turning the process-
ing speed of the model into a critical bottleneck. Addition-
ally, although the previous STEE model is capable of mak-
ing high-precision predictions, it does not provide an uncer-
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Figure 4. Gap-filling process with the DCT-PLS algorithm.

Table 2. Predictors and corresponding data products.

Dataset Abbreviation Definition Resolution

Ocean colour data Rrs412−670 Remote sensing reflectance at 412, 443,
490, 510, 555, and 670 nm

∼ 4 km,
daily,
1 Jan 1998–31 Dec 2023

Kd490 Diffuse attenuation coefficient at
490 nm

Chl a Chlorophyll a concentration

Biogeochemistry data NC Nitrate concentration 1/4°,
daily,
1 Jan 1998–31 Dec 2023

PC Phosphate concentration

SC Silicate concentration

DO Dissolved oxygen

Ocean physical data SST Sea surface temperature 1/20°,
daily,
1 Jan 1998–31 Dec 2023

SSS Sea surface salinity 1/12°,
daily,
1 Jan 1998–31 Dec 2023

Spatiotemporal information S1 S1 = sin
(

2π long
360

)
–

S2 S2 = cos
(

2π long
360

)
sin
(

2π lat
180

)
S3 S3 = cos

(
2π long

360

)
cos

(
2π lat

180

)
T1 T1 = cos

(
2π · DOY

Nday

)
T2 T2 = sin

(
2π · DOY

Nday

)

tainty assessment for these predictions, which is a drawback
in many ecological applications. To address these challenges,
the present study further developed the STEE-DL (spatial–
temporal–ecological ensemble model based on deep learn-
ing).

2.3.1 Network architecture

Ensemble learning has emerged as a powerful approach to
enhancing prediction performance by combining the out-
puts of multiple models. STEE-DL models that use deep
ensemble learning combine the advantages of deep learning
with those of ensemble learning to achieve better generaliza-
tion. The STEE-DL model framework introduces an ensem-
ble consisting of N residual neural networks as its compo-
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nents. Residual neural networks are known for their short-
cut connections, which help in maintaining a smooth flow of
gradients during the learning process. To ensure efficiency,
each component model is built with two residual blocks
designed to reduce computational demands while preserv-
ing the effectiveness of a deep network. These blocks com-
prise a fully connected layer, a rectified linear unit (ReLU)
activation function, and a shortcut connection for uninter-
rupted information transmission. In this model, the input
layer receives 19 feature variables, which are then reduced
to 16 after the first residual block. Subsequently, the sec-
ond residual block further reduces the number of features
to 10. Finally, a fully connected layer maps these features
to an output value for predicting the target variable. Chau et
al. (2022) has shown that ensemble stability improves sig-
nificantly when the number of component models, N , ex-
ceeds 50, but the marginal gains in reducing standard error
diminish after reaching 100 models. Therefore, aiming for a
balance between accuracy and computational efficiency, we
have chosen an ensemble size of N = 100. Based on this ar-
chitecture, we have implemented the STEE-DL models using
PyTorch (https://pytorch.org/, last access: 21 October 2024).

2.3.2 Model ensemble and uncertainty

Each ResNet within the ensemble focuses on different sub-
sets and features of the training data, The mean (µ) of the
outputs from the 100 independent models is considered the
optimal estimation of the target variable.

µpft =

i=100∑
i=1

PFTestimated(i)/100 (2)

The variability among ensemble model outputs, quantified
by the standard deviation (σ ) of the 100 independent models,
provides a measure of uncertainty in predictions (Chau et al.,
2022). This uncertainty reflects the variability in predictions
due to differences in training sets, initializations, and learn-
ing dynamics. A higher standard deviation indicates greater
disagreement among models, suggesting lower confidence
in the prediction. It should be noted that all computations
of the uncertainties in this study were conducted on log10-
transformed data, which follows conventional practice in the
field of ocean colour research (Xi et al., 2021).

σ =

√√√√i=100∑
i=1

(
PFTestimated(i)−µpft

)2
/100 (3)

This approach differs from statistical methods based on er-
ror propagation, which evaluate prediction uncertainty by
analysing input data uncertainties (e.g. measurement errors)
and their transmission through the model to the outputs. Such
methods require a clear understanding of input error distri-
butions and typically assume these errors are independent.
Given the STEE-DL model’s reliance on diverse marine and

in situ HPLC data of varying levels of quality control, ac-
curately applying error propagation for uncertainty measure-
ment is challenging. Our ensemble-based approach primarily
addresses model uncertainty but also indirectly reveals data
uncertainties by demonstrating how predictions respond to
variations in representation and data subsets.

2.3.3 Training procedure

To compile the training dataset, we align in situ HPLC data
with reconstructed OC-CCI and environmental data, both
spatially and temporally. This alignment projects the data
onto a 4 km grid according to the latitude, longitude, and
date of the HPLC measurements. In cases in which several
HPLC measurements are located within the same 4 km grid
cell, we average these measurements to consolidate corre-
sponding predictor variables. Figure S1 in the Supplement
presents the histograms of the Chl a concentrations of the
eight PFTs on a log10 scale.

The STEE-DL model utilizes a Monte Carlo and boot-
strapping ensemble learning approach to boost model stabil-
ity and predictive accuracy. By resampling, it randomly se-
lects two-thirds of the total dataset as the training set for each
iteration, repeating this procedure 100 times. This method is
designed to create a varied collection of models by multi-
ple rounds of sampling, significantly improving the model’s
ability to generalize. This reduces the model’s reliance on
specific data distributions, thereby increasing both the accu-
racy and the robustness of its predictions.

Throughout the training phase, the model optimization re-
lies on the Adam optimizer, complemented by L1 regulariza-
tion to promote sparsity within the model and prevent over-
fitting. Gradient clipping is applied to manage potential is-
sues with exploding gradients, thereby ensuring a more sta-
ble training process. An exponential moving average (EMA)
strategy is employed to stabilize the model weights by av-
eraging them over time, which helps to minimize variations
and secure consistent performance from the final model.

To circumvent the issue of the model predicting unreason-
ably high values during training, we have crafted a special-
ized loss function. This function incorporates the traditional
mean-squared error (MSE) while imposing extra penalties on
predictions that surpass set thresholds. Not only does this ef-
fectively prevent the model from making unrealistic predic-
tions, but it also guides the model towards more-accurate pa-
rameter adjustments, assuring that its predictions stay within
feasible limits.

2.4 Evaluation strategies

To comprehensively test the accuracy and robustness of the
model, the evaluation of the STEE-DL model comprises two
parts: first, the model performance is validated using a 5-
fold cross-validation method in three different ways; second,
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the evaluation is based on a tripartite-matching analysis al-
gorithm.

2.4.1 Cross-validation approach

Cross validation (CV) is a commonly used method for
analysing model performance, allowing for a comprehensive
assessment of a model’s accuracy, stability, and generaliza-
tion. This study implements three types of CV to deeply
evaluate the model’s multifaceted performance: random 5-
fold CV, time-block 5-fold CV, and spatial-block 5-fold CV.
Specifically, the methods are as follows:

1. Standard 5-fold cross-validation. This method ran-
domly divides all data into five equal-sized subsets. In
each round of validation, one subset is selected as the
test set, while the remaining four subsets serve as the
training set, ensuring that each data point is used as test
data. This method primarily evaluates the model’s per-
formance and generalization on the entire dataset.

2. Time-block 5-fold cross-validation. Data are divided
into five consecutive time periods in chronological or-
der. In each iteration, data from one time period are
chosen as the test set, with the data from the remaining
periods serving as the training set (as shown in Fig. 5).
This method takes into account the continuity and de-
pendency of time series, helping to evaluate the model’s
ability to capture time trends and seasonal variations.

3. Spatial-block 5-fold cross-validation. This method is
similar to time-block cross-validation, but data are di-
vided based on spatial location. A hexagonal grid was
created at 20° horizontal and vertical intervals, and re-
gions without sampling points were removed for hexag-
onal regions. In each round, data from one geographical
block are left out as the test set, while data from other
blocks are used for training (as shown in Fig. 6). This
method prevents potential data leakage due to spatial
autocorrelation and helps to assess the model’s spatial
prediction capability and its generalization across dif-
ferent geographical locations.

The coefficient of determination (R2), root-mean-square
error (RMSE), mean absolute error (MAE), and symmetric
mean absolute percentage error (sMAPE) were utilized to
quantify the performance of the model, according to the fol-
lowing expressions:

R2
= 1−

∑N
i=1
[
pi − p̂i

]2∑n
i=1
[
pi − p̄

]2 , (4)

RMSE=

[
1
N

N∑
i=1

(
pi − p̂i

)2]1/2

, (5)

MAE=
1
N

N∑
i=1

∣∣pi − p̂i∣∣ , (6)

sMAPE=
100
N

∑N

i=1

|p̂i −pi |

(p̂i −pi)/2
. (7)

Here, pi and p̂i are the log10-scaled observed and estimated
values of each PFT for sample i, respectively; N is the num-
ber of observations; and p̄ is the log10-scaled mean of the
observed values.

2.4.2 Triple-collocation analysis

The triple-collocation analysis (TCA) method was also uti-
lized for a global evaluation of the AIGD-PFT data product.
TCA is a technique that allows for the assessment and quan-
tification of error characteristics in three independent data
sources without relying on reference data pre-assumed to be
“true” (McColl et al., 2014). This method has been widely
adopted in the uncertainty evaluation of remote sensing prod-
ucts across various fields, including soil moisture (Kim et al.,
2023), sea surface salinity (Hoareau et al., 2018), and sea sur-
face temperature (Saleh and Al-Anzi, 2021).

For error statistics based on TCA, we selected the frac-
tional mean-squared error (fMSE) and the squared correla-
tion coefficient. These metrics offer direct insights into data
precision and accuracy. The fMSE, in particular, is beneficial
because it quantifies the relative error in a product, scaling
from 0 to 1, where a lower value indicates higher precision.
The fMSE is calculated as follows:

fMSEi =
σ 2
εi

σ 2
i

=
σ 2
εi

β2
i σ

2
2+ σ

2
εi

=
1

1+SNRi
. (8)

Here, i = αi +βi2+ εi corresponds to three spatially and
temporally collocated datasets [X,Y,Z]; σ 2

εi
is the TCA-

based error variance of an individual product; βi and αi rep-
resents the scaling factor and systematic additive biases be-
tween the unknown true signal 2 and the datasets i, respec-
tively; σ 2

i is the variance of the individual data; σ 2
2 is the

variance of the true signal; and SNR is the signal-to-noise
ratio. An fMSE value below 0.5 suggests that the true sig-
nal is a more significant component of the data than the es-
timation noise, indicating a precise product. Similarly, the
squared correlation coefficient (R2

i ) is defined as follows:

R2
i =

β2
i σ

2
2

β2
i σ

2
2+ σ

2
εi

=
SNRi

1+SNRi
. (9)

The foundational assumptions of TCA are important for its
application (Kim et al., 2023). These assumptions are as fol-
lows: (1) a linear relationship exists between each dataset and
the true signal, (2) the errors among the datasets are orthog-
onal, and (3) there is no correlation among the errors of dif-
ferent datasets. These principles ensure the robustness of the
TCA method with respect to providing an unbiased error and
quality assessment of products.

Several other PFT Chl a data products were introduced
and organized into triads for TCA analysis. First, the
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Figure 5. Temporal-block CV procedure.

Figure 6. Spatial-block CV procedure.

SynSenPFT (https://doi.org/10.1594/PANGAEA.875873,
Losa et al., 2017b) and NOBM-daily products were ob-
tained, forming daily product triplets. Both SynSenPFT and
NOBM-daily contain three PFTs – diatoms, cyanobacteria
(prokaryotes), and coccolithophores (the main contributing
PFT to haptophytes). TCA evaluations were conducted sep-
arately for these three PFTs. The TCA calculation process
selected overlapping time periods of SynSenPFT, NOBM-
daily, and the proposed AIGD-PFT data products, from

1 August 2002 to 31 March 2012, totalling 3515 d. All three
products were resampled to a 1° resolution. Similarly, we
also obtained EOF-PFT data (https://doi.org/10.48670/moi-
00281, Copernicus Marine Service, 2023d) and the
NOBM-monthly product to form monthly triplets, again
conducting TCA assessments for diatoms, prokaryotes,
and haptophytes. Before evaluation, the AIGD-PFT data
products were merged on a monthly basis and resampled to
a 1° resolution along with EOF-PFT and NOBM-monthly.
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The temporal span of monthly TCA triplet products was
from January 2003 to December 2017, totalling 180 months.
NOBM’s daily and monthly data were all obtained from the
NASA Giovanni website (https://giovanni.gsfc.nasa.gov/,
last access: 21 October 2024). We additionally employed
RECCAP2-ocean (Regional Carbon Cycle Assessment and
Processes) regions for regional TCA statistics, as shown in
Fig. 7.

3 Results

3.1 Model verification

3.1.1 The three CV methods

To comprehensively assess the performance of the proposed
STEE-DL model, three 5-fold cross-validation (CV) meth-
ods were implemented: random, temporal-block, and spatial-
block CV. The results are shown in Table 3. The random CV
analysis revealed generally high prediction accuracy across
all eight PFTs, as visualized by the scatter plot in Fig. 8. Di-
atoms exhibited the best performance, achieving an R2 value
of 0.8. This confirms the STEE-DL model’s strong capabil-
ity with respect to diatom prediction. Conversely, pelago-
phytes displayed the weakest performance, reflected by an
R2 value of just 0.5. Further examination using the probabil-
ity distribution histograms and cumulative distribution func-
tion (CDF) curves of predicted vs. actual values revealed a
good alignment, indicating the model’s overall ability to ac-
curately mimic observed data distributions. However, a no-
table limitation observed was the STEE-DL model’s ten-
dency towards overestimating lower values and underesti-
mating higher values. This suggests a bias towards predicting
smoother values, potentially resulting in less-accurate pre-
dictions for extreme high or low actual values.

By comparing the model performance under three dif-
ferent CV strategies, we delved further into the STEE-DL
model’s generalization abilities in terms of time and space.
Figure 9 reveals that the STEE-DL model’s accuracy de-
creases when using temporal and spatial cross-validation
compared with standard random cross-validation. Notably,
the predictive accuracy for diatoms was minimally affected
by the different validation strategies, with R2 values remain-
ing above 0.8 for all three methods. This demonstrates the
model’s robust generalization capability in both the tempo-
ral and spatial aspects. Except for Prochlorococcus, the de-
crease in accuracy was modest for other PFTs in spatial
cross-validation (with about a 0.1 decrease in the R2 and
a 0.5 increase in the MAE), suggesting that the STEE-DL
model is relatively robust and can accurately estimate regions
lacking in situ observational data. Compared with spatial val-
idation, there was a slight decrease in accuracy for tempo-
ral cross-validation, although it still maintained a good level.
Except for a significant drop in temporal generalization for

Prochlorococcus, the temporal cross-validation accuracy for
other PFTs remained favourable.

During the training process of the STEE-DL model, two
types of training data were utilized: “original match” train-
ing data and “reconstructed match” training data. The orig-
inal match training data refer to data successfully matched
directly from the in situ HPLC database and the OC-CCI
original data, whereas reconstructed match training data refer
to matched data obtained after completing the missing parts
of OC-CCI data using the DCT-PLS technique. By compar-
ing the model’s prediction accuracy on these two types of
data, we can assess not only the STEE-DL model’s adapt-
ability to changes in data completeness but also verify the
effectiveness and accuracy of the DCT-PLS technique with
respect to reconstructing missing ocean colour data. If the
STEE-DL model’s performance on the reconstructed match
data is similar to its performance on the original match data,
it not only indicates that the DCT-PLS method is effective
and reasonable for reconstructing ocean colour data but also
confirms that the STEE-DL model can provide reliable PFT
predictions under varying data quality and completeness con-
ditions.

We calculated the R2 between predicted and actual val-
ues for both original and reconstructed pixels using the three
cross-validation methods (Fig. 10). Except for a significant
difference in performance for Prochlorococcus, the accuracy
of reconstructed pixels was generally consistent with that of
the original pixels, demonstrating good performance. This
indicates that the reconstructed pixels did not degrade model
performance, thus confirming both the high congruency of
our data reconstruction method with actual conditions and
the robustness of the STEE-DL model.

3.1.2 Long-time-series observations

The effectiveness of the proposed STEE-DL model was val-
idated using data from six independent long-term observa-
tion sites. The results, as shown in the Fig. 11, display the
correlation coefficients between predicted and actual values
at these six sites. The STEE-DL model demonstrated vary-
ing degrees of predictive capability across different sites and
PFTs. Firstly, the model achieved high prediction accuracy
for key functional types, such as diatoms, dinoflagellates, and
green algae, with significant advantages at certain sites: for
instance, at sites 4 and 5, the prediction correlation coeffi-
cients for diatoms were as high as 0.90 and 0.88, respec-
tively. Site 5 exhibited high correlations for dinoflagellates
and green algae predictions, reaching 0.69 and 0.83, respec-
tively, highlighting the model’s ability to accurately capture
the dynamics of these major functional types. However, it
is noteworthy that predictions for certain functional types
showed considerable fluctuations at specific sites. For exam-
ple, site 3 had a prediction correlation coefficient of 0.90
for pelagophytes but a relatively lower coefficient of 0.48
for dinoflagellates. In terms of functional types like prokary-
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Figure 7. Map of RECCAP2-ocean (Regional Carbon Cycle Assessment and Processes) regions (https://reccap2-ocean.github.io/regions/,
last access: 21 October 2024; Canadell et al., 2011), including the Arctic (Ar), subtropical Atlantic (StA), equatorial Atlantic (EA), South
Atlantic (SA), subtropical Pacific (StP), equatorial Pacific (EP), South Pacific (SP), Indian Ocean (IO), and Southern Ocean (SO).

otes and Prochlorococcus, the model’s predictions were gen-
erally more balanced, with site 2 showing a high correla-
tion coefficient of 0.80 for Prochlorococcus. Overall, de-
spite some fluctuations and differences, these results empha-
size the STEE-DL model’s capability to capture the temporal
trends in different PFTs with relative accuracy.

3.2 The gap-free PFT data product and uncertainties

Following the validation of the STEE-DL model, it was re-
trained with the entirety of the data available, enabling the
generation of a long-time-series spatiotemporally continuous
AIGD-PFT data product for the period from 1998 to 2023.
An example comparison from this dataset, depicted in Fig. 12
for 10 March 2020, demonstrates the results of the AIGD-
PFT. Notably, while nearly half of the original OC-CCI data
contained missing values (as shown in Fig. 12a), our recon-
structed dataset has achieved spatial completeness with good
continuity. Within this dataset, the distribution patterns of
the eight PFTs showed significant variability. For example,
diatoms were primarily found in the oceanic regions of the
middle to high latitudes (30–60°), thriving in nutrient-rich,
cold waters, and areas affected by terrestrial runoff. Dinoflag-
ellates, with a distribution pattern similar to diatoms, were
mostly present in the nutrient-rich upwelling zones of high
latitudes and nearshore areas, although their content was rel-
atively lower. Prokaryotes were noted for maintaining higher
concentrations in the nutrient-poor, sunlight-abundant waters
of tropical and subtropical regions (0–30°), with a signifi-
cant decrease in biomass at higher latitudes, a characteris-
tic closely resembling that of Prochlorococcus. Haptophytes

and green algae were observed more frequently in the sub-
tropical regions of the Pacific, Atlantic, and the Southern
Ocean, reaching into middle and high latitudes. In contrast,
pelagophytes and cryptophytes were found to be more preva-
lent in tropical and subtropical regions, showing lower con-
centrations in areas of lower latitude. Additionally, the yearly
mean maps for 2020 are provided in Fig. S2, showing the dis-
tribution pattern of global ocean PFTs throughout the year.

Figure 13 delineates the corresponding uncertainties.
Overall, the uncertainty is relatively low in the open ocean,
suggesting that the model performs with a high degree of
confidence. However, in coastal regions, such as the East
China Sea and the Amazon River estuary, uncertainties es-
calate. This increase likely results from the complex coastal
processes and land–sea interactions prevalent in these areas,
which can significantly influence the distribution and con-
centrations of PFTs, thereby challenging the model’s pre-
dictive accuracy. Despite the coastal uncertainties, Fig. 13
also reveals that AIGD-PFT maintains globally low uncer-
tainty levels (below 0.1) for diatoms, dinoflagellates, hapto-
phytes, and prokaryotes, highlighting the model’s overall sta-
bility and reliability. Additionally, Prochlorococcus exhibits
higher uncertainties in the Southern Ocean, while crypto-
phytes show increased uncertainty in the equatorial Pacific.
The reasons for this specific pattern require further investiga-
tion. Additionally, Fig. S3 illustrates the global distribution
of uncertainties on 10 July 2020.

Further, Fig. 14 illustrates the AIGD-PFT’s ability to cap-
ture dynamic coastal processes, such as estuary runoff and
coastal circulations, through time-series images of the di-
atom distribution in the Amazon River estuary (Fig. 11a) and

https://doi.org/10.5194/essd-16-4793-2024 Earth Syst. Sci. Data, 16, 4793–4816, 2024

https://reccap2-ocean.github.io/regions/


4806 Y. Zhang et al.: AIGD-PFT

Table 3. Model performance metrics (R2, MAE, RMSE, and sMAPE) based on a random, temporal-block, and spatial-block 5-fold CV
procedure.

PFT Metrics Cross-validation approach

Random CV Temporal block Spatial block

Diatoms

R2 0.86 0.82 0.81
MAE 0.26 0.29 0.30
RMSE 0.33 0.37 0.40
sMAPE 51.21 55.53 54.25

Dinoflagellates

R2 0.71 0.62 0.64
MAE 0.26 0.30 0.30
RMSE 0.33 0.39 0.40
sMAPE 23.91 27.16 28.75

Haptophytes

R2 0.60 0.50 0.51
MAE 0.21 0.23 0.23
RMSE 0.26 0.30 0.31
sMAPE 17.73 20.24 20.49

Pelagophytes

R2 0.50 0.39 0.42
MAE 0.23 0.26 0.25
RMSE 0.29 0.33 0.34
sMAPE 11.45 12.83 12.55

Cryptophytes

R2 0.68 0.57 0.61
MAE 0.29 0.34 0.33
RMSE 0.36 0.43 0.43
sMAPE 26.31 30.55 29.56

Green algae

R2 0.72 0.65 0.64
MAE 0.22 0.25 0.25
RMSE 0.27 0.31 0.33
sMAPE 33.16 36.57 36.11

Prokaryotes

R2 0.68 0.59 0.59
MAE 0.23 0.26 0.26
RMSE 0.28 0.33 0.34
sMAPE 13.82 15.76 15.78

Prochlorococcus

R2 0.55 0.19 0.32
MAE 0.22 0.29 0.28
RMSE 0.28 0.40 0.41
sMAPE 14.71 18.37 17.06

the Gulf of Mexico (Fig. 11b). The high diatom concentra-
tions near the Amazon River estuary, as shown in Fig. 6a,
were correlated with the area’s rich nutrient influx, also
capturing the influence of the North Brazil Current (NBC)
along the Brazilian coastline on diatom dispersion. Figure 6b
demonstrates the AIGD-PFT’s efficacy with respect to de-
picting the characteristics dominated by circulation and as-
sociated eddies in the Gulf of Mexico.

3.3 TCA-based assessment

As depicted in Fig. 15, we conducted a TCA on three daily
PFT data products: AIGD-PFT, SynSenPFT, and NOBM-

daily. Figure 15a presents the statistical analysis results of
correlation coefficients (R) and mean-squared error (fMSE)
at the global scale. Meanwhile, Fig. 15b, c, and d detail the
comparative assessment results across different marine re-
gions. Globally, the AIGD-PFT data product outperforms the
other two, demonstrating the highest median correlation val-
ues with actual conditions for diatoms (0.81), haptophytes
(0.80), and prokaryotes (0.72), respectively. The AIGD-PFT
data product also has the lowest fMSE values for all three
PFTs, confirming its superiority, with values of 0.35, 0.35,
and 0.48, respectively. Comparatively, the SynSenPFT prod-
uct underperforms relative to NOBM-daily product with re-
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Figure 8. Scatter diagrams, probability distribution histograms, and cumulative distribution function (CDF) curves (based on a random
5-fold CV procedure) of the predicted vs. measured Chl a concentrations of eight PFTs.

spect to estimating diatoms and prokaryotes, yet it excels at
estimating haptophytes.

The regional analysis (Fig. 15b, c, and d) reveals variation
in the R and fMSE values across regions and PFTs. AIGD-
PFT consistently outperforms in most regions with respect to
diatom estimation, but it shows a slight increase in the fMSE
in the equatorial Pacific, indicating a potential dip in estima-
tion accuracy in this area. In contrast, SynSenPFT registers
higher fMSE values for haptophyte estimation, particularly
in the subtropical and southern Pacific regions. NOBM-PFT,
on the other hand, tends to have a lower correlation for hap-

tophyte estimation across regions, with a notable deficiency
near the equatorial Pacific. Additionally, SynSenPFT demon-
strates higher global fMSE values for prokaryotes compared
with the other datasets, and NOBM-PFT significantly under-
performs with respect to prokaryotes estimation in the South-
ern Ocean.

We now further extend our analysis to monthly products
(AIGD-PFT, EOF-PFT, and NOBM-monthly). As detailed
in Fig. 16, we observed that AIGD-PFT and EOF-PFT ex-
hibit closely matched performance for diatoms, with me-
dian R values of 0.87 and 0.86 and fMSE values of 0.24
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Figure 9. Comparison of the results obtained using different CV methods, including random CV, spatial-block CV, and temporal-block CV.
Blue indicates variations in the R2 for the three CV strategies, while red represents changes in MAE.

Figure 10. Model performance comparison for original pixels (dashed blue line), reconstructed pixels (dashed orange line), and all pixels
(solid orange line) using (a) random CV, (b) temporal CV, and (c) spatial CV.

and 0.25, respectively. Their CDF curves nearly align per-
fectly. Although global assessments for diatoms are consis-
tent, regional discrepancies exist. For instance, the AIGD-
PFT and EOF-PFT data products perform similarly in the
subtropical Pacific and the Indian Ocean, but the AIGD-PFT
data product achieves a superior correlation in the equato-
rial Pacific, Southern Ocean, and subtropical Atlantic. Con-
versely, the EOF-PFT product performs better in the South
Pacific and equatorial Atlantic. In summary, for haptophytes
and prokaryotes, both global and regional assessments sug-
gest that the AIGD-PFT data product is the most effective
dataset, offering the lowest median fMSE and highest me-
dian R values. It stands out not only on a global scale but
also in most regional evaluations, confirming its overall su-
periority among the comparative datasets.

4 Discussion

Phytoplankton serve as the foundation of marine food chains.
Comprehensive monitoring and inversion of the spatiotem-

poral distribution patterns of PFTs are crucial for a deeper
understanding of marine ecosystem functions, predicting and
mitigating climate change, and other aspects. Amidst in-
creasing human reliance on marine resources, maintaining
the sustainability of fisheries and ensuring the stability and
health of marine, especially coastal, ecosystems have be-
come particularly urgent. This necessitates higher-quality
and more-detailed phytoplankton diversity data to assist
decision-making. However, existing satellite PFT data prod-
ucts have significant shortcomings regarding inversion accu-
racy, spatiotemporal resolution, spatial coverage, and tem-
poral span, limiting their application in climate and ocean
management research. Therefore, enhancing the quality and
coverage of PFT data, with higher temporal resolution, is
essential to reveal the immediate impacts of environmental
changes on the PFT distributions. Improved spatial coverage
would enable more-accurate descriptions of local changes
in marine ecosystems, providing more-precise data support
for scientific management strategies. Additionally, extending
the temporal span would enhance the accuracy of long-term
trend analysis, thereby enabling a better understanding of the
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Figure 11. STEE-DL model performance at six independent time-series stations, showing the correlation coefficient (bar chart) and number
of successfully matched pixels (dashed blue line).

Figure 12. The global distribution (10 March 2020) of the Chl a concentration for (a) original OC-CCI, (b) diatoms, (c) dinoflagellates,
(d) haptophytes, (e) green algae, (f) Prochlorococcus, (g) prokaryotes, (h) pelagophytes, and (i) cryptophytes. The grey areas represent land.
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Figure 13. The global distribution (10 March 2020) of the uncertainties for (a) diatoms, (b) dinoflagellates, (c) haptophytes, (d) green algae,
(e) Prochlorococcus, (f) prokaryotes, (g) pelagophytes, and (h) cryptophytes.

Figure 14. Gap-free diatom Chl a concentrations for the (a) Brazilian coast in January 2014 and (b) Gulf of Mexico in July 2020.

evolution of marine ecosystems. As environmental data con-
tinue to be updated, the STEE-DL model can be easily ap-
plied to future datasets, allowing for the continuous genera-
tion of PFTs, which will contribute to long-term global- or
local-scale analyses.

Multisource marine big data exhibit complementary ad-
vantages in terms of spatial integrity and accuracy. By merg-
ing data on various environmental factors, we can produce
improved PFT data products. In this study, we selected fea-
tures including ocean colour data, biogeochemistry, temper-
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Figure 15. TCA result of the three daily products (AIGD-PFT, SynSenPFT, and NOBM-daily).

ature and salinity, and spatiotemporal information. Among
these, ocean colour data, as a crucial predictor, were seam-
lessly reconstructed using a GPU-accelerated DCT-PLS al-
gorithm, filling gaps caused by clouds, orbits, and other fac-
tors. Compared with traditional reconstruction algorithms,
the DCT-PLS algorithm is faster and effectively addresses
the issue of missing observational data, improving data uti-
lization efficiency and monitoring continuity.

Further, by leveraging the powerful nonlinear modelling
capabilities of deep learning, we enhanced the accuracy of
PFT inversion. We developed a spatiotemporal ecological in-
tegration model based on deep learning, adapting the method
proposed by Zhang et al. (2023) for reconstructing global
PFTs from 1998 to 2023. The model, composed of 100
ResNet models, demonstrates strong nonlinear modelling ca-
pabilities and robustness. Using the Monte Carlo method, we
utilized ensemble means and standard deviations as the opti-
mal estimates and uncertainties, generating a temporally con-
tinuous global PFT data product covering the entire period
and the corresponding uncertainty fields. The standard devi-

ation reflects the variability in model predictions, indicating
the consistency between model predictions, i.e. the level of
uncertainty.

We also employed three cross-validation methods to com-
prehensively validate the accuracy. Standard 5-fold cross-
validation focuses on the model’s performance across the
entire dataset, time-block 5-fold cross-validation assesses
the model’s handling of time series, and space-block 5-fold
cross-validation concentrates on the model’s ability to cap-
ture spatial distribution patterns. The results show that the
STEE model generally exhibits good accuracy, demonstrat-
ing excellent performance and stability with respect to ad-
dressing temporal and spatial generalization issues. Notably,
the model’s high adaptability to reconstructed pixels high-
lights its potential for handling incomplete or inaccurate data,
further proving the effectiveness of integrating ecological pa-
rameters and machine learning techniques. By applying the
STEE model to all data from 1998 to 2023, we achieved ac-
curate and robust monitoring of global high-resolution, spa-
tiotemporally continuous PFT data products. The TCA algo-
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Figure 16. TCA result of the three monthly products (AIGD-PFT, EOF-PFT, and NOBM-monthly).

rithm was used to compare the AIGD-PFT data product with
other products, showing that our estimation model achieved
competitive overall accuracy.

Despite statistical and correlational analyses throughout
the paper confirming the reasonable and reliable estimation
of global PFTs by STEE-DL, some uncertainties and limita-
tions still need to be addressed in further work. Firstly, in this
study, all physical and biogeochemical data were resampled
to match the 4 km (high) resolution, consistent with the OC-
CCI product, primarily to ensure uniformity across datasets,
as well as to maximize the use of existing data resources.
However, resampling from a lower to a higher resolution can
indeed alter the statistical properties of the data, potentially
introducing inaccuracies. In future research, it is planned
to incorporate more high-resolution data and to minimize
the loss of information during the data-processing stage.
Secondly, the variance obtained through ensemble learning
mainly focuses on model prediction variability, but this does
not fully capture or explain the actual product uncertain-
ties. Real product uncertainties are broader, encompassing

the incompleteness of actual measurements, uncertainties in
predictors, and limitations in understanding the system. Ex-
ploring more comprehensive and precise uncertainty estima-
tion methods to further enhance model reliability and appli-
cability is necessary. It is also necessary to consider intro-
ducing a threshold based on existing ecological studies and
global in situ data analysis, which will help filter out predic-
tions in areas with high uncertainty. Additionally, the current
STEE-DL model is solely based on statistical relationships
and lacks the simulation of biological processes; therefore,
it is unable to explain the mechanisms behind phytoplankton
abundance changes. Model interpretability will be a focus of
our future work. Incorporating prior information constraints,
such as ecological principles, biogeographical distributions,
and seasonal changes, into the model; constructing physics-
guided neural networks; or achieving a symbiotic integration
of physical methods and artificial intelligence, will create
models that can accurately predict phytoplankton abundance
with high interpretability.
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The AIGD-PFT data product demonstrates the potential
application of artificial intelligence and marine big data in
PFT modelling. This study focuses on the production process
and product verification of AIGD-PFT; however, a deeper
analysis of PFT variations across different spatial and tem-
poral dimensions will be the next research priority. As the
product with the longest current time span (1998–2023) and
continuous space–time coverage, AIGD-PFT has the poten-
tial to avoid false multiyear fluctuations and trend artefacts
caused by data gaps. It helps with understanding the global
and local trends in PFTs more broadly and is likely to reveal
how climate change affects the composition of phytoplank-
ton. This is crucial for predicting changes in marine ecosys-
tems in the future, assessing the impact of climate change
on the marine carbon cycle, and formulating corresponding
conservation and management measures.

5 Data availability

The AIGD-PFT (1998–2023, daily) dataset is stored
in NetCDF format and can be directly accessed
via https://doi.org/10.11888/RemoteSen.tpdc.301164
(Zhang and Shen, 2024a). In addition, a subset of
AIGD-PFT (January 2023) can be downloaded from
https://doi.org/10.5281/zenodo.10910206 (Zhang and Shen,
2024b).

6 Conclusions

Constructing long-time-series models of global PFTs has
always been a challenging task, with existing PFT Chl a
concentration products facing a variety of issues. To refine
the monitoring of global PFTs, this study developed a deep
learning-based spatiotemporal ecological integration model
by combining multisource marine data and artificial intelli-
gence technology. This model can utilize a wide range of data
sources, including ocean colour data, reanalysis data, and in
situ observations, to retrieve and generate the world’s first
daily updated, 4 km resolution, seamless PFT data product,
covering eight major phytoplankton functional types. Cross-
validation accuracy assessments show that our method can
provide accurate and temporally consistent PFT predictions,
demonstrating good performance with respect to TCA eval-
uations across different products. As the first PFT product
covering a 26-year span on a daily basis, the AIGD-PFT data
product aids in analysing trends and interannual variations in
phytoplankton time series, with the potential to reveal mech-
anisms by which phytoplankton compositions respond to cli-
mate change across multiple temporal and spatial scales. Ad-
ditionally, the AIGD-PFT product can facilitate the quantifi-
cation of marine carbon fluxes and improve the accuracy of
biogeochemical models. By deepening our understanding of
these key components of marine ecosystem, we can more ef-
fectively address the challenges posed by climate change, en-

suring the health of the global ecosystem and the sustainable
development of human society.

Video supplement. A video demonstration is available at
https://doi.org/10.5446/67366 (Zhang, 2024).
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