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Abstract. Evapotranspiration (ET) is responsible for regulating the hydrological cycle, with a relevant impact
on air humidity and precipitation that is particularly important in the context of acute drought events in recent
years. With the intensification of rainfall deficits and extreme heat events, the Mediterranean region requires reg-
ular monitoring to enhance water resource management. Even though remote sensing provides spatially continu-
ous information for estimating ET on large scales, existing global products with spatial resolutions ≥ 0.5 km are
insufficient for capturing spatial detail at a local level. In the framework of ESA’s 4DMED-Hydrology project, we
generate an ET dataset at both high spatial and high temporal resolutions using the Priestley–Taylor Two-Source
Energy Balance (TSEB-PT) model driven by Copernicus satellite data. We build an automatic workflow to gener-
ate a 100 m ET product by combining data from Sentinel-2 (S2) MultiSpectral Instrument (MSI) and Sentinel-3
(S3) land surface temperature (LST) with ERA5 climate reanalysis derived within the period 2017–2021 over
four Mediterranean basins in Italy, Spain, France, and Tunisia (Po, Ebro, Hérault, and Medjerda). First, original
S2 data are pre-processed before deriving 100 m inputs for the ET estimation. Next, biophysical variables, like
leaf area index and fractional vegetation cover, are generated, and then they are temporally composited within a
10 d window according to S3 acquisitions. Consequently, decadal S2 mosaics are used to derive the remaining
TSEB-PT inputs. In parallel, we sharpen 1 km S3 by exploiting the dependency between coarse-resolution LST
and 100 m S2 reflectances using a decision tree algorithm. Afterwards, climate forcings are utilized to model en-
ergy fluxes and then for daily ET retrieval. The daily ET composites demonstrate reasonable TSEB-PT estimates.
Based on the validation results against eight eddy covariance (EC) towers between 2017 and 2021, the model
predicts 100 m ET with an average RMSE of 1.38 mm d−1 and a Pearson coefficient equal to 0.60. Regardless of
some constraints mostly related to the high complexity of EC sites, TSEB-PT can effectively estimate 100 m ET,
which opens up new opportunities for monitoring the hydrological cycle on a regional scale. The full dataset is
freely available at https://doi.org/10.48784/b90a02d6-5d13-4acd-b11c-99a0d381ca9a, https://doi.org/10.48784/
fb631817-189f-4b57-af6a-38cef217bad3, https://doi.org/10.48784/70cd192c-0d46-4811-ad1d-51a09734a2e9,
and https://doi.org/10.48784/7abdbd94-ddfe-48df-ab09-341ad2f52e47 for the Ebro, Hérault, Medjerda, and Po
catchments, respectively (Bartkowiak et al., 2023a–d).

1 Introduction

Terrestrial evapotranspiration (ET) is a keystone compo-
nent for estimating water loss from Earth’s surface, being
the main indicator of biophysical conditions for vegetation
and bare soil (Coenders-Gerrits et al., 2020; Gouveia et al.,
2017). Designated an essential climate variable, ET substan-
tially contributes to hydrological, energy, and carbon cycles

through its high sensitivity to atmosphere–land interactions,
which are particularly crucial in the context of a warming
climate (Fisher et al., 2017; Konapala et al., 2020). Given
its significance, ET finds widespread use in various environ-
mental applications, including climate studies (Chattopad-
hyay and Hulme, 1997; Dezsi et al., 2018; Gao et al., 2017),
drought detection (Maes and Steppe, 2012; Otkin et al.,
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2016), sustainable agriculture and food production (Allen et
al., 1998; Cammalleri et al., 2014; Dari et al., 2022), and nat-
ural ecosystem monitoring (Anderson et al., 2012; Granata
et al., 2020). However, most of these activities require spa-
tially continuous ET data with regular revisit times and long-
term observation records (Jiang et al., 2021). While conven-
tional in situ measurements such as lysimeters, eddy covari-
ance, and Bowen ratio techniques (Allen et al., 1991; Buttar
et al., 2008; Pastorello et al., 2020) provide frequent time se-
ries, their limited spatial coverage and sparse network restrict
their practical utility compared to gridded ET products.

Over the past few decades, many methods have been de-
veloped for retrieving spatially distributed ET over large ar-
eas, which can be categorized into two groups: process-based
and data-driven approaches. The first category comprises
physical modelling methods that derive energy fluxes based
on theoretical assumptions. These approaches rely on various
forcing parameters to explain ET and have been proposed by
many researchers (Allen et al., 1998; Monteith, 1965; Nor-
man et al., 1995; Penman, 1948; Priestley and Taylor, 1972;
Su, 2002; Mallick et al., 2014). In addition to the “single-
pixel methods” (Chirouze et al., 2014), land surface tempera-
ture (LST)-based contextual methods of ET that calibrate en-
ergy balance under dry–hot and wet–cold conditions within
an image have been successfully applied in numerous studies
(Bastiaanssen et al., 2005; Sobrino et al., 2021; Trezza et al.,
2013). In contrast, the second group is based on empirical re-
lationships between ET and its controlling predictors. These
relationships are derived from in situ and remotely sensed
observations and are mainly established using statistical re-
gressions (Maselli et al., 2014), machine learning (ML), and
deep-learning (DL) algorithms, like random forest (Douna et
al., 2021), artificial neural networks (Ferreira et al., 2019;
Jain et al., 2008), and long short-term memory (Babaeian
et al., 2022). In these data-driven approaches, the focus is
primarily on the statistical patterns and correlations between
the observed variables and ET, with minimal incorporation of
physical mechanisms into a model. In recent years, to achieve
a balance between physical principles and model-learned re-
lationships over large and diverse datasets, the scientific com-
munity has proposed process-constrained ML and DL meth-
ods that combine data-driven algorithms with process-based
modelling (Cui et al., 2021; Hu et al., 2021; Reichstein et al.,
2019).

Regardless of the ET method employed, open-source
global climate datasets, like the European Reanalysis V5
(ERA5) and NASA Global Land Data Assimilation Sys-
tem (GLDAS), in conjunction with a surge in spaceborne
Earth observation (EO) technologies, have greatly acceler-
ated the development of many gridded ET products (Bhat-
tarai and Wagle, 2021; García-Santos et al., 2022). Al-
though ET cannot be measured directly from space, since
the 1980s EO satellites have been providing valuable ob-
servations of land surface parameters, enabling estimation
of actual ET at large scales (Zhang et al., 2016). One no-

table advantage of freely accessible global ET products is
their spatiotemporal continuity and related long-term avail-
ability. In recent years, several long-term datasets have been
developed, including the GLDAS Catchment Land Surface
Model (CLSM) encompassing the years 1948 to 2014 and
the Priestley–Taylor-based Global Land Evaporation Ams-
terdam Model (GLEAM) covering the period from 1980 to
the present (Li et al., 2018; Miralles et al., 2011; Martens et
al., 2017). Although these global-scale models provide ex-
tensive time series at the continental level, serving as a valu-
able parameter for many hydrological models (Alfieri et al.,
2022; López López et al., 2017) and offering important in-
sights into water availability at a large scale (Bai and Liu,
2018), they provide ET data at spatial resolutions of tens
of kilometres. Since 2015, daily 3 km ET maps, driven by
the Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI) on board the geostationary Meteosat Second Gener-
ation (MSG) satellite, have been generated and made avail-
able through the Land Surface Analysis – Satellite Appli-
cation Facility (LSA-SAF) system (https://landsaf.ipma.pt/,
last access: 4 September 2023). Additionally, other global
ET products include the Penman–Monteith MOD16 maps
driven by Moderate Resolution Imaging Spectroradiometer
(MODIS) inputs (Mu et al., 2007) and Operational Simpli-
fied Surface Energy Balance (SSEBop) ET, typically utiliz-
ing the 1 km MODIS LST and leaf area index (LAI) prod-
ucts and climate reanalysis datasets (Senay et al., 2013),
among others that have been successfully applied in many
regions (Weerasinghe et al., 2020). Despite their reliable val-
idation results in relatively homogenous landscapes, like the
contiguous United States (CONUS) with an average R2 of
0.7 for both SSEBop and MOD16 (Velpuri et al., 2013),
their large pixel size and related insensitivity to complex ter-
rain might not be representative over heterogenous locations
(Castelli, 2021; McShane et al., 2017).

Surface energy balance (SEB) modelling is a valuable
tool for estimating ET using high-resolution (HR) ther-
mal remote sensing, like subfield-scale Landsat LST im-
agery with a pixel size ranging from 60 to 120 m and the
70 m ECOsystem Spaceborne Thermal Radiometer Experi-
ment (ECOSTRESS) mission launched in 2018 (Anderson
et al., 2021; Xue et al., 2022). Currently, the global HR
ECOSTRESS ET data are generated from the Priestley–
Taylor Jet Propulsion Laboratory (PT-JPL) algorithm (Fisher
et al., 2008; Fisher, 2018). To expand the high capabilities
of the HR LST, Cawse-Nicholson and Anderson (2021) in-
troduced the disaggregated Atmosphere-Land Exchange In-
verse Jet Propulsion Laboratory (DisALEXI-JPL) model,
which provides ECOSTRESS-driven energy fluxes over the
CONUS area. Additionally, ESA’s European ECOSTRESS
Hub data repository has been released, which offers an open-
source 70 m daily evaporation product for Europe and Africa
based on the non-parametric Surface Temperature Initiated
Closure (STIC) model (Hu et al., 2022; Mallick et al., 2014).
Even though the HR ET datasets obtain satisfactory results,
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the irregular revisit time of ECOSTRESS over Europe and
the 8–16 d repeat cycle for Landsat hamper their use in
monitoring ET dynamics and temporal trends. In this con-
text, the next generations of HR thermal missions are de-
signed, including ESA’s Copernicus Land Surface Temper-
ature Monitoring (LSTM) mission, the Thermal infraRed
Imaging Satellite for High-resolution Natural resource As-
sessment (TRISHNA) of CNES–ISRO (France and India),
and NASA’s thermal infrared (TIR) Surface Biology and Ge-
ology (SGB) mission. Even though these instruments are
planned for launch between 2024 and 2028, their operational
use will be delayed further. Thus, there is an urgent need to
bridge this gap by advancing current satellite-based ET esti-
mates.

Given the limited availability of HR LST data, such as
those with both a daily revisit time and a sub-kilometre pixel
size, SEB-based retrievals have been commonly enhanced
by spatially downscaling daily TIR images obtained from
1 km satellite sensors like Terra/Aqua MODIS, the Visible
Infrared Imaging Radiometer Suite (VIIRS) on board the
Suomi National Polar-orbiting Partnership (S-NPP), and the
Sentinel-3 Sea and Land Surface Temperature Radiometer
(SLSTR) (Bisquert et al., 2016; Guzinski and Nieto, 2019;
Xue et al., 2021). Due to the increasing volume and vari-
ability of geospatial data, many data-driven approaches have
been proposed, relying on empirical relationships between
1 km surface temperatures and high-resolution explanatory
variables derived from synthetic aperture radar (SAR) and
visible shortwave infrared (VSWIR) sensors (Amazirh et al.,
2019; Li et al., 2019; Mao et al., 2021; Pu and Bonafoni,
2023). For instance, Liu et al. (2020) employed a random
forest algorithm to derive 250 m MODIS LSTs over northern
China, reporting an improvement in RMSE of 32 %–36 %
compared to the original 1 km images. Furthermore, since
2019 the FAO initiative Water Productivity through Open ac-
cess of Remotely sensed derived data (WaPOR) has provided
10 d ET composites over Africa and the Middle East derived
from the ETLook model and driven by MODIS, PROBA-
V, and Landsat data at continental, country, and subnational
scales, corresponding to resolutions of 250, 100, and 30 m,
respectively (Bastiaanssen et al., 2012; Blatchford et al.,
2020). In parallel, the Priestley–Taylor Two-Source Energy
Balance model, forced by ESA Copernicus data, has demon-
strated the potential to produce HR ET with global coverage
(Bellvert et al., 2020; Guzinski et al., 2020; Chintala et al.,
2022). The frequent acquisitions of the HR Sentinel-2 Multi-
Spectral Instrument (MSI) and 1 km Sentinel-3 SLSTR with
the two-satellite configurations, along with global ERA5
climate data, serve as reliable inputs for the Two-Source
Energy Balance (TSEB-PT) model due to their long-term
continuity and evolution plans. As reported by Guzinski et
al. (2021), Copernicus datasets, including Sentinel-3 LST
downscaled to resolutions ranging from 20 to 300 m, exhibit
better spatial-scale consistency than WaPOR inputs, result-
ing in a correlation coefficient equal to 0.9 and a mean bias

of less than 0.3 mm d−1 over Mediterranean agricultural ar-
eas in Tunisia and Spain during the growing season in 2018–
2019.

In this study, we aim to produce Copernicus-based ET
maps for the Mediterranean region (MR) utilizing the Two-
Source Energy Balance model with a dual-source scheme,
which allows estimation of energy fluxes for both vegeta-
tion and soil components. The ET product covers the years
2017–2021 and is generated at a high spatiotemporal resolu-
tion of 100 m on a daily basis as a reasonable scale over a
fragmented Mediterranean landscape. The maps are derived
using freely available algorithms developed within ESA’s
Sentinels for Evapotranspiration (Sen-ET) initiative (DHI-
GRAS, 2020). In general, we synergistically combine high-
resolution Sentinel-2 shortwave data, moderate-resolution
Sentinel-3 LST images, and ERA5 climate observations to
generate ET grids. Due to big data volume and the multi-
step processing involved, the objective of this study is also
to automatize the entire workflow for large-scale applica-
tions and to provide recommendations for facilitating Sen-
ET inputs and algorithms through cloud computing infras-
tructure. To achieve this, we implement the entire work-
flow using cloud computing units offered by VMware, the
Earth Observation Data Centre (EODC), and CloudFerro.
The processing pipelines are designed to update the result-
ing ET time series and make it more suitable for operational
use. To the best of our knowledge, this is the first applica-
tion of TSEB-PT at sub-kilometre spatial resolution over the
Mediterranean basin. Notably, such areas are often under-
represented in globally oriented studies, making this work
particularly useful in advancing our understanding of ET in
regions of high ecohydrological and socio-economic impor-
tance.

2 Study area and datasets

2.1 Study sites

Our study focuses on four Mediterranean river basins: the
Ebro in Spain, the Po in Italy, the Medjerda in Tunisia, and
the Hérault in Languedoc-Roussillon in France. The regions
cover a total area of approximately 190 000 km2. Figure 1
depicts the geographical locations of all the areas of interest.

As demonstrated in Fig. 1, the Ebro basin (EB), with
a total catchment size of about 85 500 km2, exhibits a di-
verse landscape, leading to varied climatic conditions. The
EB experiences an oceanic and Mediterranean mountain cli-
mate in the north with an average annual air temperature
(TAmean) ranging from 9 to 12 °C. Moving south-east, the
climate transitions to warm oceanic, where TAmean ranges
from 11 to 14 °C (Lorenzo-González et al., 2023). Precipi-
tation patterns also vary across the region. The south-eastern
part experiences low precipitation (350–700 mm yr−1), while
the mountainous regions receive more rainfall, yielding 800–
2000 mm yr−1 (Gaona et al., 2022). To meet the water de-
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Figure 1. Overview of the areas of interest. (a) General locations of the basins in the Mediterranean region. (b–e) Ebro, Hérault, Medjerda,
and Po basins. All the figures were generated in QGIS using internal resources (a) and open-source layers provided by https://www.bing.
com/maps (last access: 18 August 2023) (b–e) © Microsoft.

mands of the entire EB, extensive canal systems have been
developed, and around 92 % of the total water consumption
is allocated to irrigation and farming (Barella-Ortiz et al.,
2023). Similarly, in the Po basin (PB), which spans an ap-
proximate surface area of 71 000 km2, the climate and wa-
ter resources are strongly influenced by the region’s topog-
raphy. The northern PB is known for its Alpine climate, and
it is characterized by numerous water reservoirs commonly
used for energy generation. The southern areas, despite hav-
ing a lower water supply, play a vital role in agriculture due
to their large water storage capacities and favourable terrain
(Dari et al., 2023). TAmean in the Po basin varies across the
region. In the mountains, TAmean ranges from 5 to 10 °C,
while in the remaining zones it falls within the range of 10
to 15 °C (Musolino et al., 2017). Additionally, the average
precipitation ranges from 700 to 1500 mm yr−1 (Filippucci
et al., 2022). The coastal Languedoc-Roussillon (LR) region
with the Hérault basin (HB) in southern France is another
agriculture-oriented basin, with nearly 30 % of the arable
land represented by vineyards (Cambrea et al., 2020). LR
is primarily influenced by a Mediterranean climate charac-
terized by hot, dry summers and mild winters. The south-
ern sections of the Pyrenees exhibit nival climatic conditions.
Similarly to the EB and PB, the HB follows a climatic gradi-
ent that is dependent on its geolocation. In the northern part,
the yearly TAmean ranges around 8 °C, while precipitation
reaches 1600 mm yr−1. In contrast, the southern part expe-

riences higher temperatures, with TAmean surpassing 15 °C,
and lower rainfall levels of around 600 mm yr−1 (Fabre et
al., 2015). The Medjerda basin (MB) in Tunisia represents
a catchment with drier and hotter climatic conditions com-
pared to the other study sites. In fact, it is characterized by
low annual precipitation varying between 350 and 600 mm,
coupled with high annual temperatures averaging between
16 and 22 °C (Rajosoa et al., 2022). With an area of ap-
proximately 15 500 km2, the MB is the largest watershed in
Tunisia, and thus it holds significant importance in terms of
water supply for both domestic use and farming (Boulmaiz
et al., 2022). Indeed, agriculture plays a dominant role, con-
suming the largest number of water resources and account-
ing for nearly 76 % of the total water volume available (FAO,
2020).

Given the hydro-demanding activities across the study
sites, which include crop irrigation, energy production, mass
tourism, and domestic water use, together with the challenges
posed by extreme heatwaves and recurring droughts in recent
years, daily ET maps at the river basin scale would be highly
beneficial for supporting vegetation monitoring and sustain-
able water management practices (Gouveia et al., 2017).

2.2 In situ measurements

In this study, eddy covariance measurements collected in the
framework of the European Fluxes Database Cluster (EFDC)
are used to validate gridded ET products (Heiskanen et al.,
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2022). The EFDC is the European initiative that gathers
and standardizes in situ fluxes from a wide range of eddy
covariance (EC) networks (e.g. ICOS, InGOS, CarboItaly,
and GHG-Europe) to facilitate their application among the
scientific community worldwide. The database stores long-
term measurements (since 1996) that are pre-processed and
quality-controlled by providers before data submission to the
system.

In this work, after deriving all measurements from
the EFDC, all available EC records have been harmo-
nized and made available as a multi-year file stack with
a daily time step through the project-dedicated Post-
greSQL database (https://edp-portal.eurac.edu/, last access:
10 February 2024). Consequently, ground-based EC data
are analysed for eight stations located in the study’s sub-
domains (see Sect. 2.1 for more details). The sites are rep-
resented by different vegetated land covers which include
Alpine grasslands, forest, and vineyard ecosystems. As de-
picted in Table 1, five towers are located in mountainous re-
gions above 1400 m a.s.l. and are covered by grasslands and
forest, while the three remaining towers lie in forest and vine-
yard biomes in France and Italy at altitudes ranging from 1
to 270 m a.s.l. Considering the time span of the generated
ET product, in situ measurements temporally overlap with
Copernicus Sentinel-3 LST data acquired between 2017 and
2021.

To derive daily ET observations with good quality, all
in situ latent heat flux (LE) measurements collected at
30 min temporal resolution are first pre-processed to elim-
inate outliers (i.e. records smaller or greater than the 1st
and 99th percentiles, respectively), duplicates, rainy events
(> 0 mm d−1), and eventually days with a subdaily cover-
age smaller than 25 % (Hulsman et al., 2023). Additionally,
30 min station records with low quality assurance (QA) are
removed. In the case of missing QA flags, we exclude the
corresponding instantaneous data records from further anal-
ysis. As a result, the number of ground measurements is re-
duced. Apart from that, the observations are checked for the
energy balance closure (EBC) ratio (i.e. [(H+LE)/ (Rn−G)]
with Rn the net radiation,G the soil heat flux, andH the sen-
sible heat flux), as shown in Table 1. Considering all avail-
able records at the flux sites, EBCs vary between 0.67 at
IT-Lsn and 1.44 at IT-Tor, while for our years of interest
(2017–2021) the average ratio ranges from 0.54 at IT-MtP to
a maximum value of 1.18 at IT-Tor. Even though some sta-
tions either exceed unity (IT-SR2 and IT-Tor) or have smaller
values than the acceptable threshold of 0.75 (IT-Lsn and IT-
MtP), we include all locations in the validation process due to
the small number of flux sites available over the basins (Pa-
storello et al., 2020). After the quality checks, the local ET
observations are estimated using the approach proposed by
Allen et al. (1998). Specifically, latent heat flux (W m−2) is

converted to daily ET (mm d−1) using the following formula:

ET [mmd−1
] =

LE [Wm−2
] × 24 × 60

×60 [sd−1
] × 1000 [mmm−1

]

ρw [kgm−3] × L [Jkg−1
]

, (1)

where ρw is the water density (1000 kg m−3) and L is the la-
tent heat of vaporization (2.25× 106 J kg−1). After the equa-
tion transformation, the tower-derived ET is estimated and
then compared against the 100 m ET product as described in
the next sections of this paper.

2.3 Gridded data

Multi-source ESA Copernicus data to estimate the actual
ET are used in this study: satellite, meteorological, and an-
cillary remotely sensed variables. This section outlines the
source datasets and accompanying pre-processing steps in-
volved before the main processing chain for deriving ET. Ta-
ble 2 provides a comprehensive overview of all gridded vari-
ables utilized for the ET modelling. It should be mentioned
that in Sect. 3 we present more details on all Copernicus-
based outputs at the intermediate and final processing stages
with cloud computing resources.

In this work, the ET model is forced by Copernicus satel-
lite data, including daily 1 km Sentinel-3 LST maps and
fine-spatiotemporal-resolution Sentinel-2 MSI imagery (10–
20 m, 2–5 d revisit time), all derived for the years 2017–2021.
Land surface temperature, as a crucial forcing parameter for
the ET model, corresponds to daytime S3 acquisitions un-
der clear-sky conditions. Simultaneously, biophysical vari-
ables and shortwave bands at 100 m resolution are derived
from the original S2 on the bottom-of-atmosphere (S2L2A)
reflectance maps with a total spatial coverage of 52 Sentinel-
2 tiles (Table 2). In the case of missing S2L2A, we first pre-
process Sentinel-2 Level 1C (S2L1C) to derive atmospheri-
cally corrected S2 scenes, as explained in the next sections
of this paper. In this work, daytime land surface temperature
images, as a crucial forcing parameter for estimating turbu-
lent fluxes, are derived from Sentinel-3A and Sentinel-3B
SLSTR data. In this regard, we extract specific bands from
1 km S3 products, including LST and cloud masks, along
with Sun and S3 sensor geometries. Due to the two-satellite
constellation since June 2018, Sentinel-3 acquisitions with
minimum viewing zenith angles (VZAs) are selected when
multiple scenes on the same day are captured. The reason
for that choice is motivated by the fact that a larger VZA
has a more negative impact on surface temperature accuracy
due to angular anisotropy in the thermal infrared spectrum.
To derive surface biophysical variables for ET modelling,
the constellation of the Sentinel-2 MSI (both A and B) is
exploited and, in particular, nine 10–20 m reflectance bands
from the VSWIR region are extracted. In addition, the re-
sulting S2L2A shortwave channels are used as 100 m predic-
tor variables to downscale 1 km Sentinel-3 SLSTR LST data.
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Table 1. Eddy covariance stations for validating gridded ET maps.

Station name EC site ID Land cover Elevation Data availabilitya EBCb

Puéchabon FR-Pue EBF 270 m 2000–2021 0.82 (–)
Lison IT-Lsn VIN 1 m 2016–2020 0.67 (0.71)
Muntatschinig meadow IT-MtM GRA 1450 m 2017–2019 0.87 (0.86)
Muntatschinig pasture IT-MtP GRA 1550 m 2017 0.80 (0.54)
Torgnon IT-Tor GRA 2160 m 2008–2020 1.44 (1.18)
Renon IT-Ren ENF 1730 m 1999–2020 1.32 (–)
San Rossore 2 IT-SR2 ENF 4 m 2013–2020 0.96 (0.95)
Monte Bondone IT-MBo GRA 1550 m 2003–2020 0.96 (1.04)

a Time span for raw local measurements before excluding years of non-interest. b EBC outside the parentheses corresponds to all
available records at the sites, while the values in the parentheses are derived for the years 2017–2021. EBF: evergreen broadleaf
forest; VIN: vineyard; GRA: grassland; ENF: evergreen needleleaf forest.

Table 2. Gridded data used in this study.

Source dataset Input parameter Pixel
size

Brief summary

Sentinel-3A and Sentinel-3B Sea and
Land Surface Temperature Radiometer
Level 2

Land surface temperature 1 km LST maps under clear-sky conditions based on the
quality bands provided (ESA, 2022) and downscaled
to 100 m spatial resolution

Sentinel-2A and Sentinel-2B Multi-
Spectral Instrument levels 1C and 2A

Surface reflectance (SR) 10–
20 m

Top-of-atmosphere and bottom-of-atmosphere SR
bands resampled to 100 m and 1 km pixel sizes∗

Shuttle Radar Topography Mission
(SRTM)

Elevation 90 m Digital elevation model (DEM) from the SRTM and
its two derivatives: slope and aspect resampled to
100 m and 1 km spatial resolutions∗

PROBA-V and Sentinel-3 Ocean and
Land Colour Instrument (OLCI)

Land cover 300 m Annual maps with global extent derived from
PROBA-V (2017–2019) and the Sentinel-3 OLCI for
the years 2020–2021 and resampled to a 100 m pixel
size

European Reanalysis V5 Meteorological data 31 km Hourly maps of air temperature, vapour pressure, air
pressure, wind speed, clear-sky downward solar radi-
ation, and daily all-sky downwelling shortwave flux,
all matched to the Sentinel-3 overpass time

∗ Both the 1 km and 100 m datasets are utilized for data-driven thermal downscaling, while the 100 m intermediate outputs are incorporated directly into the ET model.

More details on satellite data preparation are given in the next
sections of this paper.

To run the ET processing chain, two other satellite-
driven products are also used: 300 m Copernicus Climate
Change Initiative (CCI) land cover (LC) maps (https://www.
esa-landcover-cci.org/, last access: 22 July 2023; ESA, 2017)
and elevation data obtained from the 90 m Shuttle Radar To-
pography Mission (SRTM). The first one is derived through
the Climate Data Store (CDS) API client in Python as ex-
plained at https://cds.climate.copernicus.eu/ (last access: 16
May 2023), while the digital elevation model (DEM) is au-
tomatically downloaded from the dedicated SRTM database
that is available online (https://srtm.csi.cgiar.org, last access:
16 February 2023; NASA JPL, 2013). After data download,
both inputs are resampled to 100 m resolution to be ready for

ET model runs. Despite the pixel size discrepancy between
inputs and the ET product, this choice is determined by tem-
poral coverage of the CCI LS data (2017–2021), with spe-
cially designed lookup tables for estimating ancillary param-
eters to force the TSEB-PT model, such as canopy height,
fractional vegetation cover, average leaf size, and canopy
shape. In the case of elevation, we select a 90 m SRTM DEM
product due to its ET-like spatial resolution. Apart from that,
DEM information is used as an input predictor to downscale
1 km Sentinel-3 LST and to topographically correct ERA5
parameters following the strategy proposed by Guzinski et
al. (2021).

Meteorological parameters, which are essential input vari-
ables for ET estimation, are derived from high-frequency Eu-
ropean Reanalysis V5 climate data provided by the European
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Centre for Medium-Range Weather Forecasts (ECMWF) and
are downloaded from the CDS for the period 2017–2021
(Hersbach et al., 2020). As forcing inputs for the TSEB-
PT model, we use meteorological observations that include
air temperature (TA), vapour pressure (VP), wind speed
(both u and v components), surface pressure (SP), and two
ERA5 solar radiation components: all-sky shortwave down-
welling fluxes and clear-sky downward shortwave radiation
(SWclear-sky

in ) temporally matched to the Sentinel-3 SLSTR
overpass time. Hourly SWclear-sky

in datasets are selected rather
than all-sky downwelling solar irradiance due to an assump-
tion of clear-sky conditions during S3 acquisitions being in-
capable of penetrating clouds. The ERA5 dataset is used to
estimate input parameters, like net shortwave radiation and
longwave irradiance, and then to derive instantaneous energy
fluxes and extrapolate latent heat flux to daily time steps.

3 Methodology

3.1 General framework

This study aims to develop an automatic workflow for gen-
erating Copernicus-based daily ET datasets at 100 m resolu-
tion from 2017 to 2021. Sub-kilometre ET mapping is con-
sidered a reasonable scale in the Mediterranean basins char-
acterized by complex topography and highly patched land
cover, where 1 km ET maps might not fully represent spa-
tial heterogeneities of the land surface (Massari et al., 2021).
In general, the entire workflow to produce a daily 100 m ET
product consists of two steps: (1) input parameter preparation
and (2) TSEB-PT modelling of ET (Fig. 2). In the following
sections we describe each processing chain in more detail.

Owing to the large-scale ET modelling and its related high
computational and memory requirements, we distribute our
work on multiple virtual machines. We implement the pro-
cessing flow with the setup on Ubuntu v20.04 LTS using
two geospatial cloud computing platforms offered by the
EODC (https://eodc.eu/, last access: 15 June 2023) and the
ESA high-performance computing (HPC) cluster of Cloud-
Ferro (https://cloudferro.com/, last access: 11 July 2023).
The main advantage of this solution is the direct access to
satellite data and the capability to facilitate big data process-
ing more robustly. Apart from these resources, two internal
units of Eurac Research with Ubuntu v18.04 LTS are de-
ployed on VMware machines (https://www.vmware.com/).
In this case, EO data are directly downloaded from the ESA
Copernicus Open Access Hub (https://scihub.copernicus.eu/,
last access: 9 January 2023). The multiple selection of cloud
providers has two reasons. First, the entire procedure for de-
riving ET maps at 100 m resolution is complex (see Fig. 2),
which translates into big requirements in terms of disk space,
computing memory, and processing time. For example, a 5-
year dataset (2017–2021), including intermediate and final
outputs over one Sentinel-2 tile, requires around 600 GB.

Secondly, we diversify our processing workflows into many
computing units due to their accessibility offered by the
ESA Network of Resources (NoR) sponsorship programme.
Furthermore, in the framework of the 4DMed-Hydrology
project, Eurac Research was asked to test the new ESA HPC
infrastructure considering the high-volume processing of the
entire workflow presented in this study.

To keep the data pipeline consistent over the multiple
platforms, we harmonize the entire workflow by creating a
unique Conda environment on all our machines. ET outputs
are obtained by automatizing entire routines, including base-
line ESA SNAP Graph Processing Tool (GPT) algorithms
and Python baseline codes developed in the framework of
the Sen-ET project (https://www.esa-sen4et.org, last access:
16 October 2023). For more specific details on the data (pre-
)processing for both satellite and meteorological parameters,
we recommend visiting the open-source GitHub repository
available at https://github.com/DHI-GRAS/ (last access: 16
October 2023). The repository includes codes that calculate
necessary inputs for the TSEB-PT model.

3.2 Input parameter preparation

Considering multi-source datasets in conjunction with their
different processing levels and spatial scales, the primary
step of our workflow includes source data pre-processing and
input preparation to force the Priestley–Taylor Two-Source
Energy Balance model (Table 2, Fig. 2a).

First, we spatially aggregate 20 m Sentinel-2 Level-2A re-
flectances and their geometries to a 100 m pixel size with
an arithmetic mean function. In this study, we select a res-
olution of 100 m for the ET product rather than the original
20 m S2 cell size. Prior to the final modelling, we tested the
impact of the spatial resolution of input variables on the final
ET estimates considering the above-mentioned pixel dimen-
sions. ET simulations forced by the 20 and 100 m param-
eters gave similar results, and thus the latter solution was
chosen as a trade-off between high spatial resolution and
storage use along with computing speed. In addition, to the
best of our knowledge, long-term high-resolution ancillary
variables, e.g. elevation and land cover at spatial resolution
< 100 m, are not freely available for incorporation into the
entire workflow.

Nevertheless, S2L2A preparation is challenging, mainly
due to incomplete time series on the EODC service. This re-
quires copying of missing datasets, either from CloudFerro
or from the Copernicus Open Access Hub. Apart from that,
Sentinel-2 data over the Medjerda basin in Africa between
2017 and mid-2018 are not available on all the platforms
(last accessed on 9 January 2022). As shown in Fig. 2a,
in that case S2L1C scenes are first pre-processed with a
Sen2Cor processor to obtain atmospherically corrected 20 m
S2L2A granules together with a scene classification layer for
cloud removal afterwards (Main-Knorn et al., 2017). Since
the time frame of this work covers the years 2017–2021, it is
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Figure 2. Schematic flowchart of the whole ET process, including (a) source data pre-processing (the top row) and input retrievals for the
Priestley–Taylor Two-Source Energy Balance modelling (the lower line) and (b) daily ET estimation at 100 m resolution. While the processes
are represented by the ovals (e.g. pre-processing, thermal downscaling, TSEB-PT modelling, and intermediate p1–p6), the rectangles stand
for the source parameters, and the round rectangles indicate intermediate and final results.

necessary to use two different versions of Sen2Cor. Indeed,
Sen2Cor 2.5.5 is able to ingest only those data belonging to
2017–2021, while S2 scenes from 2022 need to be processed
using Sen2Cor 2.10.01. To solve this problem, we set up two
different docker containers for the two Sen2Cor versions. Af-
ter checking the acquisition date of the input data, the bash
script is run considering the time overlapping Sen2Cor re-
leases. Due to straightforward Sen2Cor cloud mask retrieval
and its well-established workflow, we decided to apply this
approach to the entire Sentinel-2 time series.

Next, S2-driven biophysical parameters, including LAI,
canopy height (hC), and fractional vegetation cover (fC), are
produced using the S2 Toolbox Biophysical Processor (Weiss
et al., 2016; Xie et al., 2019). The entire procedure requires
eight Sentinel-2 L2A bands acquired in the VSWIR elec-
tromagnetic spectrum together with geometry information,
like Sun and sensor zenith angles. LAI retrieval is a hybrid
approach based on an inversion of the PROSAIL radiative
transfer model simulations of S2 canopy reflectance using
neural network modelling. More details on estimating bio-
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physical variables are provided by Weiss et al. (2016). At the
same time, the fraction of green vegetation (fg) is generated
by incorporating the S2 VZA and biophysical variables as in-
put parameters (Fig. 2b). To minimize the cloud cover effect
in the Sentinel-2 product, all the above-mentioned outputs
are mosaicked using a 10 d window with respect to Sentinel-
3 overpass dates. This means that time-coincident Sentinel-2
granules are temporally ranked, and good-quality pixels with
possibly the closest date to S3 acquisition are selected. The
entire procedure is developed in SNAP GPT to be run in an
automated manner over the entire image collection. Next,
10 d composites are utilized in conjunction with other ET
model parameters, like 100 m CCI land cover, to derive the
remaining inputs, including aerodynamic roughness, along
with vegetation structural and spectral properties as shown
in Fig. 2b. In addition, atmospherically corrected surface re-
flectance bands are resampled to 1 km spatial resolution to
sharpen daily Sentinel-3 LST data.

As outlined in Sect. 2.3, we use the satellite-based
LST from 1 km Sentinel-3 SLSTR Level-2 data to esti-
mate the actual ET. Given the sensitivity of TIR instru-
ments to overcast conditions, all cloudy pixels are elimi-
nated with respect to the cloud-in mask provided with the
SL_2_LST product. Next, the S3 datasets are cropped ac-
cording to Sentinel-2 tiles (https://sentinels.copernicus.eu/
web/sentinel/missions/sentinel-2/data-products, last access:
7 January 2022) and re-projected onto the World Geodetic
System 1984 (WGS84) coordinate system for synergistic use
with Sentinel-2 data afterwards.

Notably, it should be mentioned that CloudFerro provides
different versions of Sentinel-3 LST in terms of cropping
schemes, baseline collections, and related software versions
for data processing. This hinders the immediate use of the
data and requires an investment of time to analyse the qual-
ity of the data and choose the proper version, and thus S3
LST processing needs to be preceded by data checks and
proper filtering. In general, it is recommended that the newest
baseline collection v4 be chosen rather than a product with
baseline collection v3, as v4 is re-processed using upgraded
software after major evolutions.

While taking advantage of complementary Sentinel-2 and
Sentinel-3 instruments, we sharpen the 1 km S3 SL_2_LST
product to derive enhanced surface temperatures at a spa-
tial resolution corresponding to our ET product (Fig. 2a).
Thermal downscaling is based on the data mining sharp-
ener (DMS) approach proposed by Gao et al. (2012). It has
been successfully applied in many studies to enhance the
spatial consistency of LST grids (Anderson et al., 2021;
Guzinski et al., 2020; Sánchez et al., 2023; Yang et al.,
2021). As presented in Guzinski and Nieto (2019), TSEB-
PT driven by downscaled DMS-based surface temperatures
is more robust compared to ET estimates driven by the orig-
inal 1 km LST data, with an increase in the Pearson corre-
lation coefficient (R) of around 13 % between in situ ET
and their corresponding modelled observations. The DMS

method incorporated into the Priestley–Taylor Two-Source
Energy Balance modelling pipeline has also been demon-
strated to be more performant than evapotranspiration es-
timates derived from the METRIC (Mapping Evapotran-
spiration with Internalized Calibration) and End-member-
based Soil and Vegetation Energy Partitioning (ESVEP)
models at 11 flux tower sites across different vegetation types
and climate zones (https://www.esa-sen4et.org/downloads/
prototype_evaluation_v1.3.pdf, last access: 16 June 2022).
On average, TSEB-PT achieved a consistently lower RMSE
and higher correlation for latent fluxes, yielding an RMSE
of 90 W m−2 and an R exceeding 0.7, which largely outper-
form METRIC and ESVEP by more than 11 % and 30 % for
RMSE and R, respectively. Moreover, Sánchez et al. (2023)
conducted an extensive study on the performance of LST
downscaling in Spain and, based on their validation re-
sults with in situ measurements, the DMS approach gave an
RMSE nearly 2 times smaller than the 1 km S3 LST. In ad-
dition to the above-mentioned literature review, in our co-
authored paper we compared Sen-ET outcomes with other
evapotranspiration products, including 3 km MSG SEVIRI
and 70 m ECOSTRESS ET, which on average yielded less ro-
bust accuracy metrics than our 100 m retrievals (De Santis et
al., 2022). In this regard, the kernel-driven regressions are ob-
tained from the bagging ensemble of the decision tree (DT)
algorithm that reduces the risk of model overfitting. In this
study, the DMS approach predicts land surface temperature
at 100 m spatial resolution by exploiting empirical relation-
ships between coarse LST grids and high-resolution explana-
tory variables for each Sentinel-3 acquisition date. The func-
tional relationship between clear-sky Sentinel-3 LST data
and explanatory variables is based on 10 d S2 reflectance
composites in conjunction with DEM and shortwave irra-
diance incident angles at S3 overpass times derived from
the SRTM-based slope and aspect grids (Fig. 2b). The DMS
method simultaneously establishes global (within the 100 km
S2 tile) and local (30-by-30 Sentinel-3 pixels within a mov-
ing window) regression models and then fuses these two es-
timates as their weighted linear combination to increase the
number of samples for model training, also capturing ther-
mal heterogeneity at the local scale. Consequently, down-
scaled LST maps are derived by applying daily models to the
HR predictors while forcing energy conservation between the
original Sentinel-3 images and sharpened granules. The en-
tire procedure is performed in the blending phase by apply-
ing a weight to global and local estimates based on residual
correction between the original LST and the 100 m S3 im-
age sharpened with two regression schemes. This means that
LST pixels with a lower bias result in greater weight, while
grid cells with larger residuals have a smaller impact on the
final LST estimation.

Given a wide range of fine-resolution predictors (< 100 m)
and their high revisit times (2–5 d), the enhancement method
in the spatial domain is selected rather than the image fusion
approach that increases the temporal availability of high-
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spatial-resolution LST images by exploiting (sub)daily ob-
servations from coarse-resolution TIR scanners (Sun et al.,
2017; Yang et al., 2017). As mentioned before, the DMS
method belongs to well-established downscaling approaches,
and its recent open-source implementation increases its vis-
ibility among users (Guzinski and Nieto, 2019). Further-
more, TSEB-PT has been constantly updated to enhance
the modelling strategy for thermal sharpening and, as re-
ported by Guzinski et al. (2023), the enhanced DMS achieved
better results, translating into improvements of up to 1.5 K
in accuracy of downscaled LST and an average RMSE of
0.8 mm d−1 for daily ET. The successful applications of the
DMS procedure for deriving high-spatial-resolution ET, as
shown in many research studies before, moved us towards
generation of a 100 m ET dataset, assuming its better per-
formance in different land covers and climates compared to
the original S3-driven TSEB-PT estimates at 1 km resolu-
tion. Nevertheless, considering the terrain complexity and
patched land cover of our study areas compared to the above-
mentioned studies, where the majority of the flux towers are
located in relatively homogenous environments (Table 1),
we additionally evaluated the performance of the ET model
forced by the original 1 km Sentinel-3 SLSTR versus ET
forced by 100 m DMS-derived inputs.

ECMWF ERA5 climate datasets also require pre-
processing prior to inclusion in the Two-Source Energy
Balance model. All extracted variables from the reanaly-
sis dataset (see Sect. 2.3 for more details), except for wind
speed, are corrected for terrain effects using the SRTM DEM
product (Fig. 2a). Similar to instantaneous variables, all-sky
shortwave downwelling fluxes are first enhanced by account-
ing for topography orientation (i.e. illumination conditions)
and an hourly cloud cover factor derived from SWclear-sky

in
and are then interpolated to daily observations. Considering
the better representativeness of low-resolution meteorologi-
cal parameters at the blending height of 100 m rather than
2 m above the ground, TA, VP, and SP are recalculated at
that height (Guzinski et al., 2021). Daily average solar ra-
diation is obtained by interpolating hourly ERA5 shortwave
downward irradiance over a 24 h period starting at midnight
local time. Next, the product is used to extrapolate instan-
taneous latent flux to daily ET. After calibrating the ERA5
components, we prepare specific radiative fluxes for deriv-
ing instantaneous energy fluxes corresponding to Sentinel-
3 overpasses. In this regard, meteorological input is utilized
to compute longwave irradiance, and then instantaneous net
shortwave radiation is derived from Sentinel-3 VZA imagery
and 10 d Sentinel-2 composites of structural and biophysical
parameters (Fig. 2a).

3.3 TSEB-PT modelling of ET

In this work, we utilize the Priestley–Taylor Two-Source En-
ergy Balance model driven by ESA Copernicus data (Fig. 2)
to produce daily evaporation maps over the Mediterranean

region (Norman et al., 1995; Kustas and Norman, 1999). The
main advantage of the model over heterogenous areas is the
fact that TSEB-PT considers the soil (S) and canopy (C) to be
two distinct components and employs a two-layer approach
to estimate latent (LE) and sensible heat (H ) fluxes for each
element separately:

RnS = LES+ HS+G, (2)
RnC = LEC+ HC, (3)

where Rn denotes the net radiation (W m−2), LE represents
the latent heat flux (W m−2), H represents the sensible heat
flux (W m−2), and G stands for the soil heat flux (W m−2).
Unlike other satellite-based methods, the model minimizes
the number of input parameters, and its relative simplic-
ity makes it an ideal candidate for high-volume processing
(Kustas and Anderson, 2009). The net radiation subcompo-
nents (RnS and RnC) are calculated following the methodol-
ogy presented by Campbell and Norman (1998). HS (HC)
is determined by evaluating the temperature gradient be-
tween the soil (canopy) and TA at a reference height, as
described by Guzinski et al. (2020). The primary remotely
sensed variables required by the model are land surface tem-
perature, which represents the combined effect of both soil
and canopy, and fractional vegetation cover (fC), which is
used to partition the energy between vegetation cover and
soil. As the surface temperatures of soil (LSTS) and veg-
etation (LSTC) are unknown, TSEB-PT divides LST into
soil and canopy temperatures based on the fractional vege-
tation content, which is parameterized by the leaf area index
(Guzinski et al., 2014):

LST= (fCLST4
C+ (1− fC)LST4

S)0.25. (4)

TSEB-PT employs an iterative procedure to calculate LSTS
and LSTC, along with their respective soil (canopy) sensi-
ble heat fluxes HS (HC). The entire process of determining
LSTS, HS, LSTC, and HC commences with an initial estima-
tion of canopy transpiration (LEint

C ) based on the Priestley–
Taylor coefficient αPT (Priestley and Taylor, 1972):

LEint
C = αPTfgRnC

1

1+ γ
, (5)

where 1 is the slope of the vapour pressure versus the air
temperature and γ is the psychometric constant (kPa K−1).
Using an initial LEint

C , the sensible heat flux from vegeta-
tion is calculated as the residual term of the energy balance
(Eq. 3). Consequently, LSTC is obtained from the estimated
HC and air temperature as explained in Nieto et al. (2019).
Next, LSTS is obtained using Eq. (4) and, subsequently, the
soil sensible heat flux is derived. Finally, LES is determined
as the residual flux from Eq. (2), which ensures energy bal-
ance closure. The resistance term is formulated following
the approach proposed by Kustas and Norman (1999). The
entire iterative process to derive turbulent fluxes terminates
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when the soil latent heat flux reaches a non-negative value.
If the obtained LEint

C does not yield a physically realistic
solution, the αPT (with an initial value of 1.26) is succes-
sively modified by decreasing it until a physically realis-
tic solution is obtained (Norman et al., 1995; Kustas and
Norman, 1999). More details on TSEB-PT may be found
in many research studies (Chintala et al., 2022; Guzinski
et al., 2020; Hoffmann et al., 2016; Nieto et al., 2019) and
in an open-source GitHub repository written in Python at
https://github.com/hectornieto/pyTSEB (last access: 16 Oc-
tober 2023).

In this study, the TSEB-PT model is forced with grid-
ded inputs, including Sentinel products in conjunction with
ERA5 climate parameters for deriving 100 m instantaneous
energy fluxes corresponding to Sentinel-3 overpasses. As
shown in Fig. 2b, radiometric temperature and its viewing
zenith angle are sourced from the S3 LST product, while
biophysical input parameters, like chlorophyll- and water-
based leaf reflectance and transmittance fC and its green
component fg, are derived from 10 d Sentinel-2 mosaics (see
Sect. 3.2 for more details). While vegetation structural pa-
rameters, including leaf angle distribution and canopy width-
to-height ratio variables, are used to compute the clump-
ing index for quantifying the foliage distribution, aerody-
namic roughness length and zero-plane displacement height
serve as inputs for parameterizing the resistances required by
TSEB-PT. As summarized in Fig. 2b, apart from S3 LST- and
S2 SR-driven variables, hourly ERA5 derivatives are utilized.
In this regard, meteorological observations, which include air
temperature, wind speed, vapour, and air pressure, are inter-
polated on a 30 min timescale fitted to Sentinel-3 acquisitions
and are then applied to the model. Furthermore, longwave ir-
radiance and net shortwave radiation are incorporated into
TSEB-PT to estimate the energy exchange between the sur-
face and the atmosphere. After energy fluxes are obtained
(e.g. LE, H , Rn, and G), the total latent heat flux is extrapo-
lated to daily ET estimates over each S2 tile using the all-sky
ERA5 daily solar irradiance. The last step of the processing
flow involves the generation of daily ET maps for our subdo-
mains, i.e. the Po, Ebro, Hérault, and Medjerda basins. This
is achieved by averaging mosaic spatiotemporal tiles using
a specially developed compositing algorithm as described in
Sect. 4 of this paper.

3.4 ET validation

To access the quality of the daily 100 m ET product, we vali-
date our results using local measurements collected by eddy
covariance systems (Pastorello et al., 2020) and compare
the model performance with ET retrievals forced by 1 km
Sentinel-3 LST. In this regard, we perform ground-based val-
idation by exploiting relationships between in situ daily la-
tent heat fluxes and ET estimates derived from TSEB-PT. As
mentioned in Sect. 2.2, before the validation, LE values are
converted to ET estimates expressed in millimetres per day

(Allen et al., 1998), and then the resulting datasets are spa-
tiotemporally matched to the 5-year ET dataset (2017–2021).
Validation of gridded TSEB-PT outputs requires information
on the spatial range of EC towers. Due to methods requir-
ing parameters to estimate two-dimensional flux footprints,
such as the Flux Footprint Prediction climatology proposed
by Kljun et al. (2015), two simplified validation strategies
are chosen: pixel-wise and buffer strategies within a 100 m
grid cell and with a 50 m radius, respectively. While the first
approach is based on the direct extraction of pixel values to
points, for the latter method satellite-based TSEB-PT simu-
lations are derived within a 50 m extent around each EC site
considering the percentage contribution of each overlapping
100 m pixel in that zone. TSEB-PT validation is performed
when ET data cover at least 50 % of the total buffer area. In
this work, the discrepancies between modelled and observed
ET values are evaluated by means of statistical accuracy met-
rics that include the RMSE, Pearson correlation coefficient,
and mean bias. They are calculated as follows:

RMSE=

√√√√√ n∑
i=1

(xi − yi)2

n
,

R =

n∑
i=1

(xi − xmean)(yi − ymean)√
n∑
i=1

(xi − xmean)2∑n
i=1(yi − ymean)2

,

MB=

n∑
i=1

(yi − xi)

n
, (6)

where xi stands for the ground-based value on day i, yi de-
notes the predicted value from the TSEB-PT model for a
daily observation i, and n is the number of matching obser-
vations incorporated into the validation process.

4 Results and discussion

4.1 Evaluation of the daily ET at the EC sites

The performance of the ET maps is evaluated against in
situ ET data derived from the EFDC database over grass-
land (IT-MBo, IT-MtM, IT-MtP, and IT-Tor), forest (FR-Pue,
IT-Ren, and IT-SR2), and vineyard at the Lison site (IT-Lsn).
First, we examine the overall relationships between local ET-
and TSEB-PT-based estimates under clear-sky conditions to-
gether for all the sites (Fig. 3a). As illustrated in the global
scatterplot, the linear regression analysis over all the sites
with the pixel-wise (buffer) approach generates on average
an RMSE and R of 1.38 mm d−1 (1.39 mm d−1) and 0.60
(0.59), respectively. Due to insignificant differences between
the two validation strategies applied, in the rest of this study
we focus on the point-based approach.
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Table 3. Local accuracy scores between in situ data and modelled
ET using TSEB-PT for the eight eddy covariance towers incorpo-
rated into this study.

Site name Land cover R RMSE MB

IT-Lsn Vineyard 0.93 0.73 0.45

IT-MBo Grassland 0.71 1.02 −0.16
IT-MtM 0.39 2.59 −1.47
IT-MtP 0.74 2.12 2.06
IT-Tor 0.38 1.89 −1.51

FR-Pue Forest −0.18 2.06 0.82
IT-Ren 0.62 2.10 −1.72
IT-SR2 0.23 1.86 1.18

Note that, even though half of the EC towers cover the
4 years between 2017 and 2020 as shown in Table 2, data
filtering and its related quality checks together with the ne-
cessity to match in situ points with gridded ET values result
in a lower number of paired observations for the validation
(Table 2, Fig. 3).

Second, we investigate the TSEB-PT performance consid-
ering separately three vegetation biomes, i.e. forest, grass-
land, and vineyard. As shown in Fig. 3b, the accuracies dif-
fer between the land covers, with the best results for low-
land vineyards in IT-Lsn yielding an RMSE of 0.73 mm d−1

and a high score for the Pearson coefficient exceeding 0.90.
Meanwhile, for grassland, we observe a moderate correla-
tion between in situ and modelled ET, with R = 0.53 and a
larger mean error of around 1.41 mm d−1 (Fig. 3b). Notably,
it should be mentioned that all grass-covered EC locations
are situated over the Alpine region at altitudes ranging from
1450 to 2160 m a.s.l. characterized by relatively steep slopes
and high land cover variability (see Appendix A). These fac-
tors together with low-resolution inputs like downward and
net solar radiation might affect the TSEB-PT performance
at the Muntatschinig (IT-MtM and IT-MtP) and IT-Tor sites
(Table 3). On the other hand, despite the Alpine location of
IT-MBo, TSEB-PT exhibits a higher potential to estimate
daily ET, as presented in Table 3. The evaluation metrics
for this station indicate a slight underestimation of the model
(MB=−0.16 mm d−1), yielding an RMSE and R of around
1 mm d−1 and 0.7, respectively. The better accuracy statis-
tics over IT-MBo compared to other grass-covered sites are
attributable to the relatively homogenous land cover and flat
terrain at IT-MBo. The distributions of the solar radiation,
wind speed, and air temperature gradients are less influenced
by landscape complexity over a mountainous plateau than
over steep slopes, and thus the coarse-resolution ERA5 might
be more representative of IT-MBo compared to the IT-Tor
and Muntatschinig locations.

The average accuracy scores over forested areas are least
satisfactory when predicting daily gridded ET. The Pear-
son correlation coefficient is negligible (R = 0.04), and

the RMSE is around 2 mm d−1 (Fig. 3b). Moreover, as
seen in Table 3, regardless of the site or forest type (ev-
ergreen broadleaf or needleleaf forest), TSEB-PT-based
ET maps have high RMSE scores ranging from 1.86 to
2.10 mm d−1, with a large overestimation (underestimation)
of 1.18 mm d−1 (−1.72 mm d−1) for IT-SR2 and IT-Ren, re-
spectively. The poor accuracy at forested sites might be re-
lated to the possible EC measurement uncertainties associ-
ated with surface energy imbalance (see Table 1) and co-
ordinate rotation of turbulent fluxes. These aspects will be
investigated further by removing unsatisfactory in situ obser-
vations by applying stricter criteria for energy imbalance and
exploiting different methods for calculating the coordinate
system for flux retrieval at challenging EC towers (Castelli
et al., 2018; Mauder et al., 2013; Rannik et al., 2020; Ross
and Grant, 2015). Furthermore, the robustness of TSEB-PT
is also affected by land surface features, such as complex tree
structures and their multi-layer composition, which is not
considered in Sen-ET. This means that controlling parame-
ters for the model obtained from remote sensing (Coperni-
cus Sentinels) and climate reanalysis data (ERA5) may not
capture the spatial variability of vegetation elements, which
is often accompanied by shadows (Penot and Merlin, 2023).
Similarly to our results, in Jaafar et al. (2022), the TSEB-
PT forced by LST derived from Landsat and MODIS was
found to be less robust over mixed forest (MF) and EBF (i.e.
an RMSE of 1.5–3 mm d−1) compared to its superior perfor-
mance over croplands with a mean error below 1.4 mm d−1.
Even though accuracy scores indicate close agreement with
our findings over forested landscapes, the authors obtained
a higher correlation with a minimum R of 0.6 in woody sa-
vanna. Therefore, further work will concentrate on increas-
ing TSEB robustness over complex landscapes by enhanc-
ing the model with better-quality input variables (e.g. land
cover, canopy height, solar radiation, and wind speed), to-
gether with adjusting the default value of the αPT coefficient
that depends on climate and vegetation biophysical proper-
ties (Andreu et al., 2018; Cristóbal et al., 2020; Guzinski
et al., 2013). Furthermore, Yang et al. (2017, 2020) applied
ALEXI/DisALEXI using the multi-sensor TIR data fusion
approach (e.g. GOES, MODIS, and Landsat) to derive 30 m
daily ET retrievals at pine forest sites and showed a good cor-
respondence to flux towers, with an average RMSE ranging
from 1.0 to 1.3 mm d−1. Nevertheless, the authors suggest
Landsat-based modelling for deriving high-spatial-resolution
ET rather than medium-scale MODIS LST, especially over
heterogenous forested landscapes, to account for the com-
plex structures of these biomes.

In parallel, we investigate the impact of 1 km Sentinel-3
LST on the final accuracy of the ET product. In this regard,
TSEB-PT is re-run with low-resolution surface temperatures,
and the obtained outputs are compared against the in situ
daily ET that temporally overlaps with 100 m gridded re-
trievals. As shown in Table 4, on average, the comparison
results between the two gridded products demonstrate bet-
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Figure 3. Scatterplots of ground-derived ET observations and TSEB-PT simulations for (a) all the eddy covariance sites and (b) the separated
land covers: forest, grassland, and vineyard. Note that the values in parentheses indicate accuracy statistics obtained within the 50 m buffer,
while the records outside the parentheses represent a pixel-wise validation strategy.

ter TSEB-PT prediction skill with downscaled temperature
rather than with the original Sentinel-3 LST product. In gen-
eral, we observe a 13 % decrease in the RMSE and an im-
provement in the Pearson correlation coefficient of around
12 %, which shows closer agreement between ground mea-
surements and 100 m ET retrievals when all flux sites are
incorporated into the analysis. At the level of a single land
cover class, the ET model driven by downscaled LSTs out-
performs TSEB-PT estimates derived from 1 km Sentinel-3
data, with the most satisfactory accuracy results for grass-
land and vineyard. For these biomes, RMSE (R) values
range between 0.73 mm d−1 (0.94) and 1.44 mm d−1 (0.49),
which corresponds to a 15 % improvement in accuracy met-
rics compared to 1 km ET retrievals (Table 4). In the case
of forested sites, the validation scores are very similar for
both ET products, with no enhancement observed for high-
resolution outputs. More detailed information on accuracy
scores at the flux site level is provided in Appendix B.

In summary, the evaluation metrics depict a high land
cover dependency, with the best accuracy for the vineyard
site in IT-Lsn and the grass-covered plateau of IT-MBo yield-
ing an average RMSE ranging from 0.7 to 1 mm d−1 and
a mean R of 0.7–0.9. Despite 100 m Sentinel-based inputs,
it is still challenging to accurately estimate ET over moun-
tains and forest areas, like Alpine grasslands (IT-MtM, IT-
MtP, and IT-Tor) and Mediterranean forests (FR-Pue and It-
SR2). For these ecosystems the mean statistical scores are
less satisfactory, with RMSEs ranging from 1.86 mm d−1

at the IT-SR2 site to 2.59 mm d−1 at the IT-MtM site (Ta-

Table 4. Station-based comparison of accuracy results between
1 km and 100 m ET retrievals considering RMSEs and R scores.

RMSE R

1 km 100 m 1 km 100 m

All sites 1.62 1.41 0.49 0.55
Grassland 1.73 1.44 0.40 0.49
Forest 2.10 2.18 −0.12 −0.11
Vineyard 0.84 0.73 0.87 0.94

ble 3). This might appear for several reasons. First, these sites
are characterized by patched land covers, including grazed
grass, sparsely distributed bushes, and trees, along with their
complex multi-layer structure exposed to shadows, which
contributes to spatial heterogeneities within 100 m ET pix-
els. Furthermore, high-elevation grasslands are strongly af-
fected by complex interactions between surface energy bal-
ance components having an impact on the final ET estimates
(Mildrexler, 2011). These findings are in line with the out-
comes of Bartkowiak et al. (2022), where the MODIS LST-
based TSEB-PT achieved a moderate agreement with local
LE records at the Muntatschinig sites (R2 close to 0.61), even
though the model was forced with ground-derived meteoro-
logical inputs at very high spatiotemporal resolution.

Owing to the temporal lag of the vegetation response be-
tween VSWIR and the TIR spectrum, reflectance bands from
the Sentinel-2 MSI might be insufficient to estimate the LST,
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particularly over non-homogenous areas with patched land
cover and complex topography. As reported in other studies,
ancillary parameters like soil moisture, emissivity, and other
surface energy balance components are expected to be more
robust explanatory variables for predicting surface temper-
atures at higher spatial resolution (Hu et al., 2023; Merlin
et al., 2010). Furthermore, the 10 d reflectance composites
obtained from Sentinel-2 L2A may not be temporally repre-
sentative of vegetation conditions corresponding to Sentinel-
3 acquisition dates, introducing additional uncertainties into
the DMS procedure, especially for areas with fast canopy
changes due to harvesting, livestock grazing, and mowing
events. Consequently, this also affects downscaled LST im-
ages that are predicted from the S2 SR mosaics, neglecting
the time-varying characteristics of the land surface.

Apart from the lagged S2 response, the data-driven DMS
algorithm depends on the thermal variability of 1 km S3 pix-
els, which constrains its predictions within those cell values
used for model training (see Sect. 3.2 for more details). This
could contribute to bigger differences between in situ and
modelled ET.

As mentioned before, we use the existing TSEB-PT con-
figuration with the global ERA5 data to scale up the ET re-
trieval over the Mediterranean region. The ET models are
controlled by climate inputs derived from 31 km fields, which
might negatively influence energy fluxes and daily ET. As re-
ported by Fisher et al. (2017), these data might not capture
local climate conditions and their rapid changeability over
complex areas. By applying 31 km meteorological inputs to-
gether with net and downward shortwave radiation, ERA5
parameters do not reflect the spatial variability of the land,
resulting in a mismatch between EC tower-derived ET val-
ues and their corresponding gridded estimates.

4.2 Daily ET mosaics

The last step of the processing workflow includes the gener-
ation of daily ET composites from S2 tile-cropped ET grids
for each basin separately. In this regard, we create daily mo-
saics with respect to acquisition days of the SL_2_LST prod-
uct considering two different product dissemination units
(PDUs) that include Sentinel-3 images distributed in half-
orbit stripes and a 3 min frame mode. Given many ET maps
with the same date within an identical Sentinel-2 tile, which
can happen to frame scenes with smaller spatial extents, ET
granules are first combined by applying an average func-
tion over overlapping areas for each product derived from
individual S3 SLSTR instruments. Next, day-coincident ET
grids obtained from Sentinel-3A and Sentinel-3B satellites
are composited together. In the case of single-frame acquisi-
tions and large-stripe images, that processing step is skipped.
Finally, all ET granules are fused for the S2 tile-wise basin
coverage (see Appendix C), where overlying areas of differ-
ent S2 tiles are also averaged. Low-quality pixels, mostly af-
fected by clouds and a lack of input parameters for TSEB-PT,

are flagged as NaN values. To make the datasets harmonized
and consistent with other hydrological products, all the mo-
saics are re-projected onto the WGS84 coordinate system us-
ing a uniform MR domain grid (Massari et al., 2022).

The development of the ET mosaic-compositing scheme
has been performed using the SNAP Graph Processing Tool.

Figure 4 presents the final ET maps in the summer of 2018
for the MR catchments, i.e. the Ebro, Hérault, Medjerda, and
Po basins.

From a visual assessment of the daily mosaics, regard-
less of the study areas, no notable irregularities in evapora-
tion are observed (Fig. 4). Daily ET composites follow both
landscape- and season-induced ET patterns across the study
areas. As shown in Fig. 4, between 13 and 15 August, the
Ebro and Po basins contain lower ET values over the moun-
tainous regions of the northern Apennines and the southern
Alps between Italy and Switzerland, along with the Pyre-
nees and the Iberian Range in Spain (Fig. 4b, d). At the same
time, the central parts of the Ebro catchment, despite semi-
arid climatic conditions, have higher ET values, which indi-
cates a strong impact on agricultural activities where many
parcels are irrigated during the growing season. Similarly,
more intense ET can be observed in the western Alps and
across the Po River depression, covered by extensive canal
systems allocated to farming and food production. In parallel,
Hérault exhibited two different ET zones on 15 August 2018
(Fig. 4a). While the south-western part of the Pyrenees is
characterized by greater daily ET rates, the remaining area
represented by arable land indicates generally lower evapo-
ration, proving possible water stress in the LR region charac-
terized by hot and dry summers. The daily composite of the
Medjerda basin from 16 August, despite many invalid pix-
els in the image, depicts geographically reasonable TSEB-
PT model estimates (Fig. 4c). That is, the seaside area in the
north represents irrigated fields where ET is expected to be
larger compared to the southern zone with limited water re-
sources due to the arid climate.

Nevertheless, the ET product contains areas where TSEB-
PT is incapable of estimating ET. Apart from masked sur-
faces like water bodies and other non-vegetated classes, we
can observe an impact of cloud cover (CC) in the final ET
product. Even though we reduce this effect by combining
decadal Sentinel-2 composites, which minimize cloud prob-
ability, and daily Sentinel-3 LST, which by its high revisit
time enables relatively continuous ET monitoring without
big temporal gaps between observations, cloud occurrence
is still present in the daily ET mosaics. This is especially
visible over the Medjerda catchment, where nearly 86 % of
the total vegetated surface area contains non-valid pixels
(Fig. 5a). Seaside areas and the central part of the MB might
be affected by overcast conditions, while the southern part
is covered by desert and sparse vegetation. In addition, a
smaller number of S2 acquisitions outside Europe might have
an impact on the higher CC percentage in Tunisia. On the
other hand, the three remaining basins (i.e. EB, HB, and PB)
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Figure 4. Examples of 100 m ET mosaics from the third week of August 2018 for (a) Languedoc-Roussillon with Hérault (15 August),
(b) Ebro (13 August), (c) Medjerda (16 August), and (d) Po (15 August). The entire grids are cropped following the Sentinel-2 tiling scheme.
Missing data (in white) are related to Sentinel-3 cloud masks and anthropogenic surfaces. Since we focus on terrestrial ET, water bodies are
also removed.

are generally influenced by relatively similar frequencies of
overcast conditions that range between 62 % for Hérault and
69 % for Po and Ebro as shown in Fig. 5a. Similarly to the
Medjerda region, they are located in close proximity to the
Mediterranean Sea, and in the case of Ebro and Po they in-
clude extensive mountain ranges, like the Alps and Pyrenees,
that are frequently exposed to cloud contamination.

Nonetheless, if we scrutinize the cloud occurrence over the
entire ET collection on an annual basis (2017–2021), the fre-
quency of cloudy events fluctuates from day to day (Fig. 5b).
For example, considering the geographical proximity of the
Ebro and Hérault basins, we can observe higher values of
cloud coverage in the period 2017–2018 with an average CC
(CCmean) equal to 74 %, while for 2019–2021 the clear-sky
pixels correspond to 40 % of all available grid cells. At the
same time, the interquartile ranges (IQRs) are relatively con-
sistent over time for each of the two catchments. On av-
erage, cloud cover frequency over the Po basin differs be-
tween the years with the highest IQR values in 2017–2019
(CCmean = 72 %) and a smaller cloud effect yielding 64 %
for the 2-year period between 2020 and 2021 (Fig. 5b). In
contrast, the Medjerda region is the one most affected by
clouds, with the highest cloud coverage and lowest CC vari-
ability among all the basins over the entire time period. As
depicted in Fig. 5b, an average percentage of invalid pix-
els over the catchment ranges from 83 % in 2019 to 88 % in
2017. In general, sky conditions comprising more than 50 %
clear-sky pixels are observed beyond the IQRs.

5 Code and data availability

The 100 m ET maps form the contribution of Eurac Research
to the 4DMED-Hydrology project funded by the European
Space Agency (https://www.4dmed-hydrology.org/, last ac-
cess: 11 September 2023). This dataset is available for the
period 2017–2021 for each separate Mediterranean basin, i.e.
the Ebro, Hérault, Medjerda, and Po catchments. ET maps
are produced for each month (January–December) of the year
in the form of daily observations. The spatial extent corre-
sponds to Sentinel-2 tiling grids overlapping the study do-
mains (Fig. 4). Each layer contains a single band with daily
ET values (mm d−1) corresponding to the Sentinel-3 acqui-
sition day. Invalid pixels, mainly due to vegetation masks,
cloud contamination, and a lack of input data for the TSEB-
PT model, are filled with NaN values. ET outputs are gener-
ated in Cloud Optimized GeoTIFF (COG) format with meta-
data included in the file attributes. A COG is a regular Geo-
TIFF file optimized for use in a cloud environment and ready
to be hosted on an HTTP(S) file server, with an internal orga-
nization that enables more efficient workflows on the cloud.
It facilitates data download through HTTP(S) data requests
and allows a user to crop data according to areas of inter-
est. The importance of metadata availability in the COG file
is twofold: on the one hand, it offers the chance to evaluate
the data without opening them, and on the other hand this
information has been used to fill a catalogue following the
SpatioTemporal Asset Catalog (STAC) specifications, which
provide a common structure for describing and cataloguing
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Figure 5. General overview of the sky conditions for the final ET mosaics over each basin (EB, HB, MB, and PB) considering (a) clear and
overcast conditions at Sentinel-3 and Sentinel-2 overpass times for the period 2017–2021 and (b) the distribution of cloudy-sky conditions
for each separate year. Note that non-vegetated surfaces are excluded from this analysis. In order to minimize other disturbing factors such
as seasonal snow cover, our time of interest covers the period of the growing season.

spatiotemporal assets (https://stacspec.org/en/, SpatioTem-
poral Asset Catalog Project, 2023). To query the ET data
in STAC, relevant STAC documentation is available together
with a Python snippet code for massive data download via the
Environmental Data Platform (https://edp-portal.eurac.edu/
discovery/, EURAC Research, 2024). Alternatively, we pro-
vide an additional data link to manually download the entire
basin-based ET collection.

As mentioned before, daily ET datasets are accessible
through the Environmental Data Platform of Eurac Research
under the Creative Commons Attribution 4.0 License (CC
BY 4.0). Note that, if you use these datasets, you are kindly
asked to include the following references concerning the four
study domains:

1. Ebro, https://doi.org/10.48784/
b90a02d6-5d13-4acd-b11c-99a0d381ca9a
(Bartkowiak et al., 2023a);

2. Hérault, https://doi.org/10.48784/
fb631817-189f-4b57-af6a-38cef217bad3 (Bartkowiak
et al., 2023b);

3. Medjerda, https://doi.org/10.48784/
70cd192c-0d46-4811-ad1d-51a09734a2e9
(Bartkowiak et al., 2023c); and

4. Po, https://doi.org/10.48784/
7abdbd94-ddfe-48df-ab09-341ad2f52e47 (Bartkowiak
et al., 2023d).

All code routines developed for the entire processing work-
flow are available upon request to the authors.

6 Conclusions

Although ET plays a key role in the hydrological cycle and
represents a nexus between energy, water, and carbon ex-
change, its availability is constrained to either short-range
in situ measurements or freely available satellite-derived ET
data at coarse spatial resolutions (≥ 0.5 km). Thus, the gener-
ation of HR ET datasets is of high importance among scien-
tists and governmental institutions and agricultural commu-
nities for advancing hydrological cycle monitoring and sus-
tainable water management.

Motivated by the lack of ET data at a high spatiotemporal
resolution over the Mediterranean region, we build an auto-
matic workflow to provide 5-year time series of the 100 m
daily ET product (2017–2021) as a helpful tool in the con-
text of recurring drought events across four MR basins: Ebro
(Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy).
Specifically, we utilize a globally applicable TSEB-PT ap-
proach with a reduced number of inputs that minimize its
complexity, which is an advantage for high-volume process-
ing at large scales. The model is physically based and has a
long history of successful research studies that confirm its
maturity and stability. Results demonstrate that the devel-
oped TSEB-PT ET workflow is capable of predicting ET in
a robust manner.

The daily composites generally follow the seasonal pat-
terns of the canopy over the study areas (see Sect. 2.1), with
higher ET values over irrigated areas and lower estimates
over rain-fed vegetation like natural grasslands and forests.
The validated 100 m time series with local records from eddy
covariance stations have more reasonable scores compared
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to time-coincident ET estimates forced by 1 km LST data,
resulting in lower RMSE and higher R scores. Nevertheless,
the prediction skill of the Copernicus-driven ET from TSEB-
PT exhibits land cover dependency with the best accuracy re-
sults for agricultural areas and less satisfactory outcomes in
forests. The validation scores confirm a strong agreement be-
tween gridded data and in situ measurements, especially over
relatively uniform and flat areas represented by vineyard and
grassland that yield an average R and mean error equal to
0.80 and 0.85 mm d−1, respectively. In contrast, at the level
of single land cover classes, RMSEs (R values) range from
1.86 mm d−1 (−0.18) in forested areas to 2.59 mm d−1 (0.74)
in grasslands considering all the remaining sites in this study.

Even though the Priestley–Taylor TSEB-PT gives very
promising outcomes for plain and homogenous areas, which
makes it a perfect candidate for lowland agriculture ac-
tivities, site locations across biomes, like steep mountain-
ous grasslands and forested sites, create some confusion in
the model, mainly due to the inability of gridded inputs to
represent a complex canopy structure and its heterogeneity
together with highly changeable meteorological conditions
(Elfarkh et al., 2020). Notably, TSEB-PT estimates are af-
fected by spatial heterogeneities of the study areas and con-
sequently the pixel size of gridded input parameters. Given
the temporal and spatial frameworks of this project, the val-
idation is conducted against EC towers, 62.5 % of which are
located in the Alps. Thus, future work should be extended to
more validation sites with relatively simple terrain and ho-
mogenous vegetation to minimize environmental impacts on
the TSEB-PT performance, and in the case of complex sites
EC processing procedures will include stricter quality checks
and enhancement procedures by exploiting the capabilities

of different energy balance closure methods and correcting
the EC coordinate system for in situ flux retrieval. In parallel,
additional work will focus on the implementation of better-
quality inputs, such as climate forcings from 3 km solar ra-
diation acquired by the MSG SEVIRI and 5.5 km Coper-
nicus European Regional ReAnalysis (CERRA) reanalysis
datasets. Moreover, considering the ET dependency on LST
accuracy, the DMS together with Sentinel-2 and Sentinel-3
cloud masks will be enriched. Even though a more rigor-
ous cloud layer for the TIR sensor is being actively debated
among scientists (https://thermal2023.esa.int/, last access: 20
October 2023), the most recent S3 SLSTR Validation Report
from 2017 provides unimproved data. Considering irregular
ET observations affected by cloudy-sky conditions, future
research should also concentrate on a data-driven approach
to recover overcast cell grids. Furthermore, to capture time-
induced characteristics of the land surface, LST-downscaling
and TSEB-PT models might additionally be driven by more
frequent variables rather than 10 d Sentinel-2 reflectances.
The temporal mismatch between S2 and S3 can be solved
by applying Harmonized Landsat–Sentinel imagery, which
in parallel minimizes the probability of cloudiness. Con-
sequently, due to some inaccuracies in the Sen2Cor cloud
mask, other products like Sen2cloudless and Fmask will be
integrated into the workflow. The enhanced products would
be a valuable tool for accurately estimating the components
of the terrestrial water cycle on a regional scale and over het-
erogenous ecosystems.
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Appendix A

Figure A1. Locations of the eddy covariance towers used for validating the ET product at the (a) IT-MtM (source: https://browser.lter.
eurac.edu/), (b) IT-MtP (source: https://browser.lter.eurac.edu/), (c) IT-Lsn (source: https://www.icos-italy.it/lison-it-lsn/), (d) IT-Tor (source:
https://www.icos-italy.it/elementor-2052/), (e) IT-Ren (source: https://deims.org/5d32cbf8-ab7c-4acb-b29f-600fec830a1d), (f) FR-Pue
(source: https://meta.icos-cp.eu/resources/stations/ES_FR-Pue), (g) IT-SR2 (source: https://meta.icos-cp.eu/resources/stations/ES_IT-SR2),
and (h) IT-MBo (source: Sakowska et al., 2015) sites.
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Appendix B

Table B1. Site-based accuracy results for the ET product obtained from 1 km Sentinel-3 LST and its corresponding downscaled version at
100 m spatial resolution. Note that for some sites low-resolution ET grids are not available due to cloud coverage detected in TSEB-PT input
variables within 1 km pixels. For this reason, two sites (i.e. IT-SR2 and IT-MtP) were not included in this analysis.

Flux site RMSE R MB

1 km 100 m 1 km 100 m 1 km 100 m

IT-Tor 2.00 1.89 0.44 0.38 −1.52 −1.51
IT-Lsn 0.84 0.73 0.87 0.94 −0.25 0.48
IT-MBo 1.40 0.98 0.48 0.67 −0.79 −0.28
IT-MtM 2.80 2.59 0.49 0.39 −2.06 −1.47
IT-Ren 3.08 2.35 0.72 0.94 −2.70 −1.64
FR-Pue 1.90 2.13 −0.16 −0.15 0.85 0.99

Appendix C

Figure C1. Spatial coverage of Sentinel-2 tiles together with their overlapping areas for the (a) Po, (b) Ebro, (c) Medjerda, and (d) Hérault
basins. Each tile (in green) contains the respective identification number corresponding to the Sentinel-2 tiling system as explained at https:
//sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/data-products (last access: 7 January 2022).
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Appendix D: Abbreviations and acronyms

The following abbreviations and acronyms are used in this
work.

αPT Priestley–Taylor coefficient for potential transpiration (default= 1.26)
CC Cloud cover
CERRA Copernicus European Regional ReAnalysis
COG Cloud Optimized GeoTIFF
DMS Data mining sharpener
DTs Decision trees
ECMWF European Centre for Medium-Range Weather Forecasts
ECOSTRESS ECOsystem Spaceborne Thermal Radiometer Experiment
EFDC European Fluxes Database Cluster
EO Earth observation
EODC Earth Observation Data Centre
ERA5 European Reanalysis V5
ESA European Space Agency
ESVEP End-member-based Soil and Vegetation Energy Partitioning
ET Evapotranspiration
FAO Food and Agriculture Organization
GLDAS Global Land Data Assimilation System
GLEAM Global Land Evaporation Amsterdam Model
GPT Graph Processing Tool
HR High resolution
ICOS Integrated Carbon Observation System
IQR Interquartile range
LAI Leaf area index
LC Land cover
LSA-SAF Land Surface Analysis – Satellite Application Facility
LST Land surface temperature
LSTM Copernicus Land Surface Temperature Monitoring
METRIC Mapping Evapotranspiration with Internalized Calibration
MODIS Moderate Resolution Imaging Spectroradiometer
MR Mediterranean region
MSG Meteosat Second Generation
MSI MultiSpectral Instrument
NASA National Aeronautics and Space Administration
OLCI Ocean and Land Colour Instrument
PDU Product dissemination unit
PROBA-V Project for On-Board Autonomy – Vegetation
Sen-ET Sentinels for Evapotranspiration
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SGB Surface Biology and Geology
SLSTR Sea and Land Surface Temperature Radiometer
S-NPP Suomi National Polar-orbiting Partnership
SR Surface reflectance
SRTM Shuttle Radar Topography Mission
STAC SpatioTemporal Asset Catalog
TIR Thermal infrared
TRISHNA Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment
TSEB Two-Source Energy Balance model
VIIRS Visible Infrared Imaging Radiometer Suite
VSWIR Visible shortwave infrared
WaPOR Water Productivity through Open access of Remotely sensed derived data
WGS84 World Geodetic System 1984
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