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Abstract. Vegetation optical depth (VOD) is a model-based indicator of the total water content stored in the
vegetation canopy derived from microwave Earth observations. As such, it is related to vegetation density, abun-
dance, and above-ground biomass (AGB). Moesinger et al. (2020) introduced the global microwave VOD Cli-
mate Archive (VODCA v1), which harmonises VOD retrievals from several individual sensors into three long-
term, multi-sensor VOD products in the C, X, and Ku frequency bands, respectively. VODCA v1 was the first
VOD dataset spanning over 30 years of observations, thus allowing the monitoring of long-term changes in
vegetation. Several studies have used VODCA in applications such as phenology analysis; drought monitoring;
gross primary productivity monitoring; and the modelling of land evapotranspiration, live fuel moisture, and
ecosystem resilience.

This paper presents VODCA v2, which incorporates several methodological improvements compared to the
first version and adds two new VOD datasets to the VODCA product suite. The VODCA v2 products are com-
puted with a novel weighted merging scheme based on first-order autocorrelation of the input datasets. The first
new dataset merges observations from multiple sensors in the C-, X-, and Ku-band frequencies into a multi-
frequency VODCA CXKu product indicative of upper canopy dynamics. VODCA CXKu provides daily obser-
vations in a 0.25° resolution for the period 1987–2021. The second addition is an L-band product (VODCA L),
based on the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions,
which in theory is more sensitive to the entire canopy, including branches and trunks. VODCA L covers the pe-
riod 2010–2021 and has a temporal resolution of 10 d and a spatial resolution of 0.25°. The sensitivity of VODCA
CXKu to the upper vegetation layer and that of VODCA L to above-ground biomass (AGB) are analysed using
independent vegetation datasets.

VODCA CXKu exhibits lower random error levels and improved temporal sampling compared to VODCA
v1 single-frequency products. It provides complementary spatio-temporal information to optical vegetation in-
dicators containing additional information on the state of the canopy. As such, VODCA CXKu shows moderate
positive agreement in short vegetation (Spearman’s R: 0.57) and broadleaf forests (Spearman’s R: 0.49) with
the fraction of absorbed photosynthetically active radiation from MODIS. VODCA CXKu also shows moderate
agreement with the slope of the backscatter incidence angle relation of MetOp ASCAT in grassland (Spearman’s
R: 0.48) and cropland (Spearman’s R: 0.46). Additionally, VODCA CXKu shows temporal patterns similar to
the Normalized Microwave Reflection Index (NMRI) from in situ L-band GNSS measurements of the Plate
Boundary Observatory (PBO) and sap flow measurements from SAPFLUXNET. VODCA L shows strong spa-
tial agreement (Spearman’s R: 0.86) and plausible temporal patterns with respect to yearly AGB maps from the
Xu et al. (2021) dataset. VODCA v2 enables monitoring of plant water dynamics, stress, and biomass change
and can provide insights, even into areas that are scarcely covered by optical data (i.e. due to cloud cover).

Published by Copernicus Publications.



4574 R.-M. Zotta et al.: VODCA v2

VODCA v2 is open-access and available at https://doi.org/10.48436/t74ty-tcx62 (Zotta et al., 2024).

1 Introduction

Vegetation attenuates microwave radiation emitted or re-
flected by the Earth’s surface. This attenuation can be quan-
tified through a metric known as vegetation optical depth
(VOD), which can be calculated from both passive and active
microwave satellite observations (Vreugdenhil et al., 2016).
Field studies have found that VOD is directly connected to
vegetation water content (VWC) (Jackson and Schmugge,
1991; Sawada et al., 2015). VOD is influenced by various
factors, including the density and relative moisture content
of the vegetation, as well as the wavelength domain of the
observations (Mo et al., 1982; Jackson and Schmugge, 1991;
Kerr and Njoku, 1990; Owe et al., 2008). The sensitivity
of VOD to the uppermost layer of vegetation increases with
shorter measurement wavelengths (Tian et al., 2018; Konings
et al., 2019). Consequently, spatial and temporal patterns ob-
served at higher frequencies, such as those in the C-, X-, and
Ku-bands, tend to agree more closely with dynamics in the
upper canopy (Teubner et al., 2018; Schmidt et al., 2023).
Similarly, dynamics observed at lower frequencies, like the
P- and L-band, correspond more closely to those of over-
all above-ground biomass (AGB), including branches and
trunks (Chaparro et al., 2019; Olivares-Cabello et al., 2021;
Schmidt et al., 2023).

Compared to vegetation indicators in the optical domain,
VOD offers distinct advantages, as it is unaffected by atmo-
spheric conditions and the influence of solar illumination (Li
et al., 2021). Due to its versatility, VOD has found utility in
a wide range of applications, including monitoring drought
and vegetation conditions (Van Dijk et al., 2013; Crocetti
et al., 2020; Kumar et al., 2021; Moesinger et al., 2022;
Vreugdenhil et al., 2022; Dorigo et al., 2021, 2022; Zotta
et al., 2023), phenology analysis (Jones et al., 2011, 2014;
Dannenberg et al., 2020), and biomass monitoring (Liu et al.,
2015; Rodríguez-Fernández et al., 2018; Brandt et al., 2018;
Fan et al., 2019; Mialon et al., 2020; Wigneron et al., 2021;
Qin et al., 2021; Bousquet et al., 2021; Olivares-Cabello
et al., 2021; Yang et al., 2022, 2023). It is also instrumental
in estimating the likelihood of fire occurrence and monitor-
ing fuel moisture (Forkel et al., 2017, 2019, 2023; Schmidt
et al., 2023; Mukunga et al., 2023). VOD’s applicability ex-
tends to crop yield assessment (Chaparro et al., 2018; Mateo-
Sanchis et al., 2019) and prediction (Büechi et al., 2022).
It has also been used to estimate gross primary production
(Teubner et al., 2018, 2019, 2021; Wild et al., 2022) and to
model land evapotranspiration (Martens et al., 2017). Fur-
thermore, VOD contributes to the understanding of ecosys-
tem resilience (Boulton et al., 2022; Smith et al., 2022, 2023)

and aids in assessing vegetation responses to precipitation
(Harris et al., 2022).

VOD has been derived from various satellite radiometers
(Owe et al., 2008; Meesters et al., 2005; Konings et al.,
2016; Wigneron et al., 2007) and scatterometers (Vreugden-
hil et al., 2016; Liu et al., 2023). However, these sensors
come with varying lifespans and exhibit distinctive character-
istics depending on their observation frequencies, incidence
angles, orbital characteristics, radiometric quality, and spatial
coverage. To conduct long-term studies, merging data from
multiple satellite sensors and addressing the systematic bi-
ases among them becomes necessary.

Moesinger et al. (2020) introduced the global long-term
microwave VOD Climate Archive (VODCA v1) by combin-
ing VOD retrievals derived using the Land Parameter Re-
trieval Model (LPRM; Owe et al., 2008; Van der Schalie
et al., 2017) from multiple passive sensors: the Special Sen-
sor Microwave/Imager (SSM/I), the Microwave Imager on
board the Tropical Rainfall Measuring Mission (TMI), the
Advanced Microwave Scanning Radiometer – Earth Observ-
ing System (AMSR-E), WindSat, and the Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2). VODCA v1
provides separate products for microwave observations in
three different spectral frequency bands: the C-band (pe-
riod 2002–2018), X-band (1997–2018), and Ku-band (1987–
2017). This allows for preserving the unique sensitivity of
the individual frequencies to the structural elements of the
canopy. VODCA v1 harmonises the VOD observations by
first scaling SSM/I, TMI, and WindSat to the climatology of
AMSR-E VOD. AMSR2 VOD is scaled to TMI VOD (which
in the first step was rescaled to AMSR-E) within the orbital
coverage, i.e. within latitudes 38° N and S. Outside of this lat-
itudinal range, AMSR2 is scaled to the last 3 years of AMSR-
E VOD instead, even though the sensors have no temporal
overlap. After scaling the sensor data, the temporally over-
lapping observations are fused by taking their average.

Although VODCA v1 is a state-of-the-art dataset for long-
term analysis, it also faces several limitations (Tagesson
et al., 2021): a notable constraint lies in the approach used
for merging AMSR2 VOD data. The scaling approach de-
scribed above has resulted in a spatial break in trends, specif-
ically in North America at 35° N (Moesinger et al., 2020).
Additionally, averaging temporally overlapping observations
without considering their individual quality characteristics
(i.e. through “unweighted averaging”) equally weighs high-
quality and noisy observations, e.g. those affected by resid-
ual radio frequency interference (RFI). Furthermore, even
though the single-frequency products provided by VODCA
v1 retain the unique response to vegetation characteristics of
each band, they have different lifespans, with only VODCA
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v1 Ku-band covering 30 years of data, thus being the only
product to fulfil the World Meteorological Organization stan-
dard period for calculating climate normals (World Meteoro-
logical Organization, 2017). Moreover, the single-frequency
products have occasional observation gaps related to the ob-
servation wavelength. Given that all three VODCA frequen-
cies, despite their small differences in sensitivity, represent
the upper vegetation layer (Moesinger et al., 2020, 2022;
Wild et al., 2022), combining them would lead to an im-
proved temporal sampling. Thus, the resulting product could
be a robust alternative for studying long-term canopy dynam-
ics. Moreover, VODCA v1 does not include a product in the
L-band frequency, which has shown to be useful for many
purposes, most importantly for monitoring AGB (Rodríguez-
Fernández et al., 2018).

Therefore, to complement VODCA v1, we introduce two
new datasets, hereafter referred to as VODCA v2. First, we
present the methodological improvements compared to the
previous version, including a new merging approach. Sec-
ond, we introduce a multi-frequency merged product of un-
precedented coverage (34 years), named VODCA CXKu,
with lower random error levels and better temporal and spa-
tial coverage than the single-frequency products. Third, we
introduce an L-band product (VODCA L) obtained by merg-
ing LPRM-derived VOD observations from the Soil Moisture
and Ocean Salinity (SMOS) and the Soil Moisture Active
Passive (SMAP) missions covering the period 2010–2021.
VODCA v2 does not encompass an update of the single-
frequency C-, X-, and Ku products, as the novel merging
methodology presented in this paper particularly affects the
merging of multiple frequencies, which have their specific
sensitivities to noise. To evaluate the new data records and
assess which ecosystem canopy dynamics are represented by
VODCA CXKu, we compare it to other satellite and in situ
variables. We use the fraction of absorbed photosynthetically
active radiation (FAPAR) derived from optical remote sens-
ing because, theoretically, there is a strong link between plant
water status and the capacity of vegetation canopies to inter-
cept solar radiation (Cammalleri et al., 2022). We also use the
slope of the backscatter incidence angle relation of MetOp
ASCAT (Vreugdenhil et al., 2016). This radar observable
is sensitive to vegetation water content and fresh biomass
(Steele-Dunne et al., 2019; Petchiappan et al., 2022). Addi-
tionally, we use two ground-based vegetation datasets: Nor-
malized Microwave Reflection Index (NMRI) measurements
obtained from GPS reflectometry and sap flow observations
from the SAPFLUXNET network. We evaluate the tempo-
ral and spatial sensitivity of VODCA L to biomass using
yearly AGB maps. We conclude the paper by discussing the
strengths and limitations of the products as well as potential
future improvements.

2 Data

2.1 Vegetation optical depth datasets

2.1.1 The Land Parameter Retrieval Model (LPRM)

VODCA v2 uses VOD datasets produced by Planet Labs
in the framework of the European Space Agency Climate
Change Initiative (CCI) (https://climate.esa.int/en/projects/
soil-moisture/, last access: 10 January 2024) and the
Copernicus Climate Change Service (C3S) (https://climate.
copernicus.eu/, last access: 10 January 2024). For C-, X- and
Ku-band frequencies, these datasets are derived from passive
microwave radiometer data through LPRM v7, in the case
of L-band through LPRM v6.2 (Dorigo et al., 2023). These
are the algorithm versions used in the ESA CCI Soil Mois-
ture v08.1 (Dorigo et al., 2023). LPRM is based on the radia-
tive transfer model (RTM) proposed by Mo et al. (1982) and
simultaneously retrieves soil moisture and VOD (Meesters
et al., 2005) from V- and H-polarised microwave observa-
tions. LPRM distinguishes itself from other retrieval algo-
rithms (e.g. Jackson, 1993; Mladenova et al., 2014; Konings
et al., 2016) by its applicability to a wide range of frequen-
cies (i.e. 1–20 GHz) and by using an analytical solution pro-
posed by Meesters et al. (2005) for the derivation of VOD.
Additionally, LPRM uses a frequency-dependent parametri-
sation independent of land cover and is thus unconstrained by
any ancillary vegetation data (Van der Schalie et al., 2017).
LPRM uses land surface temperature (LST) data derived
from Ka-band observations (Holmes et al., 2009) for the C-,
X-, and Ku-band sensors. For the L-band sensors, LST is de-
rived from an intercalibrated dataset based on six passive mi-
crowave sensors, as described in van der Schalie et al. (2021).

2.1.2 Passive microwave sensor data

The passive microwave sensors used in VODCA v2 are
presented in Fig. 1 and Table 1. The sensors newly intro-
duced with this version are the Special Sensor Microwave
Imager (SSM/I) F17, the Global Precipitation Measurement
(GPM) Microwave Imager (GMI), and the Soil Moisture and
Ocean Salinity (SMOS) Microwave Imaging Radiometer us-
ing Aperture Synthesis (MIRAS) and Soil Moisture Active
Passive (SMAP) radiometer (Van der Schalie et al., 2017).
Only nighttime retrievals are used since they are proven
to have a lower temperature-related error than daytime re-
trievals (Owe et al., 2008).

The Special Sensor Microwave/Imager (SSM/I) is carried
on board a series of DMSP (Defence Meteorological Satellite
Program) satellites. Out of the seven frequencies used by SS-
M/I to take global measurements (Wentz, 1997), we use daily
Ku-band retrievals from F08, F11, F13, and F17 spanning
June 1987 to April 2015. To ensure consistency between the
SSM/I sensors, VOD observations are retrieved from bright-
ness temperature (Tb) data from the intercalibrated Funda-
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Figure 1. Timeline of input sensors used in VODCA v2.

mental Climate Data Record (FCDR) of Tb (Berg et al.,
2016, 2018; Berg, 2021).

The Tropical Rainfall Measuring Mission (TRMM) Mi-
crowave Imager (TMI) has a non-polar orbit between 35° N
and S, leading to increased coverage and varying overpass
times in that region. TMI provides measurements in nine fre-
quencies, of which we use the X-band (10.7 GHz) and Ku-
band (19.4 GHz) (Kummerow et al., 1998).

The Advanced Microwave Scanning Radiometer – Earth
Observing System (AMSR-E) on board the EOS Aqua
(NASA) satellite provided global measurements between
19 June 2002 and 27 September 2011. Measurements are
available in six frequencies, of which we use the C-band
(6.9 GHz), X-band (10.7 GHz), and Ku-band (18.7 GHz)
(Kawanishi et al., 2003; Knowles et al., 2006).

WindSat on board Coriolis is a multi-frequency polarimet-
ric microwave radiometer developed by the Naval Research
Laboratory. It has been in an 840 km sun-synchronous or-
bit since January 2003 and provides global measurements
in five frequencies, of which we use the C- (6.8 GHz), X-
(10.7 GHz), and Ku-band (18.7 GHz) (Gaiser et al., 2004).
Even though WindSat is still operational, we did not use data
past July 2012 due to restricted access.

The Advanced Microwave Radiometer 2 (AMSR2) on
board GCOM-W (Global Change Observation Mission –
Water) initiated by JAXA (Japan Aerospace Exploration
Agency) is the follow-on instrument of AMSR-E installed
on Aqua. AMSR2 provides daily measurements in six fre-
quencies, similar to AMSR-E, between 7 GHz and 89 GHz,
of which we use the C- (6.9 GHz), X- (10.7 GHz), and Ku-

band (18.7 GHz). Compared to AMSR-E, it incorporates a
second C-band channel (C2) at 7.3 GHz aimed at mitigat-
ing the radio frequency interference (RFI) of 6.9 GHz (Meier
et al., 2018).

GPM is a follow-up mission of TRMM initiated by NASA
and JAXA and includes a consortium of international part-
ners whose microwave sensors constitute the GPM constel-
lation. The GPM core observatory, launched on 27 Febru-
ary 2014, carries the GPM microwave imager (GMI), which
provides daily measurements in 10–183 GHz, of which we
use the X- (10.65 GHz) and Ku-band (18.7 GHz). The GPM
has a non-polar orbit and provides global coverage, except
for latitudes higher than 70° (Draper et al., 2015).

The SMOS mission is ESA’s second Earth Explorer mis-
sion and was launched in November 2009. SMOS carries
the Microwave Imaging Radiometer with Aperture Synthe-
sis (MIRAS), which is an interferometric L-band (1.4 GHz)
2-D radiometer that takes measurements for multiple inci-
dence angles between 0–65°. The observations have a tempo-
ral resolution of 2 to 3 d (Kerr et al., 2010). Although SMOS
operates in a protected band (1400–1427 MHz), RFI affects
observations in many areas of the world (Oliva et al., 2012).

The SMAP mission, designed to map soil moisture and de-
termine freeze–thaw state, was launched in January 2015. It
carries an L-band radiometer (1.41 GHz) that takes observa-
tions at an incidence angle of 40°. SMAP’s radiometer has a
temporal resolution of 2 to 3 d (Entekhabi et al., 2010).
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Table 1. Specifications of the VODCA v2 input sensors. AECT shows the local ascending equatorial crossing times (local time), while
DECT shows the local descending equatorial crossing times.

Sensor Time span used Frequency [GHz] Footprint size Nighttime over-
pass

Remarks

SMOS Jan 2010–Dec 2021 1.4 (L-band) 43 km× 43 km 06:00, AECT Incidence angles:
37.5°, 42.5°, 47.5°,
52.5°, 57.5°

SMAP’s
radiometer

Mar 2015–Dec 2021 1.41 (L-band) 39 km× 47 km 06:00, DECT

AMSR-E Jun 2002–Sep 2011 6.9 (C-band) 75 km× 43 km 01:30, DECT
10.7 (X-band) 51 km× 29 km
18.7 (Ku-band) 27 km× 16 km

AMSR2 Jun 2012–Dec 2021 6.9 (C-band) 62 km× 35 km 01:30, DECT
7.3 (C2-band) 58 km× 34 km
10.7 (X-band) 58 km× 34 km
18.7 (Ku-band) 22 km× 14 km

WindSat Feb 2003–Jul 2012 6.8 (C-band) 39 km× 71 km 06:00, DECT
10.7 (X-band) 25 km× 38 km
18.7 (Ku-band) 16 km× 27 km

TMI Dec 1997–Apr 2015 10.7 (X-band) 63 km× 37 km/72 km× 43 km∗ Asynchronous Coverage
35° N–35° S

19.4 (Ku-band) 30 km× 18 km/
35 km× 21 km∗

GPM Mar 2014–Dec 2021 10.7 (X-band) 19 km× 32 km Asynchronous Coverage below
70° N

18.7 (Ku-band) 18 km× 11 km

SSM/I F8 Jul 1987–Dec 1991 19.4 (Ku-band) 69 km× 43 km 06:10, DECT

SSM/I F11 Dec 1991–May 1995 19.4 (Ku-band) 69 km× 43 km 05:00, DECT

SSM/I F13 May 1995–Apr 2009 19.4 (Ku-band) 69 km× 43 km 05:51, DECT

SSM/I F17 Dec 2006–Apr 2015 19.4 (Ku-band) 69 km× 43 km 06:20, DECT

∗ The second set of footprints shown for TMI results from the altitude boosting, which happened in 2001, from 350 to 400 km.

2.2 Ancillary data

ERA5-Land is a global land surface reanalysis dataset, which
provides hourly output starting in 1981, with a 9 km spatial
resolution (Muñoz-Sabater et al., 2021). We use ERA5-Land
upper soil temperature (stl1; 0–7 cm; Muñoz-Sabater et al.,
2021) to mask VOD observations recorded whenever the soil
temperature was below 275.15 K (2 °C). Observations under
frozen conditions are not used because the dielectric proper-
ties of water change drastically. ERA5-Land stl1 is used in
addition to the internal flagging coming with LPRM, which
makes use of the K-, Ku, and Ka-bands to detect frozen con-
ditions (van der Vliet et al., 2020).

2.3 Evaluation data

2.3.1 MODIS FAPAR

To evaluate the plausibility of temporal patterns of
VODCA CXKu, we used the fraction of absorbed
photosynthetic radiation (FAPAR) derived from

the Moderate-resolution Imaging Spectroradiome-
ter (MODIS) on board the Terra and Aqua satellites
(https://doi.org/10.5067/MODIS/MCD15A2H.061, My-
neni and Park, 2021). FAPAR is a biophysical variable
that represents the fraction of radiation in the range of
400–700 nm that is absorbed by the green elements of the
vegetation canopy for photosynthesis (Myneni et al., 2002)
and is expressed as a non-dimensional value. FAPAR is a
fundamental quantity related to the photosynthetic processes
of plants, making it a pivotal indicator of the intensity of
the terrestrial carbon cycle (Mason et al., 2010). Changes
in VOD and FAPAR are expected to correlate because
high VWC means more leaf tissue, which leads to more
photosynthesis and, therefore, to higher FAPAR. Moreover,
we expect agreement between the vegetation indicators
because plant water status significantly influences a canopy’s
ability to intercept solar radiation (Osakabe et al., 2014).
Both VOD and FAPAR have been widely used for vegetation
condition monitoring. To match the VODCA dataset, we
aggregated the native 500 m FAPAR data to the VODCA grid
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by taking the average. We use FAPAR data from February
to August 2020. For the analyses using FAPAR, VODCA
CXKu has been averaged to 8-daily observations to match
its temporal resolution.

2.3.2 ASCAT slope

We compare the temporal patterns of VODCA CXKu with
active microwave remote sensing data from the ASCAT scat-
terometer on board the MetOp satellites. The instruments
measure vertically polarised backscatter at incidence angles
between 25 and 65° recorded at a 5.25 GHz frequency (C-
band). ASCAT slope, derived using the TU Wien Soil Mois-
ture Retrieval algorithm (Hahn et al., 2017), is a parameter of
the second-order Taylor polynomial used to describe the in-
cidence angle dependence of backscatter. The slope is sensi-
tive to scattering mechanisms, where surface scattering leads
to a steep slope, and volume scattering causes scattering in
all directions, thus leading to a flatter slope. With increasing
vegetation density, the volume scattering increases, and the
slope flattens (Vreugdenhil et al., 2020). It has been shown
that the slope is correlated with vegetation density (Hahn
et al., 2017; Vreugdenhil et al., 2017), above-ground fresh
biomass (Steele-Dunne et al., 2019), and vegetation phenol-
ogy and water status (Pfeil et al., 2020; Petchiappan et al.,
2022), similar to VOD. These studies also outline the impor-
tance of further research to overcome the limited understand-
ing of the spatio-temporal dynamics of the slope parameter.
As such, ASCAT slope is a relatively young parameter that
has not yet been fully understood but can potentially offer
valuable insight into vegetation water dynamics across a di-
verse range of biomes. Therefore, comparing VODCA with
ASCAT slope serves more as a mutual evaluation of patterns,
driven by similar vegetation properties, and less as a valida-
tion of the VODCA dataset. We argue that it is beneficial
to provide such a comparison because ASCAT slope is also
derived from microwave remote sensing and uses radar ob-
servations. Therefore, it is an entirely independent dataset.

The ASCAT slope dataset used in this study is calcu-
lated from the EUMETSAT MetOp-A ASCAT SZR Level
1b Fundamental Climate Data Record, which was prepro-
cessed as described in Hahn et al. (2017). A dynamic slope
is calculated from ASCAT backscatter and incidence angle
using the method developed by Melzer (2013) and demon-
strated by Hahn et al. (2017). This method yields slope val-
ues for each day based on an Epanechnikov kernel with a
half-width window of 21 d. We use data only from MetOp-A,
for 2007 to 2021, on descending overpass with 9:30 (local)
overpass time. This time is considered advantageous from a
plant physiology point of view because the impact of dew
should be less than at pre-dawn values (Steele-Dunne et al.,
2019). We resampled the ASCAT slope dataset to match the
VODCA grid by averaging all points within a VODCA grid
cell. For the analysis involving ASCAT slope, ASCAT data

and VODCA CXKu observations have been aggregated to 8-
daily values to allow comparison with the results for FAPAR.

2.3.3 PBO network NMRI

We use the Plate Boundary Observatory (PBO) Normalized
Microwave Reflection Index (NMRI) dataset (Larson and
Small, 2014) for the period 2008 to 2016 to assess tempo-
ral VOD dynamics. NMRI is a metric related to VWC, cal-
culated using the interference between direct and reflected
GPS signals, transmitted at a frequency of 1.5 GHz (L-band).
Daily NMRI is available for over 300 sites in the western
United States and Alaska. The footprint of these measure-
ments covers an area of at least 1000 m2. The PBO sites
are mostly installed on grassland and shrubland, while hav-
ing limited representation in regions with higher biomass.
NMRI was already used in vegetation monitoring studies
complementary to optical-based products, such as the nor-
malised difference vegetation index (NDVI; Evans et al.,
2014; Small et al., 2018). In addition, phenological parame-
ters derived from PBO NMRI were compared with those ob-
tained from AMSR-E Ku-band VOD, which indicated broad
regional agreement despite the large differences in relative
footprint sizes and microwave frequency (Jones et al., 2014).
Due to data gaps in the short (9 years) time series caused
by freezing conditions and RFI, we aggregate daily NMRI
and VOD to monthly values by taking the median before cal-
culating anomalies. We use loess decomposition (Cleveland
et al., 1990) to obtain anomalies. We did not use PBO sta-
tions within VODCA grid cells with an open-water fraction
of over 50 %. This resulted in a selection of 296 stations.

2.3.4 SAPFLUXNET sap flow

We use in situ sap flow data from SAPFLUXNET
(SFN 0.1.5, https://doi.org/10.5281/zenodo.3971689, Poy-
atos et al., 2021), the first global database of plant-level
sap flow measurements, to assess the temporal patterns of
VODCA CXKu in respect to plant transpiration. Sap flow
sensors measure the transpiration flow in stems, branches,
and trunks as the ascent of sap within xylem tissues (Van-
degehuchte and Steppe, 2013). VOD is directly related to
leaf water potential (Konings and Gentine, 2017) and also to
transpiration as it represents the non-linear response of veg-
etation to soil drying (Martens et al., 2017). Therefore, we
expect a clear connection between VOD and sap flow.

For each site, SAPFLUXNET contains half-hourly tree-
level sap flow for different trees, accompanied by tree meta-
data, site information, and hydro-meteorological data. We
use the method proposed by Bittencourt et al. (2023) for pre-
processing sap flow data from tree level to satellite footprint
level. This includes (1) removing the stations that have less
than 6 months of data, (2) filtering out nighttime data (sun
altitude < 0°), (3) averaging the data from hourly to daily
sap flow for each tree, (4) standardising the daily average
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sap flow per tree by calculating Z scores, and (5) averaging
trees per site and thus scaling the temporal variability from
tree level to site level. Bittencourt et al. (2023) argue that
Z scores remove the differences in absolute values across
sites while preserving information on temporal variability.
After preprocessing, 98 SAPFLUXNET stations remain. To
analyse if VODCA CXKu manages to capture events of low,
median, and high transpiration, we extract the VOD data at
the SAPFLUXNET sites and take the monthly 5th, 50th, and
95th percentile from both VOD and sap flow. Following this
step, we standardise the VOD and sap flow percentiles with
Z scores so that the variability in sap flow and transpiration
is now in the same range.

2.3.5 AGB

We use the dynamic above-ground biomass dataset by Xu
et al. (2021) to assess the VODCA L spatial and temporal
patterns. Xu AGB provides yearly global maps for the period
2000–2019, with a spatial resolution of 10× 10 km2, derived
by applying the method developed by Saatchi et al. (2011)
using a consistent set of satellite images. For this purpose,
time series of microwave (QuickSat) and optical (MODIS)
satellite imagery are used in a machine learning framework
trained against ground inventory plots, airborne lidar, and
spaceborne lidar data from the Geoscience Laser Altime-
ter System (GLAS) on board the Ice, Cloud, and land Ele-
vation Satellite (ICESat). The maps give AGB estimates in
Mg ha−1.

Various studies highlighted the sensitivity of VOD to AGB
(e.g. Liu et al., 2015; Rodríguez-Fernández et al., 2018; Mi-
alon et al., 2020; Frappart et al., 2020; Schmidt et al., 2023),
emphasising stronger agreement of L-band VOD to AGB
compared to Ku-, X-, and C-bands, especially in densely
vegetated areas, such as forests. Recent studies (Qin et al.,
2021; Dou et al., 2023) have shown that the annual 95th per-
centile of the daily observations is more sensitive to inter-
annual biomass change than other aggregating metrics, likely
because it manages to minimise the annual changes in the
dielectric properties of vegetation caused by water stress.
Moreover, Dou et al. (2023) have shown that nighttime ob-
servations are more suitable than daytime observations for
estimating decadal (10-yearly) biomass carbon dynamics.

To analyse the sensitivity of VODCA L to AGB, we aggre-
gate VODCA L to yearly 95th percentiles, calculated from
10-daily median VOD, to match the AGB temporal resolu-
tion and also to reduce the water-related seasonal phenology
(Dou et al., 2023). The Xu AGB maps are resampled to match
the VODCA grid by taking the average observations within
a 0.25° cell.

2.3.6 SMOS-IC VOD

To assess if the spatial change patterns of VODCA L are
a result of natural variability, we use SMOS-IC VOD v2

(Wigneron et al., 2021; Li et al., 2021, 2022, 2020), produced
by INRAE (Institut National de Recherche Agronomiques)
Bordeaux Soil Moisture and VOD Products and made avail-
able at https://ib.remote-sensing.inrae.fr/ (last access: 12 Jan-
uary 2024). SMOS-IC uses the L-band Microwave Emis-
sion of the Biosphere (L-MEB) model to derive VOD and
soil moisture from SMOS Tb (Wigneron et al., 2021). V2
employs an improved optimisation process that considers a
priori information on VOD over a period of 10 d for each
retrieval (Li et al., 2020). SMOS-IC provides daily data in
the global EASE (Equal-Area Scalable Earth) Grid version 2
with a sampling resolution of 25 km.

To analyse the change in spatial patterns of SMOS-IC
VOD compared to VODCA L, we resample it to match the
VODCA grid using nearest-neighbour interpolation and ag-
gregate it to yearly maps.

2.3.7 ESA CCI Landcover

We use the ESA CCI Landcover v2 (available at https://maps.
elie.ucl.ac.be/CCI/viewer/, last access: 12 January 2024) for
the epoch 2010 to analyse VOD characteristics per land cover
(LC) type. The LC map provided at 300 m resolution has
been derived by combining MERIS surface reflectance data
acquired during 2008–2012 and ground observations (CCI,
2017). We resampled and projected the map onto a common
0.25° grid using the majority class according to the CCI-
LC User Tool (CCI, 2017). We aggregated the LC classes
to bare soil, sparse vegetation, grassland, cropland, shrubs,
broadleaf deciduous forest (BDF), broadleaf evergreen forest
(BEF), needle-leaf evergreen forest (NEF), needle-leaf de-
ciduous forest (NDF), and mixed forest (MF) to enable better
visualisation (Fig. A1).

3 Methods

3.1 General framework

The methodology for creating VODCA v2 (and v1) prod-
ucts is based on the methodology for creating harmonised
long-term multi-satellite-based climate data records within
the ESA Soil Moisture CCI project (Dorigo et al., 2017;
Gruber et al., 2019). In the following, we will focus on the
VODCA v2 methodology (Fig. 2).

First, the LPRM-derived single-sensor VOD data are pre-
processed (Sect. 3.2) and scaled to a chosen reference sensor
using cumulative distribution function (CDF) matching to re-
move the systematic biases between sensors (Sect. 3.3). After
scaling, we compute the per-pixel first-order temporal auto-
correlation (autocorrelation with a lag of one period, AC(1))
for each sensor and overlapping period, which we use as an
indicator of the random error (Sect. 3.4). Next, we calculate
weights based on the AC(1) for each location and overlap-
ping period. These weights are used for fusing the scaled
single-sensor observations (Sect. 3.5).
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Figure 2. Schematic overview of the VODCA v2 processing framework.

We compute the new products VODCA L and VODCA
CXKu independently. VODCA CXKu incorporates only
high-frequency observations. We did not include the lower
frequency L-band in the multi-frequency product as the lat-
ter is more sensitive to the VWC in the woody components
of the vegetation layer compared to the higher frequencies
(Schmidt et al., 2023). Several studies have already shown
that VOD observations from the C-, X-, and Ku-band fre-
quencies are highly correlated with each other, except for
biomes with little inter- and intra-annual variability (desert
and humid tropics) (Moesinger et al., 2020; Wild et al., 2022;
Moesinger et al., 2022). Notably, the work of Moesinger et al.
(2022) is very relevant in this respect because it merges C-,
X-, and Ku-band observations to create a standardised veg-
etation optical depth index (SVODI) and carries out a tem-
poral correlation analysis to show that there is strong agree-
ment between bands (Moesinger et al., 2022, Fig. 1). We pro-
vide the results of a spatial (Fig. A3) and temporal correlation
(Fig. A2) analysis based on data from the descending over-
pass of AMSR2 (June 2012–December 2021), which was
used as input in the multi-frequency VODCA CXKu prod-
uct. Both the temporal and spatial analysis reveal strong and
very strong, respectively, agreements between bands. There-
fore, from a scientific point of view, it is legitimate to merge
them into a single dataset with improved information con-
tent, temporal sampling, and reduced noise.

VODCA v2 does not entail single-frequency C-, X-, and
Ku products for two reasons: first, as mentioned earlier,
the AC(1) method employed in the production of VODCA
CXKu (Sect. 3.4) is particularly relevant when merging VOD
observations from multiple frequencies due to their distinc-
tive sensitivity to noise. Second, in the new scaling frame-

work (Sect. 3.3), we use the SSM/I F17 Ku-band as a refer-
ence for scaling AMSR2 C-, X-, and Ku-band observations.
This step, which is needed to bridge the gap between AMSR-
E and AMSR2, implies the use of observations from mul-
tiple frequencies. Therefore, the single-frequency products
would not be completely independent anymore but would
rely on Ku-band observations for scaling. As we acknowl-
edge the merit of the C-, X-, and Ku-band single-frequency
products, we plan to continue their temporal extension with
the VODCA v1 framework.

3.2 Preprocessing

In VODCA v2, we expanded on the preprocessing methodol-
ogy described in detail in Moesinger et al. (2020). Similarly
to VODCA v1, we did the following:

– We projected the data onto a common, regular 0.25°×
0.25° grid using nearest-neighbour resampling.

– We selected the closest nighttime value in a window of
±12 h for every 00:00 UTC.

– We masked for RFI using flags provided with the LPRM
VOD data and based on de Nijs et al. (2015).

– We masked negative VOD retrievals.

– In the case of the AMSR2 C-band, we used observa-
tions from the 6.9 GHz band if available; otherwise, ob-
servations from the 7.3 GHz band were used instead (if
unmasked) to fill gaps.

– In the case of SSM/I, we concatenated VOD data from
the sensors F8, F11, and F13 to a single record since
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they are retrieved from intercalibrated Tb and do not
overlap temporally.

Concerning the RFI flagging, we mention that for the C-,
X-, and Ku-band observations, the RFI detection uses the
estimation of the standard error between two different fre-
quencies (de Nijs et al., 2015). For SMOS, since only one
frequency is available, we use the RFI probability informa-
tion supplied with the SMOS Level 3 data. For SMAP, we
use only the internal RFI mitigation supplied with the Level
3 data because it already uses additional frequencies to filter
out RFI contaminated observations (Dorigo et al., 2017).

We also utilised a new flag included in the L3 data from
LPRM. This flag pertains to the analytical method for VOD
retrieval detailed in Meesters et al. (2005), employing the Mi-
crowave Polarisation Difference Index (MPDI) to mitigate
temperature-related effects on Tb. This adjustment results in
a parameter more closely associated with the dielectric prop-
erties of emitting surfaces, as outlined in Owe et al. (2001).
Negative MPDI values reflect cases where the horizontal Tb
is higher than the vertical Tb and the model does not con-
verge. These values are flagged.

Although the flagging of frozen surfaces and snow cover
has significantly improved with the new LPRM versions
(van der Vliet et al., 2020), we also use ERA5-Land surface
soil temperature stl1 because it allows for more conservative
masking when applying 275.15 K (2 °C) as a threshold.

In order to reduce the random error levels before merging
the sensors, we removed outliers using a standard median
filter (known as a Hampel filter; Pearson (2002)). For each
window, the Hampel filter compares each observation with
the median absolute deviation (MAD). The observations are
considered outliers if they exceed the MAD by a certain num-
ber of times. We used the Hampel filter with a window size
of 120 d and a threshold of 3 MADs. The window size of
120 d was chosen to preserve the seasonality and ensure that
outliers are identified without being misinterpreted as part of
the seasonal trend. A threshold of 3 MADs has been selected
to eliminate significant deviations that cannot be explained,
given that we are looking at gradual changes in vegetation.
We did not choose a lower MAD to prevent excluding valu-
able data.

CDF matching reliability depends on the correct represen-
tation of the statistical moments of data distribution. There-
fore, in the case of VODCA L, we temporally resampled
the input sensors SMOS and SMAP to 10 d medians be-
fore CDF matching. This temporal downsampling was nec-
essary for two reasons. First, the original temporal coverage
of the SMOS and SMAP sensors is significantly imbalanced
in some areas, with SMAP providing a much denser set of
observations (Fig. A17) due to different masking strategies
employed to both datasets. Although the flags of the SMOS
and SMAP products show a similar general spatial pattern,
SMOS is flagged more extensively and with more seasonal
variation than SMAP, likely due to different thresholds for,

for example, topography, vegetation, and open water (van der
Vliet et al., 2020). The flagging discrepancy between prod-
ucts can lead to differences in the respective value distribu-
tions, making CDF matching challenging. Second, by ag-
gregating the datasets into 10 d medians, apart from achiev-
ing a more equitable distribution, we obtain much smoother
datasets with lower noise levels and outliers, leading to im-
proved CDF matching.

Following preprocessing, the VOD datasets comprise
daily estimates for the C-, X-, and Ku-bands. The L-band
includes three estimates each month, specifically on the 1st,
11th, and 21st. These observations represent the first 10 d of
the month, the subsequent 10 d, and the remaining days for
that month.

3.3 CDF matching

We use the VODCA v1 CDF matching method, which com-
bines piecewise linear interpolation with linear least-squares
regression (Moesinger et al., 2020). This method provides
more robust scaling parameters by fitting a linear model us-
ing the sorted observations smaller than the second percentile
with an intercept through the second percentile. This way, all
the data between the lowest and second-lowest percentiles
are used instead of just the lowest value (Moesinger et al.,
2020).

Computing VODCA CXKu entails scaling SSM/I, TMI,
and WindSat on a band-to-band basis to AMSR-E X-band
observations. The X-band has been chosen as the scaling ref-
erence because it exhibits the highest correlation with both
the C- and Ku-band, as shown in Moesinger et al. (2022) and
Wild et al. (2022). The choice of AMSR-E as the reference
sensor is motivated by its temporal overlap with these sensors
and its superior temporal and spatial resolution, as outlined
in the work of Liu et al. (2011). Scaling AMSR2 and GPM
observations to AMSR-E is not optimal as there is no tem-
poral overlap. More precisely, VODCA v1 scaled AMSR2 to
TMI if enough overlap was available or directly to AMSR-
E, without temporal overlap, above and below 35° latitude
N and S, respectively (Moesinger et al., 2022). This led
to spatial inconsistencies in VODCA v1 (Moesinger et al.,
2020, Fig. 13b, c herein). Therefore, we changed the ap-
proach in VODCA v2 and used SSMI F17 Ku-band observa-
tions (scaled to AMSR-E X-band ) as reference to bridge the
gap between AMSR-E and AMSR2. For VODCA L, we use
SMAP as reference because it has a better spatio-temporal
sampling than SMOS.

3.4 Temporal autocorrelation as a measure of random
error

Various techniques have been proposed to estimate weights
for an optimal merging of satellite data, e.g. for soil moisture,
sea surface temperature, and precipitation (Beck et al., 2021).
For soil moisture, Gruber et al. (2017) and Kim et al. (2020)
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proposed merging techniques that make use of the random
errors estimated with the triple collocation approach. Kim
et al. (2015) maximised the temporal correlation with a ref-
erence dataset to obtain weights. To compute weights, these
studies use external datasets, e.g. model data (Gruber et al.,
2017; Kim et al., 2020) or reanalysis data (Kim et al., 2015).
Unlike soil moisture, VOD is a radiative transfer model pa-
rameter rather than a well-defined biogeophysical variable
(Li et al., 2021). As no model or independent reference VOD
dataset is available, we use autocorrelation instead to quan-
tify the uncertainty of VOD observations.

The use of autocorrelation with a lag of one period (AC(1))
as a measure of random error relies on the assertion that
there should be a high degree of temporal AC between subse-
quent observations since VOD is related to gradual changes
in plant water content and biomass (Momen et al., 2017;
Konings et al., 2016; Moesinger et al., 2020). Hence, a lower
AC(1) represents a higher random error of a dataset. How-
ever, AC(1) is not only sensitive to random or measure-
ment errors but also to changes in the dynamical stability
(resilience) of a system (Boulton et al., 2022; Smith et al.,
2022, 2023). Therefore, AC(1) can only be seen as an error
indicator when we compare measurements of the same area
(pixel) over the same time period. Otherwise, when compar-
ing AC(1) values of the same pixel but over different periods,
the difference in AC(1) measurements obtained could reflect
changes in the dynamic stability in one of the observed peri-
ods. Because of that, in the VODCA v2 framework, we com-
pute weights based on AC(1) at each location for each over-
lapping period between sensors, and we use only collocated
observations. AC(1) means 1 d in the case of VODCA CXKu
and 10 d for VODCA L.

3.5 Weighted merging

For a given sensor s, pixel p, and date t , we obtain the weight
ws,p,t by scaling its AC(1) value as,p,t between 0 and 1 us-
ing MinMax scaling, as shown in Eq. (1). The AC(1) can take
values between−1 and 1. Then, we normalise the ws,p,t val-
ues for each pixel, observation date, and available sensor s

so that their sum equals 1. As shown in Eq. (2), we do this
by dividing the ws,p,t for each sensor by the sum of ws,p,t

values of the n available sensors at time t .
Following the calculation of weights, VODCA L and

VODCA CXKu are obtained by multiplying the weights for
each observation date, pixel, and sensor by the corresponding
CDF-matched sensor values X s, p, t , as shown in Eq. (3).

ws, p, t =
as, p, t −min(a)

max(a)−min(a)
, min(a)=−1,max(a)= 1 (1)

wnorm, s=1, p, t =
w s=1, p ,t∑n
s=1w s, p, t

(2)

Xmerged = wnorm,s=1,p,t · xs=1,p,t + . . .

+wnorm,s=n,p,t · xs=n,p,t (3)

4 Results and discussion

4.1 Global patterns

To evaluate the characteristics of VODCA CXKu and
VODCA L, in Fig. 3a–d we show global maps of tempo-
rally averaged VOD together with Xu AGB and MODIS
FAPAR for the common period (2010–2019). In addition,
Fig. 3e shows the average VODCA CXKu, VODCA L, AGB,
and FAPAR per latitude. At the global scale, the VODCA
v2 products show similar patterns, with high VOD values in
tropical (e.g. Amazon Basin, Congo Basin) and boreal (e.g.
Northern Russia, Canada) forests and low VOD values in
arid and sparsely vegetated areas (e.g. Sahara). However, in
VODCA L, the relative difference between tropical and bo-
real forests is much larger than for VODCA CXKu. VODCA
L is, on average, 37 % higher in the tropical forest compared
to boreal forests, while VODCA CXKu is only 4 % higher
(latitudes −5 to 5°: mean VODCA L = 0.40, mean VODCA
CXKu= 0.87; latitudes 50° to 60°: mean VODCA L= 0.29,
mean VODCA CXKu= 0.84). The figure shows that the spa-
tial distribution of VODCA L is more similar to that of the
AGB. These results are also supported by the spatial correla-
tion analysis (Table A1), which shows that AGB agrees better
with VODCA L (Spearman’s R: 0.874) than with VODCA
CXKu (Spearman’s R: 0.800). This confirms the theoretical
assumption that L-band VOD is sensitive to the whole veg-
etation layer including stems, while high-frequency VOD is
more sensitive to the upper canopy (Schmidt et al., 2023).
Regarding absolute VOD values, VODCA CXKu is gen-
erally higher than VODCA L since the attenuation of mi-
crowave radiation increases with frequency due to increasing
canopy interference (Moesinger et al., 2020). However, the
difference in absolute values between VODCA CXKu and
VODCA L is also due to the different parametrisations em-
ployed in the retrieval algorithms (LPRM 7.0 vs. LPRM 6.2),
especially concerning the single scattering albedo and rough-
ness parameter (Van der Schalie et al., 2017; Dorigo et al.,
2017). The surface roughness parameter is much lower in the
LPRM v7 retrievals used by VODCA CXKu, which automat-
ically leads to higher VOD. In the LPRM v6.2 retrievals used
for VODCA L, the larger roughness reduces the VOD values
(Dorigo et al., 2023). However, in the following analyses, we
focus on the temporal dynamics and the relative spatial pat-
terns of the products. As shown in Fig. A15c, VODCA CXKu
exhibits the same value range for each land cover class as X-
band VOD (Fig. A15d) because the latter is used as reference
for the CDF matching. VODCA L (Fig. A15a) has the same
absolute value range as SMAP (Fig. A15b).

We assess the patterns of vegetation variability in VODCA
v2 by looking at the per-pixel coefficient of variation (CV)
(Fig. 4). The CV gives a measure of the seasonality dy-
namics, and we computed it by dividing the standard devi-
ation of monthly VOD by the mean VOD. To avoid bias,
the pixels with a fractional cover (Fig. A4) of less than
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Figure 3. Temporally averaged VOD for VODCA L (a) and VODCA CXKu (b). Average Xu AGB (c) and MODIS FAPAR (d). Per-latitude
average of all four products (e). Temporal averages are computed over the overlapping period (2010–2019). We only show the spatial overlap
between products.

10 % of observations in the overlapping period between prod-
ucts and bare soils (Fig. A1) are masked. For comparison,
we also provide the monthly MODIS FAPAR CV (Fig. 4c).
Additionally, Fig. A16 shows the CV distribution per LC
class for all three products. We observe low values around
the Equator across all three products, indicating low intra-
annual variability caused by stable, all-year-round high veg-
etation density. In contrast, we observe relatively high CV
values in grassland and cropland, which exhibit very strong
intra-annual variability. In VODCA CXKu, BDF displays
higher CV values than VODCA L, likely due to the upper
canopy’s stronger seasonal dynamics compared to the vege-
tation layer’s woody components (Li et al., 2021).

VODCA CXKu and VODCA L have similar coverage
(Fig. A4a, b, c), with VODCA L providing no data around
most of the Sahara and Arabian Peninsula due to CDF match-
ing failing because of the low number of observations in
SMOS VOD (Fig. A17). In northern latitudes, the fewer ob-
servations are due to the masking of frozen surfaces and snow
cover in winter.

4.2 Spatio-temporal consistency

To ensure that the merging of multiple sensors and frequen-
cies has not affected the continuity of VOD through time
and space, we look at yearly global and hemisphere time se-

ries and at several time–latitude plots at monthly and yearly
scales.

The global and hemisphere time series for VODCA CXKu
(Fig. 5) show a clear positive trend, consistent with reports
on global greening based on optical satellite sources (e.g.
Piao et al., 2020; Chen et al., 2024; Zhang et al., 2017).
The patterns of decrease in 2003 and increase in 2012, al-
though coincident with the introduction of AMSR-E and
AMSR2, respectively, can also be observed in MODIS FA-
PAR (Fig. A6), so we attribute them to natural variability.
Although the best intercalibrated SSM/I Tb record available
(Berg et al., 2016, 2018) was used to retrieve VOD, we can-
not exclude residual bias between F8 and F11 as a cause for
the increase in VOD past 1992 due to a lack of credible vali-
dation data. To our knowledge, no independent VOD datasets
provide data before 1992, while all optical-based vegetation
datasets are multi-sensor products with known calibration is-
sues (Brown et al., 2006; Tian et al., 2015).

VOD anomalies from high-frequency observations have
been observed to coincide with El Niño–Southern Oscillation
(ENSO) variations (Dorigo et al., 2021, 2022; Zotta et al.,
2023), especially in the Southern Hemisphere, where there
is a clear connection between ENSO and vegetation activity
(Martens et al., 2017). Negative VODCA CXKu anomalies
can be observed in El Niño events (e.g. 1998–1999, 1991–
1992), while positive anomalies can be observed in La Niña
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Figure 4. Spatial pattern of the CV for VODCA L (a), VODCA CXKu (b), and MODIS FAPAR (c) for the overlapping period (2010–2021).
The range of the colour bar for (c) is wider because the CV in MODIS FAPAR is higher. We only show the spatial overlap between products.

events (e.g. 2010–2011, 2011–2012). In VODCA L (Fig. 6),
the fluctuations in the time series are minor. While the mag-
nitude of the anomalies is considerably smaller, similar peaks
as in VODCA CXKu emerge (e.g. 2012, 2014, 2020).

The seasonal dynamics of monthly VODCA CXKu over
time and space (Fig. 7 upper) show consistent patterns with
higher VOD in the summer months due to the increase in
temperature (in the northern–southern region) or in precipita-
tion (in the subtropics). In VODCA L (Fig. 7 lower), the sea-
sonal patterns are less prevalent, which is to be expected be-
cause it also contains information on the woody components
of the vegetation layer, which is more constant throughout
the year. The seasonality and magnitude of VOD are consis-
tent over time and space in both datasets. Most anomalies
in VODCA CXKu and VODCA L (Fig. A5) appear limited
in time, and their start and end do not coincide with sensor
changes, thus indicating natural variability. Most patterns of
negative and positive anomalies in VODCA CXKu are con-
sistent with those of MODIS FAPAR (Fig. A14) and leaf area
index (LAI) (Moesinger et al. (2020), Fig. 6). As already
mentioned, we cannot exclude residual bias between SSM/I
F08 and F11 as a possible cause for the low VOD anomalies
before 1992.

The yearly AC(1) appears consistent through time in
VODCA CXKu (Fig. 8 upper), with some latitudes experi-
encing a slight increase coincident with the introduction of
AMSR-E (June 2002) and TMI (December 1997). At the
same time, no consistent decreases in AC(1) can be observed,
suggesting that no sensor has led to an increase in random er-
ror compared to the previous state of the product. In VODCA
L (Fig. 8), we see an increase in AC(1) in almost all latitudes,
coincident with the introduction of SMAP (March 2015).
These results suggest that fusing observations in the over-
lapping period has led to a more robust product in terms of
random error than using only SMOS observations. As a re-
sult of this analysis, we reiterate that we expected to see to
some degree of change in AC(1) with the merging of sensors,
as VODCA CXKu and VODCA L are harmonised (through
the removal of bias between sensors and fusion of overlap-
ping observations) but not homogenised (forcing same data

characteristics throughout the entire period covered by the
merged product). Therefore, it is crucial to consider the in-
fluence of heterogeneous sensor constellation through time
for research that delves into higher-order statistics such as
variance and autocorrelation temporally (Smith et al., 2023).

To be noted that in VODCA L, above 60° N starting 2021,
very strong anomalies can be observed that likely cannot be
explained by natural variability. Given that these patterns also
coincide with a decrease in AC(1), they are likely a result of
either faulty retrieval or residual RFI.

4.3 Changes in AC(1)

To evaluate the change in random error levels in VODCA
CXKu as a result of using data from multiple frequen-
cies, we computed single-sensor frequencies with the same
VODCA v2 merging framework. We looked at the change
in AC(1) between single- and multi-frequency products us-
ing only overlapping observations between products, given
that the AC(1) coefficient strongly depends on the tempo-
ral resolution (Moesinger et al., 2020). Almost everywhere,
VODCA CXKu exhibits higher AC(1) values than the single-
frequency products. A notable exception is the slightly higher
AC(1) in VODCA Ku around desert regions such as the Sa-
hara, although it is of a questionable nature since LPRM
struggles to retrieve VOD around that area (Moesinger et al.,
2020) and around parts of Mexico. The magnitude of AC(1)
change seems to decrease with increasing frequency, possi-
bly due to the larger number of sensors used with increasing
frequency in the single-frequency products.

Compared to the LPRM SMOS product, VODCA L ex-
hibits much higher AC(1) almost globally (Fig. 9d). In con-
trast, VODCA L shows areas with both increased and de-
creased AC(1) compared to LPRM SMAP (Fig. 9e). The
areas with decreased AC(1) are primarily arid regions and
deserts. A possible reason is the high difference in perfor-
mance between SMOS and SMAP in these areas, as assessed
with AC(1). When the single-sensor datasets are combined,
the random noise of SMOS introduces additional random er-
ror into the merged dataset, reducing its overall AC(1). The
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Figure 5. Global and hemisphere time series of yearly VODCA CXKu showing the bulk signal (a), detrended anomalies (b), and percentage
of valid observations (c).

Figure 6. Global and hemisphere time series of yearly VODCA L showing the bulk signal (a), detrended anomalies (b), and percentage of
valid observations (c).

mentioned decrease in AC(1) compared to SMAP was also
observed by Moesinger et al. (2020) and is not inherent to
the weighted merging procedure. These results indicate that
the merging procedure employed for VODCA L is not flaw-
less in all circumstances, and further research needs to be
conducted to assess if a global optimum could be achieved.
In particular, testing whether to use only SMAP data in the
overlapping period could be an interesting topic for future
studies. Nevertheless, VODCA L represents a viable alterna-
tive to existing long-term L-band VOD products, providing a
longer observation period (2010–2021) than SMAP (2015–

2021) and globally decreased random error levels compared
to SMOS.

4.4 Trends

We conducted a trend analysis to understand how VOD has
changed over recent decades and assess the plausibility of
change patterns in the products. We employed the Theil–Sen
regressor on annual medians and masked slopes with up-
per and lower confidence intervals having opposite signs. We
looked at trends for the complete product period (Fig. 10a, b);
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Figure 7. Hovmöller diagrams showing the monthly mean VOD per latitude for VODCA CXKu and VODCA L.

Figure 8. Hovmöller diagrams showing the yearly AC(1) per latitude for VODCA CXKu and VODCA L.

the overlapping period between VODCA L, VODCA CXKu,
and FAPAR (Fig. 10a, c, d); and the overlapping period be-
tween VODCA L and Xu AGB (Fig. 10e, f). As the Xu AGB
maps show forest AGB, the analyses in Fig. 10e and f are
limited to locations corresponding to BEF BDF, NEF, NDF,
and MF land cover classes.

Due to the short time series of the overlapping period
between VODCA L, VODCA CXKu, and FAPAR and be-
tween VODCA L and Xu AGB, few pixels show signifi-
cant trends. However, VODCA CXKu shows more substan-
tial agreement in trends with FAPAR (Pearson correlation
coefficient of 0.57) than VODCA L (correlation coefficient
of 0.33). This is expected since VODCA L is less sensitive
to variations in the upper canopy. Similar trends can be ob-
served in VODCA CXKu and FAPAR in regions such as
Africa, Australia, China, and India, while differing patterns
can be seen in boreal forests. We observe consistent VODCA
L and AGB trends in regions along the eastern coast of Aus-
tralia, western Africa, China, Alaska, and Siberia. Some dif-
ferences emerge in areas like Canada and the Congo Basin.

Some of the trend discrepancies in boreal forests between
the VODCA products, FAPAR and AGB, are due to the
fact that retrieving VOD in this area is challenging. Various
complicating ecosystem properties, such as open-water bod-
ies, snow cover, and frozen soil conditions (as mentioned in
Vreugdenhil et al., 2016; Vreugdenhil et al., 2020; Li et al.,
2021), make it challenging to retrieve VOD accurately. Addi-
tionally, boreal soils have a high organic content, leading to
distinct dielectric behaviours (Wigneron et al., 2017; Bous-
quet et al., 2021), which are not adequately accounted for in
most retrieval algorithms, including LPRM 7.0 and LPRM
6.2, used for VODCA CXKu and VODCA L, respectively.

From a technical perspective, the improved merging
methodology employed in VODCA CXKu has addressed
a spatial break in trends observed in VODCA v1 X and
Ku around 35° N latitude in North America (as discussed
in Moesinger et al., 2020). To illustrate this improvement,
we computed a version of VODCA CXKu, which uses the
same sensor constellation (SSMI without F17, TMI, Wind-
Sat, AMSR-E, and AMSR2) and CDF matching of AMSR2
as used in Moesinger et al. (2020) and is hereby referred
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Figure 9. Difference in AC(1) between VODCA CXKu and VODCA C (a), VODCA X (b), and VODCA Ku (c). Difference in AC(1)
between VODCA L and SMOS (d) and SMAP (e). Only collocated observations in time and space have been used. Blue regions indicate an
increase in AC(1) in the VODCA v2 products, while red regions indicate a decrease.

to as VODCA CXKu v1. As can be observed in Fig. A19,
the trends of the two VODCA CXKu products are very sim-
ilar (Pearson’s R 0.84), with differences primarily in mag-
nitude. Matching AMSR2 to TMI below 35° N latitude and
to AMSR-E without temporal overlap further north leads to
a clear spatial break in North America (Fig. 11 top) and to
a consequent positive bias above 35° N latitude. In VODCA
v2, the trends have improved spatially due to the global use of
SSMI F17 as reference in the CDF matching of AMSR2 and
GPM (Fig. 11 bottom). To further illustrate the benefit of us-
ing SSMI F17 to scale AMSR2 observations, in Fig. A13 we
show the time series of both VODCA CXKu v1 and v2 and
AMSR2 matched to AMSR-E and SSMI F17, respectively,
at a location outside the coverage of TMI. We can clearly
observe that scaling AMSR2 to AMSR-E did not produce
the desired outcome, which led to bias in the later period of
VODCA CXKu v1.

4.5 Temporal dynamics of the upper canopy

4.5.1 MODIS FAPAR

Generally, considering the bulk signal (Fig. 12a), VODCA
CXKu agrees very well with FAPAR over vast areas, e.g.
Africa, Australia, Europe, the Indian subcontinent and parts
of North America, indicating that the products have simi-
lar seasonal dynamics. The best level of agreement is found
in short vegetation types, i.e. grassland (median R = 0.57),
cropland (0.56), shrubs (0.59), and BDF (0.49) (Fig. 13, Ta-
ble A2). The weakest correlations are observed in NEF, NDF,
BEF, and MF. Similar results have been observed when com-
paring high-frequency VOD products with various other op-
tical vegetation indicators such as LAI (Moesinger et al.,

2020; Vreugdenhil et al., 2017), NDVI (Li et al., 2021; Liu
et al., 2011), and EVI (enhanced vegetation index; Li et al.,
2021). The tropical regions are dominated by weak positive
and weak negative correlations, possibly due to low intra-
annual variability in VOD (Liu et al., 2011). Another rea-
son for the reduced correlations in this area could be drought
periods during which VOD reduces as a result of lower
VWC while FAPAR possibly increases because more radi-
ation reaches the canopy, thus increasing photosynthetic ac-
tivity (Myneni et al., 2007). As mentioned earlier, the re-
duced correlations over the northern latitudes could have
been caused by artefacts originating from the retrieval algo-
rithm, possibly impacting the VOD seasonality or from dif-
ferences in phenology between VOD and FAPAR. Regard-
ing phenology, studies found a lag in boreal forests between
other optical-based vegetation indicators, such as NDVI and
EVI, with VOD-based start-of-season (SOS) preceding that
based on optical data (Dannenberg et al., 2020; Jones et al.,
2012). This could be explained by snowmelt, which increases
the water supply, and hence sap flow and the water amount
in the canopy (Dannenberg et al., 2020). VODCA CXKu and
FAPAR anomalies (Fig. 12b) are positively correlated over
wide areas, respecting the same spatial distribution in land
cover classes (Fig. A20, Table A2) and regions of strong and
weak agreement.

Even though VODCA L is largely sensitive to deeper veg-
etation layers, we also analyse its agreement with FAPAR
(Figs. A21; A23). As expected, agreement between VODCA
L and FAPAR is lower than between VODCA CXKu and FA-
PAR across all biomes and regions. The best level of agree-
ment can be found in shrubs, needle-leaf, and mixed forests.
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Figure 10. Trends over the entire product period calculated with the Theil–Sen regressor for VODCA L (a) and VODCA CXKu (b). Trends
for the overlapping period 2010–2021 for VODCA CXKu (c) and MODIS FAPAR (d). Trends for the overlapping period 2010–2019 for
VODCA L (e) and Xu AGB (f). Trends are considered not significant and masked when the upper and lower confidence intervals have
conflicting signs.

4.5.2 ASCAT slope

Concerning the bulk signal, vast areas with high positive cor-
relations can be observed, e.g. in Europe, Australia, parts
of North America, the Sahel region, and parts of south-
ern Africa (Fig. 8c, d). Weak positive-to-negative correla-
tions can be observed, for example, around the tropical re-
gion, Sahara, Arabian Peninsula, parts of Canada, Siberia,

and northern Europe. Regarding the tropical regions, as ob-
served in previous studies (Vreugdenhil et al., 2016), the
cause could be the low intra-annual variability for both ac-
tive and passive data. In the northern latitudes, the low cor-
relations are due to challenging environmental conditions for
the retrieval algorithms (Vreugdenhil et al., 2016; Moesinger
et al., 2020). We can observe positive correlations, especially
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Figure 11. Trends (1987–2021) for VODCA CXKu v1 computed with the Moesinger et al. (2020) satellite constellation and CDF matching
framework, by merging AMSR2 to TMI below 35° N latitude and AMSR-E further north (a), and for VODCA CXKu v2 computed with the
method from this paper, by matching AMSR2 to SSMI F17 (b). The same colour bar as in Fig. 10b and c was used.

Figure 12. Spearman’s R between 8-daily VODCA CXKu and MODIS FAPAR over the period 2000–2021 on the bulk signal (a) and
anomalies (b). Spearman’s R between 8-daily VODCA CXKu and ASCAT slope over the period 2007–2021 on the bulk signal (c) and
anomalies (d).
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Figure 13. Violin plots showing the distribution of Spearman’s R between 8-daily VODCA CXKu and MODIS FAPAR (blue) and VODCA
CXKu and ASCAT slope (orange) on the bulk signal, per land cover class (a–j).

in grassland (median R = 0.48 bulk signal, R = 0.32 anoma-
lies) and cropland (0.48, 0.32), as shown in Figs. 13 and A20
and Table A2. Conversely, low positive-to-negative correla-
tions occur in BEF, BDF, NEF, MF, bare soil, and shrubs.
These results were expected, as several studies reported sim-
ilar agreement and disagreement patterns between ASCAT-
derived vegetation indicators and passive VOD (Vreugdenhil
et al., 2016, 2017, 2022). In BDF, the low correlations were
attributed to the active signal being dominated by changes
in vegetation structure due to an increase in tree foliage dur-
ing the growing season, with leaves absorbing or forward-
scattering the signal (Vreugdenhil et al., 2017; Dostálová
et al., 2018). Similarly, disagreement in the subtropical re-
gions of South America is likely caused by the sensitivity
of ASCAT slope to vegetation structure changes, in pixels
with heterogeneous landscape. Over deserts and other arid
regions with sparse vegetation (e.g. shrubs), low agreement
with ASCAT data could be explained by the presence of sub-
surface soil scattering in the active signal (Hahn et al., 2017;
Vreugdenhil et al., 2020; Wagner et al., 2022). Subsurface
scattering occurs during dry conditions when the signal pen-
etrates the subsurface. This leads to volume scattering and,
thus, to a flatter slope. Interestingly, there is good agreement
between VODCA CXKu and ASCAT slope in NDF in the
Russian Far East over both the bulk signal and the anomalies.
As mentioned earlier, surface conditions in these regions are
difficult for the retrieval algorithms but may similarly affect
active and passive microwave observations. The good agree-
ment in this area with ASCAT slope indicates a decoupling
of phenology between optical and microwave-derived veg-
etation indicators (Fan et al., 2023), meaning that the latter

could provide valuable, complementary information to opti-
cal information.

As expected, the agreement between VODCA L and AS-
CAT slope is lower than between VODCA CXKu and FA-
PAR (Figs. A21, A22, and A23).

4.5.3 PBO NMRI

Generally, there is good agreement between monthly
VODCA CXKu and NMRI over the bulk signal (243 stations
with significant correlations; Fig. 14a) and anomalies (173
stations with significant correlations; Fig. 14b), with a me-
dian Pearson’s R of 0.55 and 0.44, respectively. Few stations
exhibit weak positive–weak negative correlations, likely due
to residual RFI, which is known to affect the C-band and, to
a lesser extent, the X-band (de Nijs et al., 2015, Fig. A25) in
the United States. We also show VODCA CXKu and NMRI
correlation maps for daily observations (Fig. A26a) and time
series for the BRUCESPRIN PBO station (Fig. A26b). The
agreement is also good at a daily time step, with a median
R of 0.40, indicating that VODCA CXKu can capture the
daily variations in NMRI. These results confirm the findings
of Jones et al. (2014), showing that passive VOD (VODCA
CXKu) follows the variations in NMRI, despite the huge dif-
ference in footprint size.

The agreement between NMRI and VODCA L is weaker
in terms of both bulk signal (121 stations with significant
correlations; Fig. 15a) and anomalies (40 stations with sig-
nificant correlations; Fig. 15b), with a median Pearson’s R

of 0.36 and 0.28, respectively. This outcome is somewhat
surprising, considering that NMRI measurements are derived
from L-band GPS signals. One possible explanation for the
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much better agreement of NMRI with VODCA CXKu could
be the sensitivity to green vegetation, which is known to in-
crease with higher frequencies (Li et al., 2021), especially
given the PBO sites’ locations in areas with shorter vegeta-
tion, such as grasslands and shrublands.

4.5.4 SAPFLUXNET

We examined how sensitive VODCA CXKu is to sap flow
on days with low, normal, and high transpiration rates in
the scatter plots from Fig. 16a and using the Pearson and
Spearman regression coefficients. We only considered sta-
tions with a significant correlation between VODCA CXKu
and sap flow (Fig. 16b). We observed positive correlations
between VODCA CXKu and sap flow during normal (Spear-
man’s R: 0.52, 51 stations with significant correlations; Pear-
son’s R 0.48, 50 stations with significant correlations) and
high (Spearman’s R: 0.48, 53 stations with significant corre-
lations; Pearson’s R 0.43, 54 stations with significant corre-
lations) transpiration days. The agreement between VODCA
CXKu and sap flow during days with low transpiration
(5th percentile) is weaker (Spearman’s R: 0.39, 37 stations
with significant correlations; Pearson’s R: 0.35, 27 stations
with significant correlations). The lower correlations and the
lower number of stations with significant correlations indi-
cate a weaker linear relationship between VOD and sap flow,
compared to days with normal and high transpiration rates.
Generally, the high number of stations where the correlation
between VODCA CXKu and sap flow is non-significant is
likely caused by the short temporal overlap between datasets,
with an average of 21 observations, compared to 31 observa-
tions on average for the stations where a significant relation-
ship has been found.

Figures 16b and A24 show the spatial distribution of the
SAPFLUXNET stations used in this analysis and the agree-
ment between VODCA CXKu and sap flow for each station.
The highest correlations can be observed for days with nor-
mal transpiration, with a median Spearman’s R of 0.67 fol-
lowed by high (median Spearman’s R: 0.64) and low (me-
dian Spearman’s R: 0.57) transpiration days (Fig. A24). In
contrast, the agreement is weaker on days with low transpi-
ration rates. Compared to the global analysis (as performed
in Fig. 16a), the higher correlations on a station basis indicate
that the complex, non-linear relationship between VOD and
sap flow is better described when modelled at each location.

4.6 AGB

Generally, there is very good yearly spatial agreement be-
tween VODCA L and Xu AGB, with Spearman’s R values
around 0.86 for each year. The relationship between VODCA
L and Xu AGB follows a logistic function (Fig. A27) as
found in earlier studies investigating the connection between
L-band VOD and AGB maps (Rodríguez-Fernández et al.,
2018; Mialon et al., 2020).

Regarding the temporal dynamics, our analysis (Fig. 18)
is limited to the availability of only annual Xu AGB observa-
tions. We calculate the difference in VODCA L, SMOS-IC
VOD and AGB between 2011 and 2019, similar to Araza
et al. (2023). Araza et al. (2023) investigate the change in
AGB for forested areas based on four multi-date AGB maps:
Xu AGB, SMOS-derived AGB (Wigneron et al., 2021), ESA
CCI AGB (Santoro and Cartus, 2021), and a carbon flux
model (Harris et al., 2021). In our analysis, we are more inter-
ested in the agreement between positive and negative change
patterns rather than the absolute change. Patterns of decreas-
ing VODCA L agree with decreases in Xu AGB and the maps
presented in Araza et al. (2023), e.g. for the Siberian bo-
real forest, west and central Africa, southwestern Amazon,
and the east coast of Australia. These are either well-known
deforestation hotspots (Song et al., 2018; Feng et al., 2022)
or areas that have been affected by severe wildfires in the
past decade according to the Global Fire Atlas (Andela et al.,
2019). Patterns of increasing VODCA L coincide with in-
creases in AGB around China, western Canada, and scattered
locations across Europe and Asia. Some of these locations
have been subject to reforestation efforts in the last decade
(Song et al., 2018). The comparison with Xu AGB also re-
veals areas with mismatching change patterns, such as the
North American boreal forests and the Amazon basin. How-
ever, the distribution of positive and negative change patterns
in VODCA L is similar to that of SMOS-IC VOD, includ-
ing in the areas with no agreement with Xu AGB. There-
fore, the dissimilar patterns are not caused by artefacts origi-
nating from the VODCA L merging framework. Differences
between VODCA L and SMOS-IC VOD can be observed
mainly in magnitude, which makes sense since VODCA L
uses a different retrieval algorithm and includes observations
from SMAP.

To enable comparison, we provide the same type of anal-
ysis in Fig. A28 for VODCA CXKu. As expected, since
VODCA CXKu entails information largely on the upper
canopy dynamics, trends and change patterns are more dis-
similar to those observed for Xu AGB, especially in boreal
and tropical forests.

5 Data availability

VODCA v2 is open-access and available at https://doi.org/
10.48436/t74ty-tcx62 (Zotta et al., 2024).

6 Conclusion and outlook

In VODCA v2, two new VOD datasets were introduced:
VODCA CXKu, a daily multi-frequency product spanning
1987 to 2021, and VODCA L, a 10-daily L-band product
covering the period 2010–2021. The datasets were com-
puted by scaling data from each satellite mission and fre-
quency band to a reference mission and band (SMAP for
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Figure 14. Pearson’s R between monthly VODCA CXKu and NMRI for the PBO stations over the bulk signal (a) and anomalies (b). The
stations with non-significant correlations are shown in grey. Time series over the bulk signal (c) and anomalies (d) of VODCA CXKu (blue)
and PBO NMRI (green) and scatter plot over the bulk signal (e) and over anomalies (f) for a station with good agreement between datasets
(BRUCESPRIN, lat 35.68°, long −120.29°, indicated with a cross in the correlation maps).

Figure 15. Pearson’s R between monthly VODCA L and NMRI for the PBO stations over the bulk signal (a) and anomalies (b). The stations
with non-significant correlation are shown in grey.
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Figure 16. (a) Density scatter plots outlining the relationship between VODCA CXKu and sap flow (SF) standard deviations (SD) for the
5th, 50th, and 95th percentiles of monthly data, for the stations with significant correlations. The colour bar shows the number of observations
in each bin. (b) Maps showing the agreement between SF (SD) and VODCA CXKu (SD) for each SAPFLUXNET station, for 5th, 50th, and
95th percentiles of monthly data. Stations with non-significant correlations are masked (p > 0.05).

Figure 17. (a) Temporal–spatial relationship between VODCA L q95 (95 % quantile) and Xu AGB over all overlapping years. The scatter
plot is coloured by the density of observations. Spearman’s r is shown in the upper right side. (b) Median of VODCA L q95 of each year in
2010–2019.

VODCA L and AMSR-E X-band for VODCA CXKu) us-
ing CDF matching. We made several changes compared to
VODCA v1. First, instead of three single high-frequency
products, we provide VODCA CXKu, which uses observa-
tions from the C-, X-, and Ku-band frequencies and is indica-

tive of VWC dynamics in the upper canopy. Combining the
high-frequency bands maximises the information contained
while increasing the number of daily observations and reduc-
ing noise. Second, we merged VOD estimates using a novel
weighted merging method that relies on temporal first-order
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Figure 18. Difference between the years 2019 and 2011 for (a) VODCA L, (b) SMOS-IC VOD, and (c) Xu AGB (method of Araza et al.
(2023) for reducing the inter-annual variability of the original time series). The analysis is limited to forested areas.

autocorrelation (AC(1)) to compute weights for locations and
time steps where multiple observations are available. The as-
sumption is that VOD, linked to gradual changes in vege-
tation water content, should exhibit a high degree of tem-
poral AC(1) between subsequent observations, while sudden
changes indicate noise. Third, VODCA v2 CXKu includes
two additional high-frequency sensors, SSM/I F17 and GPM
GMI. Specifically, SSM/I F17 addresses the gap between
AMSR-E and AMSR2, which in VODCA v1 led to trend
breaks above 35° N and below 35° S. We demonstrated that
due to these methodological improvements, VODCA CXKu
exhibits lower random error levels (higher AC(1)) than the
single-frequency products. VODCA L shows higher AC(1)
compared to LPRM-derived SMOS globally and areas with
increased and decreased AC(1) compared to LPRM-derived
SMAP. Therefore, VODCA L has the advantage of a longer
time series compared to SMAP and lower random error lev-
els compared to SMOS. The areas with decreased AC(1) are
primarily arid regions and deserts. We showed that the spatial
trend patterns have been significantly improved in VODCA
CXKu due to using SSM/I F17.

In summary, our validation results show the following:

– VODCA CXKu and MODIS FAPAR demonstrate sim-
ilar temporal patterns in various regions, especially for
short vegetation types and broadleaf forests, as observed
in literature with other optical vegetation indicators.

Artefacts from the retrieval algorithm are likely caus-
ing dissimilarities in boreal forests, while in tropical re-
gions, the lack of agreement is due to the minimal intra-
annual variability in VOD.

– VODCA CXKu agrees with ASCAT slope, particularly
in cropland, grassland, and needle-leaf deciduous forest.
However, weak correlations were found in needle-leaf
evergreen and broadleaf forests, consistent with prior
studies.

– VODCA CXKu aligns well with in situ NMRI data at
daily and monthly aggregations. Even though NMRI
uses L-band GPS observations, the agreement with
VODCA L is weak. This is likely because VODCA L
is predominantly sensitive to woody biomass, while the
NMRI stations are mainly located in grassland and crop-
land. Also, the difference in footprint size may play a
role.

– Preliminary findings suggest that VODCA CXKu cap-
tures transpiration patterns, especially on days with
medium and high transpiration, but further research is
needed to disentangle the VOD–sap flow connection.

– Yearly estimates of VODCA L correspond closely with
yearly Xu AGB maps, with their relationship being de-
scribed by a logistic function. Trends and changes in
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VODCA L exhibit similar patterns to Xu AGB and
with previous studies in deforestation, reforestation, and
wildfire hotspots. Further research is required to analyse
sub-yearly patterns.

– VODCA CXKu and VODCA L show mostly consis-
tent patterns through time and space, unaffected by
the fusion of multiple sensors and frequencies. How-
ever, in VODCA CXKu, we cannot exclude residual
bias between SSM/I F8 and F11, even though the best
available intercalibrated brightness temperature datasets
have been used to retrieve VOD.

Based on our findings, we conclude that VODCA CXKu
provides useful complementary information to optical vege-
tation indicators to study the vegetation canopy response to
climate variability and anthropogenic impacts. We suggest
using it for long-term vegetation monitoring studies, focus-
ing on short vegetation types and broadleaf forests. We rec-
ommend that users consider the possibility of residual bias
between data before 1992 and after. Nevertheless, for re-
search that delves into higher-order statistics such as variance
and autocorrelation temporally, it is crucial to consider the
influence of the heterogeneous sensor constellation through
time, as these statistics may also be sensitive to the overall
noise levels, which vary over time. VODCA L provides valu-
able insight into biomass and biomass change, but further re-
search is needed to determine its suitability for intra-annual
AGB monitoring. Given that our methodology for creating
VODCA L is not flawless in all circumstances (e.g. arid re-
gions), future studies should explore alternative methods for
merging SMOS and SMAP.
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Appendix A

Figure A1. ESA CCI Landcover map v2 (https://maps.elie.ucl.ac.be/CCI/viewer/, last access: 8 October 2024) for 2010, aggregated to major
classes. Locations containing open water have been masked.
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Figure A2. Spearman’s R between AMSR2 (2012–2021) VOD C, VOD X, and VOD Ku data. The correlations are based on daily data.

Figure A3. Spatial correlation (Spearman’s R) between average AMSR2 (2012–2021) VOD C, VOD X, and VOD Ku data.
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Figure A4. Fractional coverage of the VODCA v2 products, expressed as the total number of available observations divided by the total
number of possible observations in the overlapping period of January 2010–December 2021. Pixels that have a fractional cover of exactly 0
are shown in white.

Figure A5. Hovmöller diagrams showing anomalies of the monthly means per latitude for VODCA CXKu and VODCA L. Anomalies have
been computed as deviations from the climatology of the periods 1990–2020 (VODCA CXKu) and 2010–2021 (VODCA L).
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Figure A6. Yearly global time series of VODCA CXKu and FAPAR for the bulk signal (a) and for anomalies (b).

Figure A7. Yearly time series per land cover class for VODCA CXKu and MODIS FAPAR. ESA CCI LC was used.
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Figure A8. Yearly time series per land cover class for VODCA L and SMOS IC VOD. ESA CCI LC was used.

Figure A9. Yearly time series for the Dfc climate, corresponding to boreal forest, for VODCA CXKu and MODIS FAPAR.
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Figure A10. Yearly time series for the Dfc climate, corresponding to boreal forest, for VODCA L and SMOS IC VOD.

Figure A11. Yearly time series per continent for VODCA CXKu and MODIS FAPAR.
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Figure A12. Yearly time series per continent for VODCA L and SMOS IC VOD.

Figure A13. Time series of VODCA CXKu v1 (blue, computed with the old methodology), AMSR2 scaled to AMSR-E (blue), VODCA
CXKu v2 (green), and AMSR2 scaled to SSMI F17 (green), at a location where TMI is not available.
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Figure A14. Hovmöller diagram showing anomalies of the monthly means per latitude for MODIS FAPAR. Anomalies have been computed
as deviations from the long-term climatology (2000–2020).

Table A1. Spatial correlation computed over the overlapping period 2010–2019, between the VOD products, FAPAR and AGB.

Spearman’s R

VODCA L VODCA CXKu

AGB 0.874 0.800
FAPAR 0.78 0.714

Table A2. Median Spearman’s R between VODCA CXKu and MODIS FAPAR and ASCAT slope for the bulk signal and anomalies.

Median Spearman’s R

LC FAPAR (bulk) FAPAR (anomalies) slope (bulk) slope (anomalies)

All 0.34 0.23 0.19 0.17
Bare soil 0.31 0.22 0.16 0.16
Sparse veg. 0.43 0.32 0.36 0.35
Grassland 0.57 0.30 0.48 0.32
Cropland 0.56 0.30 0.46 0.30
Shrubs 0.59 0.41 0.16 0.15
Forest BE 0.04 0.01 -0.07 -0.04
Forest BD 0.49 0.19 0.01 0.09
Forest NE 0.09 0.04 0.14 0.13
Forest ND 0.07 0.14 0.32 0.35
Forest mixed 0.13 0.05 0.04 0.13
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Figure A15. Value ranges per LC class for VODCA L (a), SMAP VOD L (b), VODCA CXKu (c), and AMSR2 VOD X (d). Bins are
coloured by the relative frequency in percent of the respective values. ESA CCI LC was used.
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Figure A16. Coefficient of variation per LC for VODCA L, VODCA CXKu, and FAPAR. ESA CCI LC was used.

Figure A17. Fractional cover of (a) SMOS (2010–2021) and (b) SMAP VOD (2015–2021), after flagging. Pixels that have a fractional cover
of exactly 0 are shown in white.

Figure A18. Trends for the overlapping period (February 2000–August 2020) for (a) VODCA CXKu and (b) FAPAR.
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Figure A19. Trends (1987–2021) for VODCA CXKu computed with the Moesinger et al. (2020) satellite constellation and CDF matching
framework, by merging AMSR2 to TMI below 35° N latitude and AMSR-E above, and for VODCA CXKu computed with the method from
this paper, by matching AMSR2 to SSMI F17.

Figure A20. Violin plots showing the distribution of Spearman’s R between 8-daily VODCA CXKu and MODIS FAPAR (blue) and VODCA
CXKu and ASCAT slope (orange) calculated on anomalies, per land cover class (a–j).
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Figure A21. Spearman’s R between monthly VODCA L and MODIS FAPAR over the period 2010–2021 on the bulk signal (a) and anoma-
lies (b). Spearman’s R between monthly VODCA L and ASCAT slope over the period 2010–2021 on the bulk signal (c) and anomalies (d).

Figure A22. Violin plots showing the distribution of Spearman’s R between monthly VODCA L and MODIS FAPAR (blue) and VODCA L
and ASCAT slope (orange) on the bulk signal, per land cover class.
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Figure A23. Violin plots showing the distribution of Spearman’s R between monthly VODCA L and MODIS FAPAR (blue) and VODCA L
and ASCAT slope (orange) over anomalies, per land cover class.

Figure A24. Agreement between VODCA CXKu (SD) and sap flow (SD) for the monthly 5th, 50th, and 95th percentiles. Red points
represent the correlation for each station.
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Figure A25. Percentage of observations affected by RFI in the AMSR2 (2012–2021) C- and X-band. The internal flag provided with the
LPRM data was used.

Figure A26. (a) Pearson’s R between daily VODCA CXKu and NMRI for each PBO station. Only sites with significant correlation are
shown. (b) Time series of VODCA CXKu (blue) and PBO NMRI (green) for a station with above-average agreement between datasets.
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Figure A27. Agreement between VODCA CXKu q95 and Xu AGB for each year in the interval 2010–2019.
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Figure A28. (a) Theil–Sen trends for VODCA CXKu for 2011–2020. (b) Theil–Sen trends for Xu AGB for the same period. Difference
between the years 2019–2011 for (c) VODCA CXKu and (d) Xu AGB (method of Araza et al., 2023).
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F. M., Tor-ngern, P., Urban, J., Valladares, F., van der Tol, C.,
van Meerveld, I., Varlagin, A., Voigt, H., Warren, J., Werner, C.,
Werner, W., Wieser, G., Wingate, L., Wullschleger, S., Yi, K.,
Zweifel, R., Steppe, K., Mencuccini, M., and Martínez-Vilalta,
J.: Global transpiration data from sap flow measurements: the
SAPFLUXNET database, Earth Syst. Sci. Data, 13, 2607–2649,
https://doi.org/10.5194/essd-13-2607-2021, 2021.

Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Brandt, M., Fan, L.,
Li, X., Crowell, S., Wu, X., Doughty, R., Zhang, Y., Liu, F.,
Sitch, S., and Moore III, B.: Carbon loss from forest degradation
exceeds that from deforestation in the Brazilian Amazon, Nat.
Clim. Change, 11, 442–448, https://doi.org/10.1038/s41558-
021-01026-5, 2021.

Rodríguez-Fernández, N. J., Mialon, A., Mermoz, S., Bouvet, A.,
Richaume, P., Al Bitar, A., Al-Yaari, A., Brandt, M., Kaminski,
T., Le Toan, T., Kerr, Y. H., and Wigneron, J.-P.: An evaluation
of SMOS L-band vegetation optical depth (L-VOD) data sets:
high sensitivity of L-VOD to above-ground biomass in Africa,
Biogeosciences, 15, 4627–4645, https://doi.org/10.5194/bg-15-
4627-2018, 2018.

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E.
T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen,
S., Petrova, S., White, L., Silman, M., and Morel, A.: Bench-
mark map of forest carbon stocks in tropical regions across
three continents, P. Nat. Acad. Sci. USA, 108, 9899–9904,
https://doi.org/10.1073/pnas.1019576108, 2011.

Santoro, M. and Cartus, O.: ESA biomass climate change initiative
(Biomass_cci): Global datasets of forest above-ground biomass
for the years 2010, 2017 and 2018, v2, Cent. Environ. Data Anal,
https://doi.org/10.5285/af60720c1e404a9e9d2c145d2b2ead4,
2021.

Sawada, Y., Tsutsui, H., Koike, T., Rasmy, M., Seto, R., and Fu-
jii, H.: A field verification of an algorithm for retrieving vegeta-
tion water content from passive microwave observations, IEEE
T. Geosci. Remote, 54, 2082–2095, 2015.

Schmidt, L., Forkel, M., Zotta, R.-M., Scherrer, S., Dorigo, W. A.,
Kuhn-Régnier, A., van der Schalie, R., and Yebra, M.: Assessing
the sensitivity of multi-frequency passive microwave vegetation
optical depth to vegetation properties, Biogeosciences, 20, 1027–
1046, https://doi.org/10.5194/bg-20-1027-2023, 2023.

Small, E. E., Roesler, C. J., and Larson, K. M.: Vegeta-
tion response to the 2012–2014 California drought from
GPS and optical measurements, Remote Sens., 10, 630,
https://doi.org/10.3390/rs10040630, 2018.

Smith, T., Traxl, D., and Boers, N.: Empirical evidence for recent
global shifts in vegetation resilience, Nat. Clim. Change, 12,
477–484, 2022.

Smith, T., Zotta, R.-M., Boulton, C. A., Lenton, T. M., Dorigo,
W., and Boers, N.: Reliability of resilience estimation based on
multi-instrument time series, Earth Syst. Dynam., 14, 173–183,
https://doi.org/10.5194/esd-14-173-2023, 2023.

Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukav-
ina, A., Vermote, E. F., and Townshend, J. R.: Global land change
from 1982 to 2016, Nature, 560, 639–643, 2018.

Steele-Dunne, S. C., Hahn, S., Wagner, W., and Vreugdenhil,
M.: Investigating vegetation water dynamics and drought using
Metop ASCAT over the North American Grasslands, Remote
Sens. Environ., 224, 219–235, 2019.

Tagesson, T., Tian, F., Schurgers, G., Horion, S., Scholes, R.,
Ahlström, A., Ardö, J., Moreno, A., Madani, N., Olin, S.,
and Fensholt, R.: A physiology-based Earth observation model
indicates stagnation in the global gross primary production
during recent decades, Glob. Change Biol., 27, 836–854,
https://doi.org/10.1111/gcb.15424, 2021.

Teubner, I. E., Forkel, M., Jung, M., Liu, Y. Y., Miralles, D. G., Pari-
nussa, R., Van der Schalie, R., Vreugdenhil, M., Schwalm, C. R.,
Tramontana, G., Camps-Valls, G., and Dorigo, W. A.: Assessing
the relationship between microwave vegetation optical depth and
gross primary production, Int. J. Appl. Earth Obs., 65, 79–91,
https://doi.org/10.1016/j.jag.2017.10.006, 2018.

Teubner, I. E., Forkel, M., Camps-Valls, G., Jung, M., Miralles,
D. G., Tramontana, G., Van der Schalie, R., Vreugdenhil, M.,
Mösinger, L., and Dorigo, W. A.: A carbon sink-driven approach
to estimate gross primary production from microwave satellite
observations, Remote Sens. Environ., 229, 100–113, 2019.

Teubner, I. E., Forkel, M., Wild, B., Mösinger, L., and Dorigo,
W.: Impact of temperature and water availability on microwave-
derived gross primary production, Biogeosciences, 18, 3285–
3308, https://doi.org/10.5194/bg-18-3285-2021, 2021.

Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., and
Wang, Y.: Evaluating temporal consistency of long-term global
NDVI datasets for trend analysis, Remote Sens. Environ., 163,
326–340, 2015.

Tian, F., Wigneron, J.-P., Ciais, P., Chave, J., Ogée, J., Peñuelas,
J., Ræbild, A., Domec, J.-C., Tong, X., Brandt, M., Mialon, A.,
Rodriguez-Fernandez, N., Tagesson, T., Al-Yaari, A., Kerr, Y.,
Chen, C., Myneni, R. B., Zhang, W., Ardö, J., and Fensholt, R.:
Coupling of ecosystem-scale plant water storage and leaf phe-
nology observed by satellite, Nat. Ecol. Evol., 2, 1428–1435,
https://doi.org/10.1038/s41559-018-0630-3, 2018.

Van der Schalie, R., de Jeu, R. A., Kerr, Y. H., Wigneron, J.-
P., Rodríguez-Fernández, N. J., Al-Yaari, A., Parinussa, R. M.,
Mecklenburg, S., and Drusch, M.: The merging of radiative trans-
fer based surface soil moisture data from SMOS and AMSR-E,
Remote Sens. Environ., 189, 180–193, 2017.

van der Schalie, R., van der Vliet, M., Rodríguez-Fernández,
N., Dorigo, W. A., Scanlon, T., Preimesberger, W., Madelon,
R., and de Jeu, R. A.: L-band soil moisture retrievals using
microwave based temperature and filtering. Towards model-
independent climate data records, Remote Sens., 13, 2480,
https://doi.org/10.3390/rs13132480, 2021.

van der Vliet, M., van der Schalie, R., Rodriguez-Fernandez, N.,
Colliander, A., de Jeu, R., Preimesberger, W., Scanlon, T., and
Dorigo, W.: Reconciling flagging strategies for multi-sensor
satellite soil moisture climate data records, Remote Sens., 12,
3439, https://doi.org/10.3390/rs12203439, 2020.

Van Dijk, A. I., Beck, H. E., Crosbie, R. S., De Jeu, R. A., Liu,
Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millen-
nium Drought in southeast Australia (2001–2009): Natural and
human causes and implications for water resources, ecosystems,
economy, and society, Water Resour. Res., 49, 1040–1057, 2013.

Earth Syst. Sci. Data, 16, 4573–4617, 2024 https://doi.org/10.5194/essd-16-4573-2024

https://doi.org/10.5194/essd-13-2607-2021
https://doi.org/10.1038/s41558-021-01026-5
https://doi.org/10.1038/s41558-021-01026-5
https://doi.org/10.5194/bg-15-4627-2018
https://doi.org/10.5194/bg-15-4627-2018
https://doi.org/10.1073/pnas.1019576108
https://doi.org/10.5285/af60720c1e404a9e9d2c145d2b2ead4
https://doi.org/10.5194/bg-20-1027-2023
https://doi.org/10.3390/rs10040630
https://doi.org/10.5194/esd-14-173-2023
https://doi.org/10.1111/gcb.15424
https://doi.org/10.1016/j.jag.2017.10.006
https://doi.org/10.5194/bg-18-3285-2021
https://doi.org/10.1038/s41559-018-0630-3
https://doi.org/10.3390/rs13132480
https://doi.org/10.3390/rs12203439


R.-M. Zotta et al.: VODCA v2 4617

Vandegehuchte, M. W. and Steppe, K.: Corrigendum to: Sap-flux
density measurement methods: working principles and applica-
bility, Funct. Plant Biol., 40, 1088–1088, 2013.

Vreugdenhil, M., Dorigo, W. A., Wagner, W., De Jeu, R. A., Hahn,
S., and Van Marle, M. J.: Analyzing the vegetation parameteri-
zation in the TU-Wien ASCAT soil moisture retrieval, IEEE T.
Geoscie. Remote, 54, 3513–3531, 2016.

Vreugdenhil, M., Hahn, S., Melzer, T., Bauer-Marschallinger, B.,
Reimer, C., Dorigo, W. A., and Wagner, W.: Assessing vegetation
dynamics over mainland Australia with Metop ASCAT, IEEE J.
Sel. Top. Appl. Earth Obs., 10, 2240–2248, 2017.

Vreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B.,
Hahn, S., Steele-Dunne, S., Pfeil, I., Dorigo, W., and
Wagner, W.: Sentinel-1 cross ratio and vegetation optical
depth: A comparison over Europe, Remote Sens., 12, 3404,
https://doi.org/10.3390/rs12203404, 2020.

Vreugdenhil, M., Greimeister-Pfeil, I., Preimesberger, W., Camici,
S., Dorigo, W., Enenkel, M., van der Schalie, R., Steele-Dunne,
S., and Wagner, W.: Microwave remote sensing for agricultural
drought monitoring: Recent developments and challenges, Front.
Water, 4, 1045451, https://doi.org/10.3389/frwa.2022.1045451,
2022.

Wagner, W., Lindorfer, R., Melzer, T., Hahn, S., Bauer-
Marschallinger, B., Morrison, K., Calvet, J.-C., Hobbs, S., Quast,
R., Greimeister-Pfeil, I., and Vreugdenhil, M.: Widespread oc-
currence of anomalous C-band backscatter signals in arid en-
vironments caused by subsurface scattering, Remote Sens. En-
viron., 276, 113025, https://doi.org/10.1016/j.rse.2022.113025,
2022.

Wentz, F. J.: A well-calibrated ocean algorithm for special sensor
microwave/imager, J. Geophys. Res.-Oceans, 102, 8703–8718,
1997.

Wigneron, J.-P., Kerr, Y.,Waldteufel, P., Saleh, K., Escorihuela, M.-
J., Richaume, P., Ferrazzoli, P., De Rosnay, P., Gurney, R., Cal-
vet, J.-C., Grant, J. P., Guglielmetti, M., Hornbuckle, B., Mätzler,
C., Pellarin, T., and Schwank, M.: L-band Microwave Emission
of the Biosphere (L-MEB) Model: Description and calibration
against experimental data sets over crop fields, Remote Sens. En-
viron., 107, 639–655, 2007.

Wigneron, J.-P., Jackson, T. J., O’Neill, P., De Lannoy, G., de Ros-
nay, P., Walker, J. P., Ferrazzoli, P., Mironov, V., Bircher, S.,
Grant, J. P., Kurum, M., Schwank, M., Munoz-Sabater, J., Das,
N., Royer, A., Al-Yaari, A., Al Bitar, A., Fernandez-Moran, R.,
Lawrence, H., Mialon, A., and Kerr, Y.: Modelling the passive
microwave signature from land surfaces: A review of recent re-
sults and application to the L-band SMOS & SMAP soil mois-
ture retrieval algorithms, Remote Sens. Environ., 192, 238–262,
https://doi.org/10.1016/j.rse.2017.01.024, 2017.

Wigneron, J.-P., Li, X., Frappart, F., Fan, L., Al-Yaari, A., De Lan-
noy, G., Liu, X., Wang, M., Le Masson, E., and Moisy, C.:
SMOS-IC data record of soil moisture and L-VOD: Historical
development, applications and perspectives, Remote Sens. En-
viron., 254, 112238, https://doi.org/10.1016/j.rse.2020.112238,
2021.

Wild, B., Teubner, I., Moesinger, L., Zotta, R.-M., Forkel, M., van
der Schalie, R., Sitch, S., and Dorigo, W.: VODCA2GPP – a new,
global, long-term (1988–2020) gross primary production dataset
from microwave remote sensing, Earth Syst. Sci. Data, 14, 1063–
1085, https://doi.org/10.5194/essd-14-1063-2022, 2022.

World Meteorological Organization: WMO guidelines on the calcu-
lation of climate normals, 18, WMO-No. 1203, 2017.

Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A.,
Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts,
R. E., Woodall, C., Nabuurs, G.-J., de-Miguel, S., Keller, M.,
Harris, N., Maxwell, S., and Schime, D.: Changes in global ter-
restrial live biomass over the 21st century, Sci. Adv., 7, eabe9829,
https://doi.org/10.1126/sciadv.abe9829, 2021.

Yang, H., Ciais, P., Wigneron, J.-P., Chave, J., Cartus, O., Chen,
X., Fan, L., Green, J. K., Huang, Y., Joetzjer, E., Kay, H.,
Makowski, D., Maignan, F., Santoro, M., Tao, S., Liu, L.,
and Yao, Y.: Climatic and biotic factors influencing regional
declines and recovery of tropical forest biomass from the
2015/16 El Niño, P. Natl. Acad. Sci. USA, 119, e2101388119,
https://doi.org/10.1073/pnas.2101388119, 2022.

Yang, H., Ciais, P., Frappart, F., Li, X., Brandt, M., Fensholt, R.,
Fan, L., Saatchi, S., Besnard, S., Deng, Z., Bowring, S., and
Wigneron, J. P.: Global increase in biomass carbon stock dom-
inated by growth of northern young forests over past decade,
Nat. Geosci., 16, 886–892, https://doi.org/10.1038/s41561-023-
01274-4, 2023.

Zhang, Y., Song, C., Band, L. E., Sun, G., and Li, J.: Reanaly-
sis of global terrestrial vegetation trends from MODIS products:
Browning or greening?, Remote Sens. Environ., 191, 145–155,
2017.

Zotta, R., van der Schalie, R., Preimesberger, W., Mösinger, L.,
De Jeu, R., and Dorigo, W.: Vegetation Optical Depth [in State of
the Climate in 2022], B. Am. Meteorol. Soc., 104, S110–S112,
2023.

Zotta, R.-M., Moesinger, L., van der Schalie, R., Preimesberger, W.,
Frederikse, T., De Jeu, R., and Dorigo, W.: VODCA v2: Multi-
sensor, multi-frequency vegetation optical depth data for long-
term canopy dynamics and biomass monitoring (1.0.0), TU Wien
[data set], https://doi.org/10.48436/7sjqa-fyw66, 2024.

https://doi.org/10.5194/essd-16-4573-2024 Earth Syst. Sci. Data, 16, 4573–4617, 2024

https://doi.org/10.3390/rs12203404
https://doi.org/10.3389/frwa.2022.1045451
https://doi.org/10.1016/j.rse.2022.113025
https://doi.org/10.1016/j.rse.2017.01.024
https://doi.org/10.1016/j.rse.2020.112238
https://doi.org/10.5194/essd-14-1063-2022
https://doi.org/10.1126/sciadv.abe9829
https://doi.org/10.1073/pnas.2101388119
https://doi.org/10.1038/s41561-023-01274-4
https://doi.org/10.1038/s41561-023-01274-4
https://doi.org/10.48436/7sjqa-fyw66

	Abstract
	Introduction
	Data
	Vegetation optical depth datasets
	The Land Parameter Retrieval Model (LPRM)
	Passive microwave sensor data

	Ancillary data
	Evaluation data
	MODIS FAPAR
	ASCAT slope
	PBO network NMRI
	SAPFLUXNET sap flow
	AGB
	SMOS-IC VOD
	ESA CCI Landcover


	Methods
	General framework
	Preprocessing
	CDF matching
	Temporal autocorrelation as a measure of random error
	Weighted merging

	Results and discussion
	Global patterns
	Spatio-temporal consistency
	Changes in AC(1)
	Trends
	Temporal dynamics of the upper canopy
	MODIS FAPAR
	ASCAT slope
	PBO NMRI
	SAPFLUXNET

	AGB

	Data availability
	Conclusion and outlook
	Appendix A
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

