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Abstract. Vehicles are among the most important contributors to global anthropogenic CO2 emissions. How-
ever, the lack of fuel-, vehicle-type-, and age-specific information about global on-road CO2 emissions in existing
datasets, which are available only at the sector level, makes these datasets insufficient for supporting the estab-
lishment of emission mitigation strategies. Thus, a fleet turnover model is developed in this study, and CO2
emissions from global on-road vehicles from 1970 to 2020 are estimated for each country. Here, we analyze
the evolution of the global vehicle stock over 50 years, identify the dominant emission contributors by vehicle
and fuel type, and further characterize the age distribution of on-road CO2 emissions. We find that trucks ac-
counted for less than 5 % of global vehicle ownership but represented more than 20 % of on-road CO2 emissions
in 2020. The contribution of diesel vehicles to global on-road CO2 emissions doubled during the 1970–2020
period, driven by the shift in the fuel-type distribution of vehicle ownership. The proportion of CO2 emissions
from vehicles in developing countries such as China and India in terms of global emissions from newly regis-
tered vehicles significantly increased after 2000, but global CO2 emissions from vehicles that had survived more
than 15 years in 2020 still originated mainly from developed countries such as the United States and countries
in the European Union. The data are publicly available at https://doi.org/10.6084/m9.figshare.24548008 (Yan et
al., 2024).

1 Introduction

To meet the Paris Agreement’s 1.5° long-term temperature
goal, many efforts have been made to determine pathways
for reducing the emissions of greenhouse gases such as CO2
(Matthews and Caldeira, 2008; Meinshausen et al., 2009; Ro-
gelj et al., 2018; Davis et al., 2018; Höhne et al., 2020).
Historical emission data and consistent emission series of
on-road vehicles, which are key sources of CO2 emissions,
are important inputs for Earth system models, atmospheric
chemistry and transport models, and integrated assessment
models to support studies on both climate change and global
climate governance (Bhalla et al., 2014; Janssens-Maenhout

et al., 2019; Lelieveld et al., 2015; Shindell et al., 2011;
Silva et al., 2016; Unger et al., 2010). Thus, estimating long-
term CO2 emissions from global on-road vehicles with de-
tailed source information is necessary as deep greenhouse
gas emission reductions are pursued.

Several global emission inventories that cover emissions
from on-road vehicles have been developed and are widely
used in global research and modeling. CO2 emissions from
on-road vehicles can be derived from global anthropogenic
emission inventories, including the Emissions Database for
Global Atmospheric Research (EDGAR), the Open-source
Data Inventory for Atmospheric CO2 (ODIAC), the Carbon
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Emission and Accounts Datasets (CEADs), and the Peking
University (PKU)-CO2 inventory. On-road CO2 emissions
are estimated with the total fuel consumption of the road
sector at the country level and fleet average emission factors
in EDGAR (Amstel et al., 1999; Crippa et al., 2016, 2018;
Janssens-Maenhout et al., 2019). Following the method in
EDGAR, local data sources are introduced more often in
ODIAC (Boden et al., 2016, 2017; Oda et al., 2018), CEDS
(Hoesly et al., 2018), and PKU-CO2 (Wang et al., 2013)
when estimating on-road CO2 emissions. Global CO2 emis-
sions from on-road vehicles in these widely used emission
inventories are estimated as a whole at the sector level in each
country using the fuel-based method, and fleet structure in-
formation (e.g., fuel-, vehicle-type-, and age-specific charac-
teristics) for on-road CO2 emissions is omitted. Technology-
based models such as the Greenhouse Gas and Air Pollution
Interactions and Synergies (GAINS) (Klimont et al., 2017)
and Speciated Pollutant Emissions Wizard (SPEW)-Trend
(Bond et al., 2004, 2007; Yan et al., 2011, 2014) models can
be used to describe fleet structure information on emissions
from global on-road vehicles, but emission inventories based
on these models only include emissions of air pollutants.

Here, a new global inventory of fuel-, vehicle-type-, and
age-specific CO2 emissions from on-road vehicles for each
country from 1970 to 2020 is developed with the global fleet
turnover model, in which six types of fuels, five types of ve-
hicles, and 231 countries are considered. Based on this in-
ventory, we analyze the evolution of the global vehicle stock
over 50 years, identify the dominant emission contributors
by vehicle and fuel type, and further characterize the age dis-
tribution of on-road CO2 emissions. Compared to the pub-
licly available on-road CO2 emissions from previous studies,
CO2 emissions in this study have more detailed source cate-
gories which are refined into vehicle and fuel type. With the
age distribution simulated by our fleet turnover model, CO2
emissions offered in this study would better support the pol-
icymaking of emission mitigation.

2 Materials and methods

2.1 Methodological framework

For a given country c, the annual CO2 emissions from on-
road vehicles in year y are estimated as follows:

Emisc,y,v,f =
∑i=T

i=0
Stockc,y,v ×Xc,y,v,i

×FuelRc,y,v,f ×VKTc,y,v,f ×FEc,y,v,f ×EFc,f , (1)

Stockc,y,v = V ∗c,y,v × e
αc,ve

βc,vEc,y
×Populationc,y, (2)

Stockc,y,v =
∑i=T

i=0
Salec,y−i,v ×Survc,v,i, (3)

Xc,y,v,i = Salec,y−i,v ×Survc,v,i/
∑i=T

i=0
Salec,y−i,v

×Survc,v,i, (4)

Fuelc,y,f =
∑

v
Stockc,y,v ×FuelRc,y,v,f

×VKTc,y,v,f ×FEc,y,v,f , (5)

where y is the target year, which ranges from 1970 to 2020;
i is the age of the vehicles registered in the year (y− i); T is
the lifetime of vehicles; v is the vehicle type, which includes
two types of light-duty vehicles, i.e., passenger cars (PLDVs)
and light commercial vehicles (CLDVs), two types of heavy-
duty vehicles, i.e., buses and trucks, and motorcycles (MCs);
and f is the fuel type, which includes gasoline, diesel, nat-
ural gas (NG), liquefied petroleum gas (LPG), electricity,
and other fuels. As shown in Eq. (1), annual CO2 emissions
(Emisc,y,v,f ) are estimated by the vehicle stock (Stockc,y,v),
the fleet-average fuel structure (FuelRc,y,v,f ), the annual av-
erage kilometers traveled (VKTc,y,v,f ), the fleet-average fuel
economy (FEc,y,v,f ), the age distribution of the vehicle stock
(Xc,y,v,i), and the CO2 emission factor (EFc,f ). Stockc,y,v
can be modeled using the Gompertz function (Eq. 2), which
is an S-shaped curve determined by two negative parame-
ters (α and β), with the saturated vehicle stock per 1000
people (V ∗), per capita gross domestic product (GDP; E),
and population (Populationc,y) as inputs. The age distribu-
tion of the vehicle stock (Xc,y,v,i), which represents the pro-
portion of surviving vehicles registered in the year (y− i)
to the target year y, is modeled on the basis of the dy-
namic balance function (Eqs. 3 and 4) using the number
of newly registered vehicles (Salec,y−i,v) and survival rates
(Survc,v,i). Fuel consumption by vehicle type, which is cal-
culated using Stockc,y,v , Xc,y,v,i , FuelRc,y,v,f , VKTc,y,v,f ,
and FEc,y,v,f , is constrained by the total on-road fuel con-
sumption (Fuelc,y,f ) at the country level (Eq. 5).

In this study, the fleet turnover emission model (Fig. 1)
is constructed based on Eqs. (1)–(5). Specifically, we first
build an integrated vehicle stock database by combining and
harmonizing the available vehicle stock data from a series
of global, regional, and national statistics and filling data
gaps with the modeled stock based on the Gompertz func-
tion (Eq. 2). Second, the age distribution of the stock is sim-
ulated with a combined vehicle sale statistical database and
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an integrated vehicle stock database using the dynamic bal-
ance function (Eqs. 3 and 4). Third, vehicular fuel consump-
tion is estimated using outputs from the first two steps and
other vehicle-activity-related data and is constrained by na-
tional fuel consumption statistics (Eq. 5). Finally, fuel- and
vehicle-type-specific CO2 emissions from global on-road ve-
hicles from 1970 to 2020 are modeled on the basis of con-
strained vehicular fuel consumption and CO2 emission fac-
tors (Eq. 1).

2.2 Modeling the vehicle stock

In the first step, an integrated vehicle stock database from
1970 to 2020 was constructed with both statistical and
modeled data. The statistical data used in this study were
collected from various available vehicle stock statistics, in
which global statistics were used as the default vehicle stock
and local statistics were used to supplement and amend the
default data. When statistical data were unavailable for a
country in a given year, vehicle stock modeled by the Gom-
pertz function was used.

To determine the default vehicle stock database, two
widely used vehicle stock statistics from the World Road
Statistics (WRS) 2021 Edition (IRF, 2024) and the Interna-
tional Organization of Motor Vehicle Manufacturers (OICA,
2024) were collected and compared. We found that the trends
of vehicle stock in the WRS and OICA data were similar,
but the absolute value of the vehicle stock in the OICA data
was lower than that in the WRS data, especially for devel-
oping countries (Fig. S2 in the Supplement). Taking India as
an example, the vehicle stock in the OICA data was 85 %
less than that in the WRS data. To further confirm the re-
liability of these two global databases, local statistics were
used for comparison. The WRS data were more similar to
the local vehicle statistics than were the OICA data (Fig. S2).
After comprehensive consideration of spatiotemporal cover-
age, updating frequency and stability, and data reliability, the
WRS data were used as the default for global vehicle statis-
tics, and the OICA data were used if there were no data avail-
able from the WRS.

We also collected a series of local statistics as supplements
and amendments to the global vehicle statistics, in which 49
developing and developed countries were included (ACEA,
2024; CEIC, 2024; EC, 2024; JAMA, 2024; MEIC, 2024;
MOSPI, 2024; NBS, 2024; TEDB, 2024). By coupling mul-
tiple global and local vehicle databases, a vehicle statistical
database combined by vehicle category was established in
this study. As the division of vehicle types varied among the
statistics, we established a mapping relationship of vehicle
types between this study and other data sources (Table S2 in
the Supplement).

Given that statistical data for vehicles were unavailable be-
fore 2000 for most countries, the Gompertz function, which
was often applied to establish the relationship between vehi-
cle ownership and economic indicators (Dargay and Gately,

1999; Dargay et al., 2007; Huo and Wang, 2012), was sub-
sequently used in this study to model the vehicle stock.
In this study, per capita GDP was calculated with national
GDP (NBS; UNdata; WB, 2024) and population (NBS; WPP,
2024) as the economic indicators. The saturated vehicle stock
per 1000 people was first derived from previous studies (Huo
and Wang, 2012) and then adjusted by the maximal vehicle
stock per 1000 people calculated using statistical data. The
combined vehicle statistical database was used to estimate
parameters (α and β) of the Gompertz function at the coun-
try level. For countries whose R square (R2) of the country-
level regression was less than 0.5, regional or global α and β
regression parameters were used instead (Zheng et al., 2014).

To verify the vehicle stock modeled by the Gompertz func-
tion, we compared it with the statistical vehicle stock for
countries in years when statistics were available. The relative
deviation ratios in countries with the top 85 % of the global
vehicle stock were between −28 % and 25.6 %. The ranges
of the relative deviations in the rest of the countries were a bit
larger due to the limited availability of statistics. Figures 2a
and S3 in the Supplement show the comparison in 2015, a
year with more statistical data. The deviation of the modeled
vehicle stock from the statistics in most countries was less
than ±25 %, especially in the United States, countries in the
European Union, China, and India. The relatively good con-
sistency between the modeled and statistical vehicle stock
indicates the relatively high reliability of this model. There-
fore, a long-term integrated vehicle stock database (1970–
2020) was constructed by constraining the modeled vehicle
stock using the combined vehicle statistical database.

2.3 Modeling the age distribution of vehicle stock

Then, the age distribution of the stock was modeled using
the dynamic balanced function with the integrated vehicle
stock database set up in the first step and a combined ve-
hicle sale statistical database. Similar to the combination of
vehicle stock statistics, OICA data were used as the default
vehicle sale database with WRS data as a supplement after
comparison, and local statistics (ACEA; CEIC; EC; JAMA;
MEIC; NBS; TEDB) were also involved to correct the default
database. Limited by the temporal coverage of the statistical
data, vehicle sales were not available for most countries be-
fore 2005. Therefore, the newly registered vehicles for miss-
ing years were back-calculated with the dynamic balanced
function, in which the vehicle stock from the previous step
and the survival rates derived from available studies and re-
ports (Huo and Wang, 2012; Yan et al., 2011, 2014; Zheng et
al., 2014) were inputs. Here we classified 231 countries into
two types: focus countries and broader regions (Table S1 in
the Supplement). Twenty countries owning the top 75 % of
global vehicles were classified as focus countries, for which
the dynamic balanced function was built at the country level.
The remaining 211 countries were marked as broader re-
gions and further combined into eight regions according to
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Figure 1. Schematic methodology for estimating vehicular CO2 emissions.

Figure 2. Verification of the modeled vehicle stock in the United States, the European Union, China, and India (a) and the age distribution
for PLDVs (b) in 2015.

the roadmap region definition (ICCT, 2012). In each broader
region, data in a representative country with the most abun-
dant statistics in a region were used to build the dynamic bal-
anced function, and the age distribution in this country was
assumed to be able to represent that in other countries be-
longing to the same region. The age distribution in this study

was not simulated for MCs due to the limitation of the data
availability, and we assumed that they shared the same age
distribution as PLDVs.

To verify the age distribution modeled by the dynamic bal-
anced function, the relative deviation between the simulated
vehicle stock based on newly registered vehicles and survival
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rates and the vehicle stock in the first step was used as the
validation indicator. Except for several years in Argentina
and Thailand, the relative deviation ratios of light-duty ve-
hicles during 1970–2020 range from−30.9 % to 30.8 %, and
heavy-duty vehicles had larger relative deviation ratios which
were between−36.5 % and 34.9 %. Taking 2015 as an exam-
ple, the relative deviation ratios in most countries were less
than ±30 % (Figs. 2b and S4 in the Supplement). The rela-
tively good consistency between the vehicle stock and simu-
lation indicated that the dynamic balance function set up in
this study could model the entry of newly registered vehi-
cles well and that the retirement of existing vehicles and the
estimated age distribution were reliable.

2.4 Estimates of fuel consumption

In the third step, we estimated the initial vehicular fuel
consumption based on outputs from the first two steps and
parameters, including the annual average kilometers trav-
eled (VKT), fuel structure, and fuel economy. Then the ini-
tial vehicular fuel consumption was constrained with energy
statistics from World Energy Statistics (IEA1, 2024) at the
country level, which was finally used in CO2 estimation.
VKT, fuel structure, and fuel economy are rarely available in
global statistics annually. This study used fleet-average data,
which were estimated based on vehicle kilometers, the ve-
hicle stock, vehicle-kilometer energy intensity, and fuel con-
sumption by category in energy efficiency statistics (IEA2,
2019). These indexes for 39 countries (accounting for 43 %–
73 % of the global vehicle stock) during the 2000–2018 pe-
riod can be found in energy efficiency statistics. For countries
that were not covered in energy efficiency statistics, the re-
gional or global mean VKT, fuel structure, and fuel economy
were used. For missing years, we assumed that the values
of these three parameters were similar to those of the adja-
cent year. There are few local statistics or studies that eval-
uate the VKT, fuel structure, and fuel economy; therefore,
these parameters were supplemented and revised only for the
United States, Europe, China, and Japan using local statis-
tics or studies (ACEA; IEA3, 2024; JAMA; MEIC; TEDB;
TRACCS, 2024).

As a validation of fuel consumption, the initial vehicu-
lar fuel consumption was compared to energy statistics by
fuel type (Fig. S5 in the Supplement). The ranges of the rel-
ative deviation ratios of gasoline, diesel, NG, and LPG were
−23 % to 3 %, −19 % to 9 %, −22 % to 34 %, and −39 % to
14 %, respectively. As CO2 is not directly emitted as exhaust
by electrical vehicles, whether they were running, starting,
or parking, electricity was not considered in the estimation
of vehicular fuel consumption in this study. The consistency
of the simulation with statistics ensured the feasibility of con-
straining the modeled fuel consumption using statistics.

2.5 Estimates of CO2 emissions and uncertainty
assessment

Finally, vehicular CO2 emissions were estimated using the
constrained vehicular fuel consumption from a previous step
and a combined CO2 emission factor database in which emis-
sion factors from the Intergovernmental Panel on Climate
Change (IPCC, 2024) were used as the default emission fac-
tors, and local studies (EEA, 2024; Shan et al., 2018) were
used as supplements and amendments. As the CO2 emission
factor is influenced mainly by the fuel type and country, the
estimation of CO2 emissions would not be interfered with
by the simplified assumption for MCs in modeling the age
distribution.

Following the method in Crippa et al. (2018, 2019), the
corresponding uncertainty (σ ) of CO2 emissions from on-
road vehicles in year y for a given country c is calculated as
follows:

σEmisc,y =√∑
f

(
σ 2

ADc,y,f + σ
2
EFc,f

)
×
(
Emisc,y,f /Emisc,y

)2
, (6)

where σAD and σEF are the uncertainties (%) of the activity
data (the constrained fuel consumption of on-road vehicles)
and CO2 emission factors. Based on the assumption of a log-
normal distribution of the calculated uncertainties (Bond et
al., 2004), we evaluated the upper and lower ranges of the
CO2 estimate by multiplying and dividing the base emissions
in this study by 1+ σ (Crippa et al., 2018).

As CO2 uncertainty can vary significantly among coun-
tries (Marland et al., 1999; Olivier et al., 2014) and the pri-
mary source of uncertainty of the CO2 estimate from on-
road vehicles is the activity data rather than emission factors
(GPG, 2000), the main step in CO2 uncertainty assessment
is to evaluate the uncertainty of national activity data. In this
study, 231 countries were divided into several groups (Ta-
ble S1) in the uncertainty assessment, in accordance with the
IPCC’s tiered approach and EDGAR (Janssens-Maenhout
et al., 2019). Here we assume that countries belonging to
the OECD in 1990 (OECD90) have the lowest uncertain-
ties in their fuel consumption data because they were eco-
nomically stable and would have a good statistical infras-
tructure. In the same line, fuel consumption data in countries
with Economies in Transition of 1990 (EIT90) are more un-
certain than those of OECD90 but less so than those from
the other remaining non-Annex-I countries. Exceptions to
the country grouping are made for Australia, Canada, China,
India, Japan, Russia, Ukraine, the United States, and coun-
tries belonging to the 15 member countries of the Euro-
pean Union (EU15), whose uncertainty values of fuel con-
sumption data were obtained from Olivier et al. (2016) and
Hong et al. (2017). Uncertainty values for CO2 emission fac-
tors were retrieved from the European Environment Agency
(EEA).

https://doi.org/10.5194/essd-16-4497-2024 Earth Syst. Sci. Data, 16, 4497–4509, 2024



4502 L. Yan et al.: Modeling fuel-, vehicle-type-, and age-specific CO2 emissions

Figure 3. Trends in vehicle ownership from 1970 to 2020.

Table S4 in the Supplement shows the corresponding un-
certainty of CO2 emissions at both the global and regional
levels during 1970–2020 on the basis of Eq. (6). The uncer-
tainty in the global on-road CO2 emissions is estimated to
range from −7.2 % to 8.1 %, which is close to the expert
judgment suggested value (approximately ±5 %) in GPG
(2000). Because sufficient local data were used in the CO2
estimation, the United States and the European Union have
the lowest uncertainties in the ranges −3.8 % to 4.0 % and
−2.9 % to 3.0 %, respectively. India also has a relatively low
uncertainty that varies between −4.7 % and 5.0 % because
of the low uncertainty derived from Janssens-Maenhout et
al. (2019), in which India is classified as a country with well-
developed statistical systems. Due to their less-developed
statistical systems, “Latin America+Canada” and the “Mid-
dle East+Africa” have the largest uncertainties, which range
from −12.3 % to 14.6 % and from −15.4 % to 18.3 %, re-
spectively. Hong et al. (2017) found that the apparent uncer-
tainties in oil consumption statistics in China during 1996–
2003 were relatively large, with an average apparent uncer-
tainty ratio of 15.8 % that led to the relatively higher un-
certainty in China’s on-road CO2 emissions in the range
−12.6 % to 14.4 %. It was also found that uncertainties at the
regional level decreased over time with the development of
statistical systems in more countries. However, uncertainty
in global on-road CO2 emissions slightly increased during
1970–2020 due to the growing contribution of regions with
higher uncertainty to the global total CO2 emissions.

3 Results

3.1 Evolution of the global vehicle stock, 1970–2020

The global vehicle stock continuously increased from 0.3 bil-
lion in 1970 to 2.3 billion in 2020, and there is both consis-
tency and variety between countries in terms of the distribu-
tions of vehicles and fuel types (Figs. 3 and S7 in the Sup-
plement). In 1970, PLDVs were the major vehicle type in the
United States (83 %) and the European Union (88 %) but had
relatively low proportions in China (23 %) and India (5 %).
The high proportion of PLDVs in the United States and the
European Union, as well as the dominant position of these
two regions in terms of the global vehicle stock (Fig. S6 in
the Supplement), led to more than 70 % of global vehicles
being PLDVs in 1970. The proportion of PDLVs in China
significantly increased and reached 68 % in 2020, having re-
placed MCs to become the dominant vehicle type. Although
the stock of PLDVs in India also increased substantially dur-
ing the 1970–2020 period, MCs with a proportion of 78 % of
the vehicle stock in 2020 were still the most frequently used
vehicles in India, benefiting from the local warm climate. The
majority of vehicles in the European Union in 2020 were still
PLDVs, for which the proportion was 79 %, but the dominant
vehicle type in the United States has changed from PLDVs
to CLDVs, and CLDVs accounted for 50 % of the local ve-
hicle stock. As the dominant position of developed countries
in global vehicle stock was replaced by developing countries
during the 1970–2020 period (Fig. S6), the share of MCs in
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the global vehicle stock increased accordingly to 32 %, and
the proportion of PLDVs decreased to 50 % in 2020.

Unlike the changes in the vehicle-type distribution dur-
ing the 1970–2020 period, the fuel structure of the vehicle
stock was consistent in most regions. Currently, the major-
ity of the vehicle stock worldwide still consists of gasoline
and diesel vehicles, which together accounted for 98 % of
the global vehicle stock in 2020. Gasoline was the major fuel
type for vehicles in most countries from 1970 to 2020, but
the dieselization of PLDVs in regions such as the European
Union (Fig. S10 in the Supplement) led to a larger propor-
tion of diesel vehicles in the local vehicle stock. For example,
the share of diesel vehicles in the European Union increased
from 29 % in 1970 to 43 % in 2020. Although the share of
electrical vehicles in the vehicle stock was still much lower
than that of gasoline and diesel vehicles, the stock of global
electrical PLDVs has reached 10.2 million, and in this regard
the growth has been the fastest in the last 8 years.

3.2 CO2 emissions from global on-road vehicles

Global CO2 emissions from on-road vehicles continued to in-
crease overall from 1.7 Gt in 1970 to 5.4 Gt in 2020 (Fig. 4).
Profiting from the integrated global vehicle database devel-
oped in this study, we further analyzed the vehicle- and fuel-
type-specific characteristics of CO2 emissions from global
on-road vehicles. On-road CO2 emissions were concentrated
in specific vehicle and fuel types throughout the period. From
1970 to 2020, almost all global CO2 emissions from on-
road vehicles came from gasoline and diesel vehicles due
to their dominant proportion in the vehicle stock (Fig. S10).
In 1970, 78 % and 21.5 % of global on-road CO2 emissions
were exhausted from gasoline and diesel vehicles, respec-
tively, and in 2020 these emissions together accounted for
96 % of global on-road CO2 emissions; only the ranking
of the contributions changed. With continuous dieselization
during the 1970–2020 period (Fig. S10), the contribution of
diesel vehicles to global on-road CO2 emissions increased
to 47 % in 2020. Although CO2 emissions from vehicles us-
ing other fuels (here, NG and LPG) continued to grow during
the 1970–2020 period, their proportions were still quite slight
compared to those of gasoline and diesel vehicles.

PLDVs, accounting for the largest share of the global ve-
hicle stock, were also the main source of global on-road CO2
emissions and contributed more than 47 % of global CO2
emissions from on-road vehicles during the 1970–2020 pe-
riod. Although MCs accounted for the second largest share
of the global vehicle stock, CO2 emissions from MCs were
not comparable to those from PLDVs. In 2020, the propor-
tions of PLDVs and MCs in the global vehicle stock were
50 % and 32 %, respectively, and their CO2 emissions were
2.6 and 0.3 Gt, respectively, which accounted for 48 % and
5 %, respectively, of global on-road CO2 emissions. In con-
trast, trucks with a fairly low share of the global vehicle stock
contributed the second largest share of global on-road CO2

emissions. During the 1970–2020 period, trucks accounted
for less than 5 % of the global vehicle stock but exhausted
17 % of global on-road CO2 emissions in 1970, and their
contribution increased to 22 % in 2020. As most PLDVs are
gasoline vehicles and the majority of trucks are powered by
diesel, gasoline PLDVs and diesel trucks are among the top
two vehicle- and fuel-type-specific contributors to global on-
road CO2 emissions. In 2020, the CO2 emissions from gaso-
line PLDVs and diesel trucks were 1.8 and 1.1 Gt, respec-
tively, accounting for 33 % and 20 %, respectively, of global
on-road CO2 emissions.

Figure 5 shows the geographical distribution of the two
largest contributors to global on-road CO2 emissions in 2020,
i.e., gasoline PLDVs and diesel trucks. Global on-road CO2
emissions were highly concentrated in several countries. In
2020, the top 10 countries contributed 69 % and 71 % of
global CO2 emissions exhausted from gasoline PLDVs and
diesel trucks, respectively. The United States was still the
largest contributor to global CO2 emissions from both gaso-
line PLDVs and diesel trucks, whose contributions were up
to 25 % and 28 %, respectively. With the continuous improve-
ment in China’s economic development, the country became
the leading market for global vehicles in 2020 (Fig. S6) and
accounted for 18 % and 19 %, respectively, of CO2 emis-
sions from global gasoline PLDVs and diesel trucks. Al-
though growth in on-road CO2 emissions in developed coun-
tries slowed down after 2000 (Fig. S8 in the Supplement),
the contributions of gasoline PLDVs and diesel trucks in de-
veloped countries were still greater than those in developing
countries, especially for gasoline PLDVs. For example, the
ownership of gasoline PLDVs in Canada and India was rel-
atively close in 2020, at 22.5 and 21.2 million, respectively,
but the CO2 emissions from gasoline PLDVs in Canada were
83.5 Mt, which is 3 times greater than that in India.

We further analyzed the influence of shifts in the fuel-type
distribution of vehicle ownership (Fig. S10) on the fuel struc-
ture of on-road CO2 emissions (Figs. 6 and S11 in the Sup-
plement). In 1970, CO2 emissions from PLDVs were mainly
exhausted from gasoline vehicles, as the majority of PLDVs
in most regions were powered by gasoline, and diesel ve-
hicles exhausted only 7 % of CO2 emissions from PLDVs
worldwide. In 2020, gasoline vehicles were still the domi-
nant contributor to CO2 emissions from PLDVs in the United
States and China, but the contribution of diesel vehicles in-
creased significantly in the European Union and India and ac-
counted for 61 % and 50 %, respectively, of local CO2 emis-
sions from PLDVs. Influenced by the dieselization of PLDVs
in regions such as the European Union and India, the contri-
bution of diesel vehicles to CO2 emissions from PLDVs in
2020 also increased to 28 %. For CLDVs, the contribution of
diesel vehicles was more than 50 % in the European Union,
China, and India, but in the remaining regions CO2 emissions
were still mainly from gasoline vehicles. Buses and trucks
were also dieselized during the 1970–2020 period, and diesel
vehicles have become the dominant contributor to CO2 emis-
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Figure 4. Global CO2 emissions from 1970 to 2020 by vehicle and fuel type. The panels are organized by fuel type (rows) and vehicle type
(columns).

sions from buses and trucks, both regionally and globally.
Therefore, controlling emissions from diesel vehicles, espe-
cially buses and trucks, holds great significance for reducing
global on-road CO2 emissions.

3.3 Age distribution of CO2 emissions

On the basis of the fleet turnover emission model built in
this study, the age distribution of global on-road CO2 emis-
sions was estimated and analyzed (Fig. 7). The contribution
of old vehicles (those that survived more than 15 years) to
CO2 emissions was relatively low, regardless of whether they

were light-duty or heavy-duty vehicles. In 1970, old vehicles
contributed 4 % and 6 % of CO2 emissions from light-duty
and heavy-duty vehicles, respectively. Although the contri-
bution of old vehicles to CO2 emissions increased, they still
contributed only approximately 10 % of CO2 emissions from
both light-duty and heavy-duty vehicles in 2020. As emis-
sions of air pollutants such as particulate matter (PM) may
increase with age because of degradation in engine perfor-
mance and air pollution control equipment (Yan et al., 2011),
the contributions of old vehicles to emissions of air pollu-
tants could be much greater than those of CO2. Therefore,
controlling old vehicles may not be significant in mitigating
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Figure 5. Maps of on-road CO2 emissions from the top two contributors worldwide: (a) gasoline PLDVs and (b) diesel trucks.

CO2 emissions but could lead to effective air pollutant emis-
sion co-reductions.

Global CO2 emissions from vehicles of all ages were
mainly contributed by developed countries, such as the
United States and countries in the European Union before
2000, as these countries had the majority of global vehicles
during that period. After 2000, the contributions of vehicles
in developing countries such as China and India to global
on-road CO2 emissions increased significantly, especially for
CO2 emissions from vehicles younger than 10 years. Tak-
ing CO2 emissions from light-duty vehicles aged 0 to 1 year
as an example, the proportion of these vehicles in China in-
creased from 1 % in 1970 to 16 % in 2020, while the pro-
portion of these vehicles in the United States decreased from
44 % in 1970 to 23 % in 2020. CO2 emissions from old ve-
hicles in 2020 were still mainly exhausted by vehicles in de-
veloped countries such as the United States and in the Eu-
ropean Union, which is related to the longer lifetimes and
earlier development of vehicles in these countries. For exam-
ple, old vehicles in the United States contributed nearly half
of the CO2 emissions exhausted from old light-duty vehicles
worldwide in 2020.

4 Data availability

The fuel-, vehicle-type-, and age-specific CO2 emission
data presented herein cover the period from 1970 to 2020
at the country level. The data are available as open data
at https://doi.org/10.6084/m9.figshare.24548008 (Yan et al.,
2024).

5 Conclusions

Our study constructed a fuel-, vehicle-type-, and age-specific
CO2 emission inventory from 1970 to 2020 of global on-road
vehicles covering 231 countries, five types of fuel, and five
types of vehicles. In this model, the best available statistics
on the vehicle stock and sales were used to model the vehicle
stock via the Gompertz function as well as the age distri-
bution based on the dynamic balanced relationship between
the vehicle stock and vehicle sales. Statistical fuel consump-
tion was used to constrain the estimated vehicular fuel con-
sumption at the country level, and emission factors from both
the IPCC and local studies were used to estimate CO2 emis-
sions. On the basis of our CO2 emission inventory with de-
tailed information, the evolution of the global vehicle stock
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Figure 6. Transition of diesel vehicles’ contribution to CO2 emissions.

over 50 years was analyzed, the dominant emission contrib-
utors by vehicle and fuel type were identified, and the age
distribution of on-road CO2 emissions was also character-
ized. We found that trucks accounted for less than 5 % of
global vehicle ownership but represented more than 20 % of
on-road CO2 emissions in 2020. The contribution of diesel
vehicles to global on-road CO2 emissions doubled during the
1970–2020 period, driven by the shift in the fuel-type distri-
bution of vehicle ownership. The proportion of CO2 emis-
sions from vehicles in developing countries such as China
and India in terms of global emissions from newly registered
vehicles significantly increased after 2000, but global CO2
emissions from vehicles that survived more than 15 years in
2020 still originated mainly from developed countries such
as the United States and countries in the European Union.

The fleet turnover model built in this study could also be
used for estimating global on-road emissions of air pollu-
tants, which are more significantly influenced by the vehicle-
type distribution, fuel structure, and age distribution of the
fleet. However, these fuel-, vehicle-type-, and age-specific
characteristics have not yet been discussed in existing stud-
ies. In the future, our model could help improve the global
emission inventory of air pollutants from on-road vehicles
and further support analyses of co-reductions in CO2 and air
pollutant emissions from global on-road vehicles as well as

the potential air quality and climate co-benefits. In addition to
the uncertainty quantification for our CO2 emission data, we
further verified the reliability of CO2 emissions in this study
by comparing them to those of other widely used global, re-
gional, and national emission inventories in which long-term
CO2 emissions are available (Fig. S12 in the Supplement).
The CO2 emissions in this study not only exhibited good con-
sistency with other global emission inventories at the global
scale but were also more similar to local emissions than those
in other global or regional emission inventories at the country
and regional levels.

Supplement. The data related to the figures in this article are
available in the Supplement file Figures.zip. The supplement related
to this article is available online at: https://doi.org/10.5194/essd-16-
4497-2024-supplement.
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Figure 7. Shares of CO2 emissions by vehicle age. In each panel, the bars from left to right show the proportions of the world, the United
States (US), the European Union (EU), China, and India, which is accounted for by the vehicles in the vehicle age categories. The panels are
organized by year (rows) and vehicle type (columns).
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