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Abstract. Long-term, reliable datasets of satellite-based vegetation condition are essential for understanding
terrestrial ecosystem responses to global environmental change, particularly in Australia, which is characterised
by diverse ecosystems and strong interannual climate variability. We comprehensively evaluate several existing
global Advanced Very High Resolution Radiometer (AVHRR) normalised-difference vegetation index (NDVI)
products for their suitability for long-term vegetation monitoring in Australia. Comparisons with the MODIS
NDVT highlight significant deficiencies, particularly over densely vegetated regions. Moreover, all the assessed
products failed to adequately reproduce the interannual variability in the pre-MODIS era as indicated by Land-
sat NDVI anomalies. To address these limitations, we propose a new approach to calibrating and harmonis-
ing NOAA’s Climate Data Record of AVHRR NDVI to the MODIS MCD43A4 NDVI for Australia using a
gradient-boosting decision tree ensemble method. Two versions of the datasets are developed, one incorporating
climate data in the predictors (“AusENDVI-clim”: Australian Empirical NDVI-climate) and another that is in-
dependent of climate data (“AusENDVI-noclim”). These datasets, spanning 1982-2013 at a spatial resolution of
0.05° and with a monthly time step, exhibit strong correlations (r> = 0.89—0.94) and low mean errors compared
with MODIS MCD43A4 NDVI (mean absolute error (MAE) = 0.014-0.028, RMSE = 0.021-0.046), accurately
reproducing seasonal cycles over densely vegetated regions. Furthermore, they closely replicate the interannual
variability in vegetation condition in the pre-MODIS era. A reliable method for gap-filling the AusENDVI record
is also developed that leverages climate, atmospheric CO; concentration, and woody-cover fraction predictors.
The resulting synthetic NDVI dataset shows excellent agreement with the MODIS MCD43A4 NDVI and the re-
calibrated AVHRR NDVI time series (r2 = 0.82-0.95, MAE = 0.016-0.029, RMSE = 0.039-0.041). Finally, we
provide a complete 41-year dataset where the gap-filled AusENDVI-clim from January 1982 to February 2000
is joined with the MODIS MCD43A4 NDVI from March 2000 to December 2022. Analysing 40-year per-pixel
trends in Australia’s annual maximum NDVI revealed increasing values, and shifts in the timing, of the annual
peak NDVI across most of the continent, underscoring the dataset’s potential to address crucial questions re-
garding the changing vegetation phenology and its drivers. The AusENDVI dataset can be used for studying
Australia’s changing vegetation dynamics and downstream impacts on the terrestrial carbon and water cycles,
and it provides a reliable foundation for further research into the drivers of vegetation change. AusENDVI is
open access and available at https://doi.org/10.5281/zenodo.10802703 (Burton et al., 2024).
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1 Introduction

Australia is undergoing long-term changes to its climate that
are impacting terrestrial vegetation, with attendant serious
implications for ecosystem functioning, the carbon and wa-
ter cycles, and agriculture (Hoffmann et al., 2019; Canadell
et al., 2021; Head et al., 2014; Hughes, 2011; Steffen et al.,
2011; Rifai et al., 2022; Ukkola et al., 2016; Donohue et al.,
2009). Long-term, reliable datasets that chart the land surface
response to climate change are crucial if we are to identify,
understand, and respond to ongoing terrestrial ecosystem
change (Giglio and Roy, 2020; Piao et al., 2019). One of the
primary means that Earth system science has to trace long-
term vegetation change is the normalised-difference vegeta-
tion index (NDVI), a widely used satellite-derived indicator
of vegetation condition owing to its close relation to vegeta-
tion productivity. In Australia, the need for very long records
of NDVI to understand change is amplified by strong vari-
ability at both interannual and interdecadal timescales and
ecosystems that are often driven by periodic but non-seasonal
phenological drivers (Moore et al., 2016; Chambers et al.,
2013; Ma et al., 2013; Beringer et al., 2022).

The MODerate resolution Imaging Spectroradiometer
(MODIS) NDVI record (NDVIviopis) is generally consid-
ered the most reliable global-scale dataset due to its high-
quality radiometrics and accurate georeferencing. Unfor-
tunately, the MODIS record only begins in March 2000
(Vermote et al., 2002). The Advanced Very High Resolu-
tion Radiometer (AVHRR) NDVI record (NDVIAyHRR) 1S
the longest contiguous series of satellite data, starting in
July 1981, but it has several well-known problems owing
to a lack of on-board calibration for visible wavelengths,
sensor orbital drift, and sensor degradation, making it un-
reliable for detecting relatively subtle trends over multiple
decades (Tucker et al., 2005; Privette et al., 1995; Gorman
and McGregor, 1994). Several prominent global NDVIayHRrr
products attempt to ameliorate these issues. For example, the
Global Inventory Modelling and Mapping Studies (GIMMS)
version 3 (NDVIgmmms3g) applies Bayesian analysis with
the Sea-Viewing Wide Field-of-View Sensor NDVI as ev-
idence information to reduce sensor transition discontinu-
ities and increase the dynamic range of NDVIayprr (Pin-
zon and Tucker, 2014), while the NOAA Climate Data
Record (NDVIcpRr) applies a suite of corrections to cre-
ate a consistent surface reflectance product (Franch et al.,
2017), among others (Table 1). However, despite substan-
tial progress, errors and biases in these NDVI products have
led to inconsistent findings on global greening (Wang et
al., 2022, 2021; Cortés et al., 2021; Frankenberg et al.,
2021; Fensholt and Proud, 2012), discrepancies in vegeta-
tion seasonality between datasets (Ye et al., 2021), persis-
tent temporal inconsistencies (Tian et al., 2015; Giglio and
Roy, 2020), and conflicting long-term trends in the inter-
annual variability of vegetation greenness (Tian and Luo,
2024). Recently, Li et al. (2023a) developed new global
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NDVIAVHRR pI‘OduCtSZ “GIMMS-PKU” (NDVIGIMMS-PKU),
which effectively calibrates the NDVIgmmms3sg archive to
the Landsat record using machine-learning techniques; and
“GIMMS-PKU-consolidated” (NDVIpgy-consolidated)>» Which
harmonises NDVIgmuvs-pku to NDVIyviopis (Table 1) but
is yet to be extensively assessed in the literature (Li et al.,
2023a).

As much as possible, any NDVI product that exploits the
AVHRR and MODIS records to acquire an accurate > 40-
year record of vegetation condition should attempt to inte-
grate the two seamlessly while also performing well in the
pre-MODIS AVHRR era (1982-2000). Performance should
be judged on how well seasonal cycles are represented along
with interannual and interdecadal variability, as both sea-
sonal and longer-term fluctuations in vegetation conditions
have important ramifications for carbon and water cycles (Ma
et al., 2015). An effectively calibrated, harmonised, and gap-
filled dataset can form the basis for studying the biogeophys-
ical impacts of global change and meteorological variability
on Australia’s terrestrial vegetation. With that in mind, the
objectives of this study are as follows:

— Investigate existing NDVIayurr datasets to determine
their suitability for long-term vegetation monitoring
in Australia by comparing their consistency with both
NDVImopis during the 2000-2013 overlap period and
Landsat NDVI (NDVIy gpgsat) anomalies from 1988—
2000.

— Having established the limitations with the exist-
ing datasets, calibrate and harmonise NDVIayyrr to
NDVImopis solely over Australia. The final dataset
should contain the harmonised NDVIaygrr from Jan-
uary 1982 to February 2000, where it joins with the
superior NDVIyopis time series, resulting in a reliable
41-year record of vegetation condition for Australia. We
will call this time series “AusENDVI” (for Australian
Empirical NDVI; NDVIasg).

— Develop a reliable method for gap-filling the NDVI4 g
record caused by sensor transition issues and long peri-
ods of missing or suspect data acquisition.

— Demonstrate the utility of this new dataset by exploring
NDVI phenology trend analysis, including long-term
trends in the value and timing of the annual maximum
NDVI across the Australian continent.

2 Materials and methods

2.1 Datasets

Specifications of all datasets used for either the intercompar-
ison of NDVI products or in the modelling framework are
listed in Table 1. For comparisons between NDVI datasets,
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Table 1. Details of the datasets used in, and produced by, this study.

Dataset & abbreviation

Native spatial resolution; temporal resolution &
range; additional details

Data source & reference

AVHRR Climate Data Record of NDVI
and Surface Reflectance;
NDVIcpr

0.05°, daily, January 1982 to December 2013.
Surface reflectance product used for the time-
of-day and solar zenith angle.

Version 5, downloaded from Google
Earth Engine (Franch et al., 2017)

MODIS MCD43A4 NDVI;

~500m, every 16d, March 2000 to De-

Version 6.1, downloaded from Google

NDVImcep43ag cember 2022. Calculated from the combined Earth Engine (Schaaf and Wang, 2015)
Terra and Aqua MCD43A4 surface reflectance
NBAR product.

AVHRR GIMMS3g NDVI; 1/12°, half-monthly, 1982-2013. AVHRR Version 1.0, downloaded from Google

NDVIgiMMs3g NDVI with sensor transition discontinuities Earth Engine (Pinzon and Tucker,
reduced with Bayesian analysis. 2014)

AVHRR GIMMS PKU NDVI; 1/12°, half-monthly, 1982-2022. Two varia- Version 1.2, downloaded from

NDVIpgu, NDVIpgu-consolidated

tions: “GIMMS-PKU-solely” and “GIMMS-
PKU-consolidated”; the latter is harmonised
with  MODIS MODI13Cl. For GIMMS-
PKU-solely, we loaded pixels labelled as
“good-quality AVHRR”. For GIMMS-PKU-
consolidated, we loaded pixels labelled as
“good-quality AVHRR” and “good-quality
MODIS” and where the harmonisation was run
by the random-forest model.

https://doi.org/10.5281/zenodo.8253971
(Li et al., 2023b)

Digital Earth Australia’s Landsat NDVI
(NBAR);

30m, every 8d, 1987-2012. NDVI calculated
from an Australia-specific Landsat 5 & 7 sur-

Collection 3, https://docs.
dea.ga.gov.au/data/product/

NDVIj andsat face reflectance NBAR product. dea-surface-reflectance-nbar-landsat-5-tm/
(last access: May 2024; Li et al., 2010)
AusENDVI-clim and 0.05°, monthly, 1982-2013. Calibrated and har-  This study
AusENDVI-noclim; monised NDVI for Australia obtained using
NDVIausE-clim» NDVIAusE-noclim machine-learning techniques. The “clim” ver-
sion of the dataset includes climate variables in
the feature set; the “noclim” version does not.
Synthetic NDVI; 0.05°, monthly, 1982-2022. A machine- This study
NDVIsyn learning-derived synthetic NDVI built using
climate, CO,, and landscape features and
trained on NDVIpysE-clim and NDVIvcpa3ag-
ANUClimate: ~ 1 km, monthly, 1982-2022. Gridded climate =~ ANUClimate, https://dapds00.nci.org.

Average Air Temp; Tavg

Vapour Pressure Deficit; VPD
Incoming Shortwave Radiation; srad
Total Precipitation; rain

products based on the topographically condi-
tional spatial interpolation of weather stations.

au/thredds/catalogs/gh70/catalog.html
(last access: December 2023; Hutchi-
son et al., 2014)

Atmospheric CO, concentration

n/a, monthly, 1982-2022. Extracted from the
Cape Grim Baseline Air Pollution Station in
Tasmania, Australia. De-seasonalised using a
12-month running mean.

CSIRO Environment and the Australian
Bureau of Meteorology (Kennaook/-
Cape Grim Baseline Air Pollution Sta-
tion), https://capegrim.csiro.au/ (last ac-
cess: December 2023)

Woody-cover fraction; WCF

25 m, annual, 1982-2022. A per-pixel estimate
of woody-cover fraction across Australia. An-
nual product for 1990-2022. A 5-year average
from 1990-1995 was used to extend the product
back to 1982.

https://dapds00.nci.org.au/thredds/
catalog/ub8/au/LandCover/DEA_ALC/
catalog.html (last access: Decem-
ber 2023; Liao et al., 2020)

n/a: not applicable
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finer-resolution datasets were resampled to match the coars-
est grid (i.e. GIMMS; 1/12° or ~ 8 km over Australia). Av-
eraging resampling techniques were used for downsampling
finer-resolution datasets, while nearest-neighbour techniques
were used when the datasets had similar spatial resolutions
but either different projections or slightly different grid ex-
tents. Wherever datasets were compared, data gaps were
matched between all datasets by creating a mask that iden-
tified all missing pixels, and then that common mask was
applied to every dataset. This ensured a fair and valid com-
parison. We chose Landsat’s TM and ETM+ (Table 1) as
the sensors for comparison in the pre-MODIS era owing
to the international efforts to produce a relatively high geo-
metric and radiometric accuracy for their generation and the
lack of sensor transitions in the pre-MODIS era from 1982—
1999 (Beck et al., 2011). The chosen surface reflectance
Landsat product, Digital Earth Australia’s (DEA’s) Landsat
NBAR (Nadir-corrected BRDF Adjusted Reflectance, where
“BRDF” stands for “bidirectional reflectance distribution
function™) product is calibrated to Australia’s environment
using the MODTRAN 4 radiative-transfer model and BRDF
shape functions derived from MODIS (Li et al., 2010; Byrne
et al., 2024).

For the development of the Australian NDVI dataset, we
relied on the NOAA NDVIcpr product (Franch et al., 2017)
as the input dataset. This was principally because of its
higher spatial resolution than the other datasets (~ 5km),
its lack of gap filling, extensive atmospheric corrections, and
its BRDF-based correction of view-angle effects (Ma et al.,
2019). As the target dataset, we derived the NDVI from
the MODIS MCD43A4 surface reflectance NBAR product
(NDVImcpa3a4)- This reflectance product was chosen be-
cause of its similar set of atmospheric corrections when com-
pared with NDVIcpr and DEA’s Landsat NBAR and its
use of both the Terra and Aqua instruments, which extends
its temporal extent back to March 2000 (Schaaf and Wang,
2015).

All additional input data used in NDVI estimation were
temporally aggregated to monthly values by calculating me-
dians and spatially reprojected onto a common 0.05° geo-
graphic grid. In addition to filtering based on the quality as-
surance band (we filtered for clouds, cloud shadows, and in-
valid BRDF and channel values), additional criteria were ap-
plied to minimise the impact of temporal discontinuities in
the NDVIcpr record, which may arise from orbital decay
or sensor degradation. Monthly NDVIcpr values based on
fewer than two observations per month were discarded along
with any values for which the coefficient of variation in daily
retrievals for a given month was greater than 50 %. Anoma-
lies in NDVI, solar zenith angle, and time of acquisition that
were greater than 3.5 standard deviations were also discarded
(based on a 1982-2013 climatology). Following the advice of
Tian et al. (2015), data for several problematic sensor tran-
sition periods were discarded (September 1984—April 1985,
July 1988-September 1989, and July 1993-December 1994).
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After filtering, the continental-average fraction of available
data is 0.79, meaning that, on average, 79 % of the monthly
time steps between 1982-2013 are preserved (Fig. Al).

2.2 Assessment of existing NDVI products

We compared NDVIayyrr datasets with NDVInicpazas for
the overlapping period from March 2000 to December 2013.
The per-pixel Pearson correlation (r) and coefficient of vari-
ation (CV; root mean square error divided by the long-term
mean NDVIycpaszasa) were used to describe the agreement
between datasets, in addition to a comparison of the long-
term seasonal cycles. Next, NDVIayyrr datasets were com-
pared to annual rolling-mean “z-score” standardised anoma-
lies in NDVIj angsat for 1988-2000 to assess how well each
product reproduces the interannual variability in vegeta-
tion condition in the pre-MODIS era. z-score standardised
anomalies were calculated as (x — ) /o, where x is a monthly
NDVI observation, w is the long-term mean NDVI for the
given month, and o is the long-term standard deviation in
NDVI for the given month. Differences in spectral sampling
between MODIS and Landsat result in differences in mean
NDVI, so we use Landsat only for validating the interannual
variability in the pre-MODIS era since mean differences in
NDVI between sensors are removed by anomalies. We com-
pared NDVI anomalies in NDVIj gngsar With NDVImcepazaa
during an overlap period from 2000-2012 to ensure that
NDVIp andsat could provide a consistent evaluation of inter-
annual variability in the pre-MODIS era, and we found good
agreement between the two products (Fig. A2).

2.3 Calibration and harmonisation

During extensive preliminary testing, gradient-boosting de-
cision tree ensembles (GBM), random forest, and gener-
alised additive models were assessed for their ability to cal-
ibrate and harmonise NDVIcpr with NDVIvcepazas. The
GBM outperformed the other approaches. Two classes of
models and datasets were built. One utilised climate data
(hereafter referred to as “clim” models) in the feature set to
achieve the best possible agreement between NDVIcpr and
NDVImcepa3as. The second excluded climate features (here-
after the “noclim” model) while still achieving satisfactory
results. When examining drivers of change, users of these
datasets may prefer to use the noclim model to limit potential
circularities in the attribution of the drivers of change. Dur-
ing testing, climate variables were identified as useful fea-
tures for both improving predictions in the heavily forested
regions where there was little to no agreement between
NDVIpmcp43as and NDVIaygrr and for capturing interan-
nual variability. The noclim models used the following fea-
tures: solar zenith angle (SZEN), time of acquisition (TOD),
month of year, latitude, and NDVIycp43a4 summary per-
centiles (0.05, 0.5, and 0.95). The NDVIncp43asa summary
percentiles were calculated per pixel over the 2000-2022 pe-

https://doi.org/10.5194/essd-16-4389-2024



C. A. Burton et al.: Enhancing long-term vegetation monitoring in Australia 4393
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Figure 1. Flowchart describing the calibration and harmonisation methods (a) and the development of a synthetic NDVI (b) for gap filling (c).
Panel (a) shows the method for the clim model type; the methods for noclim are the same, but climate variables are removed from the
covariables and noclim is not gap-filled. Red-coloured boxes denote datasets, blue boxes denote processing steps, and green boxes describe

the response variables and covariables used for modelling.
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Figure 2. (a) Regions delineating the spatial extents of the three modelling domains: desert, low woody-cover fraction (WCF), and high
WCE. (b) The distribution of all independent validation points used to assess the model fits across the three modelling domains in (a); points
are coloured according to the year they are drawn from. The figure is overlaid with outlines of the six bioclimatic regions used to both stratify

training points and aggregate trends in later analysis.

riod. The clim models used the same variables plus incom-
ing solar radiation, rainfall, temperature, and vapour pressure
deficit. Fractional anomalies of the climate features were also
included, along with the cumulative 3- and 6-month rainfall.
Testing revealed that the best results were obtained by gen-
erating three separate models for areas with high and low
woody-cover fractions (WCFs) and for the desert bioclimatic
region (Figs. la and 2a). The long-term mean of the WCF
was extracted from Liao et al. (2020), and a threshold of
WCF =0.25 was used to separate regions with high woody
canopy cover. This threshold was chosen as it approximately
delineated those regions with the poorest correspondence be-
tween NDVICDR and NDVIMCD43 Ad (Fig. 3C—h).

Owing to the differing volumes of good-quality data
across the continent (Fig. A1) and the large difference be-
tween the land areas of the bioclimatic regions, we imple-
mented a stratified, equalised random sampling approach for
the training and validation samples to reduce bias in the sam-
ple allocations. In the high- and low-WCF regions, 30 000
training and testing samples were extracted in equal measure
from the five remaining bioclimatic regions after excluding
the desert (i.e. 6000 samples per region). The bioclimatic re-
gions were identical to those defined by Haverd et al. (2013)
(Fig. 2b). In the desert region, samples were drawn using a
simple random approach. In all modelling domains, samples
were drawn from any point in time across the overlap period,
and 5000 samples were randomly separated as an indepen-
dent validation set, leaving 25 000 samples for training. The
calibration and harmonisation process is summarised in the
flow chart of Fig. 1a.

Cross-validation for model hyperparameter optimisation
was conducted using a nested cross-validation approach with
five outer splits and three inner splits (Cawley and Talbot,

Earth Syst. Sci. Data, 16, 4389-4416, 2024

2010). The hyperparameter grid search parameters are listed
in Table Al. Mean absolute error (MAE), root mean square
error (RMSE), and the coefficient of determination (r2) are
reported as indicators of the goodness of fit. To understand
which explanatory variables most impacted predictions, fea-
ture importance plots were produced using the Shapley Addi-
tive Explanations (SHAP) Python library (Lundberg, 2017).

2.4 Gap filling

At times, there are long gaps in the AVHRR data acqui-
sition over Australia. For example, 1994 is entirely miss-
ing, and during sensor transition periods, the data become
unreliable for several months before and after the transi-
tion (Tian et al., 2015). Furthermore, owing to the nature
of Australia’s prevailing weather systems, such as the tropi-
cal monsoon, it is not uncommon to have whole geographic
regions missing for a given month. This undermines the
typical approaches to gap filling that work well when ei-
ther the temporal gap is short (e.g. temporal interpolation
methods using linear or polynomial fits) or the spatial pat-
tern of gaps is quasi-random, such as that caused by scat-
tered cloud cover (when spatial interpolation methods such
as nearest neighbour and kriging are used) (Bessenbacher et
al., 2022; Shen et al., 2015). Gap filling with a climatology
can often mask important interannual variability at key times,
such as anomalously high rainfall periods associated with La
Nifias, when enhanced cloud cover masks large-scale green-
ing events across Australia’s northern tropical savanna. To
avoid this, we used well-established machine-learning ap-
proaches that have been developed to fill gaps in univariate
data (Gerber et al., 2018; Zeng et al., 2014). Here, we develop
a two-stage process for gap filling (summarised in Fig. 1b,

https://doi.org/10.5194/essd-16-4389-2024
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c). Firstly, to fill short temporal gaps, the time series is split
into a climatology series and an anomaly series, and linear
temporal interpolation is applied to the anomalies for a max-
imum of one time step (i.e. | month). Longer temporal gaps
are replaced with a synthetic NDVI dataset generated using a
similar GBM machine-learning method to the harmonisation
and described further below.

Synthetic NDVI

Training samples were extracted from NDVIpygg-clim for
1982-2000 and from NDVIycp4sas for 2000-2022 using
a similar sampling approach to that used for harmonisation
except that two models are built in this instance: a “desert”
model and “non-desert” model. The non-desert model cov-
ers the same region as the high- and low-WCF models pre-
viously described (the inclusion of WCF in the features
reduces the need to define a low- and high-WCF mod-
elling region). GBM models were then fitted using all the
features previously listed for the clim model plus the de-
seasonalised CO, concentration and annual WCE. Other-
wise, the modelling framework was the same as for the har-
monisation approach (Fig. 1b). The synthetic NDVI datasets
(NDVIgyn) are used to gap-fill the NDVIaysg-clim record
from January 1982 to February 2000. The final gap-filled,
calibrated, and harmonised NDVIysg-clim dataset is joined
with NDVIycpazas. Only the NDVIaysg-clim dataset is gap-
filled; this ensures that the noclim dataset does not contain
any climate information in the reconstructed time series.

2.5 Trends in peak-of-season phenology

Annual, per-pixel NDVI land surface phenology statistics
were extracted using the “xr_phenology” Python function
from the “dea-tools” package (Krause et al., 2021). This anal-
ysis focused on two metrics: the NDVI value at the peak of
the season (VPOS) and the day of year on which the peak
occurs (POS). The input time series was the gap-filled clim
dataset, and the time series was first linearly upsampled from
monthly to 2-week intervals to increase the temporal resolu-
tion of the datasets before the time series was smoothed us-
ing a Savitzky—Golay filter with a window length of 11 and
a polynomial order of 3. Though we report day of year as the
unit for POS, the actual POS could have occurred anytime
within a given bi-monthly time step, so DOY values should
be considered an approximation.

To avoid applying phenology trend analysis to regions that
do not experience regular seasonal variation, we created a
mask that removes regions identified as “non-seasonal” using
the definitions and methods defined by Moore et al. (2016).
Broadly, the mask is created using three inputs: the standard
deviation in NDVI anomalies, the long-term mean NDVI,
and the standard deviation in the mean seasonal cycle. These
three inputs are used to identify regions that experience ei-
ther low seasonal variability and low NDVI or low seasonal

https://doi.org/10.5194/essd-16-4389-2024
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variability and high interannual variability, which largely co-
incide with the desert bioclimatic region.

Per-pixel linear trends in these phenology metrics were ex-
tracted using the Theil-Sen robust-regression approach, and
significance was determined using a Mann—Kendall test (sig-
nificance was defined as & = 0.05). Trends summarised over
bioclimatic regions were extracted by first calculating a per-
pixel robust regression on the phenology statistics and then
summarising the trends within a bioclimatic region with ker-
nel density estimation (KDE) plots.

3 Results

3.1 Quality of the existing datasets

The quality of the NDVIaygrr products were compared
against NDVIyicpa3as for the overlapping years 2000-2013.
All datasets except NDVIpku-consolidated pPerform poorly over
regions with perennially high vegetation cover, including wet
coastal and highland forest ecosystems, where correlations
between NDVIayvgrr and NDVIyvicpasaa are close to zero
in some regions (Fig. 3e-g). NDVIcpr and NDVIgmvms3g
also poorly represent the desert region, with R values as low
as ~ 0.4-0.5. NDVIpku-consolidated correlates very well with
NDVImcpa3zasa over most of the continent, with the excep-
tion of western Tasmania (Fig. 3h). Coefficients of variation
are also high for the NDVIgmms3g and NDVIpky datasets
across much of the continent, with average values of 0.33
and 0.18, respectively (Fig. 3b, c).

To demonstrate the impact of the discrepancies over
densely vegetated ecosystems, Fig. 3j-k presents a zonal
time series of the woodlands of southwestern Western Aus-
tralia. These woodlands have been identified as a region of
high endemic biodiversity (Myers et al., 2000; Hopper and
Gioia, 2004), they are vulnerable to the effects of long-
term climate change, and they are undergoing long-term
shifts in climate (O’Donnell et al., 2012; Hughes, 2011;
Pitman et al., 2004; Hope et al., 2006). The MODIS-era
interannual variability of these forests is shown through a
12-month rolling-mean time series (Fig. 3j), which reveals
that all products capture the interannual variability of the
MODIS era reasonably well, though the long-term mean
NDVI value varies substantially between products. The mean
seasonal cycle, shown in Fig. 3k (calculated from 2001-
2013), reveals that the seasonal cycle of the forest ecosys-
tem is very poorly represented in three of the four prod-
ucts, while NDVIpku.consolidated tracks the overall shape of
the seasonal cycle well. Discrepancies in seasonality are fur-
ther highlighted in the per-pixel climatological month-of-
maximum-NDVI plots (Fig. A3). Estimates of even this rel-
atively straightforward metric of seasonality are impacted by
the choice of dataset, with desert, savanna, and forested re-
gions varying substantially between datasets, sometimes by
as much as several months in the case of forested regions
in Tasmania and southeastern Australia. The Australia-wide
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Figure 3. Comparisons between NDVIpicp4zas and four versions of NDVIaygrr. (a—d) Coefficient of variation (CV) between
NDVIpmcpa3ag and NDVIgygRrR, Wwhere RMSE is divided by the 2001-2013 mean of NDVIyicp43a4. (e-h) Pearson correlation between
NDVIpcep43ag and NDVIayhrr .- (1) Woody-cover fraction (WCF) of the forests in southwestern Western Australia showing the extent used
for the zonal time series of (j) and (k). (j) Twelve-month rolling-mean NDVI time series of the forests of southwestern Western Australia.
(k) Mean seasonal cycle of the forests of southwestern Western Australia calculated over the 2001-2013 period.

seasonal cycles likewise reveal substantial variation between
products (Fig. A3g).

To assess the quality of NDVIaygrr products in the
pre-MODIS era, Fig. 4a compares the 12-month rolling-
mean standardised anomalies of NDVIj jpdsat in the 1988—
2000 period (based on a 1988-2012 climatology) with the
NDVIavgrr anomalies. No product accurately tracks the
NDVILandsar anomalies across the whole 1988-2000 period.
Only the NDVIpky product captures the amplitude of the
La Nifa-driven positive anomaly of NDVI in 2000 (but re-
call that NDVIpky is trained on the NDVIj jn4sa¢ archive).
Annual rainfall and NDVI anomalies are strongly corre-
lated across the majority of Australia’s land mass (Fig. 4c),
demonstrating that vegetation growth across the continent
is strongly water limited (Peters et al., 2021; Poulter et al.,
2014; Broich et al., 2014). It is therefore our expectation
that similarly large negative and positive rainfall anoma-
lies should result in similar NDVI anomalies in the pre-
MODIS and MODIS eras. Taking the best of the products
identified in the comparison with NDVIycpa3as4, Fig. 4b
shows the 12-month rolling mean standardised anomalies of
NDVIpku-consolidated from 1982-2022. In the MODIS era,
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NDVIpKU-consolidated 'esponds strongly to anomalies in rain-
fall (background shading shows the continental-average stan-
dardised rainfall anomalies), while in the pre-MODIS era,
significant droughts (e.g. in 1982-1983) and widespread
rainfall events (e.g. in 2000) produce comparatively little ef-
fect on NDVI, suggesting a lack of sensitivity to rainfall-
driven variability over Australia in the pre-MODIS era. We
develop statistical relationships between annual-mean stan-
dardised rainfall and NDVI anomalies, averaged across Aus-
tralia, for the NDVIncpaszaa and NDVIpku-consolidated prod-
ucts to quantify their sensitivity to water supply. If we con-
sider the slope of the linear relationship between rainfall and
NDVI to be an approximation of the sensitivity of NDVI
to water supply, then NDVIpku_consolidated in the 2000-2022
period displays a similar sensitivity (slope=1.36; Fig. 4f)
and correlation (r2 =0.56) to NDVIymcpa3as in the same
period (slope = 1.13, 2 = 0.54; Fig. 4d). Contrast this with
NDVIpKU-consolidated in the 1982—-2000 period, where the ap-
parent sensitivity is approximately half that for the 2000-
2022 period (slope =0.65; Fig. 4e). While we may expect
some changes in water-supply sensitivity over the decades
due to effects such as CO; fertilisation (Donohue et al., 2013;

https://doi.org/10.5194/essd-16-4389-2024
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considered an approximation of the sensitivity of NDVI to anomalous water supply aggregated over the continent.

were ~ 15 % smaller than their noclim counterparts (Fig. 5d—
f). SHAP feature importance plots indicate that NDVIcpr

Ukkola et al., 2016), a doubling of annual water supply sen-
sitivity is highly unlikely. Thus, we argue that no current

NDVIavarr product currently satisfies our product criteria
— that it agrees well with NDVIycp4a3aq while also produc-
ing satisfactory results in the pre-MODIS era.

3.2 Calibration and harmonisation performance

Independent validation statistics for all six model varieties
(clim and noclim; desert and high and low WCF) reveal a
high degree of agreement for all model types, with r> > 0.91
for the clim models, RMSE < 0.039, and MAE < 0.028
(Fig. 5a—c). The clim model types tended to have errors that

https://doi.org/10.5194/essd-16-4389-2024

is the most important variable (Fig. A3), but in the high-
WCEF regions, the relative importance of NDVIcpr dimin-
ished and the NDVIycpa3a4 summary statistics, solar radi-
ation, and cumulative rainfall substantially impacted predic-
tions (Fig. A4b, c).

The per-pixel agreement between NDVIag and
NDVImcpazaa for both the clim and noclim model types
reveals a very high degree of correlation across the con-
tinent (note that pixels with a long-term average NDVI
< 0.11 are masked for this analysis). Correlations between
NDVImcpa3as and NDVI g in Australia’s forested ecosys-
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Figure 5. Validation scatter plots for the calibration and harmonisation between NDVIcpr and NDVIyicp43a4- Panels (a)-(c) show the
results for the clim model. Panels (d)—(f) show the same but for the noclim model type.

tems have been greatly improved, with an average Pearson
R of 0.85 (Fig. 6a) in the clim model (the average Pearson R
in CDR is 0.48). Areas of lower correlation persist in places
that experience ephemeral or periodic water inundation,
such as mangroves and inland lake systems, and in highland
regions that experience seasonal snowfall. The relative error
has been reduced universally across the continent, with a
continental average CV of < 10 % (Fig. 6b). The areas of
greatest relative error occur in the Channel Country in Aus-
tralia’s arid interior and the irrigated regions of the northern
Murray Darling Basin. The noclim model performs similarly,
though correlations and the relative error are universally
worse than for the clim model (Fig. 6¢, d). Residual NDVI
values after subtracting NDVIaygrr from NDVImcepazasg
before and after the calibration and harmonisation show
that the GBM model entirely removed the residual seasonal
signal present in the CDR product, resulting in residuals
that closely track the zero line. Some small bias remains for
the 2011-2012 period (particularly for the noclim model),
when anomalously large rainfall related to a major La
Nifia event resulted in anomalous greening in the savanna
and desert biomes. This is further illustrated in Fig. AS,
where NDVI time series for six bioclimatic regions (the
extents of which are shown in Fig. 2b) before and after the
adjustment have been summarised. Differences between the
Australia-wide time series of NDVInvcpaszaqa and NDVIaysg
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are largely attributable to NDVIa,g underestimating the
peak NDVI during 2011-2012 in the desert and savanna
biomes (Fig. A5f, g).

Improvements in the alignment between NDVIcpr and
NDVImcpa3asa from this regional calibration and harmon-
isation are further demonstrated in Fig. 7, where time se-
ries are summarised for two challenging forest ecosystems
in southwestern Western Australia and Tasmania. The mean
seasonal cycles between the two NDVI datasets are now in
very close agreement (Fig. 7c, f), and the NDVIaysg-clim time
series from 1982-2000 can be effectively integrated with the
NDVIMcp43as time series without introducing major discon-
tinuities (Fig. 7b, e). Note also that the GBM calibration has
ameliorated the strong increasing trend in NDVIcpr from
1982-2000 (Fig. 7b, e), which is almost certainly due to arti-
ficial step changes between sensor transitions and poor cali-
bration over these regions. In Appendix A, we replot Fig. 7d—
f with the inclusion of NDVIgmvms3g to demonstrate that the
trend in NDVIcpgr is likely an artefact of the CDR product
(Fig. A6).

3.3 Gap filling with the synthetic NDVI

The NDVIgyN dataset record agrees exceptionally well with
the joined NDVIysE-clim and NDVInvcpasaa series when ag-
gregated across Australia (Fig. 8e). The time series of Fig. 8e
is further disaggregated into high- and low-WCEF regions (as

https://doi.org/10.5194/essd-16-4389-2024
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per Fig. 2a) in Fig. A7, which reveals that in densely wooded
regions, the synthetic NDVI tends to underestimate peak sea-
sonal growth but otherwise captures seasonal timings and
interannual variability (Fig. A7b). In the low-WCF regions
(Fig. A7a), the synthetic NDVI closely matches with obser-
vations. At the pixel level, the long-term mean NDVIs of both
datasets are virtually identical (Fig. 8a, b). Per-pixel Pearson
correlation averages 0.85 across the continent (Fig. 8d). Ar-

https://doi.org/10.5194/essd-16-4389-2024

eas of poorer correlation occur in western Tasmania and the
highland forests of southeastern Australia — all areas that ex-
perience seasonal snowfall — and in regions with either an-
thropogenic water application (irrigation) or ephemeral, de-
layed water inundation (inland rivers in the arid interior).
The mean relative error was also low, averaging 11 %, but
with hotspots of greater error again occurring in the regions
where water inundation is not dependent on direct rainfall

Earth Syst. Sci. Data, 16, 4389-4416, 2024
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Figure 7. Results before and after the calibration and harmonisation of NDVIcpRr for two examples of regions with high woody canopy
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Western Australia. (e, f) Same as (b, ¢) but for Tasmanian forests. The time series are the spatial averages of the regions to their left.

(Fig. 8c). The results obtained before and after gap-filling
NDVIausE-clim are presented in Fig. 8f. As the missing data
tend to occur in the higher-NDVI regions (wetter, cloudier,
and forested regions), gap filling has the tendency to increase
the NDVI when averaged over the continent.

We present validation scatter plots and feature importance
plots for the desert and non-desert GBM models in Ap-
pendix A (Fig. AS8). In the non-desert region, 3-month cu-
mulative rainfall and VPD are the key climate drivers of pre-
dictions, while in the desert region, 6-month cumulative rain-
fall, VPD, and incoming solar radiation are the key climate
drivers.

3.4 Assessing interannual variability

Comparing the calibrated, harmonised, and gap-filled
NDVIausE-clim dataset with rolling annual-mean NDVIj anggat
anomalies in Fig. 9a reveals a good level of agree-
ment in both the timing and magnitude of interan-
nual variability (IAV) throughout the 1988-2012 period.
NDVIpKU-consolidated 1S also shown for comparison, and gaps
in the NDVIpky.consolidated dataset have been filled using
the same synthetic data and procedure as for NDVIaysg-clim
to facilitate a more straightforward comparison and con-
tinuous time series. NDVIaysg-clim consistently outperforms
NDVIpKuU-consolidated throughout the Landsat series. The IAV
in NDVIaysE-clim 18 further assessed in Fig. 9b, where the full
time series (1982-2022 when NDVIysg-clim 1S joined with
NDVImcepazaa) and NDVIpku-consolidated are plotted together
as rolling annual-mean standardised anomalies against the
same 1982-2022 climatology. NDVIaysg-clim clearly dis-
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plays greater IAV in the pre-MODIS era. We repeat the same
analysis as in Fig. 3d—f but this time include NDVIaysg-clim.
The NDVI-rainfall relationships show that NDVIausE-clim
reports a similar water-supply sensitivity and correlation
in the 1982-2000 period (slope = 1.28, r> = 0.51; Fig. 8d)
to those reported by MODIS for the 2000-2022 period
(slope=1.13, r? =0.54; Fig. 9c). Again, while we may
expect some changes in water-supply sensitivity over the
decades due to effects such as CO; fertilisation, water supply
sensitivity ought to remain relatively stationary, and we take
the correspondence between NDVIycpazasa sensitivity and
NDVIAusE-clim sensitivity as an indication that NDVIaysE-clim
is responding realistically to interannual variations in rain-
fall.

3.5 Annual-average trends

We also evaluated the annual-average NDVI trends across
Australia to assess the performance of AusENDVI in repro-
ducing greening trends observed in other products. Trends
were calculated over the overlapping period of 1982-2013
using ordinary least-squares regression after aggregating
NDVI data to annual means. AusENDVI closely repro-
duces the observable trends in NDVIgmvmssg (coefficients:
AusENDVI-clim =0.00056  NDVIyr~!,  AusENDVI-
noclim=0.00049  NDVIyr~!,  GIMMS3g=0.00062
NDVIyr~!; Fig. 10). Trends in NDVIycps3as over the
shorter interval from 2000-2013 displayed a similar slope to
AusENDVI and GIMMS3g (0.00051 NDVIyr—!). Trends in
the two GIMMS-PKU products are approximately half those
of the other products.

https://doi.org/10.5194/essd-16-4389-2024
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3.6 Trends in peak-of-season phenology

Per-pixel trends in vPOS and POS and the 40-year median
values for these statistics are shown in Fig. 11. Trends in
vPOS are almost universally positive across the continent
(hatching indicates a significant trend) with the exceptions
of the inland northern Murray—Darling Basin, the eastern

https://doi.org/10.5194/essd-16-4389-2024

periphery of the Wheatbelt in Western Australia (WA), and
the region north of Adelaide (Fig. 11b). The positive trends
observed in the major agricultural region of the Murray—
Darling Basin and the northern half of the Western Aus-
tralian Wheatbelt are non-significant. The distributions of
trends in vPOS, stratified by bioclimatic region, reveal that

Earth Syst. Sci. Data, 16, 4389-4416, 2024
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procedure as for NDVI4g-clim- All datasets are matched to Landsat data gaps. (b) Twelve-month rolling-mean standardised anomalies
in the NDVIpky_consolidated (gap-filled in the same manner as in a) and NDVI g clim joined with NDVIyicpazas (1982-2022 climatol-
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NDVIpmcpa3a4 anomalies have been calculated against a 2000-2022 baseline. The slope coefficient can be considered an approximation
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the highest median trends are recorded in the tropics and sa-
vanna regions, at 0.0013 and 0.0014 NDVI yr~!, respectively
(Fig. A9a—e). The Mediterranean region has the lowest me-
dian trend at 0.0009 NDVIyr—!.

Trends in the day of year that peak NDVI occurs (POS)
are negative across much of the continent, suggesting that
there is a general tendency for NDVI to peak earlier in the
year across Australia. Significant negative trends occur in the
agricultural zones of the Mediterranean bioclimatic region,
the Great Western Woodlands that border the eastern mar-
gin of the Western Australian Wheatbelt, the western half of
the Nullarbor Plain, parts of the Riverina agricultural region
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of southwestern New South Wales and extending into Victo-
ria, and western parts of the northern tropical savanna. These
significant negative trends are reflected in the POS trend dis-
tributions in Fig. A9f—j, where the median trends in the warm
temperate and Mediterranean regions are highest at 3.4 and
2.3 days per decade, respectively. Significant positive trends
(the peak NDVI occurring later in the year) are observed in
tropical northern Queensland and western Tasmania and can
be as high as 5-10 days per decade.
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using ordinary least-squares regression, and coefficients are expressed in terms of NDVI per year.

4 Discussion

4.1 Limitations of existing global products and
improvements shown by AusENDVI

We expected to identify differences between NDVIavHRR
and NDVImcpa3as given the differences in spectral sam-
pling between sensors and their different pre-processing
and atmospheric-correction methods, spatial resolutions, and
temporal-compositing techniques. Likewise, comparatively
low correlations in the densely vegetated regions were also
expected due to the total variance in evergreen forests be-
ing smaller than that for seasonal vegetation (grassland and
croplands), and therefore, assuming a similar level of un-
explained variance (noise), correlations should necessarily
be weaker. Nonetheless, we were surprised by the fairly
large inconsistencies between NDVIgimms3e, NDVIcpR, and
NDVIgmmms-pku in representing the seasonal dynamics of
Australia’s densely vegetated regions (e.g. Fig. 3k). Why this
is the case deserves a greater focus of study than we devote
here but is likely related to some combination of the pres-
ence/absence of BRDF and water-vapour corrections, vary-
ing contamination by clouds, and any gap-filling procedures
applied. Regardless of the reasons why, the intercompar-
ison between NDVIayprr products highlights that global
datasets, while often performing adequately when statistics
are aggregated at the global or continental scale, can mask
disparities that are important at the regional to local scale
(Meyer and Pebesma, 2022). We advocate closely examin-
ing regional and local contexts to assess how suitable a given
NDVI dataset is for a particular use case. For example, in
Australia, seasonal cycles in NDVIcpr are highly suspect
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and thus should not be relied upon for phenology studies.
However, NDVIcpr has a comparatively low relative error
when compared with NDVIycpa3as and displays reasonable
interannual variability, so it would likely be more suited to
long-term studies of agricultural drought frequency or the
impacts of CO; fertilisation on canopy cover (assuming that
sensor transitions are filtered). In Australia, the best use of
NDVIpku-consolidated 18 likely the reverse: its representation of
seasonal cycles agrees well with NDVIyicpa3a4, while [AV
is subdued in the pre-MODIS era, which could lead to incor-
rect conclusions regarding shifting sensitivities to water sup-
ply in Australia’s water-limited ecosystems. In general, we
urge caution in using existing global NDVIayHrr products
for studying vegetation trends and seasonality in Australia.
AusENDVI shows significant improvement over existing
global datasets in this respect. The improved correspondence
in seasonal cycles between AusENDVI and NDVIncpa3aa
provides evidence that AusENDVI is more suitable for ex-
ploring longer-term changes to Australia’s vegetation phe-
nology. Moreover, the addition of climate features to the cal-
ibration and harmonisation also appears to have improved the
representation of long-term interannual variability and trends
in annual average NDVI; thus, AusENDVI-clim should like-
wise offer a better basis for studying the shifting frequency
of extreme climate events and their impact on the terrestrial
biosphere.

4.2 Synthetic NDVI

The creation of a synthetic NDVI using only climate, CO»
concentration, and woody-cover fraction as predictors re-
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Figure 11. (a) The median annual peak NDVI value (vPOS) from 1982-2022. (b) Theil-Sen robust-regression trends in vPOS. (¢) Median
day of year that peak NDVI occurs (POS), 1982-2022. (d) Theil-Sen robust-regression trends in POS. Hatching on the trend plots indicates
significance at & =0.05 according to a Mann—Kendall test. All plots are derived from the gap-filled clim NDVI g dataset. Non-seasonal

areas have been masked using the method described in Sect. 2.4.

vealed a high degree of predictability in NDVI over much
of Australia. Regions of lower predictability were located
where the water supply is, either from elsewhere or delayed
(ephemeral inland rivers) or from irrigation. In the absence
of features that could describe the water supply without rain-
fall, NDVI patterns in these zones will continue to be diffi-
cult to estimate if direct satellite observations are unavail-
able. Notwithstanding some spatial variability in per-pixel
predictability, in general, the high degree of agreement be-
tween observed and synthetic NDVI presents the prospect of
extending the synthetic NDVI further back in time through
the observational climate record, which in Australia is reli-
able throughout much of the 20th century. In land surface
models (LMSs), a dynamic phenology algorithm is an im-
portant sub-model which influences the overall carbon cycle,
evapotranspiration, and energy balance of the model (Chen,
2022). The long-term record of synthetic NDVI developed
here could, therefore, prove useful for validating the devel-
opment of process-based phenology models for Australia’s
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diverse range of vegetation and climate. Or, with empiri-
cally validated NDVI-LAI (leaf area index) relationships,
AusENDVI could be used as a phenology forcing during the
pre-satellite era for the many LSMs that do not dynamically
simulate LAI

4.3 Sources of uncertainty and future work

There are several sources of uncertainty in AusENDVI.
Firstly, the climate and landscape features used are subject
to their own uncertainties, which will undoubtedly propa-
gate into both the calibration and harmonisation as well as
the gap filling with synthetic NDVI. For example, rainfall
station observations in the arid interior of Australia are rel-
atively sparse, so errors in the spatial interpolation of rain-
fall are highly likely. Uncertainties in the NDVIcpr product
are also likely to be transmitted to our dataset. Future work
may include a greater treatment of uncertainty through en-
semble modelling, where climate features (e.g. different rain-
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fall and solar-radiation datasets) and model types used for fit-
ting are iterated to generate an uncertainty envelope. We also
aim to assess how well the NDVI from the Visible Infrared
Imaging Radiometer Suite (VIIRS) agrees with NDVIaysg
and NDVIymcpasaa over Australia. Should there be a sub-
stantial discrepancy, the methods described here could be ap-
plied to VIIRS to create an ongoing, updated NDVI dataset
for Australia that can continue to form the foundation for
continental-scale studies of terrestrial ecosystem change. Ir-
respective, we argue that our AusENDVI estimates are based
on the best available data, while the gradient-boosting mod-
els have gone through extensive cross-validation. Therefore,
we contend that the resulting trends should be more accurate
than any alternative NDVI dataset.

4.4 Trends in peak-of-season phenology

We identified advances in the timing of POS across much
of Australia’s land mass (though not all). Over the Mediter-
ranean, warm temperate, and cool temperate bioclimatic re-
gions, the median peak phenology trends were —2 to —3
days per decade. Advances in plant maturity in the Southern
Hemisphere from field data are also reported by Chambers
et al. (2013), who find that the mean rate of change in plant
maturity is 14 days per decade, mostly from temperate re-
gions (63 % of their data are from grapevines). This rate of
change is comparable to the per-pixel rates of change in POS
that are seen in parts of the Mediterranean and warm temper-
ate regions, where it is not uncommon to see negative trends
ranging from 10-15 days per decade (Fig. 11d). However,
the magnitude of a trend is influenced by the length of the
time series, so comparisons with variable-length field data
are difficult, and shorter records are more likely to report a
larger rate (Chambers et al., 2013). Advances in the timing of
POS could be due to a combination of climate drivers. In the
Northern Hemisphere, warming has led to earlier peak green-
ing (Huang et al., 2023; Liu et al., 2021; Park et al., 2019).
Warming can accelerate metabolism, so where water is non-
limiting, leaf development can be faster. However, temper-
ature increases also increase vapour pressure deficits, which
decrease water-use efficiency and can reduce plant productiv-
ity, though this effect may be compensated for by enhanced
CO; (Rifai et al., 2022; Dusenge et al., 2019). Changes in
the timing of peak rainfall may also contribute to shifts in
the timing of peak NDVI. The timing of peak climatologi-
cal rainfall has shifted since 1960 (Fig. A10a—c), and there is
some coincidence between trends in POS and shifts in rain-
fall POS (e.g. an advancement around Adelaide). The goal of
this study is not to draw conclusions on the likely drivers of
seasonality change in Australia but to argue that our dataset
provides a more reliable means for tackling these questions.
Future work will delve into a greater suite of phenology met-
rics (e.g. start of season, end of season, and growing-season
length; Xie et al., 2023) and explore the drivers of phenolog-
ical change.
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The pervasive positive trends in vPOS are consistent with
results elsewhere and are likely due to the impacts of CO;
fertilisation, which allows a given amount of precipitation
to sustain a greater maximum level of plant production over
time (Donohue et al., 2009, 2013; Rifai et al., 2022; Ukkola
et al., 2016). Increases in the magnitude of austral spring and
summer rainfall in northern Australia are also likely to have
contributed to the widespread increase in vPOS in tropical
Australia (Fig. A10d). It is also likely that improving agri-
cultural practices has increased the maximum NDVI in the
rain-fed cropping regions, especially in South Australia and
Victoria, where positive vPOS trends are significant. Trends
in maximum NDVT in the Western Australian Wheatbelt are
also positive but contrast with the fact that WA has seen a
widespread autumn drying trend (Fig. A10d). We speculate
that agricultural innovation there has counteracted a drying
trend that would otherwise have reduced foliage cover.

5 Data availability

AusENDVI is openly available at
https://doi.org/10.5281/zenodo.10802703 (Burton et al.,
2024) and consists of several datasets. Each dataset has
a description in the attributes of the NetCDF file that
defines its provenance. A short description of each dataset is
provided below as an additional reference. All datasets are
in EPSG:4326 projection, have a spatial resolution of 0.05°,
and have monthly temporal resolution. A Jupyter notebook
demonstrating how to load, plot, mask, reproject, and gap-fill
AusENDVTI datasets is also provided at the above link.

AusENDVI-clim_gapfilled_1982_2013. Calibrated and
harmonised NOAA Climate Data Record AVHRR NDVI
data from January 1982 to December 2013. This version
of the dataset used climate data in the calibration and
harmonisation process. The dataset has been gap-filled using
the methods described in Sect. 2.3.

AusENDVI-noclim_1982 _2013. Calibrated and har-
monised NOAA Climate Data Record AVHRR NDVI
data from January 1982 to December 2013. This version
of the dataset did not use climate data in the calibration
and harmonisation process, and the dataset has not been
gap-filled.

AusENDVI-synthetic_1982_2022. This dataset consists of
synthetic NDVI data that were built by training a model on
the joined AusENDVI-clim and MODIS-MCD43A4 NDVI
time series using climate, woody-cover fraction, and atmo-
spheric CO; as predictors. AusENDVI-synthetic is used for
gap filling.

AusENDVI-clim_gapfilled_MCD43A4_1982_2022. This
dataset consists of calibrated and harmonised NOAA Cli-
mate Data Record AVHRR NDVI data from January 1982 to
February 2000 joined with MODIS-MCD43A4 NDVI data
from March 2000 to December 2022. This version of the
dataset used climate data in the calibration and harmonisa-
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tion process. The dataset has been gap-filled using the meth-
ods described in Sect. 2.3.

6 Code availability

The code to conduct all analysis described here
is available in the open-source repository  at
https://doi.org/10.5281/zenodo.13831836 (Burton, 2024).

7 Conclusion

We calibrated and harmonised NDVIcpr to NDVIvcpasas
for Australia using a well cross-validated gradient-boosting
ensemble decision tree method. We developed two versions
of the datasets: one that utilises climate data in the feature
set to achieve the best possible agreement between NDVIcpr
and NDVIyvcpasaa (AusENDVI-clim) and a second dataset
that does not rely on climate data (AusENDVI-noclim). The
resulting datasets have a spatial resolution of 0.05° and ex-
tend from 1982-2013 with a monthly time step. The bet-
ter agreement between AusENDVI and MODIS in terms
of IAV, seasonal variability, and long-term mean NDVI al-
lows us to provide a complete 41-year dataset where the
gap-filled AusENDVI-clim from January 1982 to Febru-
ary 2000 is joined with NDVIymcpazasa from March 2000
to December 2022. The advantages of AusENDVI are that
(1) it closely reproduces the NDVIycpa3a4 record in terms
of seasonality, interannual variability, and trends in annual-
average NDVI; (2) it reproduces annual anomalies in the
Landsat NDVI record in the pre-MODIS era (back to 1988)
and shows realistic rainfall-driven interannual variability
back to 1982; (3) we developed a reliable method for gap-
filling the AusENDVI record by creating a synthetic NDVI
dataset using only climate, CO, concentration, and woody-
cover fraction as predictors. The resulting dataset showed ex-
cellent agreement with NDVIycpaszas and the recalibrated
NDVIavHRR time series, providing confidence in its use for
gap filling; (4) AusENDVI has a higher spatial resolution
than any of the GIMMS-based datasets and is built using in-
puts that apply the full suite of atmospheric and BRDF cor-
rections; and (5) the methods and code used for its devel-
opment are entirely open source. No other existing product
can lay claim to all these attributes, which is why we argue
that AusENDVTI is an important addition to the suite of NDVI
products available. We contend that it is highly suitable for
studying the impact of global environmental change on Aus-
tralia’s terrestrial vegetation.
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Appendix A

Table A1. The hyperparameter grids used during the optimisation
of the harmonisation model and the synthetic NDVI model. During
model fitting, a random grid search was conducted with 250 itera-
tions to identify the highest-performing set of hyperparameters.

Model  Parameter grid

GBM “num_leaves”: stats.randint(5,50),

“min_ child_ samples”: stats.randint(10,30),
“boosting_type”: [“gbdt”, “dart”],
“max_depth”: stats.randint(5,25),
“n_estimators™: [300, 400, 500]
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Figure A1. Available fractions of data before and after the additional filtering of NDVIcpRr data. A value of 1 means that all monthly time
steps between 1982-2013 are preserved.

1.0
0.8 1
% ]
5 061 S
804 &
~ >
> 3
= ]
T 02 o E
2 g
£ 0.0 mmmmmm e oo mmmmmmmmmmmmmmm e o =
by ©
> u—
8 -0.2- b=
= &
—0.4 4 —— Landsat (DEA-NBAR) —2
—— MODIS MCD43A4
_06 1 T T T T T T
2000 2002 2004 2006 2008 2010 2012

Figure A2. Standardised anomalies of the overlapping period between the MODIS MCD43A4 NDVI and the DEA’s Landsat NDVI derived
from the common baseline period of 2000-2012. Rainfall anomalies are derived from a longer baseline of 1982-2022.
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Figure A3. (a—f) Month that the maximum NDVI occurs, averaged from 2001-2013, for all NDVI datasets included in the intercompar-

ison between NDVI products along with the AusENDVI-clim dataset of this study. (g) The climatological mean seasonal cycle of NDVI
summarised over Australia.
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Figure A4. Feature importance plots for the calibration and harmonisation between NDVIcpr and NDVIyicpa3ag. Panels (a)—(c) show the
results for the clim model. Panels (d)—(f) show the same but for the noclim model type.
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Figure A5. Per-bioregion (a—f) and Australia-wide (g) NDVI time series before and after the calibration and harmonisation of NDVIcpR.
The bioregions are defined in Fig. 2b. The time series have been smoothed with a 3-month rolling mean.
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Figure A6. Same as Fig. 6d—f but including NDVIgmvms3g to demonstrate that the very strong increasing trend in NDVIcpg is likely an
artefact of sensor transitions and poor calibration.
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Figure A7. Evaluation of the synthetic NDVI built to gap-fill NDVIysg-clim disaggregated into high- and low-WCF regions. (a) Spatially
averaged observed and synthetic NDVI time series over all continental areas where WCF is less than or equal to 0.25. (b) Same as (a) but for
regions where WCF is greater than 0.25.
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Figure A8. Validation scatter plots and feature importance plots for the gap-filling synthetic NDVI models. Panels (a) and (b) are for the
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Figure A9. Distributions of pixel-level trends in vPOS (a-e) and POS (f-j) summarised by bioclimatic region (excluding the desert region
as most of that region is masked as it is non-seasonal). “M” refers to the median slope value of the distribution and is indicated by the dashed

orange line. The units for vPOS are NDVIyr
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Figure A10. Changes to the timing and magnitude of rainfall in Australia. (a) The typical month that rainfall achieves its maximum value,
averaged from 1960-1990. (b) Same as (a) but for a 1991-2022 climatology. (¢) The difference between (a) and (b) where the 1991—
2022 climatology is subtracted from 1960-1990. Orange colours indicate earlier peak rainfall in the more recent climatology (in number
of months). If peak rainfall shifts from January in 1960-1990 to December in 1991-2022, this is recorded as earlier by 1 month. Purple
colours indicate that peak rainfall occurs later in 1991-2022 compared with 1960-1990. If peak rainfall shifts from December in 1960-1990
to January in 1991-2022, this is recorded as later by 1 month. (d) Theil-Sen trends in the total seasonal rainfall from 1960-2022. Hatching

indicates significance at 95 % confidence using a Mann—Kendall test.
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