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Abstract. A new long-term emission inventory called the Inversed Emission Inventory for Chinese Air Quality
(CAQIEI) was developed in this study by assimilating surface observations from the China National Environ-
mental Monitoring Centre (CNEMC) using an ensemble Kalman filter (EnKF) and the Nested Air Quality Pre-
diction Modeling System. This inventory contains the constrained monthly emissions of NOx , SO2, CO, primary
PM2.5, primary PM10, and non-methane volatile organic compounds (NMVOCs) in China from 2013 to 2020,
with a horizontal resolution of 15 km× 15 km. This paper documents detailed descriptions of the assimilation
system and the evaluation results for the emission inventory. The results suggest that CAQIEI can effectively
reduce the biases in the a priori emission inventory, with the normalized mean biases ranging from −9.1 % to
9.5 % in the a posteriori simulation, which are significantly reduced from the biases in the a priori simulations
(−45.6 % to 93.8 %). The calculated root-mean-square errors (RMSEs) (0.3 mg m−3 for CO and 9.4–21.1 µgm3

for other species, on the monthly scale) and correlation coefficients (0.76–0.94) were also improved from the
a priori simulations, demonstrating good performance of the data assimilation system. Based on CAQIEI, we
estimated China’s total emissions (including both natural and anthropogenic emissions) of the six species in
2015 to be as follows: 25.2 Tg of NOx , 17.8 Tg of SO2, 465.4 Tg of CO, 15.0 Tg of PM2.5, 40.1 Tg of PM10, and
46.0 Tg of NMVOCs. From 2015 to 2020, the total emissions decreased by 54.1 % for SO2, 44.4 % for PM2.5,
33.6 % for PM10, 35.7 % for CO, and 15.1 % for NOx but increased by 21.0 % for NMVOCs. It is also estimated
that the emission reductions were larger during 2018–2020 (from −26.6 % to −4.5 %) than during 2015–2017
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(from −23.8 % to 27.6 %) for most of the species. In particular, the total Chinese NOx and NMVOC emissions
were shown to increase during 2015–2017, especially over the Fenwei Plain area (FW), where the emissions
of particulate matter (PM) also increased. The situation changed during 2018–2020, when the upward trends
were contained and reversed to downward trends for the total emissions of both NOx and NMVOCs and the
PM emissions over FW. This suggests that the emission control policies may be improved in the 2018–2020
action plan. We also compared CAQIEI with other air pollutant emission inventories in China, which verified
our inversion results in terms of the total emissions of NOx , SO2, and NMVOCs and more importantly identi-
fied the potential uncertainties in current emission inventories. Firstly, CAQIEI suggested higher CO emissions
in China, with CO emissions estimated by CAQIEI (426.8 Tg) being more than twice the amounts in previous
inventories (120.7–237.7 Tg). Significantly higher emissions were also suggested over western and northeast-
ern China for the other air pollutants. Secondly, CAQIEI suggested higher NMVOC emissions than previous
emission inventories by about 30.4 %–81.4 % over the North China Plain (NCP) but suggested lower NMVOC
emissions by about 27.6 %–0.0 % over southeastern China (SE). Thirdly, CAQIEI suggested lower emission
reduction rates during 2015–2018 than previous emission inventories for most species, except for CO. In partic-
ular, China’s NMVOC emissions were shown to have increased by 26.6 % from 2015 to 2018, especially over
NCP (by 38.0 %), northeastern China (by 38.3 %), and central China (60.0 %). These results provide us with
new insights into the complex variations in air pollutant emissions in China during two recent clean-air actions,
which has the potential to improve our understanding of air pollutant emissions in China and their impacts on
air quality. All of the datasets are available at https://doi.org/10.57760/sciencedb.13151 (Kong et al., 2023a).

1 Introduction

Air pollution is a serious environmental issue owing to its
substantial impacts on human health, ecosystems, and cli-
mate change (Von Schneidemesser et al., 2015; Cohen et al.,
2017; Bobbink et al., 1998). According to the World Health
Organization, air-pollution-induced strokes, lung cancer, and
heart disease are causing millions of premature deaths world-
wide every year (WHO, 2016). The fine particulate matter
(PM2.5) in the atmosphere not only degrades visibility but
also affects the radiative forcing of the climate, both directly
and indirectly (Martin et al., 2004). After removal from the
atmosphere through dry and wet deposition, air pollutants
such as sulfur, nitrate, and ammonium contribute signifi-
cantly to soil acidification, eutrophication, and even biodi-
versity reduction (Krupa, 2003; Hernández et al., 2016).

China has experienced severe PM2.5 pollution in recent
decades due to its high emissions of air pollutants associ-
ated with rapid urbanization and high consumption of fos-
sil fuels (Kan et al., 2012; Song et al., 2017). The an-
nual concentrations of PM2.5 in 2013 reached 106, 67, and
47 µgm−3 over the Beijing–Tianjin–Heibei, Yangtze River
Delta, and Pearl River Delta regions, respectively, which
were all higher than China’s national standard (35 µgm−3)
and 5–10 times higher than that of the World Health Or-
ganization (10 µgm−3). To tackle this problem, strict emis-
sion control policies (so-called “clean-air action plans”) have
been proposed by China’s government, including the Action
Plan on the Prevention and Control of Air Pollution from
2013 to 2017 (hereafter called the “2013–2017 action plan”)
and the “Three-year Action Plan for Winning the Blue Sky
War” from 2018 to 2020 (hereafter called the “2018–2020

action plan”). With the successful implementation of these
two action plans, the air quality was substantially improved
in China, as evidenced by both observational and reanaly-
sis datasets (W. Li et al., 2020; Zheng et al., 2017; Krotkov
et al., 2016; Zhong et al., 2021; C. Li et al., 2017; Kong et
al., 2021). However, with the deepening of air pollution con-
trol, unexpected changes have occurred in China, bringing
about new challenges for the mitigation of air pollution in
the future. On the one hand, despite a significant decline in
PM2.5 concentrations in China, severe haze still occasionally
occurs during wintertime (W. Zhou et al., 2022; R. Li et al.,
2017). In addition, field measurements in cities over differ-
ent regions of China consistently show different responses
of aerosol chemical compositions to emission control poli-
cies (Tang et al., 2021; Zhou et al., 2019; Wang et al., 2022;
Zhang et al., 2020; H. Li et al., 2019; W. Xu et al., 2019;
Lei et al., 2021; M. Zhou et al., 2022). Compared with other
aerosol species that showed substantial decreases during the
clean-air action plans, nitrate has shown a weaker response
to the control measures, remaining at high levels and in some
cases even increasing slightly. As a result, nitrate is playing
an increasingly important role in heavy-haze episodes in win-
ter and dominates the chemical composition of PM2.5 (Fu
et al., 2020; Q. Xu et al., 2019), leading to a rapid transi-
tion from sulfate- to nitrate-driven aerosol pollution (H. Li et
al., 2019; Y. S. Wang et al., 2019). On the other hand, pho-
tochemical pollution has deteriorated in China, with ozone
(O3) concentrations having increased substantially in eastern
China during 2013–2017 (K. Li et al., 2019; Lu et al., 2018,
2020; Y. H. Wang et al., 2020).

These unexpected changes have raised considerable con-
cern among the scientific community and policymakers re-
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garding the overall effects of the clean-air action plans and
how to coordinate the control of PM2.5 and O3 pollution.
Addressing this problem requires a comprehensive under-
standing of the effects of the clean-air action plans on the
emissions of different air pollutants. In this respect, pre-
vious studies have compiled several long-term air pollu-
tant emission inventories in China using the bottom-up ap-
proach, e.g., the Multi-resolution Emission Inventory for
China (MEIC) developed by Tsinghua University for 2010–
2020 (Zheng et al., 2018), the Air Benefit and Cost and At-
tainment Assessment System-Emission Inventory version 2.0
(ABaCAS-EI v2.0) developed by Tsinghua University for
2005–2021 (Li et al., 2023), the Regional Emission Inven-
tory in Asia (REAS) for 1950–2015 developed by Kurokawa
and Ohara (2020), the Emissions Database for Global At-
mospheric Research (EDGAR) for 1970–2018 developed by
Jalkanen et al. (2012), the Hemispheric Transport of Air
Pollution (HTAP) Inventory for 2000–2018 developed by
Crippa et al. (2023), and the Community Emissions Data
System (CEDS) inventory for 1970–2019 developed by Mc-
duffie et al. (2020). These emission inventories have provided
the community with important insights into the long-term
changes in the air pollutant emissions in China, thus play-
ing an indispensable role in our understanding of the effects
of the country’s clean-air action plans on emissions and air
quality. However, due to the lack of accurate activity data and
emission factors, bottom-up emission inventories are subject
to large uncertainties, particularly during the clean-air action
periods, when the activity data and emission factors changed
considerably and were difficult to track. Consequently, the
estimated emission rates from different bottom-up emission
inventories could differ by a factor of more than 2 (Elguindi
et al., 2020). For example, the estimated emissions for the
year 2010 from different bottom-up inventories were 104.9–
194.5 Tg for carbon monoxide (CO), 15.6–25.4 Tg for nitro-
gen oxides (NOx), 22.9–27.0 Tg for non-methane volatile or-
ganic compounds (NMVOCs), 15.7–35.5 Tg for sulfur diox-
ide (SO2), 1.28–2.34 Tg for black carbon (BC), and 2.78–
4.66 Tg for organic carbon (OC), reflecting the large uncer-
tainty in current bottom-up estimates of air pollutant emis-
sions in China, which hinders the proper assessment of the
effects of the clean-air action plans.

Inverse modeling of multiple air pollutant emissions (i.e.,
a top-down approach) provides an attractive way of con-
straining bottom-up emissions by reducing the discrepancy
between the model and observation through the use of data
assimilation. Numerous studies have confirmed the effective-
ness of such a top-down method in verifying bottom-up emis-
sion estimates and reducing their uncertainties (e.g., Elbern
et al., 2007; Henze et al., 2009; Miyazaki and Eskes, 2013;
Tang et al., 2013; Koohkan et al., 2013; Koukouli et al., 2018;
Jiang et al., 2017; Müller et al., 2018; Paulot et al., 2014; Qu
et al., 2017; Goldberg et al., 2019). Based on long-term satel-
lite observations, the top-down method has also been used
to track the long-term variations in emissions. For example,

Zheng et al. (2019) estimated the global emissions of CO for
the period 2000–2017 based on a multispecies atmospheric
Bayesian inversion approach; Qu et al. (2019) constrained
global SO2 emissions for the period 2005–2017 by assim-
ilating satellite retrievals of SO2 columns using a hybrid
4DVar–mass balance emission inversion method and satellite
observations of multiple species; Miyazaki et al. (2020a) si-
multaneously estimated global emissions of CO, NOx , and
SO2 for the period 2005–2018; and, most recently, Peng
et al. (2023) carried out a regional top-down estimation of
PM2.5 emissions in China during 2016–2020 by assimilating
surface observations. These studies provide us with valuable
clues for evaluating bottom-up emissions and improving our
knowledge of the changes in emissions of different species
in China during the clean-air action plans. However, most of
these studies focused on emission trends at the global scale,
which involved the use of coarse model resolutions (> 1°)
that may be insufficient for capturing the spatial variability
of emission variations at the regional scale. Meanwhile, cur-
rent long-term, top-down estimates mainly focus on single
species and do not fully cover the two clean-air action pe-
riods in China. Indeed, to date, there are still no long-term,
top-down estimates of major air pollutant emissions in China
that fully cover the two clean-air action periods.

In a previous study performed by our group, we developed
a high-resolution air quality reanalysis dataset over China
(CAQRA) for the period 2013–2020 to track the air quality
trends in China during the clean-air action periods (Kong et
al., 2021). In the present study, as a follow-up to this work,
we constrained the long-term emission trends of major air
pollutants in China for 2013–2020 (which will be extended
in the future on a yearly basis) by assimilating surface ob-
servations of air pollutants from the China National Envi-
ronmental Monitoring Centre (CNEMC) using an ensemble
Kalman filter (EnKF) and the Nested Air Quality Prediction
and Forecasting System (NAQPMS). In the following sec-
tions, we present detailed descriptions of the chemical data
assimilation, the evaluation results of the inversed emission
inventory, and the estimated emission trends of different air
pollutants in China during the clean-air action periods.

2 The chemical data assimilation system

We used the chemical data assimilation system (ChemDAS)
developed by the Institute of Atmospheric Physics, Chinese
Academy of Sciences (CAS), to constrain the long-term
emission changes in different air pollutants in China. This
was used in the development of CAQRA in our previous
work (Kong et al., 2021). Since the chemical transport model
(CTM) and the observations used in the top-down estima-
tion were the same as those used in CAQRA, we only briefly
describe these two components in the following two subsec-
tions, instead concentrating on providing a fuller description
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(in the third subsection) of the inversion scheme in Chem-
DAS.

2.1 Chemical transport model

The NAQPMS model was used as the forecast model to
represent the atmospheric chemistry in this study, and the
Weather Research and Forecasting (WRF) model was used
as the meteorological model to provide the meteorological
input data. NAQPMS contains comprehensive modules for
the emission, diffusion, transportation, deposition, and chem-
istry processes in the atmosphere and has been used in pre-
vious inversion studies (Tang et al., 2013; Kong et al., 2019;
H. Wu et al., 2020; Kong et al., 2023b). Detailed configura-
tions of the different modules used in NAQPMS are available
in these publications.

Figure 1 shows the domain of the inverse model, which
is the same as that used in CAQRA, with a fine-scale hori-
zontal resolution of 15 km. The HTAPv2.2 emission inven-
tory was used as the a priori estimate of anthropogenic emis-
sions in China and includes emissions from the energy, in-
dustry, transport, residential, agricultural, air, and shipping
sectors with a base year of 2010 (Janssens-Maenhout et al.,
2015). This is a harmonized global emission inventory that
comprises different regional gridded inventories. Within the
region of China, the air pollutant emissions were mainly
provided by MEIC (Janssens-Maenhout et al., 2015). The
a priori estimates of emissions from other sources include
the biogenic emissions obtained from the Monitoring At-
mospheric Composition and Climate (MACC) project (Sin-
delarova et al., 2014); biomass burning emissions obtained
from the Global Fire Emissions Database (GFED), version
4 (van der Werf et al., 2010; Randerson et al., 2017); soil
and lightning NOx emissions obtained from Yan et al. (2003)
and Price et al. (1997); and marine volatile organic com-
pound emissions obtained from the POET database (Granier
et al., 2005). The dust emissions were calculated online in
NAQPMS as a function of the relative humidity, frictional
velocity, mineral particle size distribution, and surface rough-
ness (Li et al., 2012), while the sea salt emissions were calcu-
lated using the scheme of Athanasopoulou et al. (2008). Note
that, since we aimed to estimate the air pollutant emissions
and their changes from the surface observation, we did not
consider the temporal variation in the a priori emission inven-
tory. This would ensure that the top-down estimated emission
trends were only derived from the surface observations, with-
out being influenced by the trends in the prior emission in-
ventory. In this way, our top-down estimation can serve as an
independent estimation of the air pollutant emission changes
in China. Meanwhile, we used the constant diurnal variation
in the emissions in this study due to the lack of information
on the diurnal variation in the emissions from different sec-
tors, which is a potential limitation in our current work. How-
ever, since the emission inversion was performed on a daily
basis (Sect. 2.3.3), the diurnal variations in the emission may

not significantly influence the simulation results of the daily
mean concentrations of air pollutants (less than 1 ppbv for
SO2, NO2, and O3) according to the sensitivity experiments
conducted by Wang et al. (2010). The initial condition was
treated as clean air in NAQPMS, with a 2-week spin-up time.
Top and boundary conditions were provided by the Model for
Ozone and Related Chemical Tracers (MOZART) (Brasseur
et al., 1998; Hauglustaine et al., 1998) data products provided
by the National Center for Atmospheric Research (NCAR).
Note that, since the MOZART data products were not avail-
able for the years after 2018, the multiyear average results
from 2013 to 2017 were used for the simulations after 2018.
Because most of the model boundaries were set in the clean
areas and are located some distance from China, we assumed
that the differences in boundary conditions would not signifi-
cantly affect the modeling results over China. To improve the
performance of meteorological simulation, a 36 h free run of
the WRF model was conducted for each day by using the
NCAR/NCEP 1°× 1° reanalysis data. The simulation results
of the first 12 h were treated as the spin-up run, and the re-
maining 24 h were used to provide the meteorological inputs
for the NAQPMS model. The evaluation results for the WRF
simulation are available in Sect. S1 in the Supplement, which
suggests acceptable performance of the WRF simulation for
the inversion estimates (Table S1 in the Supplement).

2.2 Assimilated observations

The assimilated observational dataset in this study was the
same as that used in CAQRA, which includes surface con-
centrations of PM2.5, PM10 (coarse particulate matter), SO2,
NO2 (nitrogen dioxide), CO, and O3 from 2013 to 2020, ob-
tained from CNEMC (Fig. 1). Before the assimilation, out-
liers of the observations were filtered out by using an auto-
matic quality control method developed by Wu et al. (2018).
Four types of outliers characterized by temporal and spatial
inconsistencies, instrument-induced low variances, periodic
calibration exceptions, and PM10 concentrations lower than
those of PM2.5 were filtered out to prevent adverse impacts
on the inversion process. As estimated in Kong et al. (2021),
about 1.5 % of the observational data were filtered out af-
ter quality control, but further assessment showed that it
had few effects on the average concentrations of different
species, which were estimated to be less than 1 µgm−3 for
the gaseous air pollutants and less than 5 µgm−3 for the par-
ticulate matter. Estimation of the observational error is also
important for the inversion of emissions since the observa-
tional error and background errors determine the degree of
adjustment to the emissions. The observational error com-
prises the measurement error and the representativeness er-
ror induced by the different spatial scales that the model and
observations represent. The estimations of these two compo-
nents of the observational error were the same as those used
in CAQRA, detailed descriptions of which are available in
Kong et al. (2021).
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Figure 1. Modeling domain of the ensemble simulation overlaid with the distributions of observation sites from CNEMC. Different colors
denote the different regions of concern in this study, i.e., the North China Plain (NCP), northeastern China (NE), southwestern China (SW),
southeastern China (SE), northwestern China (NW), and central China (Central).

Figure 2. Time series of the observational coverage from 2013 to 2020 over different regions of China.
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It should be noted that the number of observation sites was
not constant throughout the whole inversion period, being
approximately 510 in 2013 and then increasing to 1436 in
2015. According to Fig. S1 in the Supplement, the observa-
tion sites were mainly concentrated in the megacity clusters
(e.g., the North China Plain, the Yangtze River Delta, and
the Pearl River Delta) and the capital cities of each province
in 2013. The number of observation sites continued to in-
crease across China in 2014 and 2015. In particular, many
areas that were previously unobserved added monitoring sta-
tions in 2014 and 2015, which significantly increased the ob-
servational coverage of China and could have led to spurious
trends in the top-down estimated emissions. Figure 2 shows
the changes in the observational coverage over different re-
gions of China from 2013 to 2020, indicated by the ratio of
areas that were influenced by observations to the total area
of each region. It can be seen clearly that the observational
coverage increased from 2013 to 2015 with the expansion of
the air quality monitoring network in China and became sta-
ble after 2015. However, the influence of the variation in the
number of observation sites varied among the different re-
gions. Over the North China Plain (NCP) region, the observa-
tional coverage was approximately 90 % in 2013 and reached
100 % in 2014, suggesting that the variation in the observa-
tion sites may have little influence on the estimated emis-
sion changes there. A similar conclusion can be drawn for
the southeastern China (SE) region, where the observational
coverage was about 75 % in 2013 and reached 100 % in 2015.
Elsewhere, in the other four regions, the influence of the vari-
ation in observation sites is expected to be larger because
of the low observational coverage in both 2013 and 2014.
For example, the observational coverage over the northwest-
ern China (NW) region was less than 10 % in 2013 but in-
creased to about 60 % in 2015. To better illustrate the impact
of changes in observational coverage on the inversions, a sen-
sitivity analysis of the emission increments with the fixed
observation sites or varying observation sites is performed
in this study (Sect. S2 and Fig. S2 in the Supplement). This
shows that the additional emission increments caused by the
increases in the number of observation sites would weaken
the decreasing trends estimated in the fixed-site scenario for
the emissions of PM2.5, NOx , and NMVOCs and even lead to
increasing trends for the emissions of PM10 and CO. In con-
trast, the increases in the number of observation sites would
enhance the decreasing trends of SO2 estimated in the fixed-
site scenario. Such different behaviors are mainly related to
the different signs of the emission increments of different
species, as we illustrate in Sect. S2. These results highlight
the significant influences of the site differences on the esti-
mated emissions and their trends, which should be noted by
potential users. Therefore, in order to reduce this influence
on the estimated emission trends, in our following analysis
we mainly analyze the emission trends after 2015, when the
observational coverage had stabilized in all the regions.

2.3 Data assimilation algorithm

We used the modified EnKF coupled with the state augmen-
tation method to constrain the long-term emissions of differ-
ent air pollutants. The EnKF is an advanced data assimila-
tion method proposed by Evensen (1994) that represents the
background error covariance matrix with a stochastic ensem-
ble of model realizations. Through the use of ensemble simu-
lations, it has the ability to consider the indirect relationship
between the emissions and chemical concentrations caused
by the complex physical and chemical processes in the atmo-
sphere. It also allows for the estimation of flow-dependent
emission–concentration relationships that vary in time and
space depending on the atmospheric conditions. The modi-
fied EnKF is an offline application of the EnKF method that
works by decoupling the analysis step from the ensemble
simulation, which has benefits in the reuse of costly ensemble
simulations and makes high-resolution long-term inversion
affordable (H. Wu et al., 2020). In this method, the ensem-
ble simulation was first performed with the perturbed emis-
sions, and then the observations were assimilated to constrain
the emissions (H. Wu et al., 2020). The state augmentation
method is a commonly used parameter estimation method
(Tandeo et al., 2020) in which the air pollutant emissions are
taken as the state variable and are updated according to the
error covariance between the emissions and concentrations
of related species.

2.3.1 State variable and ensemble generations

The state variable used in this study was chosen follow-
ing our previous multispecies inversion study (Kong et al.,
2023b), which included the scaling factors for the emis-
sions of fine-mode unspeciated aerosol (PMF), coarse-mode
unspeciated aerosol (PMC), BC, OC, NOx , SO2, CO, and
NMVOCs as well as the chemical concentrations of PM2.5,
PM10−2.5 (PM10 minus PM2.5), NO2, SO2, CO, and the daily
maximum 8 h O3 (MDA8h O3), which are formulated as fol-
lows:

x = [c,β]T, (1)
c =

[
PM2.5,PM10−2.5,NO2,SO2,CO,MDA8hO3

]
, (2)

β = [βPMF,βPMC, βBC,βOC, βNOxβSO2
βCO, βNMVOC], (3)

where x denotes the vector of the state variable, c denotes
the vector of the chemical concentrations of different species,
and β denotes the vector of the scaling factors for the emis-
sions of different species. Note that, although the chemi-
cal concentration variables are included in the state variable,
they are not optimized simultaneously with the emission in
the analysis step and are only used to estimate the covariance
between the emissions and concentrations. Detailed descrip-
tions of the state variables are available in Table 1.

The ensemble of the scaling factors for different species
was generated independently using the same method of
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Table 1. Corresponding relationships between the chemical observations and adjusted emissions.

Species Description Observations used for inversions of this species

BC Black carbon PM2.5
OC Organic carbon PM2.5
PMF Fine-mode unspeciated aerosol PM2.5
PMC Coarse-mode unspeciated aerosol PM10−PM2.5
NOx Nitrogen oxide NO2
SO2 Sulfur dioxide SO2
CO Carbon monoxide CO
NMVOCs Non-methane volatile organic compounds MDA8h O3

Kong et al. (2021), which has a medium size of 50 and
considers the uncertainties of major air pollutant emissions
in China, including SO2, NOx , CO, NMVOCs, ammonia,
PM10, PM2.5, BC, and OC. The uncertainties of these species
were considered to be 12 %, 31 %, 70 %, 68 %, 53 %, 132 %,
130 %, 208 %, and 258 %, respectively, according to the es-
timates of M. Li et al. (2017) and Streets et al. (2003). Note
that in this study we did not perturb the emissions of differ-
ent sectors to reduce the degrees of freedom in the ill-posed
inverse estimation problem. Instead, we only perturbed the
total emissions of different species. Therefore, only the total
emissions of different species were constrained in this study.
The ensemble of the chemical concentrations was then gener-
ated through an ensemble simulation based on NAQPMS and
the perturbed emissions calculated by multiplying the a pri-
ori emissions by the ensemble of scaling factors. This treat-
ment implicitly assumes that the uncertainty in the chemi-
cal concentration is mainly caused by the emission uncer-
tainty. This makes sense on a monthly or yearly basis, con-
sidering that substantial changes in emissions are expected
to have taken place during the clean-air action plans, which
are subject to large uncertainty. However, the lack of consid-
eration of other error sources, such as those of the meteoro-
logical simulation and the model itself, may lead to under-
estimation of the background error covariance and emission
adjustment, which is a potential limitation of this study. In
addition, the dust and sea salt emissions were not perturbed
and constrained in this study, and thus the errors in the sim-
ulated fine- and coarse-dust emissions would influence the
inversion of PM2.5 and PM10 emissions. As a result, the top-
down estimated PM2.5 and PM10 emissions will contain er-
rors in the simulated dust and sea salt emissions. In partic-
ular, we did not consider the emissions of coarse dust dur-
ing the inversion process since there is large uncertainty in
the simulated coarse-dust emissions of current dust emission
schemes (Zeng et al., 2020; Kang et al., 2011). The large
errors in the simulated coarse-dust concentration could sig-
nificantly influence the inversion results of PM10 emissions.
For example, the simulated coarse-dust concentration could
sometimes be several orders of magnitude higher than the
observed PM10 concentration, leading to overly low values

of the inverse PM10 emissions (approximately 0) over the
regions that were not typical dust source regions but were in-
fluenced by the transportation of coarse dust. Therefore, we
only used simulated PM10 concentrations from other sources
in the inversion of PM10 emissions to avoid the influences of
the overly large errors in the simulations. This is also sim-
ilar to assuming that the coarse-dust emission is equal to 0
during the assimilation. However, in this way, the top-down
estimated PM10 emissions in this study would comprise all
coarse-dust emissions, which should be noted by potential
users. A detailed description of the ensemble generation is
available in Kong et al. (2021).

2.3.2 Inversion algorithm

We used a deterministic form of the EnKF (DEnKF) pro-
posed by Sakov and Oke (2008) to update the scaling factors
of the emissions of different species, which is formulated as
follows:

x̄a
=
¯
xb
+K

(
yo
−H ¯xb

)
, (4)

Xa
= Xb

−
1
2

KHXb, (5)

K= λBb
eHT

(
HλBb

eHT
+R

)−1
, (6)

Bb
e =

1
N − 1

N∑
i=1

Xb
i

(
Xb
i

)T
, (7)

¯
xb
=

1
N

N∑
i=1

xb
i ;X

b
i = x

b
i −
¯
xb, (8)

where x denotes the ensemble mean of the state variable; the
superscripts b and a, respectively, denote the a priori and a
posteriori estimates; and Xa denotes the analyzed anomalies
that can be used to calculate the uncertainty of the a posteri-
ori emissions. K is the Kalman gain matrix, Bb

e is the back-
ground error covariance matrix calculated by the background
perturbation Xb, yo is the vector of the observation, and R is
the observational error covariance matrix. H is the linear ob-
servation operator, which maps the model space to the obser-
vation space. λ is the inflation factor used to compensate for
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the underestimation of the background error caused by the
limited ensemble size and unaccounted-for error sources and
is calculated using the method of Wang and Bishop (2003):

λ=

(
R−1/2d

)TR−1/2d −p

trace
{

R−1/2HBb
e
(
R−1/2H

)T} , (9)

d = yo
−H ¯xb, (10)

where d is the observation innovation and p is the number
of observations. Table S2 in the Supplement summarizes the
calculated average value (standard deviation) of the used in-
flation factor for different species. It shows that the inflation
factor over eastern China (including the NCP and SE regions)
was generally around 1.0, suggesting that the original en-
semble can represent the simulation errors of the different
air pollutants well over these regions. The inflation factor
is larger over western China (including the SW, NW, and
Central regions), especially for PM10 (36.0–78.1) and SO2
(7.8–176.1), suggesting that the original ensemble may un-
derestimate the simulation errors of the air pollutants. This
is associated with the large biases in the simulated air pol-
lutant concentrations over there and shows that the emission
uncertainties assumed in our studies may be underestimated
over these regions. This also highlights the importance of the
use of the inflation method during the inversion; otherwise,
it would lead to filter divergency caused by the underestima-
tions of the background error covariance.

In order to reduce the influence of the spurious correla-
tions on the performance of data assimilation, the EnKF was
performed locally in this study in that the analysis was cal-
culated grid by grid with the assumption that only measure-
ments located within a certain distance (cutoff radius) from
a grid point would influence the analysis results of this grid.
The use of this local analysis method also allowed the infla-
tion factor to be calculated locally and to vary in time and
space, which can help characterize the spatiotemporal vari-
ations in errors, as we illustrated above. Similarly to Kong
et al. (2021) and Kong et al. (2023b), the cutoff radius was
chosen as 180 km for each species based on the wind speed
and the lifespan of the species (Feng et al., 2020). The same
local scheme with a buffer area was also employed during
the inversion to alleviate the discontinuities in the updated
state caused by the cutoff radius. A detailed description of
the local analysis scheme is available in Kong et al. (2021).

Table 1 summarizes the corresponding relationships be-
tween the emissions and chemical concentrations. Similarly
to Ma et al. (2019) and Miyazaki et al. (2012), we did not
consider the interspecies correlation during the assimilation
to prevent the spurious correlations between unrelated or
weakly related variables. In most cases, observations of one
particular species were only allowed to adjust emissions of
the same species. The assimilation of PM2.5 mass observa-
tion was more complicated as there are multiple error sources
in the simulated mass concentrations of PM2.5, not only from

primary emission, but also from secondary production. In
this study, the PM2.5 mass observation was used to constrain
the emissions of PMF, BC, and OC but was not used to con-
strain the emissions of its precursors to avoid the spurious
correlations and nonlinear chemistry effects, similar to the
scheme used in Ma et al. (2019). This is feasible as the emis-
sions of primary PM2.5 (i.e., PMF, BC, and OC) and the
emissions of PM2.5 precursors (e.g., SO2, NO2) were per-
turbed independently in our method, and thus the contribu-
tions of primary PM2.5 emissions and secondary PM2.5 pro-
ductions to PM2.5 mass could be isolated through the use of
ensemble simulations. Meanwhile, the use of the iteration in-
version method (which will be introduced later) can further
reduce the influence of the errors in the precursors’ emis-
sions on the inversion of primary PM2.5 emissions, because
the errors of the precursors’ emissions would be constrained
by their own observations during the iterations. However,
the lack of assimilation of speciated PM2.5 observations may
lead to uncertainties in the estimated emissions of PMF, BC,
and OC, which is a potential limitation in the current work.
For example, if the a priori simulated PM2.5 equals the ob-
servations, the emissions of PMF, BC, and OC would not
be adjusted by using the current method. However, in such
cases, there may still be errors in the proportions of the emis-
sions of different PM2.5 components. To adjust the emissions
of PMC, we used the observations of PM10−2.5 to avoid the
potential cross-correlations between PM2.5 and PM10 (Peng
et al., 2018; Ma et al., 2019). For the NOx emissions, al-
though the O3 concentrations are chemically related to the
NOx emissions, we did not use the O3 concentrations to con-
strain the NOx emissions in this study as there is a nonlinear
relationship between O3 concentration and NOx emission,
which would lead to incorrect adjustment of NOx emissions
(Tang et al., 2016).

The inversion of NMVOC emissions is more difficult than
that of other species due to the lack of long-term nation-
wide NMVOC observations and the strong chemical activ-
ity. Previous studies usually assimilated satellite observations
of formaldehyde and glyoxal to constrain NMVOC emis-
sions, such as Cao et al. (2018) and Stavrakou et al. (2015).
However, these inversion studies were hindered by the NOx–
VOC–O3 chemistry and the inherent uncertainty in satel-
lite observations of formaldehyde and glyoxal. Considering
the strong chemical relationship between O3 and NMVOCs,
some pioneering studies also explored the method of assim-
ilating ground-level O3 concentrations to constrain NMVOC
emissions (Ma et al., 2019; Xing et al., 2020) and demon-
strated the effectiveness of this approach. For example, Ma
et al. (2019) found that the assimilation of O3 concentra-
tions could adjust NMVOC emissions in the direction of
the bottom-up inventories, and the forecast skills of the O3
concentrations were also improved, indicating that the con-
strained NMVOC emissions were improved relative to their
a priori values. Inspired by these studies, we have made an
attempt to constrain NMVOC emissions based on MDA8h
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Figure 3. Time series of the a priori bias (blue lines), the a posteriori bias (red lines), and the emission increment (green lines) from 2013 to
2020 for the different species over the six regions of China.

O3. The use of MDA8h O3 rather than the daily mean O3
concentration is meant to avoid the effects of the nighttime
O3 chemistry. For example, the simulation errors in the titra-
tion effects of NOx may influence the simulated O3 con-
centrations at night and affect the inversion results of the
NMVOCs. An important issue that should be noted when
using MDA8h O3 to constrain the NMVOC emissions is
the nonlinear interactions between NOx , NMVOCs, and O3.
On the one hand, the O3 concentrations are dependent on
not only the NMVOC emissions, but also the NOx emis-
sions. The errors in the a priori emissions of NOx would
also contribute to the simulation errors of O3 and deterio-
rate the inversion of the NMVOCs. The iteration inversion
scheme could help deal with this issue as the errors in the
NOx emissions will be constrained by the NO2 observations
in the next iteration, which can reduce the influences of errors
in the NOx emission on the inversion of NMVOC emissions
based on MDA8h O3 concentrations. This is in fact similar
to the approach used by Xing et al. (2020), who first con-
strained the NOx emissions based on observations of NO2
and then constrained the NMVOC emissions based on O3
concentrations. Also, in Feng et al. (2024), the NO2 observa-
tions were simultaneously assimilated to constrain the NOx
emissions to account for the influences of errors in the NOx
emissions on the NMVOC emissions, suggesting that the it-
eratively nonlinear joint inversion of NOx and NMVOCs is
an effective way of addressing the intricate relationship be-
tween VOC, NOx, and O3 (Feng et al., 2024). Similarly, the

errors in the CO emissions, which may be significant accord-
ing to our following analysis, are also constrained in a sim-
ilar way to reduce the potential influences on the inversion
of the NMVOC emissions. On the other hand, the emission
adjustments of NMVOCs may exhibit bidirectionality that is
dependent on the VOC-limited or NOx-limited regimes. Ac-
cording to Fig. 3, the NMVOC emissions were adjusted in
alignment with the direction of the O3 errors, suggesting a
VOC-limited regime over urban areas in China, given that
the O3 observation sites are predominantly situated in urban
areas. This is in agreement with Ren et al. (2022), who di-
agnosed the NOx–VOC–O3 sensitivity based on the satellite
retrievals and found that the VOC-limited regimes are mainly
located in urban areas in China. This suggests that the rela-
tionship between the O3 concentrations and VOC emissions
could be reasonably reflected by our inversion system, pro-
viding the feasibility of utilizing the O3 observations to con-
strain the VOC emissions. Note that, due to the lack of ob-
servations of VOC components, we only optimize the gross
emissions of the VOCs during the assimilation.

As we illustrated before, there exist nonlinear effects in the
atmospheric chemistry which could influence the inversion
results of different species. In addition, since we did not con-
sider the temporal variations in the a priori emissions, it was
expected that there would be significant biases in the a pri-
ori emissions for the years after 2013, as substantial changes
in emissions were expected owing to the implementation of
strict emission control measures. Such bias in the a priori
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emissions does not conform to the unbiased hypothesis of
the EnKF, which could lead to incomplete adjustments of
the a priori emissions and degrade the performance of the
data assimilation (Dee and Da Silva, 1998). To address these
issues, an iteration inversion scheme that was used previ-
ously in Kong et al. (2023b) was employed in this study. The
main ideas of the iteration inversion scheme are to preserve
the background perturbation Xb and to update the ensemble
mean of the state variable ¯xb based on the model simulations
driven by the inversion results of the kth iteration. Therefore,
a new single model simulation needs to be conducted by us-
ing the a posteriori emission from the previous iteration as
the input to update the ensemble mean of the original ensem-
ble. This enables the observational information and the ad-
justed emissions to be promptly incorporated into the model,
thereby providing feedback for the adjustments of emissions
in the next iteration. However, we did not reassemble the
ensemble simulation for each iteration due to the expensive
computational cost of the ensemble simulation. Therefore,
in each iteration calculation, the ensemble perturbations that
were used to calculate the background error covariance ma-
trix remain the same, with only the ensemble mean being
updated based on the inversion results of the previous itera-
tion. The state variable used in the (k+1)th inversions is then
formulated as follows:

x
b,k+1
i =

[
ck + ce

i − c̄
e, βk +βe

i − β̄
e
]T
, (11)

where ck represents the model simulations driven by the in-
versed emissions of the kth iteration, ce

i represents the ith
member of ensemble simulations with an ensemble mean of
c̄e, βk represents the updated scaling factors of the kth iter-
ation, and βe

i represents the ith member of the ensemble of
scaling factors with a mean value of β̄e. In each iteration, all
emissions are updated simultaneously, and two rounds of it-
erations were conducted in this study based on our previous
inversion study to maintain a balance between the inversion
performance and the computational cost of the long-term in-
versions (Kong et al., 2023b).

2.3.3 Setup of inversion estimation

Based on this inversion scheme, we constrained the daily
emissions of PMF, PMC, BC, OC, NOx , SO2, CO, and
NMVOCs from 2013 to 2020, based on the daily averaged
observations of PM2.5, PM10−2.5, NO2, CO, and MDA8h O3.
However, due to the lack of enough speciated PM2.5 obser-
vations, the model performance driven by the inversed emis-
sion for the BC, OC, and primary unspeciated PM2.5 has not
been evaluated thoroughly. It is thus currently unclear for the
quality of the inversed emissions of BC, OC, and primary un-
speciated PM2.5. Also, the lack of speciated PM2.5 observa-
tions could lead to uncertainties in the estimated emissions of
PMF, BC, and OC, as we mentioned before. Considering this,
similar to Kong et al. (2023b), although we made an attempt

to estimate the emissions of BC, OC, and primary unspeci-
ated PM2.5, we have reservations about their inversion results
and only provide the emissions of PM2.5 (PMC+BC+OC)
and PM10 (PM2.5+PMC) in the current stage. In the future,
we will collect more speciated PM2.5 observations to com-
prehensively quantify the accuracy of their inversion results,
after which the emissions of these species will be released.
Meanwhile, the speciated PM2.5 observations could be as-
similated in the current inversion framework. This could pro-
vide us with further constraints on the emissions of BC, OC,
and primary PM2.5. Meanwhile, as mentioned in Sect. 2.3.1,
the meteorological and model uncertainties were not consid-
ered in the ensemble simulation. Thus, the errors in the me-
teorological simulation would cause fluctuations in the daily
emissions that contaminate the inversion results and are diffi-
cult to isolate from the inherent variations in emissions (Tang
et al., 2013). Considering this, the daily emissions were av-
eraged to monthly values to reduce the influences of random
model errors after the assimilation.

3 Performance of the chemical data assimilation
system

3.1 Analysis of the observation minus forecast (OmF)
and the emission increment

The OmF and the emission increment (a posteriori emission
minus a priori emission) were first analyzed to demonstrate
the performance of the data assimilation. As shown in Fig. 3,
the a priori simulation generally underestimated the PM2.5
concentrations over the NCP, SE, and SW regions (positive
OmF values) during 2013–2014 but overestimated the PM2.5
concentrations from 2016, reflecting the effects of the emis-
sion control measures during these years. In the NE, NW,
and central China (hereafter “Central”) regions, obvious un-
derestimation of the PM2.5 concentration was found (posi-
tive OmF values) throughout almost the entire assimilation
period. Similarly, the OmF values of PM10 were positive
throughout the whole assimilation period over all the regions
of China. In contrast, the OmF values for SO2 were nega-
tive for most of the regions, and the negative OmF values
over the NCP region became larger as the years progressed,
which reflects the effects of the emission control measures.
The OmF for NO2 reveals a seasonal variation over the NCP
and SE regions, with negative values during summer and pos-
itive values during winter, while there were obvious positive
OmF values over the NE, SW, NW, and Central regions. In
terms of CO, large positive OmF values were found over all
the regions of China, and there were decreasing trends in the
OmF values of CO over different regions of China that were
associated with the emission control policies during these
years. The OmF values for O3 were positive over most re-
gions of China, except for the NW region. These results pro-
vide us with valuable information on the potential deficien-
cies in the a priori emissions. However, since our inversion
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method did not differentiate between anthropogenic and nat-
ural emissions, the biases in the model simulation may also
be attributable to the errors in natural emissions such as dust,
especially over the major dust source areas of China (e.g., the
NW and Central regions). In addition, the effects of emission
control were not considered in the a priori emissions, which
form another important contributor to the errors in the model
simulation for the later years. Thus, the emission increments
calculated by the assimilation should reflect the combined ef-
fects of errors in the anthropogenic and natural emissions as
well as the emission control.

The calculated emission increments were consistent with
the OmF values for all the species, which indicates that the
data assimilation method can probably constrain the emis-
sions based on the observations. According to Fig. 3, the
emission increments were positive for PM2.5 over the NE,
NW, and Central regions; for NO2 over the NE, SW, NW,
and Central regions; and for PM10, CO, and NMVOCs over
almost all the regions throughout the assimilation period. In
contrast, the emission increments were negative for the SO2
emissions in most of the cases. Consistent with the OmF val-
ues, the emission increments were positive for PM2.5 over
the NCP, SE, and SW regions during 2013–2014 but be-
came negative from 2016 owing to the implementation of
strict emission control measures. The emission increments
for NOx also showed significant seasonal variation over the
NCP and SE regions, being positive during winter and neg-
ative during summer. The a posteriori biases for the model
simulations of different species were also plotted to assess
the performance of the data assimilation. It can be seen
clearly that the biases were substantially reduced for all
the species and the calculated root-mean-square errors (RM-
SEs) reduced by 23.2 %–52.8 % for PM2.5, 19.9 %–37.8 %
for PM10, 36.4 %–77.3 % for SO2, 18.3 %–25.2 % for NO2,
29.9 %–40.5 % for CO, and 4.4 %–26.1 % for O3 over the
different regions of China, suggesting good performance of
the data assimilation system.

3.2 Evaluation of the inversion results

Table 2 shows the calculated evaluation statistics for the in-
version at different temporal scales. It can be seen clearly
that the model simulation with the a posteriori emission in-
ventory reproduced the magnitude and temporal variations
in the different air pollutants in China well, with calculated
correlation coefficients of approximately 0.77, 0.72, 0.64,
0.67, 0.69, and 0.71 and normalized mean biases of approx-
imately 4.5 %, −4.6 %, −9.0 %, −3.9 %, −8.8 %, and 9.5 %
for the hourly concentrations of PM2.5, PM10, SO2, NO2,
CO, and O3, respectively. Moreover, the a posteriori model
simulation achieved comparable accuracy to the air qual-
ity reanalysis data we developed in Kong et al. (2021) in
terms of the RMSEs, which were 32.4, 53.1, 24.9, 19.9, 0.56,
and 34.9 µgm−3, respectively, for these species at the hourly
scale. At the daily, monthly, and yearly scales, the con-

strained model simulation performed better, with RMSEs of
approximately 9.1–20.0 µgm−3 (PM2.5), 18.5–31.6 µgm−3

(PM10), 11.5–16.0 µgm−3 (SO2), 8.1–12.8 µgm−3 (NO2),
0.28–0.39 µgm−3 (CO), and 14.2–26.1 µgm−3 (O3), which
were reduced by 56.7 %–67.3 %, 49.2 %–52.1 %, 68.8 %–
72.8 %, 36.3 %–39.8 %, 47.0 %–58.0 %, and 22.9 %–30.5 %,
respectively, compared to the RMSEs of the a priori sim-
ulations. We also compared the model performance driven
by the inversed inventory with that driven by more recent
bottom-up inventories (MEIC and HTAPv3) by taking the
simulation results of the year 2020 as an example to give us a
more objective understanding of the accuracy of the inversed
emission inventory. This shows that the inversed emission
generally achieves better performance in simulating the air
pollutant concentrations in China than MEIC and HTAPv3
(Table S3 in the Supplement). It is also encouraging to find
that the model performance driven by CAQIEI and MEIC–
HTAPv3 is similar for PM2.5, PM10, and SO2 over the NCP,
NE, SE, and SW regions, which is a significant improve-
ment on the a priori emission inventory. This suggests that
both the top-down and recent bottom-up emission inventories
have good performance in capturing the emission changes in
these species over these regions and that they yield consis-
tent estimations. Detailed information on the configurations
of the model simulation results driven by MEIC–HTAPv3 to-
gether with the comparison results are available in Sect. S3
in the Supplement. All these validation results confirm the
good performance of the data assimilation method and sug-
gest that the inversed emission inventory has the ability to
reasonably represent the magnitude and long-term trends of
the air pollutant emissions in China during 2013–2020.

4 Results

Based on the top-down estimation, the gridded emissions
for PM2.5, PM10, SO2, CO, NOx , and NMVOCs over China
from 2013 to 2020 were developed into what we have called
CAQIEI. In the following sections, we first analyze the mag-
nitude and seasonality of the air pollutant emissions in China
by taking 2015 as a reference year when the number of ob-
servation sites became stable. After that, the changes in emis-
sions of different air pollutants from 2015 to 2020 are ana-
lyzed and compared between the two clean-air action plans in
China. Note that, due to the impacts of the changes in obser-
vational coverage, it is difficult to estimate the overall emis-
sion reduction rates during the 2013–2017 action plan by us-
ing our inversion results. The emission change rates during
2015–2017 are then sampled in this study to assess the miti-
gation effects during the 2013–2017 action plan and to com-
pare them with the emission change rates during 2018–2020.
Finally, CAQIEI is compared with the previous bottom-up
and top-down emission inventories to validate our top-down
estimation and to identify the potential uncertainties in the
current understanding of China’s air pollutant emissions.
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Table 2. Evaluation statistics of the a posteriori (a priori) model simulation for different species∗.

PM2.5 (µgm−3) PM10 (µgm−3)

R MBE NMB (%) RMSE R MBE NMB (%) RMSE

Hourly 0.77 (0.53) 2.1 (13.3) 4.5 (28.6) 32.4 (55.6) 0.72 (0.44) −3.7 (−11.5) −4.6 (−14.3) 53.1 (74.4)
Daily 0.89 (0.61) 2.1 (13.3) 4.4 (28.4) 20.0 (46.3) 0.88 (0.51) −3.7 (−11.2) −4.6 (−14.1) 31.6 (62.2)
Monthly 0.94 (0.68) 2.1 (13.3) 4.5 (28.3) 11.7 (32.5) 0.90 (0.56) −3.6 (−11.3) −4.5 (−14.1) 21.2 (44.1)
Yearly 0.94 (0.62) 2.2 (11.9) 4.4 (24.3) 9.1 (27.7) 0.89 (0.52) −3.8 (−13.4) −4.6 (−16.1) 18.5 (38.7)

SO2 (µgm−3) NO2 (µgm−3)

R MBE NMB (%) RMSE R MBE NMB (%) RMSE

Hourly 0.64 (0.16) −1.8 (19.0) −9.1 (93.8) 24.9 (58.7) 0.67 (0.45) −1.2 (−0.9) −3.9 (−2.7) 19.9 (25.5)
Daily 0.80 (0.20) −1.8 (19.0) −9.2 (94.5) 16.0 (51.4) 0.80 (0.51) −1.2 (−0.8) −3.7 (−2.6) 12.8 (20.1)
Monthly 0.85 (0.20) −1.9 (18.9) −9.3 (93.1) 12.4 (45.8) 0.84 (0.57) −1.2 (−0.8) −3.8 (−2.6) 9.4 (15.6)
Yearly 0.83 (0.18) −2.4 (17.0) −10.8 (75.9) 11.6 (42.4) 0.82 (0.63) −1.3 (−1.6) −3.9 (−5.0) 8.1 (13.0)

CO (µgm−3) O3 (µgm−3)

R MBE NMB (%) RMSE R MBE NMB (%) RMSE

Hourly 0.69 (0.38) −0.1 (−0.4) −8.8 (−45.6) 0.6 (0.8) 0.71 (0.51) 5.6 (−8.4) 9.5 (−14.0) 34.9 (41.6)
Daily 0.81 (0.42) −0.1 (−0.4) −8.6 (−45.5) 0.4 (0.7) 0.71 (0.40) 5.7 (−8.4) 9.5 (−14.1) 26.1 (33.8)
Monthly 0.83 (0.42) −0.1 (−0.4) −8.7 (−45.7) 0.3 (0.7) 0.76 (0.47) 5.6 (−8.4) 9.4 (−14.1) 19.6 (26.0)
Yearly 0.82 (0.27) −0.1 (−0.5) −9.0 (−47.6) 0.3 (0.7) 0.53 (0.11) 5.1 (−7.8) 8.7 (−13.4) 14.2 (20.5)

∗ The time series of the air pollutant concentrations at each station were first catenated into a single vector. Then the values of each evaluation metric were calculated based on
the catenated time series of the observed and simulated concentrations.

Table 3. Inversion-estimated emissions (Tg yr−1) of different species in China as well as the six regions for the year 2015.

China NCP SE NE SW NW Central

NOx 25.2 5.1 7.1 4.5 4.2 1.2 3.2
SO2 17.8 3.5 3.3 4.0 2.6 0.8 3.6
CO 465.4 82.2 106.7 78.7 82.8 32.6 82.3
PM2.5 14.9 2.7 3.3 3.1 2.9 1.2 1.9
PM10 40.1 8.7 7.5 8.2 5.5 4.1 6.2
NMVOCs 46.0 9.0 13.7 8.5 7.8 2.7 4.2

4.1 Top-down estimated Chinese air pollutant emissions
in 2015

The top-down estimated emissions of different species in
2015 are as follows: 25.2 Tg of NOx , 17.8 Tg of SO2,
465.4 Tg of CO, 15.0 Tg of PM2.5, 40.1 Tg of PM10, and
46.0 Tg of NMVOCs. Note that these values contain not only
anthropogenic emissions, but also natural emissions (e.g.,
dust and biogenic NMVOCs). Thus, the top-down estimated
emissions of PM and NMVOCs were higher than those es-
timated by previous studies, as we mention in the following
sections. Emission maps of all species in 2015 are shown
in Fig. 4, and the calculated emissions of different species
over different regions are presented in Table 3. According to
Fig. 4, higher air pollutant emissions are widely distributed
in the megacity clusters (e.g., NCP, the Yangtze River Delta,
and the Pearl River Delta) and developed cities in China,
reflecting the influences of human activities. The NCP was

the region with the highest emission intensity of air pollu-
tants in China, contributing 5.1 Tg of NOx , 3.5 Tg of SO2,
82.2 Tg of CO, 2.7 Tg of PM2.5, 8.7 Tg of PM10, and 9.0 Tg
of NMVOCs to the total emissions in China. The inversion
results also demonstrate the contributions of natural sources
to the air pollutant emissions, such as the soil NOx emis-
sions and the biogenic NMVOC emission distributed in the
Tibetan Plateau region. In general, the majority of the air pol-
lutant emissions were located in eastern China (including the
NCP, NE, and SE regions), where the economy is relatively
well developed, which in total accounted for 66.0 % of NOx ,
60.9 % of SO2, 57.5 % of CO, 60.4 % of PM2.5, 60.5 % of
PM10, and 67.8 % of NMVOC emissions in China. However,
although the gross domestic product (GDP) of western China
(including the SW, NW, and Central regions) is less than one-
third that of eastern China, the top-down estimation indicates
that the air pollutant emissions in western China could have
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Figure 4. Spatial distributions of the emissions of (a) SO2, (b) NOx , (c) CO, (d) NMVOCs, (e) PM2.5, and (f) PM10 in 2015 obtained from
CAQIEI.

accounted for about 32.2 %–42.5 % of the total emissions,
which reflects the low emission control levels over these re-
gions.

Figure 5 shows the monthly variations in air pollutant
emissions in China for the year 2015. The monthly profile
of NOx emissions was relatively flat among the six species.
SO2 and CO showed higher emissions during winter because
of the enhanced residential emissions associated with higher
coal consumption for heating during that time of the year.
Meanwhile, the emission factor for CO from vehicles in win-
ter was also higher than in the other seasons, due to additional
emissions from the cold-start process (Kurokawa et al., 2013;
M. Li et al., 2017). PM2.5 and PM10 had higher emissions
during winter and spring, which on the one hand was due
to the enhanced emissions from the residential and industrial
sectors during the winter season (M. Li et al., 2017) and on
the other hand the enhanced dust emissions during the spring
season (Fan et al., 2021). Emissions of NMVOCs exhibited
strong monthly variations, with higher emissions mainly in
summer because of the enhanced NMVOC emissions from
biogenic sources.

4.2 Top-down estimated emission changes in different
air pollutants

4.2.1 Emission changes in particulate matter

Figure 6 shows the top-down estimated emission changes
in PM2.5 and PM10 over China during the two clean-air ac-
tion periods. Both PM2.5 and PM10 emissions decreased sub-
stantially, by 44.3 % and 21.2 %, respectively, from 2013 to
2020. By contrast, the top-down estimates showed increases
in PM2.5 and PM10 emissions in 2014 and 2015, but this
would be a spurious trend caused by the changes in obser-
vation sites that we discussed in Sect. S2. Therefore, the
emissions in 2013 and 2014 were discarded to prevent the
spurious trends. According to Fig. 6, the PM2.5 emissions
decreased by 14.5 % from 2015 (15.0 Tg) to 2017 (12.8 Tg),
and the reduction in emissions was roughly uniform through-
out the period, which was about 8 % compared to the previ-
ous years. The PM10 emissions showed a smaller reduction
rate (−7.2 %) than that of PM2.5, decreasing from 40.1 Tg in
2015 to 37.2 Tg in 2017. Compared with the emission reduc-
tion rate during 2015–2017, both PM2.5 and PM10 showed
higher emission reduction rates during 2018–2020, which
were estimated to be 27.2 % and 25.5 %, respectively. The
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Figure 5. Monthly series of the total emissions of (a) NOx , (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs in China for the
year 2015 obtained from CAQIEI.

Table 4. The calculated annual trends of PM2.5 and PM10 emissions in China based on CAQIEI.

PM2.5 (Tg yr−1) PM10 (Tg yr−1)

2015–2020 2015–2017 2018–2020 2015–2020 2015–2017 2018–2020

China −1.4∗ −1.1 −1.5 −2.6∗ −1.4 −4.6
NCP −0.32∗ −0.30 −0.32 −0.64∗ −0.88 −0.99
SE −0.32∗ −0.21 −0.44 −0.52∗ −0.48 −0.84
NE −0.24∗ −0.25 −0.11 −0.52∗ −0.22 −0.73
SW −0.21∗ −0.26 −0.20 −0.40∗ −0.26 −0.56
NW −0.09 −0.08 −0.12 −0.20∗ −0.32 −0.32
Central −0.15 0.01 −0.32 −0.27 −0.32 −1.14

∗ The trend is significant at the 0.05 significance level.

emission reductions in each year were also larger, espe-
cially for PM10. For example, PM2.5 and PM10 emissions
decreased by about 19.3 % and 14.0 % in 2019 compared
to 2018. This may have been due to the fact that, in ad-
dition to the strict controls imposed on the industrial and
power sectors during the 2013–2017 action period, the res-
idential emissions were strengthened during the 2018–2020
action period. In particular, “coal-to-electricity” and “coal-
to-gas” strategies were vigorously implemented in northern
China during the 2018–2020 action to reduce coal consump-
tion and related air pollutant emissions (Liu et al., 2016;

S. Wang et al., 2020). Thus, our inversion results confirm
the effectiveness of the controls on residential emissions in
terms of reducing the emissions of PM2.5 and PM10. In ad-
dition, the control of non-point sources, such as blowing-
dust emissions, was also strengthened during the 2018–2020
action period, which is consistent with the faster reduction
in PM10 emissions during 2018–2020. The annual trends of
PM2.5 and PM10 emissions were also calculated in China us-
ing the Mann–Kendall trend test and the Theil–Sen trend es-
timation method, the results of which are summarized in Ta-
ble 4. The calculation of emission trends can help extend the
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Figure 6. Emission changes in (a) PM2.5 and (b) PM10 obtained from CAQIEI from 2013 to 2020.

existing emission datasets forward in time to produce up-to-
date products. The top-down estimated trends of PM2.5 and
PM10 emissions were −1.4 and −2.6 Tg yr−1 during 2015–
2020, which is attributable to the strict emission control mea-
sures imposed during the two clean-air action plans. As men-
tioned, the decreasing trends were higher during 2018–2020
(−1.5 and −4.6 Tg yr−1) than during 2015–2017 (−1.1 and
−1.5 Tg yr−1).

On the regional scale (Fig. S3 in the Supplement), it can be
seen clearly that the PM2.5 emissions decreased consistently
over all the regions (by 59.8 % in NCP, 49.6 % in SE, 39.5 %
in NE, 35.8 % in SW, 33.2 % in NW, and 41.0 % in Central)
from 2015 to 2020. The NCP region showed the largest re-
duction in emissions among the six regions, with its emission
reduction rate being almost larger than 10 % in each year.
This is consistent with the strictest emission control policies
having been imposed over the NCP region. The SE region
showed a similar emission reduction to the NCP region, with
its emission reduction rate being larger than 10 % in most of
the years. Obvious increases in PM2.5 emissions were found
over the NW region from 2013 to 2015 owing to the increase
in the number of observation sites in those years. After 2015,
PM2.5 emissions generally decreased over the NW region,
while there was a slight rebound in PM2.5 emissions in 2016
and 2018, possibly due to the influences of the errors in fine-
dust emission. The Central region showed different charac-
teristics of emission changes to the other regions insofar as it
showed little change in PM2.5 emissions during 2015–2018
but large reductions in 2019. This may be consistent with the
control of emissions over the Fenwei Plain area (the part of
the Central region where the emission intensity is highest)
being weak during the 2013–2017 action plan but strength-
ened during the 2018–2020 action plan. In terms of the PM2.5
emission trends over the different regions, the calculated
PM2.5 emission trends were about −0.32 Tg yr−1 in NCP,
−0.32 Tg yr−1 in SE, −0.24 Tg yr−1 in NE, −0.21 Tg yr−1

in SW, −0.09 Tg yr−1 in NW, and −0.15 Tg yr−1 in Central
from 2015 to 2020.

The changes in PM10 emissions were generally similar
to those of PM2.5, i.e., with decreases in all the regions
from 2015 to 2020 (Fig. S4 in the Supplement). The top-
down estimated PM10 emission reductions from 2015 to
2020 were about 3.5 Tg (40.0 %) in NCP, 2.6 Tg (35.5 %) in
SE, 3.0 Tg (36.6 %) in NE, 2.0 Tg (35.9 %) in SW, 1.0 Tg
(25.3 %) in NW, and 1.3 Tg (21.6 %) in Central. The calcu-
lated trends were about−0.64,−0.52,−0.51,−0.40,−0.20,
and −0.27 Tg yr−1, respectively. However, due to the influ-
ences of the changes in the number of observation sites, the
PM10 emissions over the NE, SW, and NW regions increased
substantially from 2013 to 2015, while they decreased in al-
most all the years after 2015. Different from the other re-
gions, the Central region showed increases in PM10 emis-
sions from 2015 to 2018 of about 0.92 Tg (14.9 %) but sub-
stantial decreases in 2019 and 2020. The result also shows
that most PM10 emission reductions were achieved during
the 2018–2020 action plan. According to CAQIEI, the PM10
emissions decreased by 0.64–2.3 Tg (17.4 %–31.8 %) from
2018 to 2020, which accounted for 48.4 %–169.0 % of the
total reduction in emissions from 2015 to 2020. This again
emphasizes the effectiveness of the control of blowing-dust
emissions during the 2018–2020 action plan.

4.2.2 Emission changes in gaseous air pollutants

SO2 and CO

Figure 7 shows the emission changes in different gaseous air
pollutants in China from 2013 to 2020. Similar to the PM
emissions, SO2 and CO emissions decreased continuously
during the two action plan periods, with top-down estimated
emission reductions of approximately 9.6 Tg (54.1 %) and
166.3 Tg (35.7 %) for SO2 and CO from 2015 to 2020, re-
spectively. Meanwhile, both SO2 and CO showed a signif-
icant decreasing trend from 2015 to 2020, with estimated
trends of approximately −2.1 and −36.0 Tg yr−1, respec-
tively (Table 5). The reductions in SO2 and CO emissions are
closely consistent with the strict emission control measures
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Table 5. The calculated annual trends of the four gaseous emissions in China based on CAQIEI.

SO2 (Tg yr−1) CO (Tg yr−1)

2015–2020 2015–2017 2018–2020 2015–2020 2015–2017 2018–2020

China −2.1∗ −2.1 −1.3 −36.0∗ −22.8 −33.5
NCP −0.57∗ −0.69 −0.21 −8.4∗ −4.30 −7.23
SE −0.34∗ −0.39 −0.20 −6.1∗ −3.54 −8.37
NE −0.44∗ −0.44 −0.21 −6.2∗ −1.74 −3.91
SW −0.22∗ −0.27 −0.17 −3.8∗ −2.36 −4.54
NW −0.08∗ −0.08 −0.08 −3.0∗ −0.73 −2.95
Central −0.46∗ −0.25 −0.40 −8.7∗ −10.14 −6.55

NOx (Tg yr−1) NMVOC (Tg yr−1)

2015–2020 2015–2017 2018–2020 2015–2020 2015–2017 2018–2020

China −0.67 0.74 −1.6 1.9 6.3 −1.3
NCP −0.32 0.05 −0.40 0.66 1.37 −0.42
SE −0.22 0.18 −0.49 0.50 1.73 −0.24
NE −0.17 0.03 −0.19 0.03 0.79 −0.49
SW −0.06 0.10 −0.26 0.23∗ 0.43 0.03
NW −0.03 0.11 −0.06 0.10 0.69 −0.27
Central 0.04 0.28 −0.16 0.55∗ 1.33 0.09

∗ The trend is significant at the 0.05 significance level.

Figure 7. Emission changes in (a) SO2, (b) CO, (c) NOx , and (d) NMVOCs obtained from CAQIEI from 2013 to 2020.
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imposed during the action plan periods, such as the phasing-
out of outdated industrial capacities and high-emitting facto-
ries, the strengthening of emission standards for the indus-
trial and power sectors, the elimination of small coal-fired
industrial boilers, and the replacement of coal with cleaner
energies, which reflect the effectiveness of the emission con-
trol measures during the two action plan periods. Reductions
in SO2 emissions were generally steady during the two ac-
tion plan periods, which were approximately 4.2 Tg (23.8 %)
from 2015 to 2017 and 2.5 Tg (23.5 %) from 2018 to 2020.
However, CO showed a different emission reduction rate dur-
ing the two action plan periods, with its emission reductions
(67.1 Tg, 18.3 %) during 2018–2020 being larger than those
(45.6 Tg, 9.8 %) during 2015–2017. This contrast may reflect
the different emission control policies during the two clean-
air action periods as well as the different emission distribu-
tions among the sectors between SO2 and CO. According
to the estimates of Zheng et al. (2018), the share of emis-
sions from the industrial and power sectors for SO2 (77 %)
is nearly double that for CO (39 %). Thus, the smaller re-
duction in CO emissions than that of SO2 during 2015–2017
provides evidence that the 2013–2017 action plan focused
mainly on controlling the emissions from the industrial and
power sectors. During the 2018–2020 action plan, strict con-
trol measures targeting the residential and transportation sec-
tors were also implemented, which together account for 61 %
of CO emissions but only 23 % of SO2 emissions. As a result,
CO showed a larger emission reduction rate during 2018–
2020, while the emission reduction rate for SO2 was simi-
lar to that during 2015–2017. The calculated trends of SO2
and CO emissions during the two action plans are presented
in Table 4, which are −2.1 and −1.3 Tg yr−1 for SO2 and
−22.8 and −33.5 Tg yr−1 for CO, respectively.

The reduction in SO2 and CO emissions was also evident
on the regional scale (Figs. S5 and S6 in the Supplement).
According to the top-down estimation, the reduction in SO2
emissions ranged from 0.44 to 2.42 Tg (41.7 %–69.9 %) from
2015 to 2020, with the NCP region exhibiting the largest
reductions. The calculated decreasing trend of SO2 emis-
sions was also significant over all the regions, ranging from
−0.08 Tg yr−1 over the NW region to−0.57 Tg yr−1 over the
NCP region (Table 5). With regards to the emission reduc-
tion rate during the different action plans, the results suggest
that the emission reduction rate of SO2 was higher during
2015–2017 (by 20.8 %–39.8 %) than that during 2018–2020
(by 16.6 %–29.0 %) over the NCP, SE, NE, and SW regions.
This may have been because, after the strict emission con-
trols imposed upon industrial and power plants during the
2013–2017 action plan, the room for further reductions in
SO2 emissions became smaller during the 2018–2020 ac-
tion plan over these regions. Although residential and vehi-
cle emissions were controlled more strictly during the 2018–
2020 action plan, in total they account for ∼ 20 % of anthro-
pogenic SO2 emissions in China (Zheng et al., 2018). Thus,
the enhanced reductions in SO2 emissions from the residen-

tial and transportation sectors may not have been able to fully
compensate for the weakened reductions from the industrial
and power sectors, leading to a smaller SO2 emission reduc-
tion rate over these regions. In contrast, the SO2 emission re-
duction rate during 2018–2020 (31.1 %–34.8 %) was higher
than that during 2015–2017 (14.1 %–20.4 %) over the NW
and Central regions. This may have been due to the fact that
the emission controls over the NW and Central regions were
relatively weak during the 2013–2017 action plan (as also
evidenced by the emission reduction rates of other species)
owing to their less-developed economies. During the 2018–
2020 action plan, the emission controls over these two re-
gions were strengthened, which led to their higher emission
reduction rates. Accordingly, the enhanced SO2 emission re-
duction rates over the NW and Central regions compensated
for the weakened reduction rates over the other regions, lead-
ing to a steady SO2 emission reduction rate on the national
scale.

The reductions in CO emissions from 2015 to 2020 were
approximately 14.9–42.3 Tg (21.6 %–51.4 %) over the differ-
ent regions of China, with significant decreasing trends rang-
ing from−3.0 to−8.7 Tg yr−1 (Fig. S6 and Table 5). Consis-
tent with the comparisons of national CO emission reduction
rates between the two action plans, the emission reduction
rates during 2015–2017 (4.4 %–24.6 %) were estimated to be
smaller than those during 2018–2020 (12.2 %–24.6 %) over
all the different regions, except for the Central region, where
the CO emission reduction rates were similar during the two
action plans (Fig. S6).

NOx and NMVOCs

The top-down estimated NOx and NMVOC emissions
showed different changes to the other four species by increas-
ing during 2015–2017 but decreasing during 2018–2020.
Specifically, NOx emissions increased slightly by 5.9 % from
2015 (25.2 Tg) to 2017 (26.6 Tg), with a nonsignificant in-
creasing trend of 0.74 Tg yr−1. Then, NOx emissions be-
gan to decrease in 2018, with a top-down estimated emis-
sion reduction and a calculated trend of approximately 3.1 Tg
(12.7 %) and −1.6 Tg yr−1, respectively, from 2018 to 2020.
NMVOCs showed stronger emission increases than did NOx ,
with top-down estimated emission increases of approxi-
mately 12.7 Tg (27.6 %) and a calculated emission trend
of approximately 6.3 Tg yr−1 from 2015 to 2017. Similarly
to NOx , NMVOC emissions began to decrease after 2018,
with a top-down estimated reduction of approximately 2.6 Tg
(−4.4 %) from 2018 to 2020 and a calculated trend of ap-
proximately −1.3 Tg yr−1.

The increases in NOx and NMVOC emissions during
2015–2017 suggest that the 2013–2017 action plan may
not have achieved desirable mitigation effects on these two
species. For NOx emissions, the upward trend may have been
associated with the following factors. On the one hand, vehi-
cle exhaust is one of the most important sources of NOx in

https://doi.org/10.5194/essd-16-4351-2024 Earth Syst. Sci. Data, 16, 4351–4387, 2024



4368 L. Kong et al.: Changes in air pollutant emissions in China during two clean-air action periods

China, accounting for 31 % of all NOx emissions nationally
(Zheng et al., 2018). From 2013 to 2017, the number of vehi-
cles in China continued to increase and reached 310 million
in 2017, approximately 33.5 % higher than in 2013 (MEE,
2018), which led to increases in NOx emissions from vehi-
cles in China. On the other hand, although the 2013–2017 ac-
tion plan was effective in reducing the NOx emissions from
coal-fired power plants by promoting denitrification facili-
ties and an ultra-low emission standard, the mitigation im-
pacts on industrial NOx emissions may have been relatively
small. For example, X. Y. Wang et al. (2019) compiled a unit-
based emission inventory for China’s iron and steel indus-
try from 2010 to 2015, based on detailed survey results of
approximately 4900 production facilities in mainland China.
They found that there were almost no NOx control measures
in China’s iron and steel industry during 2010–2015, result-
ing in a 12.4 % increase in China’s NOx emissions from the
iron and steel industry in 2015 compared to 2010. In addi-
tion, although the penetration rate of denitrification facilities
in China’s cement industry reached 92 % in 2015, the ac-
tual operating rate of denitrification facilities in the cement
industry was not desirable, due to the lack of online emis-
sion monitoring systems. According to the research results
of the Ministry of Ecology and Environment, 800, 1300, and
1400 cement production kilns were equipped with selective
non-catalytic denitrification facilities from 2013 to 2015, but
the actual operating rates were only 51 %, 54 %, and 73 %,
respectively (Liu et al., 2021). In addition, the new precal-
ciner kilns used in the cement industry have a higher NOx
emission factor, such that the shift from traditional vertical
kilns to precalciner kilns has to some extent increased the ce-
ment industry’s emissions of NOx (Liu et al., 2021). Thus,
there is evidence that the mitigation effects of the industrial
control measures on NOx emissions may not be as signif-
icant as expected. Overall, the increased number of vehi-
cles may have offset the emission mitigation effects brought
about by the control of power plants, and the mitigation ef-
fects of controlling industrial NOx emissions were also unde-
sirable. Consequently, NOx emissions in China may not have
decreased and may even have increased slightly during the
2013–2017 action plan. Figure S7 in the Supplement further
shows the changes in NOx emissions over the different re-
gions of China, revealing that NOx emissions over the NCP,
SE, NE, and SW regions were roughly unchanged (by less
than 5 %) from 2015 to 2017, while they increased over the
NW (18.6 %) and Central (17.5 %) regions. This is consistent
with previous results and indicates that NOx emissions may
have increased over the NW and Central regions, possibly
due to their increased human activities and weak emission
controls.

In terms of NMVOC emissions, since the inversion re-
sults did not differentiate between anthropogenic and bio-
genic sources, the changes in NMVOC emissions may have
been related to both anthropogenic and biogenic emissions.
With respect to anthropogenic emissions, previous bottom-

up studies suggested that China’s NMVOC emissions did
not decline during the 2013–2017 action plan due to the
lack of effective control measures on the chemical indus-
try and solvent use (Zheng et al., 2018; M. Li et al., 2019).
According to the estimates of M. Li et al. (2019), China’s
NMVOC emissions from solvent use increased by 11.1 % in
2017 compared to those in 2015. Meanwhile, the increase
in the number of vehicles in China may also have led to an
increase in NMVOC emissions from transportation. Thus,
the increases in NMVOC emissions during 2015–2017 es-
timated by our inversion inventory may be related to the in-
creases in anthropogenic NMVOC emissions from the chem-
ical industry, solvent use, and vehicles. For the trends of bio-
genic NMVOC emissions, the Copernicus Atmosphere Mon-
itoring Service (CAMS) global emission inventory shows
that there were only little changes in the biogenic NMVOC
emissions in China from 2013 to 2018 (Sect. 4.3.3), sug-
gesting little contributions of the biogenic sources to the in-
creased NMVOC emissions in China. Figure S8 in the Sup-
plement further shows the changes in NMVOC emissions
over the different regions of China, which suggests consis-
tent increases in NMVOC emissions from 2015 to 2017 over
the different regions. According to the top-down estimations,
NMVOC emissions increased by 30.5 %, 25.2 %, 18.5 %,
10.9 %, 50.5 %, and 63.1 % over the NCP, SE, NE, SW, NW,
and Central regions, respectively. Again, the NW and Cen-
tral regions exhibited the largest emission increases among
the six regions, which is consistent with their elevated levels
of human activity and weak emission controls.

The decrease in NOx and NMVOC emissions after 2018
suggests that the emission control strategy of the Chinese
government had reached a point of optimization. The 2018–
2020 action plan strengthened not only the controls on the in-
dustrial and power sectors, but also the transportation sector,
especially for diesel vehicles with high NOx emissions. For
example, the Chinese government released the Action Plan
for the Control of Diesel Trucks and vigorously promoted an
adjustment of the transportation structure of China by grad-
ually improving the availability of rail transport. As a result,
there was a downward trend in NOx emissions in China. The
top-down estimated reductions in NOx emissions were ap-
proximately 0.81 Tg (17.2 %) over NCP, 0.98 Tg (14.0 %)
over SE, 0.37 Tg (9.4 %) over NE, 0.51 Tg (12.2 %) over
SW, 0.13 Tg (11.0 %) over NW, and 0.32 Tg (9.2 %) over
the Central region (Fig. S7). The decrease in NMVOC emis-
sions after 2018 may on the one hand have been related to
the strengthening of vehicle controls during the 2018–2020
action plan, while on the other hand it may have been related
to the promotion of clean heating plans in the northern China
region, which reduced the emissions of NMVOCs from res-
idential sources. However, the decreases in NMVOC emis-
sions were smaller than those of NOx , which were estimated
to be 0.84 Tg (6.9 %) over NCP, 0.47 Tg (2.8 %) over SE,
0.98 Tg (10.1 %) over NE, and 0.53 Tg (14.1 %) over NW
(Fig. S6). Different from other regions, the NMVOC emis-
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sions over the SW and Central regions remained almost un-
changed during the 2018–2020 action plan (Fig. S8).

4.2.3 Changes in the distribution pattern of emissions in
China

Due to the different emission control intensities over the dif-
ferent regions of China, the emission distribution patterns of
the different species may also have been altered, which could
have influenced the distributions of air pollution in China.
Based on CAQIEI, we further investigated the emission dis-
tribution patterns, as well as their changes, during the two ac-
tion plans. Maps of the emission changes in different species
during 2015–2017 and 2018–2020 are presented in Fig. 8.
The shares of emissions in 2015, 2017, and 2020 for each
subregion of China are also presented (Fig. 9). It can be seen
that the emission changes during 2015–2017 were more het-
erogenous than those during 2018–2020. The air pollutant
emissions after the 2018–2020 action plan showed consis-
tent reductions over most regions of China, while there were
obvious emission increases detected from 2015 to 2017. This
is consistent with the different emission control effects dur-
ing the two clean-air action plans, as mentioned in the pre-
vious sections. Due to its strict emission control policies, the
NCP region showed consistent emission reductions in SO2,
NOx , CO, PM2.5, and PM10 during the two clean-air action
plans. Accordingly, the shares of emissions in the NCP re-
gion continued to decrease during the two action plan periods
(Fig. 9). For example, the share of SO2 emissions in the NCP
region decreased from 19.4 % to 15.4 % during the period of
2015–2017 and from 15.4 % to 12.7 % during the 2018–2020
action plan. In contrast, NMVOC emissions increased obvi-
ously over the NCP region from 2015 to 2017 and decreased
from 2018 to 2020. However, the share did not change sig-
nificantly, being roughly 20 % throughout both periods. As
for the other regions, increases in SO2, NOx , PM2.5, PM10,
and NMVOC emissions during 2015–2017 could be found
over the Central region. More specifically, the emission in-
creases were mainly located in the Fenwei Plain area of cen-
tral China, which was due to the fact that this area was not in-
cluded as a key region of emission controls during the 2013–
2017 action plan. However, the Fenwei Plain area was added
as a key emission control region during the 2018–2020 action
plan, which is consistent with the emission reductions for
these species over the Central region (Fig. 8). As a result, the
shares of SO2 and PM2.5 emissions in the Central region in-
creased during 2015–2017 but decreased during 2018–2020
(Fig. 9). However, the shares of NOx , PM10, and NMVOC
emissions continued to increase over central China during
the two clean-air action plans, which suggests larger roles of
air pollutant emissions in that region. In contrast, the share of
CO emissions in central China continued to decrease in the
two action plans, from 17.7 % in 2015 to 13.4 % in 2020.

In terms of the shares of emissions in eastern and west-
ern China, the top-down estimation suggests increased shares

of NOx , PM2.5, PM10, and NMVOC emissions in western
China after the two clean-air action plans (Fig. 9), which in-
dicates slower emission reductions for these species in west-
ern China. However, the share of CO emissions in west-
ern China was reduced after the two clean-air action plans.
Although the share of SO2 emissions in western China in-
creased during 2015–2017, this turned to a decrease during
2018–2020.

4.3 Comparisons with different emission inventories

In this section, CAQIEI is compared with the previous long-
term bottom-up and top-down emission inventories in China
to validate our inversion results and provide the clues for the
potential uncertainty in the current air pollutant emission in-
ventories. The bottom-up emission inventories used in the
comparison include MEIC (Zheng et al., 2018), ABaCAS
(Li et al., 2023), HTAPv3 (Crippa et al., 2023), EDGARv6
(Jalkanen et al., 2012), and CEDS (McDuffie et al., 2020),
while the top-down emission inventory is obtained from
the updated Tropospheric Chemistry Reanalysis (TCR-2)
(Miyazaki et al., 2020a). However, it is difficult to directly
compare our inversion results with these emission invento-
ries considering that the inversed emission includes both an-
thropogenic and natural emissions. To better compare our in-
version results with previous inventories, the natural emis-
sion sources, including soil NOx emissions and biogenic
emissions obtained from the CAMS global emission inven-
tory (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/
cams-global-emission-inventories?tab=overview; last ac-
cess: 26 July 2023) and the biomass burning emissions ob-
tained from the Global Fire Assimilation System (GFAS)
(Kaiser et al., 2012), are taken as a reference to account
for the influences of natural sources. The CAMS and GFAS
emission inventories are used because they are state-of-the-
art natural emission inventories and can provide us with in-
dependent long-term estimations of natural emissions. Since
the latest year of most emission inventories is 2018, the com-
parisons were conducted between 2015 and 2018. Note that,
due to the complexity of the estimations of natural sources,
significant uncertainty exists in the estimated natural emis-
sions. As a result, the comparison results would be sensitive
to the used natural emission inventories, especially for the
species with a large amount of natural emission, such as the
NMVOCs and particulate matter. Therefore, one should be
aware of the comparison conducted here and the derived im-
plications on the basis of the natural emissions estimated by
CAMS and GFAS. In addition, the natural dust emissions are
not considered in the comparisons, which would influence
the comparisons of the PM emissions.
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Figure 8. Spatial distributions of the emission changes in different species during 2015–2017 (left panels), 2018–2020 (middle panels), and
2015–2020 (right panels) obtained from CAQIEI from 2013 to 2020.
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Figure 9. Emission distributions of (a) NOx , (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs among the different regions in China
obtained from CAQIEI in 2015, 2017, and 2020.

4.3.1 Magnitude

NOx

Figure 10 shows the average emissions of different air pollu-
tants in China during 2015–2018 obtained from CAQIEI and
the previous emission inventories plus the natural sources
we considered. Comparisons of the emission estimations
on the regional scale and gridded scale are also presented
(Fig. 11 and Fig. S9 in the Supplement). The results show
that CAQIEI has slightly higher NOx emissions in China
than the other inventories. Considering that CAQIEI in-
cludes both anthropogenic and natural sources, this discrep-
ancy could be explained by the natural NOx sources. Ac-
cording to the estimations of CAMS and GFAS, the soil
and biomass burning NOx emissions are approximately 1.9
and 0.08 Tg yr−1, which explains the higher NOx emissions
given by CAQIEI well. After consideration of the natural
sources, MEIC, HTAPv3, and EDGARv6 agree well with our
inversion results on the national scale, with their differences
being within 1.0 %–7.4 %. The NOx emissions estimated by
ABaCAS, CEDS, and TCR-2 are slightly lower than CAQIEI
and other emission inventories. However, the differences be-
tween CAQIEI and these inventories were found to range
from 15.9 % to 21.3 %, which is within the previous esti-

mated uncertainties of NOx emissions in China (Kurokawa
and Ohara, 2020; M. Li et al., 2017; S. Li et al., 2023). These
results suggest that the total NOx emissions in CAQIEI are
generally consistent with the current estimations of the an-
thropogenic and natural NOx emissions in China. On the re-
gional scale, the top-down estimated NOx emissions show
good agreement with the previous emission inventories over
the NCP and SE regions, with their differences ranging from
1.0 % to 26.8 %, suggesting good consistency in the estima-
tions of NOx emissions over these two regions. This makes
sense because NCP and SE are the two most developed re-
gions in China, where surveys and research on emissions are
the most sufficient. The differences are larger over the other
regions. In the NE region, CAQIEI has higher NOx emissions
than the other inventories by 5 %–70 %, suggesting higher
anthropogenic or biomass burning emissions over there. The
estimations made by MEIC, CEDS, and TRC-2 are closer
to our estimates, with their differences being approximately
5.4 %–23.3 %, while the differences are larger for ABaCAS,
HTAPv3, and EDGARv6 (36.7 %–70.0 %). Over the SW
and Central regions, there are large diversities in the previ-
ous emission inventories, with estimations by HTAPv3 and
EDGARv6 almost double those of MEIC, ABaCAS, CEDS,
and TCR-2. CAQIEI suggests a middle estimation which is
within the range of previous emission inventories. In the NW
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Figure 10. Comparisons of the averaged emissions of (a) NOx , (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs over China from
2015 to 2018 between CAQIEI and previous inventories added with natural sources.

region, CAQIEI is consistently higher than other inventories,
by 22.7 %–64.2 %, which suggests a potential missing source
of the NOx emissions over this region.

SO2

For SO2 emissions, since natural sources contribute little
(only about 0.02 Tg yr−1) to them in China, the discrep-
ancies between CAQIEI and previous emission inventories
are mainly attributable to the differences in anthropogenic
emissions. As shown in Fig. 10, CAQIEI agrees well with
HTAPv3 and CEDS on the national scale, with their dif-
ferences being approximately ±2 %, but it is higher than
MEIC, ABaCAS, and TCR-2 by 17.4 %–32.9 %. In contrast,
EDGARv6 may have a positive bias in its estimated SO2
emissions, which are roughly double those of CAQIEI and
other inventories. On the regional scale, our results agree
well with MEIC, ABaCAS, HTAPv3, CEDS, and TCR-2
over the NCP region, with their differences ranging from
1.0 to 18.1 %. In the SE region, CAQIEI suggests lower
SO2 emissions than previous emission inventories, except for

TCR-2. The differences are relatively smaller for the MEIC
and ABaCAS inventories by around−15 % but are larger for
HTAPv3, EDGARv6, and CEDS (ranging from −47.3 % to
−113.2 %). In contrast, CAQIEI suggests higher SO2 emis-
sions than all previous emission inventories over the NE re-
gion by about 14.8 %–132.0 %, indicating possible missing
sources over there. Similarly, CAQIEI and HTAPv3 suggest
higher SO2 emissions than MEIC, ABaCAS, CEDS, and
TCR-2 by 27.0 %–75.6 % in the NW region and by 44.3 %–
77.7 % in the Central region.

CO

For CO emissions, CAQIEI is substantially higher than the
previous emission inventories, with the estimated CO emis-
sions of CAQIEI being about 3 times higher than the bottom-
up inventories and more than 2 times the top-down estimates
made by TCR-2. According to GFAS, the average rate of CO
biomass burning emissions in China from 2015 to 2018 was
about 3.4 Tg yr−1. Yin et al. (2019), based on MODIS fire
radiative energy data, also estimated China’s CO biomass
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Figure 11. Comparisons of the averaged emissions of (a) NOx , (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs over the different
regions in China from 2015 to 2018 between CAQIEI and previous inventories added with natural sources.

Table 6. The top-down estimated CO emissions in China from the previous inventories.

Reference Region Period Method Assimilated observation A priori A posteriori
CO emissions CO emissions

(kt d−1) (kt d−1)

Feng et al. (2020)
China December 2013

Surface observation

586.4 1678.0
Mainland December 2017 EnKF with the 499.3 1388.1

NCP
December 2013 CMAQ model 143.9 394.3
December 2017 120.5 340.7

Müller et al. (2018) China 2013 4DVar with the IMAGES model IASI CO observation with dif-
ferent constraints on OH levels

454.8 367.1–553.4

Central

May 2016 MOPITT CO
193.6 220.3

Gaubert et al. China DART/CAM-CHEM
(2020) Northern observation

93.5 163.6
China

Jiang et al. (2017) Eastern China
2013

4DVar with GEOS-Chem MOPITT CO observation 564.5
439.5–484.4

2014 430.4–481.1
2015 397.5–439.7

Zheng et al. (2019) China 2010–2017 average Bayesian inversion MOPITT CO, OMI HCHO, and
GOSAT CH4 observation

– 444.4

burning emissions to be about 5.0 (2.3–7.8) Tg yr−1. The bio-
genic CO emissions obtained from the CAMS global emis-
sion inventory were approximately 2.3 Tg yr−1. According to

these estimates, natural CO emissions in China have a mag-
nitude of approximately 10, which is rather small compared
with the anthropogenic sources and cannot explain the large
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discrepancies between CAQIEI and other inventories. Thus,
CAQIEI suggests much higher anthropogenic CO emissions
in China than in the existing emission inventories. In fact, the
potential underestimation of CO anthropogenic emissions
has been investigated in previous studies and is regarded as
the main reason for the negative bias in global or hemispheric
CO simulations (Stein et al., 2014; Gaubert et al., 2020). Re-
gionally, Kong et al. (2020) compared a suite of 13 modeling
results from six different CTMs – i.e., NAQPMS, CMAQ,
WRF-Chem, NU-WRF, NHM-Chem, and GEOS-Chem –
with observations over the NCP and Pearl River Delta re-
gions in the framework of the Model Inter-Comparison Study
for Asia III (MICS-Asia III) and found consistent negative
biases in the CO simulations of all the models, pointing to-
ward potential underestimations of CO emissions in China.
Previous inversion studies have also reported higher a pos-
teriori CO emissions than their a priori emission inventories
(Bergamaschi et al., 2000; Miyazaki et al., 2012; Petron et
al., 2002, 2004; Tang et al., 2013; Gaubert et al., 2020). For
example, the constrained CO emissions reported by Gaubert
et al. (2020) are 80 % higher than the CEDS over northern
China. Our inversion results are consistent with these inver-
sion studies, suggesting higher anthropogenic CO emissions
in China. However, direct evidence in support of such high
CO emissions in China reported by our study is still limited
currently. Thus, we compiled more inversion results in the
period 2013–2020 from previous studies to further validate
our inversion results, which are summarized in Table 6. It
can be seen clearly that there are large differences in the esti-
mated CO emissions between the inversion results based on
surface observations and those based on satellite data. Our
inversion results are consistent with the results of Feng et
al. (2020), with China’s CO emissions in December 2017 es-
timated at approximately 1500.0 and 1388.1 kt d−1, respec-
tively. In addition, Feng et al. (2020) used the CMAQ model
to constrain CO emissions, which is different from the model
we used. This may indicate that the model uncertainty would
not significantly influence the inversion results of CO emis-
sions. However, the top-down estimated CO emissions based
on satellite data (163.6–553.4 kt d−1) are much lower than
those based on surface observations, although they are all
higher than their a priori emissions. The lower CO emission
estimations based on satellite data assimilation may be at-
tributable to the lower sensitivities of satellite data to sur-
face concentrations, suggesting that the assimilation of satel-
lite data alone may not be adequate for correcting the neg-
ative biases in the a priori emissions. This deficiency was
also shown by Miyazaki et al. (2020a), who found undercor-
rected surface CO emissions in the extratropics of the North-
ern Hemisphere in TCR-2. However, the assimilation of sur-
face observations can be influenced by the uncertainties in
the modeled vertical mixing, which could lead to the uncer-
tainties in the inversed CO emissions based on surface ob-
servations. Therefore, the inversed CO emissions in CAQIEI
could be partly supported by previous inversion studies based

on surface observations, but more evidence is still needed to
justify the magnitude of the inversed CO emissions. Besides
anthropogenic sources, the chemical production of CO via
oxidation of methane (CH4) and NMVOCs, together with the
CO sinks via the hydroxyl radical (OH) reaction, also influ-
ences the simulation of CO (Stein et al., 2014; Gaubert et al.,
2020; Müller et al., 2018). Due to the important role of OH
in the chemical production and sinks of CO, the inversion
of CO emissions is sensitive to the modeled OH abundance
and the emissions of CH4 and NMVOCs. According to the
estimation of Müller et al. (2018), the magnitude of inversed
CO emissions in China could differ by more than 40 % when
different levels of OH concentrations are used in the model.
Thus, the much higher estimations of CO emissions in our
inversion results may also be partly explained by the under-
estimation of CO chemical production or the overestimation
of the CO sink.

PM2.5

In terms of PM2.5, CAQIEI suggests higher emissions than
ABaCAS, HTAPv3, and EDGARv6 of about 20 % and
47.7 % higher emissions than MEIC on the national scale.
Larger discrepancies mainly occur in the NE and NW re-
gions, where CAQIEI is about 27.2 %–114.9 % and 83.2 %–
143.2 % higher than in the previous inventories. The differ-
ences in the estimated PM2.5 emissions may be related to
the uncertainties in the biomass burning or anthropogenic
sources in the NE region (J. Wu et al., 2020), while in the
NW region the errors in the fine-dust emissions may also
contribute to the differences in the estimated PM2.5 emis-
sions there. The differences in the estimated PM2.5 emis-
sions are relatively smaller in the NCP and SE regions, rang-
ing from −18.9 % to 20.4 %, suggesting better agreement in
the estimated PM2.5 emissions over these two regions. In the
SW region, CAQIEI is closer to HTAPv3 and EDGARv6,
with their differences being about 6.3 % and−9.5 %, respec-
tively, which is higher than MEIC and ABaCAS by 54.2 %
and 28.6 %, suggesting higher uncertainty in the estimated
PM2.5 emissions over there.

PM10

For PM10 emissions, it is difficult to directly compare
CAQIEI with previous emission inventories since CAQIEI
contains not only anthropogenic and biomass burning emis-
sions, but also coarse-dust emissions. As a result, the esti-
mated emissions of PM10 by CAQIEI are substantially higher
than those of previous inventories, especially over the NW,
Central, and NE regions (Fig. 11), which are the typical nat-
ural windblown dust source regions in China (Zeng et al.,
2020). Besides the naturally windblown dust of arid desert
regions (Prospero et al., 2002), large amounts of coarse-dust
emissions also stem from anthropogenic sources, including
anthropogenic fugitive, combustion, and industrial dust (AF-
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CID) from urban sources (Philip et al., 2017) and anthro-
pogenic windblown dust from human-disturbed soils due to
changes in land use practices, deforestation, and agriculture
(Tegen et al., 1996). Therefore, although the other regions are
not typical natural windblown dust source regions in China,
there are still high levels of coarse-dust emissions from an-
thropogenic sources there (also called “urban dust”), which
may be the main reason for the large deviation in the esti-
mated PM10 emissions between CAQIEI and the previous
inventories. On the one hand, although AFCID is included in
MEIC, ABaCAS, HTAPv3, and EDGARv6, it is difficult for
current bottom-up emission inventories to completely repre-
sent fugitive sources (Philip et al., 2017). On the other hand,
the anthropogenic windblown dust emissions have not been
included in current bottom-up emission inventories, which is
an important source of coarse dust in urban areas according
to the estimations of Li et al. (2016) and is another important
contributor to the differences between CAQIEI and previous
emission inventories.

NMVOCs

For NMVOC emissions, since CAQIEI includes both anthro-
pogenic and natural sources, its estimated NMVOC emis-
sions are much higher than those estimated by previous
emission inventories. After consideration of natural sources,
CAQIEI suggests close estimations of the NMVOC emis-
sions with the MEIC, HTAPv3, and CEDS inventories on
the national scale, with their differences being about 1.5 %–
12.5 %. The estimated NMVOC emissions by ABaCAS and
EDGARv6 are slightly lower than CAQIEI by 17.8 % and
24.6 %, respectively. On the regional scale, CAQIEI suggests
higher NMVOC emissions over northern China (NCP, NE,
and NW), with the top-down estimated NMVOC emissions
of about 30.4 %–81.4 %, 27.3 %–72.1 %, 79.3 %–116.8 %,
and 8.7 %–57.5 % being higher than those of the previous
emission inventories. In contrast, CAQIEI suggests lower
NMVOC emissions over the SE region, with the estimated
NMVOC emissions of CAQIEI being about 21.2 %–27.6 %
lower than those of MEIC, ABaCAS, HTAPv3, and CEDS.
These results are consistent with the previous inversion
results based on the satellite observations, which suggest
higher NMVOC emissions over the NCP region and lower
NMVOC emissions over southern China (Souri et al., 2020).
Over the SW region, CAQIEI shows good agreement with
MEIC, ABaCAS, and CEDS, with CAQIEI being slightly
lower than these inventories by 1.0 %–8.9 %, but it is lower
than HTAPv3 and EDGARv6 by about 38.6 % and 29.1 %,
respectively. Again, it should be noted that the comparisons
of NMVOC emissions are conducted on the basis of natural
emissions estimated by CAMS and GFAS and could be more
sensitive to the used natural sources than other species con-
sidering the larger contributions of the natural source to the
NMVOC emissions.

4.3.2 Seasonality

Figure 12 presents the monthly profiles of different air pollu-
tants obtained from different emission inventories. Note that
the natural sources have been added to the previous invento-
ries to facilitate the comparisons. The results show that dif-
ferent emission inventories give similar monthly profiles of
NOx and CO emissions, with higher emissions during win-
tertime and lower emissions during summertime, which sug-
gests relatively lower uncertainty in the estimated monthly
profiles for these two species. For SO2 emissions, CAQIEI
yields a stronger monthly variation than the other invento-
ries, with a higher proportion from January to March and a
lower proportion during summertime. Due to the influences
of dust emissions, the top-down estimated PM2.5 and PM10
emissions show higher proportions than the other emission
inventories during the spring season, especially for PM10.
However, the proportions of emissions during fall and winter
are lower than in the other inventories. The monthly profiles
of NMVOC emissions are generally consistent, with higher
emissions during summer due to the enhanced biogenic emis-
sions. However, the profile of CAQIEI is flatter than the
previous inventories and suggests a higher proportion dur-
ing springtime. In addition, the timings of peak values of
NMVOC emissions are also different between CAQIEI and
the previous inventories, with CAQIEI showing peak values
during May–July but the other inventories suggesting peaks
during June–August.

4.3.3 Emission changes during 2015–2018

The top-down estimated emission changes in different air
pollutants during 2015–2018 were also compared with pre-
vious emission inventories. Figure 13 shows the time se-
ries of the total emissions of different species from 2013
to 2020 obtained from CAQIEI and other emission invento-
ries. Comparisons of the emission changes over the regional
scales are also presented in Figs. S10–S15 in the Supplement.
Before the comparison, we first analyze the trends of nat-
ural sources in China to investigate their influences on the
emission changes in different species based on the CAMS
emission inventory and GFAS. Note that we only consider
the soil, biogenic, and biomass burning emissions for the
natural sources; the trends of dust emissions in China are
not analyzed, which may lead to uncertainty when compar-
ing the emission changes in PM2.5 and PM10. As shown
in Fig. S16 in the Supplement, the natural sources of NOx
and NMVOC emissions changed little during 2013–2018.
The other species had small decreasing trends from 2013 to
2018. However, considering the small contributions of nat-
ural sources to their emissions, these small trends would
not significantly influence their emission trends. For the dust
emissions, previous studies have indicated a declining trend
in dust activity in China from 2001 to 2020 (Wu et al., 2022;
Wang et al., 2021) due to weakened surface wind and in-
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Figure 12. Comparisons of the monthly profiles of (a) NOx , (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs over China averaged
from 2015 to 2018 between CAQIEI and previous inventories added with natural sources.

creased vegetation cover and soil moisture. These results
suggest that the emission trends in CAQIEI would mainly be
driven by the anthropogenic sources of the gaseous air pollu-
tants based on the estimations of CAMS and GFAS, while
its estimated emission trends of PM2.5 and PM10 would
be influenced by the declining trends in dust emissions in
China, which should be noted when comparing the emission
changes in PM2.5 and PM10.

As shown in Fig. 14, all the emission inventories agree that
the NOx , SO2, CO, PM2.5, and PM10 emissions in China
were reduced from 2015 to 2018, except for the increases
in CO emissions estimated by TCR-2, which confirms the
effectiveness of the emission control policies implemented
during the clean-air action plans. Meanwhile, most emission
inventories agree that SO2 is the species with the largest
emission reduction rate, followed by PM2.5, indicating bet-
ter emission mitigation effects of these two species (Fig. 14).
However, CAQIEI suggested lower emission reduction rates
than the other emission inventories for most of the species,
especially for NOx , PM10, and NMVOCs (Fig. 14). The
estimated emission reduction rate of NOx obtained from
CAQIEI is about −2.7 %, which is lower than the values of
MEIC (−9.7 %), ABaCAS (−23.0 %), HTAPv3 (−13.0 %),
and CEDS (−9.0 %). As we discussed in Sect. 4.2.2, “NOx
and NMVOCs”, the small reductions in NOx emissions in
CAQIEI would be related to the increased vehicle emissions

and the undesirable mitigation effects of the industry control.
In fact, these factors have been considered in some bottom-
up emission inventories, such as MEIC. The differences be-
tween our inversion results and previous inventories thus re-
flect uncertainty in the quantifications of the effects of these
factors on the NOx emissions due to the lack of sufficient
statistics on the mobile vehicle sector or other sectors. Our
inversion results suggest larger adverse effects of these two
factors on the reductions in NOx emissions in China. Accord-
ing to Fig. S17 in the Supplement, the differences between
CAQIEI and these inventories mainly occur in the SE, SW,
NW, and Central regions, with the emission reduction rate es-
timated by CAQIEI being substantially lower than those es-
timated by previous inventories. In particular, CAQIEI sug-
gests increases in NOx emissions over the Central region,
which is contrary to the previous emission inventories. Better
agreement is achieved over the NCP and NE regions, with the
emission reduction rate estimated by CAQIEI being closer to
those of MEIC, HTAPv3, and CEDS. The NOx emission re-
duction rates estimated by EDGARv6 (−3.3 %) and TCR-2
(−1.7 %) are closer to our results on the national scale, but
they estimated a lower NOx emission reduction rate than our
estimate over the NCP and NE regions.

Similarly, the emission reduction rate of PM10 obtained
from CAQIEI (−10.8 %) is lower than those estimated
by MEIC (−27.9 %), ABaCAS (−33.0 %), and HTAPv3
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Figure 13. Time series of annual emissions of (a) NOx , (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs over China from 2013
to 2020 obtained from CAQIEI and previous inventories. Note that the natural sources were not included in the previous inventories in this
figure.

(−27.8 %) on the national scale (Fig. 14). A lower PM10
emission reduction rate of CAQIEI than these inventories
also exists in the different regions of China, except SW
(Fig. S17). In particular, and different from previous emis-
sion inventories, CAQIEI suggests that PM10 emissions may
have actually increased over the Central region. Consider-
ing that dust emissions may have decreased from 2015 to
2018 owing to weakened dust events (Wang et al., 2021),
the increase in PM10 emissions over the Central region may
reflect the increases in anthropogenic sources. Meanwhile,
we also found that CAQIEI estimated the emission reduction
rate of PM10 to be smaller than that of PM2.5. This is dif-
ferent from previous emission inventories, which show sim-
ilar emission reduction rates for PM2.5 and PM10. Consider-
ing that PM10 emissions include PM2.5 and PMC emissions,
the lower emission reduction rate of PM10 than PM2.5 in
CAQIEI suggests that PMC emissions may have decreased
more slowly than PM2.5 emissions from 2015 to 2018.

In terms of NMVOCs, most previous inventories, includ-
ing MEIC, EDGARv6, and CEDS, suggest a weak decrease
in China, with the estimated rates of change in emissions
ranging from−0.8 % to−4.6 %. The emission reduction rate

estimated by ABaCAS is larger, reaching up to −14.2 %. In
contrast, CAQIEI suggests an opposite emission change to
these inventories, with the estimated NMVOC emissions in-
creasing by 26.6 % from 2015 to 2018. HATPv3 also sug-
gests an increase in NMVOC emissions but with a much
lower rate of increase (2.7 %). Similar results were also found
on the regional scale (Fig. S17), especially over the NCP,
NE, and Central regions, where NMVOC emissions could
have increased by 38.0 %, 38.3 %, and 60.0 %, respectively,
according to the estimates of CAQIEI. As we discussed in
Sect. 4.2.2, “NOx and NMVOCs”, the increases in NMVOC
emissions estimated in CAQIEI may be related to the in-
creased anthropogenic NMVOC emissions from the chem-
ical industry, solvent use, and vehicles. Therefore, similar to
the NOx emissions, the differences between CAQIEI and the
previous inventories reflect the uncertainty in the quantifica-
tions of the impacts of these factors and suggest larger ad-
verse effects of these factors on the emission reductions in
NMVOC emissions than the previous inventories.

The differences in the estimated emission reduction rates
between CAQIEI and previous inventories are relatively
smaller for SO2 and PM2.5 emissions. The emission re-
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Figure 14. Comparisons of the calculated emission changes in
NOx , SO2, CO, PM2.5, PM10, and NMVOCs over China from 2015
to 2018 between CAQIEI and previous inventories. Note that the
natural sources were not included in the calculation of the emission
changes in this figure.

duction rate of SO2 estimated by CAQIEI is close to that
estimated by MEIC and CEDS, ranging from −34.7 % to
−44.3 %. ABaCAS and HTAPv3 estimate higher emission
reduction rates of approximately −58.5 % and −53.7 %, re-
spectively. EDGARv6 and TCR-2 may underestimate the re-
duction rate of SO2, with estimates of only about−7.0 % and
−9.1 %, respectively. This may be because EDGARv6 un-
derestimates the FGD (flue-gas desulfurization) device pene-
tration or SO2 removal efficiencies of FGD in China. On the
regional scale (Fig. S17), the top-down estimated SO2 emis-
sion reduction rate agrees reasonably with that of MEIC over
the NCP, NE, and SE regions, but these inventories estimate
different SO2 emission reduction rates over the SW, NW, and
Central regions. The reduction rates estimated by MEIC over
the SW and Central regions are higher than those given by
CAQIEI but are lower over the NW region. The other emis-
sion inventories also give different emission reduction rates,
suggesting large uncertainty in the estimated SO2 emission
reduction rates over these three regions. In terms of PM2.5,
CAQIEI’s estimated emission reduction rate agrees well with
those of MEIC and HTAPv3 on the national scale, which is
about 24 %–27 % from 2015 to 2018. The emission reduction
rates of PM2.5 estimated by EDGARv6 are lower than our es-
timates and those of other inventories, which were about 9 %.
On the regional scale, our results show good consistency with
MEIC and HTAPv3 over the NCP, NE, SE, and SW regions,
but they have large differences over the NW and SW regions.

Different from the other species, the CO emission re-
duction rate estimated by CAQIEI (−21.3 %) is higher
than in most of the previous inventories, including MEIC
(−13.0 %), ABaCAS (−11.6 %), EDGARv6 (−4.7 %), and
CEDS (−11.7 %), suggesting larger mitigation effects on CO

emissions than in other inventories. HTAPv3 agrees with our
results, with an estimated emission reduction rate of approx-
imately −22.0 %. On the regional scale (Fig. S17), our re-
sult is consistent with MEIC over the NCP and SE regions,
with estimated emission reduction rates for CO of around
24 % and 15 %, respectively, while in the other regions the
emission reduction rate estimated by CAQIEI is higher than
that estimated by MEIC. TCR-2 shows opposite changes in
CO emissions compared with the other inventories insofar as
it suggests increases in CO emissions over the different re-
gions of China. Since the emissions in TCR-2 are constrained
by satellite observations, the differences between our results
and those of TCR-2 highlight that the observations used to
constrain the emissions may have a large influence on the es-
timated emission changes. In this case, the estimated changes
in CO emissions by CAQIEI are more consistent with those
estimated by other bottom-up inventories. Considering this,
TCR-2 may have uncertainties in its estimated changes in
CO emissions in China from 2015 to 2017, which could be
related to the suboptimal performance of the data assimila-
tion caused by the underestimated background errors of CO
or an overly short assimilation window for the CO emission
estimates (Miyazaki et al., 2020a).

4.4 Uncertainty estimation of CAQIEI

Finally, the uncertainty of the inversed emission inventory
product is estimated in this section to facilitate user un-
derstanding of the data’s accuracy. In the framework of
the EnKF, the analysis perturbation Xa estimated by using
Eq. (3) could provide the information on the uncertainty
of the inversed emission inventory. The coefficient of vari-
ation (hereafter CV), defined as the standard deviation di-
vided by the average, with a larger value denoting higher un-
certainty, is calculated based on the analysis perturbation to
measure the uncertainty of the inversed emission inventory.
Based on this method, the uncertainty (CV) of the a pos-
teriori emission was estimated as follows: 92.3 % (PM2.5),
88.8 % (PM10), 26.7 % (SO2), 46.8 % (CO), 31.8 % (NOx),
and 65.5 % (NMVOCs). However, it should be noted that
such uncertainty was only calculated in the framework of the
EnKF constructed in this study, which is dependent on the
assigned value of the a priori emission uncertainty, observa-
tional errors, and number of assimilated observations. In ad-
dition, we only considered the a priori emission uncertainty
and the observational errors during the inversion. The influ-
ences of the other error sources, such as uncertainty in the
chemistry transport model, meteorology simulations, and in-
version method, were not considered. Therefore, the current
estimated uncertainty should be considered a lower bound
for the real uncertainty. More systematic analysis that thor-
oughly considers the uncertainty sources regarding the emis-
sion inversion should be conducted in the future to give a
more accurate estimation of the uncertainty in our products.
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5 Data availability

CAQIEI can be downloaded freely at
https://doi.org/10.57760/sciencedb.13151 (Kong et al.,
2023a), which includes monthly grid maps of the air pol-
lutant emissions from 2013 to 2020. The contained species
are NOx , SO2, CO, primary PM2.5, primary PM10, and
NMVOCs. The horizontal resolution is 15 km. There are a
total of eight Network Common Data Form files (NetCDF),
which were named by date and contain the monthly emis-
sions of different air pollutants in China in each year. The
description of the content of each NetCDF file and some
important notes when using this dataset are also available in
README.txt on the website.

6 Discussion and conclusion

A long-term, top-down emission inventory of major air
pollutants in China was developed and validated in this
study by assimilating surface observations from CNEMC
using the modified EnKF method and NAQPMS. It in-
cludes gridded emission maps of NOx , SO2, CO, primary
PM2.5, primary PM10, and NMVOCs in China from 2013
to 2020 on a monthly basis, with a horizontal resolution
of 15 km× 15 km. This new top-down emission inventory,
named CAQIEI, provides new insights into the air pollutant
emissions and their changes in China during the country’s
two clean-air action periods. The estimated total emissions
for the year 2015 in China are 25.2 Tg of NOx , 17.8 Tg of
SO2, 465.4 Tg of CO, 15.0 Tg of PM2.5, 40.1 Tg of PM10,
and 46.0 Tg of NMVOCs. Comparisons of CAQIEI with
previous inventories, including MEIC, ABaCAS, HTAPv3,
EDGARv6, CEDS, and TCR-2, on the basis of the natural
emissions obtained from CAMS and GFAS showed reason-
able agreement for the estimation of NOx , SO2, and NMVOC
emissions in China. The PM2.5 emissions obtained from
CAQIEI (13.2 Tg) are slightly higher than in the previous
emission inventories (8.3–11.1 Tg), while the CO emissions
estimated by CAQIEI (426.8 Tg) are substantially higher
than in previous inventories (120.7–237.7 Tg). However, the
reasons for such a large gap are still not clear but might be
attributable to both the underestimation of CO sources (e.g.,
anthropogenic, biomass burning, and chemical-production
sources) (Bergamaschi et al., 2000; Miyazaki et al., 2012;
Petron et al., 2002, 2004; Tang et al., 2013; Gaubert et al.,
2020) and/or the overestimation of CO sinks in the model
(Müller et al., 2018). In addition, comparisons with previ-
ous inversion studies suggest that there are larger differences
in the top-down estimated CO emissions based on surface
and satellite observations. Our inversion results are consis-
tent with previous inversions based on surface observations
but are much higher than those based on satellite observa-
tions, suggesting large uncertainty in inversion-estimated CO
emissions in China. Therefore, more research is needed to
better understand the reasons behind the negative biases in

CO simulation and to explain the differences between our
results and those of previous inventories. Similar to the situ-
ation with CO emissions, the PM10 emissions estimated by
CAQIEI (37.7 Tg) are also substantially higher than those in
previous inventories (11.1–15.9 Tg). However, this will be
mainly associated with the emissions of coarse dust, which
were not included in the previous inventories. The estima-
tion of dust emissions in China is subject to high levels of
uncertainty, with the estimated dust fluxes based on different
dust emission schemes differing by several orders of mag-
nitude (Zeng et al., 2020). Therefore, our inversion results
could provide a reference for the magnitude of coarse-dust
emissions in China, which could then help to reduce the large
uncertainty in estimations of dust emissions in China.

Several potential important deficiencies in current emis-
sion estimations were also indicated by CAQIEI on the re-
gional scale. For example, CAQIEI suggests substantially
higher air pollutant emissions than the previous emission
inventories over the NW and Central regions. Thus, the
air pollutant issues may be more severe than we expected
over these two regions. Meanwhile, our inversion results
suggest higher NMVOC emissions in northern China but
lower NMVOC emissions in southern China, which is con-
sistent with the previous inversion studies based on satel-
lites. China is now facing increasingly severe O3 pollu-
tion and has an urgent need for coordinated control of O3
and PM2.5. Our results may provide valuable information
on NMVOC emissions in China, which is important for a
proper understanding of O3 pollution and the development
of effective control strategies nationally. Higher emissions
were also found in the NE region based on our inversion re-
sults. The NE region is a typical area for open-area biomass
burning, with significant emissions from straw combustion
(J. Wu et al., 2020). The higher emissions estimated by our
inversion result may indicate higher biomass burning emis-
sions over there. This is consistent with recent estimates of
biomass burning emissions by Xu et al. (2023) and J. Wu
et al. (2020), who showed higher biomass burning emis-
sions in China than previous estimations, including those of
GFEDv4.1s (https://www.globalfiredata.org/data.html, last
access: 11 September 2024), FINNv1.5 (https://www.
acom.ucar.edu/Data/fire/, last access: 11 September 2024),
and GFASv1.2 (https://www.ecmwf.int/en/forecasts/dataset/
global-fire-assimilation-system, last access: 11 Septem-
ber 2024).

Based on CAQIEI, we further quantified the emission
changes in different air pollutants in China during the two
clean-air action plans. The results confirmed the effective-
ness of these campaigns in the mitigation of air pollutant
emissions in China, with estimated emission reductions of
15.1 % for NOx , 54.5 % for SO2, 35.7 % for CO, 44.4 % for
PM2.5, and 33.6 % for PM10 from 2015 to 2020. In contrast,
NMVOC emissions increased by 21.0 % from 2015 to 2020.
Comparisons of the estimated emission reduction rates dur-
ing the two clean-air action plans suggested that emission
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reductions were higher during 2018–2020 than during 2015–
2017. The estimated rates of change in emissions were 5.9 %
for NOx , −23.8 % for SO2, −9.8 % for CO, −14.5 % for
PM2.5, −7.2 % for PM10, and 27.6 % for NMVOCs during
2015–2017, which were smaller than the −12.1 % for NOx ,
−23.5 % for SO2, −18.3 % for CO, −26.6 % for PM2.5,
−25.5 % for PM10, and −4.5 % for NMVOCs during 2018–
2020. On the one hand, this is due to the fact that more sec-
tors were controlled during the 2018–2020 action plan. Be-
sides the industrial and power sectors, which were the main
points of control in the 2013–2017 action plan, the residen-
tial sector, transportation sector, and non-point sources like
blowing-dust emissions were also strengthened in the 2018–
2020 action plan. Consequently, the emission reduction rates
of CO, PM2.5, and PM10 during 2018–2020 were higher than
those during 2015–2017, when the 2013–2017 action plan
was implemented. However, the reduction in SO2 emissions
was similar during the two action plan periods. This is be-
cause most SO2 emissions stem from the industrial sector
and power plants, which together contribute about 77 % of
all emissions (Zheng et al., 2018). Thus, the additional con-
trol of the other sectors in the 2018–2020 action plan may not
have significantly impacted the mitigation of SO2 emissions.
On the other hand, strict emission controls were implemented
or strengthened in more areas of China during the 2018–2020
action plans. For example, the inversion results indicated that
there were obvious increases in SO2, NOx , PM2.5, PM10, and
NMVOC emissions during 2015–2017 over the Central re-
gion, especially in the Fenwei Plain area, where the emission
controls were relatively weak during the 2013–2017 action
plan. However, all the species showed obvious emission re-
ductions in almost the whole of China during the 2018–2020
action plan.

The estimated rates of change in emissions during 2015–
2018 were also compared with those estimated by previ-
ous emission inventories. Although both CAQIEI and pre-
vious inventories showed declines in air pollutant emissions
in China, the emission reduction rates estimated by CAQIEI
were generally smaller than those estimated by previous in-
ventories, especially for NOx , PM10, and NMVOCs, suggest-
ing smaller mitigation effects of air pollution control mea-
sures than the previous emission inventories suggested. In
particular, China’s NMVOC emissions were shown to have
increased by 26.6 % from 2015 to 2018, especially over the
NCP (38.0 %), NE (38.3 %), and Central (60.0 %) regions.
CO was found to be an exception insofar as the emission
reduction rate estimated by CAQIEI was larger than that of
most previous emission inventories, except in the NCP re-
gion. The estimated emission reduction rates of SO2 and
PM2.5 were relatively closer to those of previous inventories,
suggesting better consistency in the estimated emission re-
duction for these two species.

Overall, the inversion inventory developed in this study
could provide us with value information on the complex vari-
ations in air pollutant emissions in China during its two re-

cent clean-air action periods, which could help improve our
understanding of air pollutant emissions and related changes
in air quality in China. For example, the increases in O3 and
nitrate concentrations may be associated with the undesirable
emission reduction effects of the 2013–2017 action plan. The
estimated lower NOx emission reduction rate by CAQIEI
may also help explain the weak responses of nitrogen de-
position fluxes to the clean-air action plans. Meanwhile, this
top-down emission inventory can be used to supply the in-
put data for CTMs or serve as a comparable reference for
future inversion studies based on other methods or observa-
tion data, which is expected to improve the performance of
model simulations and air quality forecasts and facilitate the
development of the inversion method.

7 Limitations

However, due to the complexity of the emission estimation,
it is inevitable that there will be some limitations in our in-
version results. Here we summarize some issues that might
affect the quality of CAQIEI and that were known at the time
of publication to assist potential users in properly using these
data products.

The changes in the number of observation sites would in-
duce spurious emission trends during 2013–2014, especially
over western China, although the influence of the number
of observation sites is smaller over the NCP and SE regions
because of their higher density of observation sites. There-
fore, it is recommended not to use the emissions in 2013
and 2014 when analyzing the emission trends in China. This
limitation makes it difficult to estimate the overall emission
control effects of the 2013–2017 action plan. Consequently,
the emission change rates during 2015–2017 were sampled
in this study to represent the emission control effects of the
2013–2017 action plan, but this may not necessarily reflect
the overall reduction rate of the action plan for the entire pe-
riod. In addition, although the number of observation sites
has become stable since 2015, the limited number of obser-
vation sites makes it difficult to fully constrain China’s air
pollutant emissions, especially for the natural sources, con-
sidering that the majority of the observation sites are located
in urban areas. Therefore, the uncertainty in the estimated
emissions over remote areas is expected to be higher than
those over urban areas, especially for the species with large
amounts of natural emission, such as PM and NMVOCs. For
example, the coarse-dust emissions over western China are
expected to be underestimated by CAQIEI because of the
limited availability of observation sites. Therefore, adding
observations there will help improve the accuracy of the in-
version estimates. For example, simultaneous assimilation of
the surface and satellite observation may help alleviate this
problem and provide more constraints on the emissions with-
out surface observations.
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The natural and anthropogenic emissions are not differen-
tiated in our inversion method, leading to higher emissions of
PM10 and NMVOCs than in other emission inventories. This
also hinders the comparisons of our inversion results with
the previous inventories. Therefore, potential readers should
be aware that the current comparisons of our inversion re-
sults and previous inventories have as their basis the natu-
ral emissions estimated by CAMS and GFAS, which does
not necessarily indicate large uncertainties in anthropogenic
sources in the bottom-up inventories. The impacts are ex-
pected to be smaller for NOx , SO2, and CO due to the small
contributions of natural sources to their emissions but would
be larger for NMVOCs and PM, which have large amounts
of natural emissions. Assimilation of isotope data, speciated
PM2.5, and NMVOC observations may help differentiate be-
tween the natural and anthropogenic emissions and address
this problem in the future.

The NMVOC emissions may have higher uncertainty than
the other species. On the one hand, a significant amount of
NMVOC emission would originate from suburban or rural
regions. Therefore, although the O3 observations at the ur-
ban sites could provide information on the NMVOC emis-
sions over the suburban or rural areas according to covari-
ance estimated by the ensemble simulation, the NMVOC
emissions may not be fully constrained due to the lack of
observation sites over the suburban or rural areas. On the
other hand, due to the lack of long-term NMVOC observa-
tions, the NMVOC emissions were constrained by the O3
concentrations in this study. Although the feasibility of this
approach has been demonstrated by previous inversion stud-
ies, the nonlinear NOx–VOC–O3 interactions will inevitably
introduce greater uncertainty into the inversion of NMVOCs
than other species. Therefore, more attention should be paid
while using the inversion results of NMVOCs, and more ro-
bust analysis of the effects of nonlinear NOx–VOC–O3 in-
teractions and the number of observation sites should be per-
formed in the future to better illustrate the feasibility of as-
similating O3 to constrain NMVOC emissions.

The errors in the meteorological simulations and the
CTMs were not considered in the emission inversions, which
would lead to uncertainty in our estimated emissions. For ex-
ample, the errors in the simulated wind would influence the
transportation of the air pollutants and lead to uncertainty in
the emission distributions. According to the evaluation re-
sults of the meteorological simulations (Table S1), the simu-
lated relative humidity is generally lower than the observed
relative humidity, which may weaken the formation of sec-
ondary aerosol. By contrast, the simulated precipitation was
higher than the observed precipitation for most of the re-
gions, which would lead to overestimations of the wet re-
moval of air pollutants. As a result, there may be a positive
tendency in the inversed emission inventory due to the errors
in the simulated relative humidity and precipitation. Besides
these parameters, the accuracy of the simulated boundary
layer is also important for the performance of the emission

inversions (Du et al., 2020), although it was not evaluated
here due to the lack of observations. If the WRF model sys-
tematically underestimates the boundary layer, the vertical
diffusions of the air pollutants would be suppressed, which
would lead to overestimated surface air pollutant concentra-
tions and a negative tendency in the inversed emission inven-
tory. However, it is difficult to quantify the influences of the
meteorological errors on the emission inversions, as the er-
rors in the meteorological simulations and chemical transport
models interact with each other. More comprehensive anal-
ysis should be conducted in the future to better understand
the impacts of the meteorological and model errors on the
inversed emission inventory. A multimodel inversion frame-
work, e.g., that of Miyazaki et al. (2020b), may help allevi-
ate the influences of model errors on emission inversions in
the future. Using other models (e.g., WRF-Chem or CMAQ)
to validate our inversion inventory could also help us assess
the impacts of model uncertainty on the emission inversions.
Meanwhile, because of the many uses that require a rapid
update of emissions, it may be time to organize an intercom-
parison study focused on the emission inversions.

The current inversed emission inventory is mainly as-
sessed by the surface observations and previous emission in-
ventories. More independent observations, such as the satel-
lite observation data, should be used in the future to further
validate the inversion results of this study and its derived
findings. For example, in the future, the independent mea-
surements from field campaign or satellite retrievals (e.g.,
TROPOMI CO data) can help validate the reliability of the
much higher a posterior CO emissions in CAQIEI than the
previous inventories.
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