Corrigendum to Earth Syst. Sci. Data, 16, 4325–4350, 2024 https://doi.org/10.5194/essd-16-4325-2024-corrigendum © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to

"Comparison of observation- and inventory-based methane emissions for eight large global emitters" published in Earth Syst. Sci. Data, 16, 4325–4350, 2024

Ana Maria Roxana Petrescu¹, Glen P. Peters², Richard Engelen³, Sander Houweling¹, Dominik Brunner⁴, Aki Tsuruta⁵, Bradley Matthews⁶, Prabir K. Patra^{7,8,9}, Dmitry Belikov⁹, Rona L. Thompson¹⁰, Lena Höglund-Isaksson¹¹, Wenxin Zhang¹², Arjo J. Segers¹³, Giuseppe Etiope^{14,15}, Giancarlo Ciotoli^{16,14}, Philippe Peylin¹⁷, Frédéric Chevallier¹⁷, Tuula Aalto⁵, Robbie M. Andrew², David Bastviken¹⁸, Antoine Berchet¹⁷, Grégoire Broquet¹⁷, Giulia Conchedda¹⁹, Stijn N. C. Dellaert²⁰, Hugo Denier van der Gon²⁰, Johannes Gütschow²¹, Jean-Matthieu Haussaire⁴, Ronny Lauerwald²², Tiina Markkanen⁵, Jacob C. A. van Peet¹, Isabelle Pison¹⁷, Pierre Regnier²³, Espen Solum¹⁰, Marko Scholze¹², Maria Tenkanen⁵, Francesco N. Tubiello¹⁹, Guido R. van der Werf²⁴, and John R. Worden²⁵

¹Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, the Netherlands ²CICERO Center for International Climate Research, Oslo, Norway ³European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, RG2 9AX, UK ⁴Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland ⁵Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland ⁶Climate Change Mitigation and Emission Inventories, Umweltbundesamt GmbH, 1090, Vienna, Austria ⁷Research Institute for Humanity and Nature, Kyoto 6038047, Japan ⁸Research Institute for Global Change, JAMSTEC, Yokohama 2360001, Japan ⁹Center for Environmental Remote Sensing (CEReS), Chiba University, 1–33 Yayoicho, Inage Ward, Chiba, 263-8522, Japan ¹⁰Norwegian Institute for Air Research (NILU), Kjeller, Norway ¹¹International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria ¹²Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden ¹³Department of Climate, Air and Sustainability, TNO, Princetonlaan 6, 3584 CB Utrecht, the Netherlands 14 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, via V. Murata 605, Rome, Italy ¹⁵Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania ¹⁶Consiglio Nazionale delle Ricerche, Istituto di Geologia Ambientale e Geoingegneria, Via Salaria km 29300, 00015 Monterotondo, Rome, Italy ¹⁷Laboratoire des Sciences du Climat et de l'Environnement, 91190 Gif-sur-Yvette, France ¹⁸Department of Thematic Studies – Environmental Change, Linköping University, Linköping, Sweden ¹⁹Statistics Division, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy ²⁰Department of Air Quality and Emissions Research, TNO, Utrecht, the Netherlands ²¹Climate Resource, Northcote, Australia ²²Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 9120 Palaiseau, France ²³Biogeochemistry and Modeling of the Earth System, Université Libre de Bruxelles, 1050 Brussels, Belgium

²⁴Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, the Netherlands ²⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Correspondence: Ana Maria Roxana Petrescu (a.m.r.petrescu@vu.nl)

Published: 2 December 2024

It came to our attention that Fig. 3 in the above-mentioned paper was not updated with the TNO dataset for the final publication. The corrected Fig. 3, including the TNO_CoCO2_PED18-21 time series, can be found below.

Figure 3. Total anthropogenic CH₄ emissions (excluding LULUCF) from bottom-up (BU) inventories, UNFCCC NGHGIs (2023) of CRFs (the EU, the USA, and Russia) and BURs (Brazil (fourth in 2021), China (second in 2019), Indonesia (third in 2021), DR Congo (first in 2022), India (all three BURs: 2016, 2018, and 2021)), and four other global datasets, EDGAR v7.0, GAINS (no IPPU), FAOSTAT/PRIMAPhist (except for AFOLU), and TNO_CoCO2_PED18-21. For the EU, the relative error on the UNFCCC value represents the NGHGI (2023) reported uncertainties computed with the error propagation method (95% confidence interval) and gap-filled to provide respective estimates for each year. China reports uncertainties for 2014, and Indonesia reports uncertainties for 2000 and 2019. Total COD UNFCCC BUR emissions do not include IPPU. The EDGAR v7.0 uncertainty is only for 2015 and was calculated according to Solazzo et al. (2021) for EDGAR v5.0. The mean of overlapping time series was calculated for 1990–last available year as follows: 2021 for UNFCCC NGHGI (2023), EDGAR v7.0, FAOSTAT/PRIMAP-hist, and TNO_CoCO2_PED18-21 and 2020 for GAINS.