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Abstract. In recent years, advancements in machine learning based interpolation methods have enabled the
production of high-resolution maps of sea surface partial pressure of CO2 (pCO2) derived from observations
extracted from databases such as the Surface Ocean CO2 Atlas (SOCAT). These pCO2-products now allow
quantifying the oceanic air–sea CO2 exchange based on observations. However, most of them do not yet ex-
plicitly include the coastal ocean. Instead, they simply extend the open ocean values onto the nearshore shallow
waters, or their spatial resolution is simply so coarse that they do not accurately capture the highly heterogeneous
spatiotemporal pCO2 dynamics of coastal zones. Until today, only one global pCO2-product has been specifically
designed for the coastal ocean (Laruelle et al., 2017). This product, however, has shortcomings because it only
provides a climatology covering a relatively short period (1998–2015), thus hindering its application to the evalu-
ation of the interannual variability, decadal changes and the long-term trends of the coastal air–sea CO2 exchange,
a temporal evolution that is still poorly understood and highly debated. Here we aim at closing this knowledge
gap and update the coastal product of Laruelle et al. (2017) to investigate the longest global monthly time series
available for the coastal ocean from 1982 to 2020. The method remains based on a two-step Self-Organizing
Maps and Feed-Forward Network method adapted for coastal regions, but we include additional environmental
predictors and use a larger pool of training and validation data with ∼ 18 million direct observations extracted
from the latest release of the SOCAT database. Our study reveals that the coastal ocean has been acting as an
atmospheric CO2 sink of −0.40 Pg C yr−1 (−0.18 Pg C yr−1 with a narrower coastal domain) on average since
1982, and the intensity of this sink has increased at a rate of 0.06 Pg C yr−1 decade−1 (0.02 Pg C yr−1 decade−1

with a narrower coastal domain) over time. Our results also show that the temporal changes in the air–sea pCO2
gradient plays a significant role in the long-term evolution of the coastal CO2 sink, along with wind speed and
sea-ice coverage changes that can also play an important role in some regions, particularly at high latitudes. This
new reconstructed coastal pCO2-product (https://doi.org/10.25921/4sde-p068; Roobaert et al., 2023) allows us to
establish regional carbon budgets requiring high-resolution coastal flux estimates and provides new constraints
for closing the global carbon cycle.
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1 Introduction

The exchange of carbon dioxide (CO2) between the atmo-
sphere and the ocean mainly depends on the gradient be-
tween the partial pressure of CO2 (pCO2) at the surface of
the ocean and that of the overlying air on the global aver-
age. Over the past decade, the number of high-quality mea-
surements of sea surface pCO2 collected by research field
programs and ships of opportunities has considerably in-
creased. Moreover, large-scale community efforts have led to
the compilation of tens of millions of sea surface pCO2 mea-
surements into uniform quality-controlled databases such as
SOCAT (Surface Ocean CO2 Atlas; Bakker et al., 2014), al-
lowing for the quantification of the global oceanic CO2 sink.
However, in spite of this tremendous increase in data cov-
erage, once gridded monthly at a typical spatial resolution
of 1◦ for the open ocean and 0.25◦ for the coastal ocean,
pCO2 measurements remain largely discontinuous in time
and space. The remaining regions and periods of time devoid
of data thus prevent one from fully quantifying the air–sea
CO2 exchange and its full spatiotemporal variability based
on measurements alone.

Therefore, in parallel to the ongoing measurement syn-
thesis efforts, another research branch aiming at develop-
ing robust interpolation techniques to circumvent the spatial
and temporal gaps in the data products has emerged. These
techniques allow creating maps of pCO2 that are continu-
ous in space and time, typically at the monthly resolution
(e.g., Chau et al., 2022; Gloege et al., 2022; Gregor and Gru-
ber, 2021; Landschützer et al., 2014; Rödenbeck et al., 2014,
2015). The resulting observation-based continuous products
(called hereafter “pCO2-products”), however, differ in their
spatial resolutions (e.g., from 0.25◦× 0.25◦ in Chau et al.,
2023, over 1◦× 1◦ in Landschützer et al., 2014, to 4◦× 5◦

in Majkut et al., 2014), their temporal coverage and their
method of interpolation. Several studies have relied on direct
interpolations of available pCO2 measurements (e.g., Jones
et al., 2015; Rödenbeck et al., 2014; Shutler et al., 2016)
while others have first established linear (e.g., Iida et al.,
2015; Park et al., 2010; Schuster et al., 2013) or nonlinear
(e.g., Landschützer et al., 2014; Nakaoka et al., 2013; Zeng
et al., 2014) predictive regression equations between a set
of environment parameters (available everywhere and at ev-
ery time within the domain of interest) and observed pCO2
to perform the spatiotemporal extrapolation. These comple-
mentary pCO2-products provide a better quantification of
the spatial and temporal variability of the global oceanic
CO2 sink and its associated uncertainty on different time
scales, going from seasonal fluctuations to decadal trends
through interannual variability, while providing much im-
proved observation-based benchmarks against which outputs
from global model results can be evaluated (e.g., Hauck et
al., 2020).

While significant efforts have been invested by the com-
munity to develop pCO2-products for the global ocean, lead-

ing to a growing number of assessments of the CO2 sink,
most of these pCO2-products ignore the coastal ocean (e.g.,
Landschützer et al., 2014) or resolve it by simply combining
the coast with the open ocean (Chau et al., 2023). Indeed,
the spatiotemporal investigations are performed for the en-
tire ocean using the full set of observed pCO2 data (coast
and open ocean) in such a way that the specific conditions
characteristic of coastal settings are not accurately accounted
for in these products (e.g., Chau et al., 2022; Rödenbeck
et al., 2013). In response to this shortcoming, other contin-
uous pCO2-products have been developed at the regional
scale for several well monitored coastal seas (e.g., Bai et
al., 2015; Hales et al., 2012; Jamet et al., 2007; Ono et al.,
2004; Sarma et al., 2006) such as the California Current sys-
tem (Sharp et al., 2022), European shelves (Becker et al.,
2021) or the West Florida shelf (Chen et al., 2016). At the
global scale, a significant step forward was made by Laru-
elle et al. (2017) when the first global coastal pCO2-product
at high spatial resolution (0.25◦) was released for the entire
coastal domain. This product, which is, to date, the only one
available specifically developed for the global coastal ocean,
is based on gridded coastal pCO2 observations and nonlin-
ear predictive regression equations between a set of environ-
mental variables (drivers) and observed pCO2 to perform the
spatiotemporal extrapolation (the Self-Organizing Maps and
Feed-Forward Network coastal pCO2-product, ULB–SOM–
FFN–coastalv1; Laruelle et al., 2017). This global coastal
pCO2-product provided a climatological mean (period 1998–
2015) which allowed unprecedented investigation of the spa-
tial distribution of the CO2 sources and sinks in the global
coastal ocean, especially for regions lacking data or regional
assessments. It also allowed resolution of the seasonal vari-
ability of the air–sea CO2 exchange in the coastal domain
(Roobaert et al., 2019). Moreover, it was recently merged
with an open ocean product to obtain a global reconstruc-
tion of the ocean CO2 sink (Landschützer et al., 2020) and
has been subsequently used to reduce the spread in global re-
constructions (Fay et al., 2021). However, the ULB–SOM–
FFN–coastalv1 pCO2-product remains limited in its applica-
tions because it only provides a climatology covering a rel-
atively short period (1998–2015) and is thus not suitable to
evaluate the interannual variability or the long-term trends of
the coastal air–sea CO2 exchange. Such questions currently
are at the forefront of the coastal research community’s pre-
occupations (Bauer et al., 2013; Lacroix et al., 2021a; Laru-
elle et al., 2018; Regnier et al., 2013; Resplandy et al., 2023;
Wang et al., 2017) but, because of the lack of adequate prod-
uct, our confidence in the extent to which humans have per-
turbed the coastal air–sea CO2 exchange since pre-industrial
times remains low (Regnier et al., 2022). Moreover, the limi-
tations of the ULB–SOM–FFN–coastalv1 do not yet allow us
to produce robust trends in coastal pCO2 fields against which
global model outputs can be evaluated (e.g., Resplandy et al.,
2023).
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To address these limitations, this study expands and im-
proves upon the version of the global coastal pCO2-product
of Laruelle et al. (2017) by extending its temporal cover-
age to four decades (1982–2020) and updating the method-
ology to resolve longer-terms changes in pCO2, as described
in the following section. The evaluation of this new product
(ULB–SOM–FFN–coastalv2; Roobaert et al., 2023; https://
www.ncei.noaa.gov/archive/accession/0279118; last access:
November 2023) is done both spatially and for each decade
individually, which represents an improvement compared
with Laruelle et al. (2017) where the ULB–SOM–FFN–
coastalv1 evaluation was limited to spatial and climatolog-
ical seasonal cycles only. Using ULB–SOM–FFN–coastalv2
that relies on ∼ 18 million coastal direct observations from
the SOCATv2022 database, we recalculate the coastal air–
sea CO2 exchange (FCO2) for the 1982–2020 period and
briefly describe the long-term trend of the global coastal CO2
sink over this time frame. The long-term trend or “multi-
decadal trend” in this study is defined as a linear trend that
spans a period exceeding 10 years that is in our case a trend
that encompasses the years 1982–2020, resulting in a total
of 39 years of observations. This study does not discuss the
decadal change (period of 10 years) and interannual vari-
abilities (year-to-year fluctuations) of the global coastal sink.
In the future, these updated pCO2- and FCO2-products can
be used as benchmarks for global oceanic models resolving
trends in the coastal CO2 dynamics, fulfilling a key knowl-
edge gap identified in the latest Regional Carbon Cycle As-
sessment and Processes coastal synthesis (RECCAP2, Resp-
landy et al., 2023).

2 Methods

This section first describes the 2-step interpolation method
used to generate the new version of the coastal pCO2-product
(Sect. 2.1) and the different datasets involved in this two steps
procedure (Sect. 2.2). We then describe how the coastal air–
sea CO2 exchange is calculated (Sect. 2.3) and finally ex-
plain the approach used to quantify the uncertainties associ-
ated with our new pCO2- and FCO2-products (Sect. 2.4).

2.1 Self-Organizing Maps and Feed-Forward Network

We build upon the method described in Laruelle et
al. (2017) to construct an updated observation-based con-
tinuous monthly pCO2-product for the coastal ocean (ULB–
SOM–FFN–coastalv2) at a 0.25◦ spatial resolution over the
1982–2020 period. The method is based on the application
of two artificial neural networks (the Self-Organizing Maps
(SOM) network and the Feed-Forward Network (FFN)). The
SOM first clusters the global coastal ocean into provinces
characterized by similar environmental properties. In each
province, the FFN then establishes nonlinear relationships
between the observed pCO2 and a set of environmental
drivers of the coastal pCO2 dynamics (which may be dif-

ferent from those used by the SOM). These relationships
are then used to perform the spatiotemporal extrapolation of
pCO2 in each region defined by the SOM. This method was
originally developed for the open ocean and is extensively
described in Landschützer et al. (2013, 2014). It was later
adapted for the global coastal ocean by Laruelle et al. (2017).
We thus provide only a brief description of the methodology
and focus here on the modifications introduced in this study.

In the first step, the global coastal ocean is divided into
10 biogeochemical provinces using the SOM clustering al-
gorithm. Each resulting province is characterized by simi-
lar spatiotemporal patterns of a set of environmental vari-
ables, or drivers. In this study, we use the same drivers as
in Laruelle et al. (2017), which consist of the wind speed
calculated at 10 m above the sea surface (U10), the sea sur-
face temperature (SST), the sea surface salinity (SSS), the
bathymetry, and the rate of change in the sea-ice coverage
(see Sect. 2.2 for a description of the datasets). The SOM
uses a neural network to detect similarities within multivari-
ate datasets and uses an iterative procedure to distribute them
into a predefined number of clusters. For each environmen-
tal driver, continuous monthly maps at the spatial resolution
of 0.25◦ are used as inputs for the neural network and each
0.25◦ cell is allocated to one of the 10 provinces defined by
the SOM. This procedure aims at minimizing the Euclidean
distance between all points within each neuron of the net-
work (see Landschützer et al., 2013, for more details). The
spatial extension of these provinces varies from one month
to the other because of the seasonal variations of the environ-
mental drivers in such a way that a fixed grid cell in space
may be assigned to several provinces over the course of a
year. The choice of 10 provinces in the SOM stems from a
sensitivity analysis that minimizes the average deviation be-
tween the observed pCO2 and those simulated by the FFN al-
gorithm (see second step below) while ensuring the presence
of a minimum number of grid cells (> 100) that can be used
for the validation in each province (Laruelle et al., 2017).
While their spatial extent varies seasonally, each province
remains associated with specific regions over the course of
the entire 1982–2020 period and the province occurring most
often in each grid cell is shown in Fig. 1. Broadly, these
provinces represent: province 1 (P1), the Antarctic shelf;
P2 and P3, two subpolar/temperate coastal provinces of the
Southern Hemisphere; P4 and P6, the large tropical coastal
provinces; P5, a temperate province of the Northern Hemi-
sphere which includes the Mediterranean Sea and the Nor-
wegian Sea; P7, P8 and P10, high latitudes of the Northern
Hemisphere provinces that are seasonally partly covered by
sea ice (with the Baltic Sea and the Hudson Bay in P8); and
P9, a permanent and cold polar province.

In a second step, within each biogeochemical province
identified in step 1 (SOM), a FFN algorithm establishes non-
linear relationships between the observed sea surface pCO2
and independent variables, or drivers, that are known to con-
trol its spatial and temporal variability. For each province,
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Table 1. Environmental drivers used for the Self-Organizing Maps (SOM) and the Feed-Forward Network (FFN) artificial neural networks
to reconstruct the coastal pCO2. These datasets are also used to calculate the coastal air–sea CO2 exchange.

Environmental
drivers

Used for SOM Used for FFN Period Resolution Manipulation Name and/or references

Sea surface
temperature
(SST, in ◦C)

× × 1982–2020 0.25◦, daily Monthly mean NOAA OI SSTv2
(Reynolds et al., 2007)

Sea surface
salinity (SSS,
in PSU)

× × 1982–2020 0.25◦, daily Monthly mean EN4.2 SSS (Good et
al., 2013)

Wind speed at
10 m above sea
level (U10, in
m s−1)

× × 1982–2020 0.25◦, 6 h Monthly first
moment

ERA5 (Hersbach et al.,
2023)

Sea-ice cover-
age (ice,
dimensionless)

× (rate change) × (rate change) 1982–2020 0.25◦, daily Monthly mean
rate changed
in sea-ice
coverage

Reynolds et al. (2007)

Atmospheric
pCO2 (in µatm)

× 1982–2020 1◦, monthly Aggregated to
0.25◦

SeaFlux product (Fay
et al., 2021) with xCO2
derived from the ESRL
surface MBL CO2
product (Dlugokencky
et al., 2019), ERA5
sea level pressure
(Hersbach et al., 2023)
and with a vapor cor-
rection (Dickson et al.,
2007) and the method
of Landschützer et
al. (2014) and Fay et
al. (2021)

Chlorophyll a

(Chl a, in
mg m−3)

× 1998–2020 4 km, monthly Aggregated to
0.25◦, extended
the period and
filled cells with
no data

EU Copernicus Marine
Service Information
(Copernicus Ma-
rine Service, 2023;
https://doi.org/10.
48670/moi-00281)

Bathymetry (in
m)

× × – 2 min Aggregated to
0.25◦

ETOPO2 (US Depart-
ment of Commerce,
2006)

the FFN algorithm calculates relationships between the ob-
served target variable (here pCO2 using pCO2 observations
from the SOCAT_a dataset; see below) and inputs (environ-
mental drivers; see below and Table 1) by adjusting weight-
ing factors of a sigmoid activation function (one sigmoid
function per neuron in the hidden layer) following an it-
erative procedure, i.e., a Levenberg–Marquardt backpropa-
gation algorithm. At the first iteration, the weights of neu-
rons are randomly assigned and the reconstructed pCO2 is
compared with the actual pCO2 observations. Based on the

resulting mismatch, the network weights are iteratively up-
dated in a way that the error function – in our case the mean
squared error between network output and actual observa-
tions – gets minimized. For each iteration, the FFN algo-
rithm uses a fraction of the pCO2 observations for the ac-
tual training of the network (i.e., the adjustment of the neu-
ron weights), while another randomly selected fraction of the
dataset is used to independently evaluate the performance of
the algorithm. The final coefficients are obtained when the
reconstructed pCO2 simulated from the validation data does
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Figure 1. Coastal biogeochemical provinces generated by the Self-
Organizing Maps (SOM) clustering algorithm. The spatial exten-
sion of these provinces can vary from one month to another due to
seasonal variations of the environmental drivers used during SOM.
Here we present their modal spatial distribution (see Sect. 2.1 for
further details).

not significantly improve relative to the pCO2 observations,
to prevent overfitting. The final neuron weights and thus the
resulting input–output relationships are used to reconstruct
pCO2 in each cell and for each month during the 1982–2020
period.

The predictors used for the FFN are U10, SST, SSS, the
atmospheric pCO2, the rate of change in sea-ice coverage
(except in regions not covered by sea ice, i.e., in P2, P3,
P4 and P6), the bathymetry and the chlorophyll a concen-
tration (Chl a). The Chl a is expressed as log10(Chl a) to
minimize the influence of its skewed distribution (Wrobel-
Niedzwiecka et al., 2022). In P1, P8 and P9, we do not
use Chl a as a driver because of the poor data coverage
resulting from recurring cloud and/or sea-ice coverage in
those provinces (see Sect. 2.2). This incomplete data cov-
erage for Chl a is incidentally the reason why this predictor
is not used at the SOM stage, because it requires complete
global datasets. Atmospheric pCO2, which was not included
in the ULB–SOM–FFN–coastalv1, is also used as a driver
of multidecadal changes induced by the increasing atmo-
spheric pCO2 concentration. Finally, we smooth spatially the
monthly-resolved coastal pCO2 field generated by the FFN
using a moving 3 by 3 pixel window to remove abrupt pCO2
transitions sometimes occurring at the boundaries between
provinces. This smoothing procedure is described by Land-
schützer et al. (2014) and was also used in the ULB–SOM–
FFN–coastalv1.

The surface pCO2 data are extracted from the SO-
CATv2022 database (Bakker et al., 2022) that originally con-
tains ∼ 40 million pCO2 measurements for the entire global
ocean (open and coastal seas combined). We randomly di-
vide this dataset into two independent datasets: a group of
data used for the FFN algorithm (SOCAT_a; see below) and a
group of data that we use to validate our reconstructed pCO2
(SOCAT_b). To do so, from the SOCATv2022 database, we
follow the recommendation of the SOCAT community and
use their accuracy criteria to only retain the data with the

highest accuracy. To do so, we first select sea surface mea-
surements expressed in fugacity of CO2 (fCO2) with a qual-
ity flag ranging from A to D (which corresponds to an esti-
mated accuracy better than 5 µatm) and a World Ocean Circu-
lation Experiment (WOCE) flag of 2 (good dataset following
SOCAT) for the 1982–2020 period. Following Laruelle et al.
(2017), we also remove fCO2 values < 30 and > 1000 µatm
that are likely derived from estuarine or fresh water systems
that are not included in our coastal domain. We then ran-
domly divide this dataset rich of∼ 32 million fCO2 measure-
ments into a group of data used for the FFN algorithm (“a”,
80 % of the original dataset) and a group of data that we use
to validate our reconstructed pCO2 (“b”, 20 % of the original
dataset). The two sets of data (SOCAT_a and SOCAT_b) are
then gridded for each month at 0.25◦ using the average of
all fCO2 values in each cell. Values are then converted from
fCO2 to pCO2 using the equation of Takahashi et al. (2019,
p. 7) and a coastal mask is applied on both gridded pCO2-
products. In this study, the coastal domain (“wide coastal
ocean” with a total surface area of 76× 106 km2, Laruelle et
al., 2017) excludes the Black Sea, estuaries as well as inland
water bodies, and its outer limit is defined as whichever point
is furthest from the shoreline between the 1000 m isobath and
a fixed 300 km distance (roughly the outer edge of territorial
waters), following the coarse SOCAT definition of the coastal
oceanic domain. At the end of this entire procedure, a total of
∼ 14 million and ∼ 4 million discrete coastal data have been
allocated to SOCAT_a and SOCAT_b, respectively. A more
common delineation of the coastal ocean is also used in this
study when discussing the air–sea CO2 exchange (Sect. 3.1)
using the shelf break as the outer limit of the coastal do-
main (“narrow coastal ocean”, 28× 106 km2). The depth of
the shelf break is calculated using a high-resolution global
bathymetric database and estimated by calculating the slope
of the sea floor. The isobath for which the increase in slope
is the maximum over the 0–1000 m interval, yet still inferior
to 2 %, defines the outer limit of the shelf break (Laruelle et
al., 2013).

2.2 Environmental variables

The observational SST and SSS fields used as inputs for the
SOM–FFN algorithm are calculated as the monthly means
of the daily NOAA OI SST V2 (Reynolds et al., 2007) and
of the daily Hadley center EN4 SSS (Good et al., 2013),
respectively (Table 1). For U10, we use the monthly mean
of the 0.25◦ resolution product of the European Center for
Medium-Range Weather Forecasts (ECMWF) ERA5 wind
product (Hersbach et al., 2023), which has a native tempo-
ral resolution of 6 h. The monthly mean of the daily 0.25◦

dataset of Reynolds et al. (2007) is used for the sea-ice cov-
erage. The rate of change in the sea-ice coverage for a given
month x is then calculated as the difference between the sea-
ice coverages of months x+ 1 and x− 1. The atmospheric
pCO2 is from the SeaFlux product (Fay et al., 2021) which
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is calculated from the dry air mixing ratio of CO2 (xCO2)
provided by the ESRL surface marine boundary layer CO2
product (Dlugokencky et al., 2019; https://www.esrl.noaa.
gov/gmd/ccgg/mbl/data.php; last access: October 2023) with
a vapor correction according to Dickson et al. (2007), using
the ERA5 sea level pressure (Hersbach et al., 2023) and ap-
plying the method of Landschützer et al. (2014) and Fay et
al. (2021). It should be noted that, due to the proximity to
the continent, the coastal ocean might be more exposed to
anthropogenic sources of CO2 and thus might be exposed to
higher atmospheric pCO2 compared with the global oceanic
average. The use of spatially resolved dry air mixing ratio of
CO2 datasets, such as the one from the NASA’s Orbiting Car-
bon Observatory 2 Goddard Earth Observing System (OCO-
2 GEOS; Eldering et al., 2017), instead of the product used
in this study might be more appropriate to include this effect.
However, OCO-2 GEOS only covers 2015–2022, which is
too short for the purpose of our study. It is also expected that
the choice of the atmospheric pCO2 does not considerably in-
fluence our FCO2 calculations as the air–sea pCO2 difference
is mainly controlled by the oceanic pCO2 (see Sect. 2.4). We
use the bathymetry from the 2 min global ETOPO2 database
(US Department of Commerce, 2006) and the Chl a field
derived from the monthly 4 km merged GlobColour product
from the EU Copernicus Marine Service information (Coper-
nicus Marine Service, 2023; https://doi.org/10.48670/moi-
00281, last access: October 2023), which is the product with
the longest Chl a temporal coverage (1998–2020). However,
because of recurrent cloud coverage everywhere and sea-
ice coverage at high latitudes, the monthly averaged Chl a
field at a 0.25◦ resolution is discontinuous with grid cells de-
void of data. We fill these cells (9 % excluding high latitude
coastal regions) using a cascade of interpolation methods, the
order of which depends on data availability in time and space
in the surrounding cells: for an empty cell of the month x, the
interpolation is performed by computing in the order of rank
(1) the mean of the next neighboring cells of the month x,
(2) the mean value of the month x+1 and month x−1 of the
same cell, (3) the monthly mean value x of the cell for the en-
tire 1998–2020 period and (4) the annual mean value of the
cell for the entire 1998–2020 period. At high latitudes, where
none of these options are feasible because of large bands
without any data, we assign the modal value of Chl a as the
default value in order to ensure the continuity of the maps
that is required for the FFN algorithm. From this continu-
ous gridded Chl a product over the recorded period, we then
calculate for each cell a monthly seasonal climatology and
attribute the climatological values to the unrecorded period
(1982–1997). This means that, in our calculations, Chl a does
not contribute to long-term changes in pCO2 before 1997.
All observational fields are converted from their original spa-
tiotemporal resolution to monthly 0.25◦ gridded resolution
for the 1982–2020 period (except for the bathymetry which is
constant over time) to match the observational pCO2-product
(SOCAT_a) resolution (Table 1).

2.3 Air–sea CO2 exchange

The pCO2 field generated by the SOM–FFN algorithm
(ULB–SOM–FFN–coastalv2) is used to calculate the air–sea
CO2 exchange for each grid cell at the monthly timescale
over the 1982–2020 period following Eq. (1):

FCO2 = kK01pCO2(1− ice), (1)

where FCO2 (mol C m−2 yr−1) represents the coastal air–
sea CO2 exchange, 1pCO2 (atm) is the gradient between
the oceanic pCO2 and the atmospheric pCO2 and K0
(mol m−3 atm−1) is the CO2 solubility in seawater which is
a function of SST and SSS following the equation of Weiss
(1974). k (m yr−1) represents the gas exchange transfer ve-
locity which is a function of the second moment of the wind
speed at 10 m above sea level and is calculated using the
equation of Ho et al. (2011) and using the Schmidt num-
ber based on the equation of Wanninkhof (2014). The sea-
ice coverage for each grid cell is represented by the term ice
and ranges from 0 (no ice cover) to 1 (100 % ice cover). By
convention a positive FCO2 value corresponds to a source
of CO2 for the atmosphere. We use the same U10, SST,
SSS, sea-ice coverage and atmospheric pCO2 datasets (see
Sect. 2.2) to calculate FCO2 and perform the FFN pCO2-
reconstruction. Our reconstructed coastal FCO2 is also com-
pared with coastal FCO2 estimates derived from a synthesis
of 214 regional FCO2 estimations (Dai et al., 2022) and from
the FCO2-product derived from the original ULB–SOM–
FFN–coastalv1 pCO2-product (Roobaert et al., 2019).

2.4 Uncertainties in the reconstructed coastal data
products

The uncertainties associated with our reconstructed pCO2
and FCO2 coastal products are estimated using the method
proposed by Landschützer et al. (2014, 2018) and used by
subsequent authors (e.g., Roobaert et al., 2019; Sharp et al.,
2022). The FCO2 uncertainty results from four sources of
uncertainties, which are considered independent and thus
summed quadratically:

σFCO2 =

√
σ 2
1pCO2

+ σ 2
k + σ

2
wind+ σ

2
ice, (2)

where σFCO2 represents the total FCO2 uncertainty
(Pg C yr−1), σ1pCO2 is the uncertainty of the air–sea pCO2
gradient, σk is the uncertainty associated with the choice
of the k formulation in Eq. (1) and σwind is the uncertainty
associated with the choice of the wind speed product (see
Roobaert et al., 2018). We also include the effect of the
choice of sea-ice product on the FCO2 uncertainty (σice)
which was not included in the original calculations of Land-
schützer et al. (2014, 2018) but has been identified as a po-
tential source of uncertainty in global coastal reconstructions
(e.g., Resplandy et al., 2023). All of these four sources of un-
certainty are expressed in petagrams of carbon per year. We
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do not include the uncertainty associated with the solubility
term (K0) in our uncertainty assessment since this contribu-
tion is minimal (0.2 %) as suggested by Weiss (1974). σwind
is calculated following the strategy described in Roobaert
et al. (2018) which consists of using the standard devia-
tion of global FCO2 fields calculated with three different
wind products: the ERA5 (Hersbach et al., 2023), the Cross-
Calibrated Multi-Platform Ocean Wind Vector 3.0 (Atlas et
al., 2011) and the NCEP/NCAR reanalysis 1 (Kalnay et al.,
1996). Since these wind products cover different time peri-
ods, σwind is calculated for the overlap period (1991–2011)
between products. σk is estimated as the standard deviation
of global FCO2 fields calculated with four different global
scale k parametrizations with the same wind speed (ERA5).
We use the formulations of Ho et al. (2011), Sweeney et
al. (2007), Takahashi et al. (2009) and Wanninkhof (2014),
all suited for global scale applications (e.g., see Roobaert
et al., 2018). σice is calculated as the standard deviation
of global FCO2 fields calculated with two different sea-ice
products: the NOAA dataset of Reynolds et al. (2007) and the
sea-ice dataset of Rayner et al. (2003). σ1pCO2 mainly results
from the oceanic pCO2 uncertainty since the atmospheric
pCO2 uncertainty is significantly lower (Landschützer et al.,
2018). For instance, Roobaert et al. (2019) quantified that un-
certainties in atmospheric pCO2 only contribute to 6 % in the
overall FCO2 uncertainty.

Following Landschützer et al. (2014), the uncertainty over
the oceanic pCO2 can be obtained from the quadratic sum of
three sources of uncertainties:

θpCO2 =

√(
θobs
√
N

)2

+

(
θgrid
√
N

)2

+

(
θmap
√
Neff

)2

, (3)

where θpCO2 represents the total uncertainty of the oceanic
pCO2 (µatm), θobs is the experimental uncertainty associated
with the sampling in the field of the observations from the
SOCAT database (µatm), θgrid is the uncertainty associated
with the gridding of the observations from SOCAT into 0.25◦

monthly meshed maps (µatm) and θmap is the uncertainty de-
rived from the comparison between the reconstructed pCO2
and the observed gridded pCO2 from the SOCAT database
(µatm). Following Sharp et al. (2022), we use accuracies
that are attributed to each fCO2 measurement by the SOCAT
community (flags A–D) to calculate θobs. Flags “A” and “B”
represent an estimated accuracy of 2 µatm while the accuracy
of flags “C” and “D” is 5 µatm. We first calculate the mean of
all fCO2 flags in each grid cell for each month. We then cal-
culate the global average gridded flags uncertainty of all cells
for the year x (or the entire period). For θgrid, we first calcu-
late in each grid cell of the month x the standard deviations of
all fCO2 values from the SOCAT database used for the grid-
ding. We then calculate the average of these standard devia-
tions of all grid cells for the year x (or the entire period). θmap
is calculated as the root mean squared deviation between the
reconstructed pCO2 and the gridded pCO2 observation from

the training dataset (SOCAT_a). We also divide each source
of uncertainty (i.e., θobs, θgrid and θmap) by the square root
of the number of pCO2 samples (N ; for details see Land-
schützer et al., 2018; Roobaert et al., 2019). For θmap, the
value of N is corrected to account for the fact that all indi-
vidual errors are not spatially independent. To this end, we
calculate the effective sample size (Neff; see Landschutzer
et al., 2018) by randomly selecting 1000 samples (40 % of
the samples if the total number of samples is < 1000) that
cover our study period and calculating a lag 1 autocorrela-
tion coefficient following Eqs. (18) and (19) of Landschützer
et al. (2018). As we only use a subset of 1000 samples, we
perform Monte Carlo simulations where this procedure is re-
peated 10 times and our final Neff is calculated as the median
of the 10 iterations. Finally, the total uncertainty on FCO2
associated with the reconstructed pCO2 (σ1pCO2 , Pg C yr−1)
is obtained by applying θpCO2 (µatm) in Eq. (1). All these
procedures are performed globally for each year and for the
entire period of our study.

3 Results and discussion

3.1 pCO2-product evaluation

Globally, our reconstructed coastal pCO2-product compares
well with the observed pCO2 used to train the FFN al-
gorithm (SOCAT_a) and reproduces all the well-known
global spatial pCO2 patterns with generally low pCO2 (<
360 µatm) at temperate as well as high latitudes and high
pCO2 (> 360 µatm) at low latitudes (contrast Fig. 2a with
Fig. 2b). The spatial distribution of the temporal mean resid-
uals (i.e., difference between the coastal pCO2-product and
SOCAT_a in each grid cell for every month where observa-
tions are available) reveals that, in some regions, underes-
timations (negative mean residual; blue colors in Fig. 2c) or
overestimations (red colors) of the pCO2 can be generated by
the coastal pCO2-product. However, most of the calculated
residuals fall within the −20 to 20 µatm range, accounting
for 69 % of the grid cells, while 45 % of the grid cells have
absolute residuals < 10 µatm (Figs. 2c and 3a).

A global mean of the residuals (bias) value of 0 µatm and a
coefficient of determination (r2) of 0.7 are calculated, as ex-
pected, since the algorithm minimizes the root mean square
error (RMSE) between the reconstructed pCO2 and target
pCO2 observations. The global RMSE is, however, substan-
tially larger (29 µatm) yet still comparable to those calcu-
lated, at the regional scale, in previous coastal pCO2 stud-
ies based on statistical interpolations (e.g., see Chen et al.,
2016) and slightly lower than the 32 µatm global RMSE cal-
culated by Laruelle et al. (2017). Large differences can be
observed between our product and SOCAT_a locally in re-
gions that are known to present large spatiotemporal variabil-
ities in pCO2 and/or in regions lacking data to train our FFN
algorithm. For instance, residuals and/or standard deviations
> 20 µatm are encountered in the Baltic Sea (which is hence-
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Figure 2. Global maps of the climatological (1982–2020) averaged (a) reconstructed coastal pCO2-product and (b) gridded pCO2 from the
SOCATv2022 database and used for the FFN algorithm (SOCAT_a). Panel (c) shows the temporal mean of the residuals between the coastal
pCO2-product and SOCAT_a and (d) shows standard deviation. Values in all panels are expressed in µatm.

Figure 3. Histograms of the pCO2 residuals (difference between the reconstructed coastal pCO2-product with (a) SOCAT_a and (b) SO-
CAT_b) for four decades expressed in µatm.

forth treated as an independent biogeochemical province for
some calculations), in upwelling regions (e.g., along the Pe-
ruvian upwelling), in coastal seas under the influence of sea-
sonal changes in sea-ice coverage (e.g., along the Antarc-
tic shelf) as well as along the very nearshore coastal domain
(e.g., along the California current coast; Fig. 2c and d).

The overall consistency between our coastal pCO2-
product and SOCAT_a is diagnosed over the entire time span
of our study, as illustrated by the histograms of residuals cal-
culated for each of the four decades of our calculation pe-
riod (Fig. 3a) or when the calculations are performed for
each individual year (Table S1 in the Supplement). This is
an important test as a study by Gloege et al. (2022) sug-
gests that decadal trends in pCO2-products may be obscured

by changing residual distributions over time. In spite of the
highly heterogeneous distribution of the number of pCO2 ob-
servations available through time (< 500 gridded cells in the
1980s vs. > 10000 in the 2010s), the shape and spread of
the four histograms of the residuals are closely similar be-
tween decades with a distribution centered on a global mean
bias close to 0 µatm and most of the residuals falling in the
−20 and 20 µatm range. This demonstrates the accuracy of
the method over time despite the skewed distribution of the
calibration data. The analyses performed for each individual
year reveal that global biases do not exceed 5 µatm. Excep-
tions are observed in the 1980s where biases (e.g., absolute
bias of 6 µatm in 1987) and RMSE (e.g., 42 µatm in 1989)
can be larger and partly attributed to an exceptionally low
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pCO2 observational coverage during these periods (e.g., see
Bakker et al., 2014). In the first version of the coastal product
(ULB–SOM–FFN–coastalv1), the evaluation of the pCO2-
product of Laruelle et al. (2017) was restricted to spatial and
climatological seasonal cycles. In this study, we successfully
extended this analysis to the entire time period and evaluated
each year and decade individually.

At the regional scale, 7 out of the 10 biogeochemical
provinces yield RMSEs against SOCAT_a close to 20 µatm
or lower with the best fit in P2 (RMSE= 13 µatm; Table 2).
This is a significant improvement over the ULB–SOM–
FFN–coastalv1 product which only had three provinces with
RMSE< 20 µatm (Laruelle et al., 2017) and none< 15 µatm.
We attribute this improvement to our advanced setup of the
method such as the inclusion of the atmospheric pCO2 as a
driver as well as an increased number of available observa-
tions to train our FFN algorithms. In three provinces (P1, P5
and P7), however, the RMSE exceeds 35 µatm. Such values
can partly be explained by the complex dynamics of the sea
ice in the Antarctic shelf (P1) and by the limited number of
observational data combined with the inclusion of coastal re-
gions that present large spatiotemporal variabilities and cover
two disconnected temperate basins (P5 and P7) of the North-
ern Hemisphere. This discrepancy was also highlighted by
Landschützer et al. (2020). High discrepancies are further ob-
served in the Baltic Sea (Fig. 2c and d) which is analyzed as
a separate province (RMSE value of 41 µatm; Table 2). Ex-
cluding the Baltic Sea from P8 considerably reduces RMSE
from 41 to 23 µatm. The inclusion of the Baltic Sea in P8
can also explain the large RMSE calculated by Laruelle et
al. (2017) for the corresponding province of the ULB–SOM–
FFN–coastalv1 coastal pCO2-product (∼ 47 µatm).

3.2 Validation against independent data

Our reconstructed coastal pCO2-product is also validated
against an independent dataset that is derived from pCO2 ob-
servations from the SOCATv2022 that were not used for the
training of the FFN algorithm (see Sect. 2.1). This dataset
consists of a pool of 404 206 gridded cells that are uniformly
distributed between both hemispheres (SOCAT_b; Fig. S1 in
the Supplement), an essential criterion for training the net-
work. Globally, a good match is observed between the coastal
pCO2-product and SOCAT_b with a global bias and an
RMSE of 0 and 29 µatm, respectively. These values are sim-
ilar to those derived from the statistical analysis performed
against SOCAT_a. At the biogeochemical provinces scale,
RMSEs generally do not exceed 23 µatm (maximum value in
P6; Table 2), except where important RMSEs (34 µatm for
P1, P5 and P7) had already been calculated during the com-
parison with SOCAT_a (i.e., in regions under the sea-ice cov-
erage dynamics and poor data coverage and provinces which
encompass regions with high spatiotemporal pCO2 dynam-
ics).

As with SOCAT_a, the analysis against SOCAT_b demon-
strates a good performance of our reconstructed coastal
pCO2-product over time with the histograms of the residuals
calculated for each of the four decades presenting the same
shape and spread in spite of the marked decrease in grid cell
numbers over time (1054 grid cells in 1980 vs. 248 626 grid
cells in 2010; Fig. 3b). Each of these histograms shows a dis-
tribution centered on a value of 0 µatm with ∼ 50 % of the
grid cell residuals falling between −10 and 10 µatm. This is
also true at the scale of the biogeochemical provinces with
the four histograms of the residuals revealing global mean bi-
ases of 0 µatm and ∼ 50 % of the residual falling in the −10
and 10 µatm range. Only P8 stands as an exception (where
50 % of the residuals are between−40 and 40 µatm; Fig. S2),
mainly due to the presence of the Baltic Sea in this province.

We also present pCO2 time series derived from our recon-
structed coastal pCO2-product and compare them to data ex-
tracted from SOCAT_b for eight coastal sites (Fig. 4). The
choice of these coastal regions is motivated by their data cov-
erage extending over 30 years (Fig. 4a) and the fact that it
is possible in these grid cells to reconstruct a spatially com-
plete seasonal climatological cycle (i.e., data are available for
all 12 months). For each region, we only extracted cells for
which observations extended > 30 years and reconstructed
their times series from the coastal pCO2-product and SO-
CAT_b, respectively (Fig. 4b–i). For most of the regions,
the pCO2-product properly captures the temporal dynamics
of pCO2 derived from the observations, bearing slight un-
derestimations or overestimations in specific areas such as
along the Cascadian shelf and the east coast of Australia
(Fig. 4d and g). For the eight coastal sites, absolute biases
are all < 10 µatm with a minimum absolute bias of 1 µatm
in the Irminger Sea and a maximum absolute bias of 9 µatm
along the New Zealand coast. Except along the Cascadian
shelf, all coastal sites present RMSEs lower than ∼ 30 µatm
(five of the eight regions show RMSEs <∼ 20 µatm) which
falls in the range of our global and regional RMSE values.
The largest RMSE is calculated along the Cascadian shelf
(62 µatm) and can partly be explained by the large spatial
pCO2 variability in SOCAT_b (as shown by the vertical bars
in Fig. 4d) because of the riverine influence in the region.

Finally, the reconstructed pCO2 times series are compared
with three buoys with measurements longer than 10 years
located in Cape Elizabeth (NDBC Buoy 46041), in Gray’s
Reef (NDBC Buoy 41008) and in the Gulf of Maine (Coastal
Western Gulf of Maine Mooring; Sutton et al., 2019). The
three pCO2 time series for each buoy location mentioned
above are presented in Fig. S3. Although smaller amplitude
variabilities are generally observed, results show that the re-
constructed pCO2 times series follow those of the observa-
tional data with values that are mainly between the buoys
errors (Fig. S3a–c). We speculate that the smaller ampli-
tude stems from the coarser 0.25◦ grid resolution of our
method compared with the point nature of the buoy data.
Landschützer et al. (2016) drew a similar conclusion when
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Table 2. Statistical analyses (bias, RMSE and r2) of the reconstructed coastal pCO2-product compared with pCO2 observations from
SOCAT_a and SOCAT_b for the different biogeochemical provinces. For each province, bias, RMSE and r2 are calculated using all of the
monthly cells of the province for the period 1982–2020.

Provinces Bias (µatm) RMSE (µatm) r2 Cells

SOCAT_a SOCAT_b SOCAT_a SOCAT_b SOCAT_a SOCAT_b SOCAT_a SOCAT_b

1 0.2 −0.1 34 34 0.7 0.7 53 256 46 943
2 0.0 0.1 13 14 0.8 0.8 11 868 8898
3 −0.1 0.3 21 22 0.6 0.5 35 981 26 032
4 −0.2 −0.3 17 17 0.8 0.8 72 811 54 846
5 0.1 −0.1 34 34 0.5 0.5 137 754 114 017
6 0.7 0.2 23 23 0.7 0.6 69 032 56 322
7 0.5 0.8 33 34 0.7 0.7 48 704 41 308
8 (8*) 0.4 (0.7) 0.6 (0.1) 41 (22) 42 (23) 0.9 (0.9) 0.9 (0.9) 18 922 (1086) 18 039 (952)
9 −0.2 −0.2 20 20 0.8 0.9 18 779 13 675
10 0.6 0.3 22 23 0.8 0.8 5009 4172
Baltic Sea* 0.3 0.6 41 42 0.9 0.9 1086 17 911

* Numbers in parentheses for P8 represent statistics when the Baltic Sea is removed from P8 and defined as an isolated province.

they compared their open ocean pCO2 data with open ocean
at HOT and BATS and is further corroborated by the much
smaller variabilities obtained when raw SOCAT data are av-
eraged at the grid cell level (Fig. 4). The exception is the
Gulf of Maine where a general underestimation of pCO2 is
observed compared with the buoy observations. The recon-
structed pCO2-product also reproduces the observed clima-
tological seasonal cycles (including a relatively good timing
of the seasonal maxima and minima) for the three buoys as
shown in Fig. S3d–f. Absolute average bias values of 14, 4
and 45 µatm, and RMSE values of 50, 53 and 61 µatm, are
calculated between the pCO2-product and the observations
for Cape Elizabeth, Gray’s Reef and in the Gulf of Maine, re-
spectively. These statistical error values are larger than those
calculated when the comparison with SOCAT is performed,
whether on a global or regional scale. This is not surprising
since the reconstructed pCO2-product is for a global applica-
tion and is quite challenging to compare with specific coastal
buoys that present high temporal and spatial variability such
as shown by the violin in Fig. S3.

The good evaluation of the reconstructed pCO2 compared
with SOCAT_a, SOCAT_b and buoys data gives us confi-
dence to identify the linear trends of both the pCO2 and
FCO2 over different temporal scales. For example, our re-
sults show that for all the eight studied regions represented
in Fig. 4, an increase in pCO2 over time comprised between
12 and 20 µatm decade−1 is calculated for the long-term
trend with our pCO2-product, a range in good agreement
with the 12–18 µatm decade−1 obtained with SOCAT_b. Al-
though New Zealand shows the largest bias between SO-
CAT_b and the pCO2-product, they both show that this re-
gion displays the fastest trend in terms of pCO2 rise (18 and
20 µatm decade−1 for SOCAT_ b and the pCO2-product, re-
spectively).

3.3 Air–sea CO2 exchange

This section describes the coastal air–sea CO2 exchange pat-
terns that are calculated using our new reconstructed pCO2-
product over the 1982–2020 period. The spatial and seasonal
FCO2 patterns are only briefly discussed (Sect. 3.3.1) since
those have been extensively discussed in previous studies
(e.g., see Dai et al., 2022; Resplandy et al., 2023; Roobaert
et al., 2019). We thus focus on the long-term FCO2 trends
(Sect. 3.3.2), which are still poorly understood and highly
debated (e.g., Lacroix et al., 2021a; Laruelle et al., 2018; Re-
splandy et al., 2023).

3.3.1 Spatial and seasonal variations

The spatial distribution of the climatological mean coastal
FCO2 shows that coastal regions in temperate areas (be-
tween 40 and 60◦ in both hemispheres) and at high latitude
(beyond 60◦ in both hemisphere) mainly act as CO2 sinks
while CO2 sources are mainly encountered in the subtropi-
cal band (Fig. 5a) which is consistent with the global lati-
tudinal pattern established by previous studies (e.g., Borges,
2005; Borges et al., 2005; Cai, 2011; Cao et al., 2020; Chen
et al., 2013; Dai et al., 2022; Laruelle et al., 2010, 2014;
Roobaert et al., 2019). Globally, with the coastal delineation
used in this study (“wide coastal ocean”; 76× 106 km2),
the coastal ocean absorbs on average 0.40 Pg C per year
(with an uncertainty of ±0.03 Pg C yr−1; see Sect. 3.3.3)
over the 1982–2020 period. Using the shelf break as the
outer limit of the coastal domain (“narrow coastal ocean”;
28× 106 km2) which is a more common delineation of the
coastal ocean, the globally integrated coastal sink amounts
to −0.18± 0.01 Pg C yr−1 which is consistent with the lat-
est estimates (e.g., −0.2 Pg C yr−1 in Roobaert et al., 2019,
and −0.25 Pg C yr−1 in Dai et al., 2022). It should be noted
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Figure 4. Panel (a) shows the temporal coverage (in years) where pCO2 measurements extend over x years in SOCAT_b. The location of the
eight coastal sites for which we present pCO2 times series (black boxes) is also shown. Panels (b–i) show pCO2 times series (in µatm) from
the reconstructed pCO2-product (in black), from SOCAT_b (in red), and from the atmospheric pCO2 (in blue). For each region, we only
select grid cells that extend over 30 years of observations in SOCAT_b. Medians are represented by circles and the vertical bars represent
the monthly pCO2 intra-spatial variability in the region. For each region, we report the bias (µatm), RMSE (µatm) and number of cells for
the calculation between the reconstructed pCO2-product and SOCAT_b as well as their respective long-term pCO2 trend (in µatm decade−1,
which is calculated first as the slope of a linear trend using the monthly median values of all the deseasonalized data). The Cascadian shelf
has no value for the SOCAT_b trend since no significant trend is detected based on a Mann–Kendall statistical test.

that these comparisons are not straightforward because they
do not cover the same time periods (i.e., the 1998–2015 pe-
riod in Roobaert et al. (2019), 1998 to the present in Dai et
al. (2022) and 1982–2020 in this study) and older assess-
ments often do not report an explicit calculation period (Reg-
nier et al., 2022).

Most of the intense CO2 sinks (absolute FCO2 value
> 0.5 mol C m−2 yr−1) are encountered at high latitudes of
the Northern Hemisphere and in the temperate regions of

the Southern Hemisphere, while CO2 sources in the tropi-
cal bands are moderate except along upwelling areas such as
in the Arabian Sea (Fig. 5a and c). A large fraction (44 %
and 53 % for the wide and narrow domain, respectively) of
the global CO2 uptake is taking place north of 60◦ N, which
was already suggested in Laruelle et al. (2010) and further
confirmed in subsequent studies (e.g., Cai, 2011; Dai et al.,
2022; Laruelle et al., 2014; Roobaert et al., 2019). The spa-
tial distribution of coastal CO2 sources and sinks also closely
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Figure 5. Panel (a) shows the spatial distribution of the annual average air–sea CO2 exchange (FCO2, in mol C m−2 yr−1) and (b) seasonal
FCO2 variability (expressed as the root mean square (RMS, in mol C m−2 yr−1)) calculated with the reconstructed coastal pCO2-product
(ULB–SOM–FFN–coastalv2, 1982–2020 climatology). The latitudinal mean FCO2 distribution (red line) and its associated longitudinal
variability (red shading) is presented in panel (c). This latter is compared with the FCO2 calculated with the ULB–SOM–FFN–coastalv1
pCO2-product (in green; Roobaert et al., 2019) and against a synthesis of 214 regional FCO2 estimations (blue dots; Dai et al., 2022). For
consistency in the comparison in (c) we applied the same coastal delimitation as in Dai et al. (2022) and Roobaert et al. (2019) to the FCO2
ULB–SOM–FFN–coastalv2 product, i.e., we used the shelf break as the outer limit of the coastal domain (narrow coastal ocean). Panel (c) is
also reconstructed based on an overlap period between the three products (1998–2020; except FCO2 ULB–SOM–FFN–coastalv1 which is
limited to the 1998–2015 period).

follows the latitudinal FCO2 profile calculated by Roobaert
et al. (2019) which is based on ULB–SOM–FFN–coastalv1
(red and green lines in Fig. 5c). These global pCO2-products,
however, predict less variability in flux density than a com-
pilation of regional estimations as shown in Fig. 5c when
comparing our climatological FCO2 latitudinal profile with
the synthesis of 214 regional FCO2 estimates which was al-
ready pointed by Dai et al. (2022) when comparing their
data synthesis with the latitudinal FCO2 profile of Roobaert
et al. (2019), suggesting strong FCO2 heterogeneities for a
same latitudinal band. Finally, the seasonal coastal FCO2
variability (expressed as the root mean square (RMS) of the
seasonal amplitude) agrees with the few studies performed
at global scale (e.g., see Dai et al., 2022; Roobaert et al.,
2019) with high seasonal FCO2 amplitudes (RMS values
> 1.5 mol C m−2 yr−1) at temperate and high latitudes and
a low amplitude over the subtropical band (Fig. 5b).

3.3.2 Long-term trends in the coastal CO2 sink

The rate of change in coastal FCO2 and the various param-
eters involved in the FCO2 calculation (i.e., 1pCO2, wind
speed and sea-ice coverage) from 1982 to 2020 are pre-
sented in Fig. 6. Our results reveal significant spatial het-
erogeneities between the long-term temporal FCO2 trends
(linear trends that span over 39 years) observed within dif-
ferent coastal regions, a finding consistent with the range
of varying slopes (including changes in sign of the slopes)
already reported in local regional and discontinuous global
studies (e.g., Becker et al., 2021; Laruelle et al., 2018; Wang
et al., 2017). Our results also show that the rates of changes
in 1pCO2 and FCO2 follow each other (compare Fig. 6a
with 6b). Coastal regions with negative (positive) 1pCO2
slopes present negative (positive) FCO2 slopes, which trans-
late into a stronger sink/weaker source (weaker sink/stronger
source). Most coastal regions (∼ 60 % of the grid cells that
present a significant trend using a Mann–Kendall statisti-
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Figure 6. Long-term trend in (a) the coastal FCO2 (in mol C m−2 yr−1 decade−1), (b) the air–sea pCO2 gradient (1pCO2, in µatm
decade−1), (c) the wind speed at 10 m above the sea surface (m s−1 decade−1) and (d) the sea-ice coverage (decade−1) from 1982 to 2020.
For each panel, the long-term trend is calculated as the slope of a linear regression on the monthly median values of all the deseasonalized
data from 1982 to 2020. We only present grid cells where a significant trend is detected based on a Mann–Kendall statistical test.

cal test with a significance threshold of 95 %) exhibit neg-
ative1pCO2 and FCO2 slopes (i.e., stronger sinks or weaker
sources; blue colors in Fig. 6a and b) in agreement with
past studies (e.g., Laruelle et al., 2018; Resplandy et al.,
2023; Wang et al., 2017). Positive 1pCO2 and FCO2 slopes
(weaker sink or stronger sources; red colors) can also be
observed such as along the Mediterranean Sea or South-
east Asia. Stronger FCO2 rates of change (absolute value
> 0.6 mol m−2 yr−1 decade−1) are mainly observed in mid
to high latitude coastal regions and along upwelling re-
gions (e.g., Moroccan upwelling current), while low latitude
coastal regions show weaker slopes.

Although our results suggest that the long-term change in
FCO2 intensity mainly results from that of the1pCO2 (com-
pare Fig. 6a with 6b), the rate of change in FCO2 can be
amplified or dampened in some regions by changes in wind
speed patterns and/or sea-ice coverage (through their effect
on Eq. 1), in agreement with recent findings by Resplandy
et al. (2023). For most of the coastal ocean, an increase in
wind speed has been observed over the study period (posi-
tive slope, red colors in Fig. 6c) with a median value for the
rate of change value of 0.04 m s−1 decade−1. This increase
in wind speed promotes the FCO2 exchange through its ef-
fect on the gas exchange transfer velocity (stronger sinks/-
sources). Rate changes in sea-ice coverage reveal a general
retreat of sea-ice in the Northern Hemisphere (negative slope,
blue colors in Fig. 6d) and a gain along the Antarctic shelf
(positive slope, red colors) in agreement with, for example,

Serreze and Meier (2019). A decrease in sea-ice coverage
favors air–sea CO2 exchange over a larger coastal surface
area and during longer periods of the year, both of which
strengthen, for instance, the CO2 sink in coastal regions at
high latitudes of the Northern Hemisphere.

Globally integrated, our results indicate that today’s
coastal ocean has been acting as a CO2 sink since
the beginning of our study period (1982) both in the
wide coastal ocean (Fig. 7a) and in the narrow do-
main (Fig. 7b). For both domains this CO2 sink, how-
ever, increases over time. In the wide coastal ocean, the
global CO2 uptake amounted to 0.28 Pg C yr−1 in the
1980s (median value over the 1982–1992 period) and
reached 0.54 Pg C yr−1 in the 2010s (mean value over the
2010–2020 period) with small interannual fluctuations (∼
0.01 Pg C yr−1) of the CO2 sink intensity diagnosed by our
algorithm. The overall intensification of the coastal sink
that we observed in this study (0.06 Pg C yr−1 decade−1

(±0.0009 Pg C yr−1 decade−1 with a p value < 0.05) and
0.02 Pg C yr−1 decade−1 (±0.0005 Pg C yr−1 decade−1 with
a p value < 0.05) for the wide and narrow coastal domain,
respectively) supports the only two available observational
coastal studies performed at the global scale (i.e., Laruelle et
al., 2018; Wang et al., 2017) which were, however, signifi-
cantly limited by the small fraction of the coastal ocean do-
main investigated (e.g., 6 % in Laruelle et al., 2018), and both
predict an increase in efficiency of the global coastal CO2
sink over the past three decades. Our results are also in agree-
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Figure 7. Evolution of the global coastal CO2 sink (FCO2, in Pg C yr−1) over time using the reconstructed coastal pCO2-product (solid
black line) with its associated uncertainties (dash-dotted black line; see Sects. 2.4 and 3.4 for further details). We use a 300 km distance from
the coast as the outer limit of the coastal domain (wide coastal ocean) in (a) and the shelf break as the outer limit of the coastal domain
(narrow coastal ocean) in (b).

ment with the conceptual approach of Bauer et al. (2013)
as well as modeling studies, either using box models (e.g.,
Mackenzie et al., 2004, 2012; Rabouille et al., 2001; Ver
et al., 1999) or, more recently, global ocean biogeochemi-
cal models (Bourgeois et al., 2016; Lacroix et al., 2021a, b)
that all predict an increase in efficiency of the global coastal
CO2 sink at the century scale.

The significant strengthening of this global coastal sink
that we observed in this study has approximately doubled
between 1982 and 2020 (wide coastal domain) and results
from a general tendency towards an increase in the coastal
CO2 sink intensities (e.g., in the high latitude of the North-
ern Hemisphere; Fig. 6a) combined with decreases in inten-
sity of several CO2 sources such as along upwelling currents
(e.g., in the Arabian Sea). However, since a large fraction of
the global CO2 uptake results from coastal regions > 40◦ of
the Northern Hemisphere, and since these CO2 sink regions
present strong negative rates of change in FCO2 (Fig. 6a),
our results suggest that the primary driver of this 2-fold in-
crease in the global coastal CO2 sink is to be found in the
high latitudes of the Northern Hemisphere which contribute
disproportionately to the global scale coastal FCO2 trend.
Further studies should, however, be carried out to support
this conclusion, given the paucity of observational pCO2 data
in those high latitude regions that translate into high uncer-
tainties in our pCO2-product, as for example in the Arctic
Ocean. Taking also the large heterogeneity in the long-term
FCO2 trends, a quantitative analysis of the respective contri-
butions of different coastal systems to the global strengthen-
ing of the coastal CO2 sink should also be performed in the
future, using a regionalized approach. Moreover, changes in
wind speed and sea-ice coverage have likely not been con-

stant over time, and further analysis of their influence on the
rate change of FCO2 should be analyzed for each decade in-
dividually to better understand the interplay between these
different drivers. Overall, our results highlight the complex
nature of the coastal FCO2 dynamics and emphasize the need
for further investigation and understanding of the specific
factors influencing the FCO2 trends in different coastal re-
gions.

3.4 Uncertainties associated with the data products

The global coastal CO2 sink of −0.40 Pg C yr−1 (wide
coastal domain) that we calculate in this study using
the ULB–SOM–FFN–coastalv2 pCO2-product is associated
with a relative uncertainty that amounts to ∼ 10 % (value
of 0.03 Pg C yr−1 for σFCO2 ; see Eq. 2 and Table 3). This
global uncertainty mainly results from the uncertainty as-
sociated with the oceanic pCO2 (σ1pCO2 , uncertainty of
0.02 Pg C yr−1). The choice of the gas exchange transfer
velocity formulation yields a 7 % difference (σk , uncer-
tainty of 0.01 Pg C yr−1) on the global FCO2 calculation,
whereas we calculate a ∼ 4 % difference on FCO2 depend-
ing on the wind speed product choice (σwind, uncertainty of
0.01 Pg C yr−1) or on the sea-ice product choice (σice, un-
certainty of 0.01 Pg C yr−1) on the global FCO2 calculation.
It is noteworthy, though, that the uncertainty in the mean is
substantially lower than that calculated for individual months
(see Fig. 7) or regions (e.g., see discussion above regarding
the Baltic Sea region) due to compensating errors as was also
identified in a study by Gloege et al. (2022).

The total uncertainty of the oceanic pCO2 (θpCO2 , value
of 0.63 µatm; see Eq. 3) mainly results from the SOM–FFN
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Table 3. Global FCO2 and pCO2 uncertainties calculated for the reconstructed data products using a wide delimitation and a narrow delim-
itation (given in parentheses) of the coastal domain.

FCO2 uncertainty (Pg C yr−1) σFCO2 =

√
σ 2
1pCO2

+ σ 2
k
+ σ 2

wind+ σ
2
ice

σFCO2 0.03 (0.01)* Total FCO2 uncertainty

σ1pCO2
0.02 (0.01) Uncertainty of the air–sea pCO2 gradient

σk 0.01 (0.01) Uncertainty associated with the choice of the
k formulation

σwind 0.01 (0.002) Uncertainty associated with the choice of the
wind speed product

σice 0.01 (0.01) Uncertainty associated with the choice of the
sea-ice product

pCO2 uncertainty (µatm) θpCO2
=

√(
θobs√
N

)2
+

(
θgrid
√
N

)2
+

(
θmap
√
Neff

)2

θpCO2
0.63 (1.02) Total uncertainty of the oceanic pCO2

θobs 3.08 (3.18) Uncertainty associated with the sampling in the
field of the observations from the SOCAT

θgrid 5.70 (8.01) Uncertainty associated with the gridding of the
observations from SOCAT into 0.25◦ monthly
meshed maps

θmap 28.82 (35.27) Uncertainty derived from the comparison be-
tween the reconstructed pCO2 and the observed
gridded pCO2 from the SOCAT

* The numbers correspond to uncertainties calculated using a wide coastal delimitation, while those
enclosed in brackets represent uncertainties calculated using a narrow coastal delimitation.

mapping method to reconstruct the coastal pCO2-product
(θmap = 28.82 µatm; Table 3). This uncertainty falls within
the range of values reported in the literature from dif-
ferent statistical interpolation methods to generate coastal
pCO2 data products (RMSE values generally between 10
and 35 µatm; see Chen et al., 2016) which are calculated
from regional studies and would be expected to be smaller
than those calculated for global scale analysis (or even the
performance of our algorithm at the scale of its provinces,
which generally cover a much larger surface area than most
regional studies). The θmap uncertainty calculated in this
study is, however, higher than reported for the open ocean
(typical RMSE values < 20 µatm; e.g., Landschützer et al.,
2014), mainly because of the complex biogeochemical dy-
namics and larger variability observed in the coastal seas
compared with the open ocean. We calculate a global value
of 3.08 µatm for θobs, the uncertainty on the sampling in the
field of the observations from the SOCAT database, which is
slightly higher than the value reported by Pfeil et al. (2013;
value of 2 µatm). For θgrid, the uncertainty associated with
the meshing of the observations from SOCAT to gridded
0.25◦ monthly maps, we calculate a global mean value of
5.70 µatm, which is close to the value reported by Sabine
et al. (2013; 5 µatm) for the open ocean. It should be noted

that all these uncertainties are calculated globally and can
be larger at the regional scale (e.g., see Roobaert et al.,
2019) as exemplified by the uncertainty associated with the
choice of wind speed product on the FCO2 calculation (see
Roobaert et al., 2018). Moreover, due to the temporal het-
erogeneity of the data coverage in the SOCAT database, our
FCO2 uncertainties can also vary temporally. As shown in
Fig. 7, the global FCO2 uncertainties that we report for each
year (dash-dotted black lines) are largest in the 1980s (e.g.,
global σFCO2 value of 0.11 Pg C yr−1 in 1987) because of
the scarcity of pCO2 measurements before 1990 in the SO-
CAT database and decrease over time. Our global uncertain-
ties are also slightly larger along the nearshore domain of
the coastal ocean. Using the narrow definition of the coastal
domain (i.e., the shelf break as the outer limit), we calcu-
late a global value of 0.01 Pg C yr−1 for σFCO2 (7 % un-
certainty on the global FCO2, which is consistent with the
global FCO2 uncertainty calculated by Roobaert et al. (2019;
10 %)). A 7 %, 2 % and 8 % FCO2 differences are calcu-
lated depend on the k formulation used (σk value of 0.01),
the wind product choice (σwind = 0.002 Pg C yr−1) and the
sea-ice choice (σice = 0.01 Pg C yr−1), respectively with the
narrow coastal domain. For θmap, θgrid and θobs, we calculate
values of 35 µatm, 8 µatm and 3 µatm, respectively.
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4 Data availability

The ULB–SOM–FFN–coastalv2 pCO2- and FCO2-
products can be found at https://doi.org/10.25921/4sde-p068
(Roobaert et al., 2023). The bathymetry is derived from the
2 min global ETOPO2 database (Table 1; US Department
of Commerce, 2006), the Chl a from the monthly 4 km
merged GlobColour product for the 1998–2020 period
from the EU Copernicus Marine Service information
(https://doi.org/10.48670/moi-00281, Copernicus Marine
Service, 2023), the SST and SSS from the daily NOAA OI
SST V2 (Reynolds et al., 2007) and from the daily Hadley
center EN4 SSS (Good et al., 2013), respectively. We use
the atmospheric pCO2-product from the SeaFlux product
(Fay et al., 2021) which is calculated from the dry air
mixing ratio of CO2 (xCO2) provided by the ESRL surface
marine boundary layer CO2 product (Dlugokencky et al.,
2019; https://www.esrl.noaa.gov/gmd/ccgg/mbl/data.php)
with a vapor correction according to Dickson et al. (2007)
and using the ERA5 sea level pressure (Hersbach et al.,
2023; https://doi.org/10.24381/cds.f17050d7). The sea-ice
coverage is derived from the monthly mean of the daily
0.25◦ dataset of Reynolds et al. (2007) and the wind speed
from the 6 h first moment of the 0.25◦ resolution product of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 (Hersbach et al., 2023). The pCO2 obser-
vations are derived from the SOCAT database v2022 (Bakker
et al., 2022). The wind speed is calculated from the monthly
mean of the 0.25◦ resolution product of the ECMWF ERA5
wind product (https://doi.org/10.24381/cds.f17050d7; Hers-
bach et al., 2023), which has a native temporal resolution of
6 h.

5 Conclusions and directions for future research

The release of the global coastal pCO2-product in 2017 by
Laruelle et al. (2017) was a significant step forward for the
investigation of the spatial distribution of CO2 sources and
sinks as well as their seasonal variabilities in the shallow por-
tion of the ocean. It was also instrumental to the completion
and harmonization of global ocean air–sea CO2 fluxes (Fay
et al., 2021), hence supporting global carbon budget analy-
ses (Friedlingstein et al., 2022). However, this product was
not designed or evaluated regarding its ability to resolve the
interannual and decadal variabilities and the long-term evo-
lution of the coastal air–sea CO2 exchange, which are still
poorly understood (e.g., Bauer et al., 2013; Lacroix et al.,
2021a; Laruelle et al., 2018; Regnier et al., 2013, 2022; Re-
splandy et al., 2023; Wang et al., 2017). In this study, we
presented a new coastal pCO2-product for the 1982–2020 pe-
riod using ∼ 18 million direct coastal observations from the
SOCATv2022 database (Bakker et al., 2022) combined with
an updated version of the coastal two-step SOM and FFN
method used by Laruelle et al. (2017). We also provided a
new coastal air–sea CO2 exchange product for the same pe-

riod and examined the long-term trends, that is, the temporal
evolution of the global coastal CO2 sink over the past four
decades. This analysis reveals that the long-term trend of the
air–sea pCO2 gradient drives most of the long-term evolu-
tion of the coastal CO2 sink, wind speed and sea-ice cover-
age playing a significant role regionally. Trend analysis of
the coastal FCO2 has also been attempted using global ocean
pCO2-products that cover the coastal domain (Resplandy et
al., 2023). However, these investigations have been inconclu-
sive, likely because global ocean pCO2-products cannot yet
sufficiently well capture the specific and changing conditions
occurring along the coastal domain (e.g., Chau et al, 2022;
Rödenbeck et al., 2013; see also Resplandy et al., 2023).
Our updated coastal pCO2-product circumvents these limi-
tations and provides a first robust assessment against which
outputs from global oceanic modes results can be evaluated
(e.g., Resplandy et al., 2023). It will thus help better constrain
the anthropogenic perturbation of the global ocean carbon
cycle. In the future, our machine learning approach could
also be used to diagnose the main drivers of change in the
global coastal ocean sink and, more specifically, changes in
the long-term trend evolution of the coastal pCO2 field. This
approach, in conjunction with process-based simulations, is
critically needed to evaluate and mitigate the impact of multi-
ple anthropogenic perturbations (e.g., atmospheric pCO2 in-
crease, physical climate, eutrophication and hypoxia) on the
global coastal carbon cycle and associated biodiversity loss
and other marine stressors.
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