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Abstract. Long-term PM2.5 data are essential for the atmospheric environment, human health, and climate
change. PM2.5 measurements are sparsely distributed and of short duration. In this study, daily PM2.5 concen-
trations are estimated using a machine learning method for the period from 1959 to 2022 in the Northern Hemi-
sphere based on near-surface atmospheric visibility. They are extracted from the Integrated Surface Database
(ISD). Daily continuous monitored PM2.5 concentration is set as the target, and near-surface atmospheric vis-
ibility and other related variables are used as the inputs. A total of 80 % of the samples of each site are the
training set, and 20 % are the testing set. The training result shows that the slope of linear regression with a
95 % confidence interval (CI) between the estimated PM2.5 concentration and the monitored PM2.5 concentra-
tion is 0.955 [0.955, 0.955], the coefficient of determination (R2) is 0.95, the root mean square error (RMSE)
is 7.2 µg m−3, and the mean absolute error (MAE) is 3.2 µg m−3. The test result shows that the slope within
a 95 % CI between the predicted PM2.5 concentration and the monitored PM2.5 concentration is 0.864 [0.863,
0.865], the R2 is 0.79, the RMSE is 14.8 µg m−3, and the MAE is 7.6 µg m−3. Compared with a global PM2.5
concentration dataset derived from a satellite aerosol optical depth product with 1 km resolution, the slopes of
linear regression on the daily (monthly) scale are 0.817 (0.854) from 2000 to 2021, 0.758 (0.821) from 2000
to 2010, and 0.867 (0.879) from 2011 to 2022, indicating the accuracy of the model and the consistency of
the estimated PM2.5 concentration on the temporal scale. The interannual trends and spatial patterns of PM2.5
concentration on the regional scale from 1959 to 2022 are analyzed using a generalized additive mixed model
(GAMM), suitable for situations with an uneven spatial distribution of monitoring sites. The trend is the slope of
the Theil–Sen estimator. In Canada, the trend is −0.10 µg m−3 per decade, and the PM2.5 concentration exhibits
an east–high to west–low pattern. In the United States, the trend is −0.40 µg m−3 per decade, and PM2.5 con-
centration decreases significantly after 1992, with a trend of −1.39 µg m−3 per decade. The areas of high PM2.5
concentration are in the east and west, and the areas of low PM2.5 concentration are in the central and northern
regions. In Europe, the trend is −1.55 µg m−3 per decade. High-concentration areas are distributed in eastern
Europe, and the low-concentration areas are in northern and western Europe. In China, the trend is 2.09 µg m−3

per decade. High- concentration areas are distributed in northern China, and the low-concentration areas are
distributed in southern China. The trend is 2.65 µg m−3 per decade up to 2011 and −22.23 µg m−3 per decade
since 2012. In India, the trend is 0.92 µg m−3 per decade. The concentration exhibits a north–high to south–low
pattern, with high-concentration areas distributed in northern India, such as the Ganges Plain and Thar Desert,
and the low-concentration area in the Deccan Plateau. The trend is 1.41 µg m−3 per decade up to 2013 and
−23.36 µg m−3 per decade from 2014. The variation in regional PM2.5 concentrations is closely related to the
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implementation of air quality laws and regulations. The daily site-scale PM2.5 concentration dataset from 1959
to 2022 in the Northern Hemisphere is available at the National Tibetan Plateau/Third Pole Environment Data
Center (https://doi.org/10.11888/Atmos.tpdc.301127) (Hao et al., 2024).

1 Introduction

Fine particulate matter (PM2.5) refers to particulate matter
suspended in air with an aerodynamic diameter of less than
2.5 µm. PM2.5 has various shapes and is composed of com-
plex components, such as inorganic salts (e.g., sulfate, ni-
trate, and ammonium), as well as organic carbon and ele-
mental carbon, metallic elements, and organic compounds
(Chen et al., 2020; Fan et al., 2021). PM2.5 can be emitted
directly into the atmosphere (Viana et al., 2008; Zhang et al.,
2019) and generated through photochemical reactions and
transformations (Guo et al., 2014). PM2.5 exhibits high con-
centrations near emission sources, which gradually decreases
with distance. Due to the smaller size and longer life span
compared with coarse particulate matter, PM2.5 can be trans-
ported over long distances by atmospheric movements, lead-
ing to wide-ranging impacts. Studies indicate that regional
transport contributes significantly to local PM2.5 concentra-
tion (Wang et al., 2014; Chen et al., 2020).

PM2.5 reduces atmospheric visibility and facilitates the
formation of fog and haze conditions (Fan et al., 2021).
Direct and indirect effects of PM2.5 on solar radiation in
the atmosphere (Albrecht, 1989; Ramanathan et al., 2001;
Bergstrom et al., 2007; Chen et al., 2022) alter the energy
balance and the number of condensation nuclei, thereby in-
fluencing atmospheric circulation and the water cycle (Wang
et al., 2012; Liao et al., 2015; Samset et al., 2019; Li et al.,
2022).

PM2.5 is also known as respirable particulate matter. Due
to its complex composition, PM2.5 may carry toxic sub-
stances that can significantly impair human health. The
World Health Organization states explicitly that PM2.5 is
more harmful than coarse particles, and long-term exposure
to high PM2.5 concentrations increases the risk of respiratory
diseases, cardiovascular diseases, and lung cancer (Lelieveld
et al., 2015), regardless of a country’s development status.
A Global Burden of Diseases study reveals that exposure to
environmental PM2.5 causes thousands of deaths and mil-
lions of lung diseases annually (Chafe et al., 2014; Kim et
al., 2015; Cohen et al., 2017).

PM2.5 is an important parameter for assessing particulate
matter pollution and air quality (Wang et al., 2012). PM2.5
can lead to soil acidification, water pollution, disruption of
plant respiration, and ecological degradation (Wu and Zhang,
2018; Liu et al., 2019). Due to globalization and economic
integration, preventing and controlling particulate matter pol-
lution is a challenge at city, country, and global scales.

Therefore, long-term PM2.5 concentration data are needed
for studies on the environment, human health, and climate
change. At present, ground-based measurements, chemi-
cal models, and estimations of alternatives are the primary
sources of PM2.5 concentration data.

Ground-based measurements are the most effective means
of measuring PM2.5 concentration. PM2.5 monitoring has
been ongoing since the 1990s in North America and Europe
(Van Donkelaar et al., 2010), and large-scale PM2.5 moni-
toring has been implemented in other regions since 2000,
including China in 2013 (Liu et al., 2017). As a result, the
records for PM2.5 concentration are short, with only a few
years of data available in many countries. The scarcity of
PM2.5 measurements makes it challenging to provide long-
term historical data for research.

Many studies have employed statistical methods and ma-
chine learning and deep learning methods to estimate PM2.5
concentrations based on aerosol optical depth. Van Donke-
laar et al. (2021) utilized satellite aerosol optical depth data,
aerosol vertical structure of chemical transport models, and
ground-level measurements to estimate monthly PM2.5 con-
centrations and their uncertainties over global land from
1998 to 2019, and there are several related studies (Van
Donkelaar et al., 2010; Boys et al., 2014; Van Donkelaar et
al., 2015, 2016; Hammer et al., 2020). Many studies have
been conducted at the regional scale, such as in the United
States (Beckerman et al., 2013), China (Wei et al., 2019b;
Xue et al., 2019; Wei et al., 2020; He et al., 2021; Wei et al.,
2021), and India (Mandal et al., 2020). Although the PM2.5
concentrations derived from satellite retrievals have high spa-
tial coverage, there are some limitations that need to be con-
sidered. Aerosol optical depth describes the column prop-
erties of aerosol, while PM2.5 concentration describes the
near-surface properties of aerosol. Therefore, aerosol vertical
structure is crucial in establishing the relationship between
the two. The daily representativeness is also considerable,
as PM2.5 concentration is continuously monitored, while the
daily frequency of satellite observations is low (one to two
times). Surface types, cloud conditions (Wei et al., 2019a),
and resolution (Nagaraja Rao et al., 1989; Hsu et al., 2017)
affect the accuracy of satellite products, thereby increasing
uncertainty of estimation of PM2.5 concentration.

Reanalysis datasets provide estimates of long-term partic-
ulate matter concentrations. The Modern-Era Retrospective
Analysis for Research and Applications version 2 (MERRA-
2) is an excellent reanalysis dataset from NASA that uses
the Goddard Earth Observing System version 5 (GEOS-5). It
has been providing global PM2.5 data since 1980 (Buchard et
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al., 2015, 2016, 2017; Gelaro et al., 2017; Sun et al., 2019).
There are some emission inventories in the aerosol model,
including volcanic material; monthly biomass burning from
1980 to 1996; monthly SO2, SO4, particulate organic mat-
ter (POM), and black carbon (BC) from 1997 to 2009; an-
nual anthropogenic SO2 between 100 and 500 m above the
surface from 1980 to 2008; and annual anthropogenic SO4,
BC, and POM concentrations from 1980 to 2006. In assim-
ilation systems, satellite aerosol products from MISR and
MODIS Aqua/Terra are assimilated after 2000. Another re-
analysis dataset is the Copernicus Atmosphere Monitoring
Service (CAMS) global reanalysis, which is a global reanal-
ysis dataset of the atmospheric composition produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). It has provided PM2.5 data since 2003 (Che et
al., 2014; Inness et al., 2019). Although reanalysis provides
long-term PM2.5 data, the uncertainty in emission inventories
increases the uncertainty in PM2.5 concentration (Granier et
al., 2011). The validation of the reanalysis based on emis-
sion inventories shows that PM2.5 concentration is still over-
estimated or underestimated in some regions (Buchard et al.,
2017; Ali et al., 2022; Jin et al., 2022). The assimilation of
aerosol optical depth products improves the aerosol column
properties (Buchard et al., 2017), thereby improving the es-
timation of surface PM2.5 concentration, as it to some ex-
tent constrains the vertical structure of aerosols. However,
the lack of high-spatiotemporal-resolution emission invento-
ries and long-term assimilation data greatly limits the accu-
racy of surface PM2.5 concentrations.

Another alternative for estimating PM2.5 concentrations is
the near-surface atmospheric horizontal visibility, which is
the maximum distance at which observers with normal vi-
sual acuity can discern target contours under current weather
conditions. In addition to manual observations, automated
visibility measurement has been implemented early, typi-
cally relying on the aerosol scattering principle (Wang et
al., 2009; Zhang et al., 2020). Both visibility and PM2.5
concentration are measurements of near-surface aerosols.
They describe atmospheric horizontal transparency and are
used to describe atmospheric pollution. Long-term visibility
records have been used to quantify long-term aerosol prop-
erties (Molnár et al., 2008; Wang et al., 2009; Zhang et al.,
2017, 2020). Visibility observation stations are densely dis-
tributed across the world. Compared to satellite retrievals,
visibility observations have longer historical records dating
back to the early 20th century (Boers et al., 2015), are not
affected by cloud interference, and provide continuous mea-
surements.

Visibility has been used as a proxy for PM2.5 concentration
(Huang et al., 2009) and for the estimation of PM2.5 concen-
tration (Liu et al., 2017; Li et al., 2020; Singh et al., 2020).
Singh et al. (2020) analyzed air quality in east Africa from
1974 to 2018 using visibility data. Liu et al. (2017) developed
a statistical model and utilized ground-level visibility data
to estimate long-term PM2.5 concentrations in China from

1957 to 1964 and 1973 to 2014. Gui et al. (2020) proposed a
method to establish a virtual ground observation network for
PM2.5 concentration in China using extreme gradient boost-
ing modeling in 2018. Zeng et al. (2021) used LightGBM to
establish a virtual network for hourly PM2.5 concentrations
in China in 2017. Zhong et al. (2021, 2022) used LightGBM
to predict 6 h PM2.5 concentrations based on visibility, tem-
perature, and relative humidity in China from 1960 to 2020.
Meng et al. (2018) utilized a random forest model to estimate
the daily PM2.5 components in the United States from 2005
to 2015. These studies have provided various methods for
estimating PM2.5 using visibility data. However, some have
only focused on methodological innovations without provid-
ing long-term trends in PM2.5 concentration. Other studies
offer long-term trends, but the primary focus is at an urban or
national scale. There are few studies on long-term and high-
temporal-resolution PM2.5 concentration at the global scale
or across different countries.

This study uses a convenient, accurate, and easily under-
standable machine learning approach to estimate daily PM2.5
concentrations based on visibility at 5023 land-based sites
from 1959 to 2022. First, we build a machine learning model
and then analyze the importance of the variables. Second,
we evaluate the model’s performance and predictive ability.
Third, we discuss the errors and limitations of the dataset.
Fourth, we compare the estimated PM2.5 concentration with
the other dataset. Finally, we analyze the long-term trends
and spatial patterns of PM2.5 concentration in different re-
gions. We hope the PM2.5 dataset will provide support for the
atmospheric environment, human health, and climate change
studies.

2 Data and methods

2.1 Study area

The study area is the Northern Hemisphere. Figure 1 shows
the distributions of visibility stations (a) and the PM2.5 mon-
itoring sites (b). Table 1 lists information of stations such
as the number and time span in each region. The number of
visibility stations and PM2.5 monitoring sites is 5023. Due
to the establishment of a PM2.5 monitoring network related
to national or regional development, the record length and
distribution of PM2.5 observation are uneven. In this study,
the site-scale PM2.5 observations are met in at least 3 years.
These sites are densely populated in North America, east and
south Asia, and Europe and are very sparse in regions such
as Africa, South America, and west Asia.

2.2 PM2.5 data

2.2.1 PM2.5 data in the United States

The hourly PM2.5 concentration data for the United States
from 1998 to 2022 are sourced from the Air Quality Sys-
tem (AQS) and are available at https://www.epa.gov/aqs (last
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Table 1. Data summary.

Region Number Time span Temporal/spatial Data source
of sites resolution

Visibility Global land 5023 1959–2022 Hourly/– https://www.ncei.noaa.gov/
products/land-based-station/
integrated-surface-database∗

PM2.5
observations

United States 1111 1998–2022 Hourly/– https://www.epa.gov/aqs∗

Canada 311 1995–2022 Hourly/– https://www.canada.ca∗

Europe 1073 1998–2022 Hourly/– https://european-union.europa.eu∗;
https://www.eea.europa.eu∗

China 1887 2014–2022 Hourly/– https://www.cnemc.cn∗

India 270 2010–2022 Hourly/– https://www.kaggle.com/datasets/abhisheksjha/
time-series-air-quality-data-of-india-2010-2023∗

Other regions 371 2016–2022 Hourly/– https://openaq.org∗

LGHAP Land (−58–62° N) – 2000–2021 Daily/1 km https://zenodo.org/communities/ecnu_lghap∗

(Bai and Li, 2023a–v)

∗ Last access: 30 August 2024.

Figure 1. Study area and distributions of visibility stations (a) and
PM2.5 monitoring sites (b). The color of marker (circle) represents
the year number of visibility observations and PM2.5 concentration
observations.

access: 30 August 2024). The AQS provides PM2.5 mass
monitoring and routine chemical speciation data and con-
tains other ambient air pollution data collected by the U.S.
Environmental Protection Agency (EPA) and state, local,
and tribal air pollution control agencies from thousands of
monitors, comprising the federal reference method (FRM)
and the federal equivalent method (FEM). The primary pur-
pose of both methods is to assess compliance with the
PM2.5 National Ambient Air Quality Standards (NAAQS).
FRMs include in-stack particulate filtration, and FEMs in-

clude beta-attenuation monitoring, very sharply cut cyclones,
and tapered element oscillating microbalances (TEOMs).
The measurement precision is ± (1–2) µg m−3 (hour) (Hall
and Gilliam, 2016). The TEOM and beta attenuation are au-
tomatic and near-real-time monitoring methods. The TEOM,
which is based on gravity, measures the mass of particles col-
lected on filters by monitoring the frequency changes in ta-
pered elements. The beta-attenuation method uses beta-ray
attenuation and particle mass to measure the PM2.5 concen-
tration. In this study, we use two PM2.5 measurement meth-
ods, FRM/FEM (88101) and non-FRM/FEM (88502). The
88502 monitors are “FRM-like” but are not used for regula-
tory purposes. Both the 88101 and 88502 monitors are used
for reporting daily air quality index values.

2.2.2 PM2.5 data in Canada

The hourly PM2.5 concentration data for Canada from 1995
to 2022 are sourced from the National Air Pollution Surveil-
lance (NAPS) program and are available at https://www.
canada.ca (last access: 30 August 2024). The NAPS program
is a collaborative effort between Environment and Climate
Change Canada and provincial, territorial, and regional gov-
ernments and is the primary source of environmental air qual-
ity data. Since 1984, PM2.5 concentrations have been mea-
sured in Canada using a dichotomous sampler. Continuous
or real-time particle monitoring began in the NAPS network
in 1995 using TEOMs and beta-attenuation monitoring (De-
merjian, 2000). The samples are supplemented by U.S. EPA
(FRM) samples obtained after 2009 (Dabek-Zlotorzynska et
al., 2011).
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2.2.3 PM2.5 data in Europe

The hourly PM2.5 concentration data for Europe from 1998
to 2012 are obtained from the AirBase database, which is
available at https://european-union.europa.eu (last access:
30 August 2024). The hourly PM2.5 concentration data
(E1a) from 2013 to 2022 are obtained from the AirQual-
ity database, which is available at https://www.eea.europa.eu
(last access: 30 August 2024). AirBase is maintained by the
European Environment Agency (EEA) through its European
Topic Center on Air Pollution and Climate Change Mitiga-
tion. AirBase contains air quality monitoring data and infor-
mation submitted by participating countries throughout Eu-
rope. After the Air Quality Directive 2008/50/EC was en-
forced, the PM2.5 concentration data began to be stored in
the AirQuality database. The main monitoring methods for
PM2.5 concentration include TEOMs and beta attenuation
(Green and Fuller, 2006; Chow et al., 2008). The sites are
distributed across rural, rural–near city, rural–regional, rural–
remote, suburban, and urban areas.

2.2.4 PM2.5 data in China

The hourly PM2.5 concentration data for China from 2014
to 2022 are obtained from the China National Environmental
Monitoring Center and are available at https://www.cnemc.
cn (last access: 30 August 2024). The continuous monitor-
ing of PM2.5 nationwide began in 2013, and PM2.5 con-
centration data are available to the public (Su et al., 2022).
There were about 2000 air quality observation sites in 2022.
PM2.5 concentrations are measured using the TEOM and
beta-attenuation method (S. Zhao et al., 2016; Miao and
Liu, 2019). According to the China Environmental Protec-
tion Standards, instrument maintenance, data transmission,
data assurance, and quality control ensure the reliability of
PM2.5 concentration measurements. The uncertainty in the
PM2.5 concentration is <5 µg m−3 (Pui et al., 2014).

2.2.5 PM2.5 data in India

The hourly PM2.5 concentration data for India from
2010 to 2022 are obtained from the Central Pol-
lution Control Board (CPCB) and are available
at https://www.kaggle.com/datasets/abhisheksjha/
time-series-air-quality-data-of-india-2010-2023 (last
access: 30 August 2024). The Air Prevention and Control
of Pollution Act of 1981 is enacted by the Central Pollution
Control Board (CPCB) of the Ministry of Environment,
Forest and Climate Change (MoEFCC). The National Air
Quality Monitoring Programme (NQAMP) is a key air
quality monitoring program employed by the government of
India that is managed by the CPCB in coordination with the
State Pollution Control Boards (SPCBs) and UT Pollution
Control Committees (PCCs). A standard of 60 µg m−3 PM2.5
concentration over 24 h was added in 2009. The methods
used by the Indian National Ambient Air Quality Standards

(NAAQS) for PM2.5 concentration and related component
measurements include the FRM and FEM (Pant et al., 2019).
The measurement precision is ± (1–2) µg m−3 (hour).

2.2.6 PM2.5 data in other regions

The hourly PM2.5 concentration data of other regions from
2016 to 2022 are from OpenAQ (https://openaq.org, last ac-
cess: 30 August 2024), which is a nonprofit organization pro-
viding air quality data. These air quality data are collected
from environmental protection departments and other depart-
ments around the world without any processing; therefore
they have good accuracy. The PM2.5 concentrations are usu-
ally measured by the TEOM and beta-attenuation method
and have been used for scientific research (Jin et al., 2022;
Tan et al., 2022).

2.3 Visibility and meteorological data

The hourly visibility and meteorological data are from
the Integrated Surface Database (ISD) (Smith et al.,
2011), which is a global database that consists of hourly
and synoptic surface observations and is archived at the
NOAA’s National Centers for Environmental Information
(NCEI), available at https://www.ncei.noaa.gov/products/
land-based-station/integrated-surface-database (last access:
30 August 2024). The ISD integrates data from more than
100 original data sources, incorporates data from over 35 000
stations around the world, and includes observation data dat-
ing back to 1901. The strict quality control algorithms are
used to ensure data quality by checking data format, ex-
treme values and limits, consistency between parameters,
and continuity between observations. Detailed information
about the quality control is available at http://www.ncei.noaa.
gov/pub/data/inventories/ish-qc.pdf (last access: 30 August
2024). The best spatial coverage of stations is evident in
North America, Europe, Australia, and parts of Asia, and
the coverage in the Northern Hemisphere is better than the
Southern Hemisphere.

Visibility and meteorological records are filtered by the
geophysical report type code. The codes FM-12 and FM-
15 are selected. The FM-12 code represents the report being
from the Surface Synoptic Observations (SYNOP) report,
which is a coding system developed by the World Meteoro-
logical Organization (WMO) for reporting observation data
from ground meteorological stations. The FM-15 code repre-
sents the report being from the Meteorological Terminal Avi-
ation Routine Weather Report (METAR), providing weather
information at the airport and its surrounding areas. The for-
mat and content of the METAR are consistent globally and
comply with WMO’s international meteorological observa-
tion and reporting standards. The frequency of the SYNOP
report is generally every 3 or 6 h, and the frequency of the
METAR is usually once per hour.
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In this study, visibility is an essential variable for PM2.5
concentration. The reciprocal of visibility is directly propor-
tional to the aerosol extinction coefficient, which is closely
related to the PM2.5 concentration (Wang et al., 2009, 2012).
Considering that temperature, wind speed, humidity, and pre-
cipitation are factors that impact particle dispersion, particle
growth, and secondary generation (Zhang et al., 2020), tem-
perature, dew point temperature, wind speed, and precipita-
tion are selected.

2.4 Data preprocessing

When processing the visibility and meteorological variables,
we use some screening conditions from previous studies
(Husar et al., 2000; Wang et al., 2009; Li et al., 2016; Zhong
et al., 2021). We remove the records with missing visibil-
ity, temperature, dew point temperature, wind speed, and
hourly precipitation greater than 0.1 mm. Relative humidity
is calculated using the Goff–Gratch formula (Goff, 1957).
When relative humidity is greater than 90 %, the record is
removed to reduce the influence of fog, even precipitation.
In high-latitude regions, the low-visibility records caused by
ice fog and snow are removed when the temperature is less
than −29 °C and the wind speed is greater than 16 km h−1.
Since PM2.5 exhibits hygroscopic growth, dry visibility is
calculated when relative humidity is between 30 % and 90 %
(Yang et al., 2021).

VISD= VIS/(026+ 04285× log(100−RH)), (1)

where VIS is the visibility, RH is the relative humidity, and
VISD is the dry visibility.

For a single visibility site, there should be at least five non-
repetitive visibility values and at least three valid records per
day. The upper limit of visibility is set to the 99 % percentile
of visibility (Li et al., 2016). The harmonic mean is used to
calculate the daily VIS and VISD because it can better cap-
ture rapid weather changes and enhance daily representative-
ness. The arithmetic mean is used for other variables.

The maximum hourly PM2.5 concentration is set to
1000 µg m−3. The daily PM2.5 concentration needs at least
3-hourly records. We select the PM2.5 monitoring sites with
a condition of at least 3-year continuous monitoring. The dis-
tribution of PM2.5 sites is shown in Fig. 1, and the details are
shown in Table 1.

The spatial matching between the PM2.5 site and visibil-
ity station adopts the nearest principle, and the upper limit
of distance is set to 100 km. Experiments show that the up-
per limit of distance has little effect on model training and
prediction, but when the upper limit is small, the number of
site pairs significantly decreases, especially in Asia. Matched
visibility stations are not used again. To match more PM2.5
monitoring sites, we construct a “virtual” visibility station,
whose variables are established by the average of variables
of the two nearest visibility stations.

We merge daily PM2.5 concentration and visibility and
other meteorological variables. We have adopted two match-
ing methods: (1) merge at the hourly scale first and then cal-
culate the daily mean, and (2) calculate the daily mean first
and then match them. The results of two methods have no
impact on the training of the model, but there are differences
in the predicted results. Since SNOPY’s visibility is not con-
tinuously observed hourly, we select the second method to
merge PM2.5 concentration and visibility data on the daily
scale to improve the daily representativeness of estimated
PM2.5 concentration.

2.5 PM2.5 data for comparison

The Long-term Gap-free High-resolution air Pollutants
(LGHAP) dataset provides daily PM2.5 concentrations from
2000 to 2021 over global land, with a 1 km grid reso-
lution, and is available at https://zenodo.org/communities/
ecnu_lghap (last access: 30 August 2024). The PM2.5 con-
centration is estimated using aerosol optical depth and other
factors such as geographic location, land cover type, cli-
mate zone, and population density, based on a deep learning
approach, termed the scene-aware ensemble learning graph
attention network. The correlation coefficient with ground-
based measurements is 0.95, and the RMSE is 5.7 µg m−3

(Bai et al., 2024). This dataset provides global PM2.5 con-
centration with a high spatiotemporal resolution.

For most regions in the Northern Hemisphere, except for
North America and Europe, the duration of continuous mon-
itoring PM2.5 concentration data is relatively short, making
it difficult to evaluate historical PM2.5 concentration. For ex-
ample, the PM2.5 monitoring network in China was imple-
mented from the end of 2012, resulting in the inability to
verify the PM2.5 concentrations before 2012. Therefore, we
compare our data with the LGHAP PM2.5 concentration to
evaluate the predictive ability of the model and the consis-
tency of our data on the temporal scale.

2.6 Decision tree regression

We employ decision tree regression (Teixeira, 2004) to es-
timate daily PM2.5 concentrations. The key to decision tree
regression is to find the optimal split variable and optimal
split point. The optimal split point of the predictor is deter-
mined by the minimum mean square error, which determines
the optimal tree structure. Decision tree regression is a com-
monly used nonlinear machine learning method that parti-
tions the feature space based on the mapping between feature
attributes and response values, with each leaf node represent-
ing a specific output for each feature space region. Its ability
to handle complex relationships with relatively few model
parameters is advantageous, minimizing the risk of overfit-
ting and enabling the prediction of continuous and categori-
cal predictive variables.
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The sample data include the predictor and response.
The predictor is composed of nine variables: the recipro-
cal of dry visibility (Vis_Dry_In), the reciprocal of visibility
(Vis_In), temperature (Temp), dew point temperature (Td),
temperature−dew point difference (Temp-Td), relative hu-
midity (RH), wind speed (WS), wind numerical time (Date-
Time), and daily record number (DailyObsNum). Both visi-
bility and meteorological variables are daily means. The re-
sponse variable is the daily monitored PM2.5 concentration.

For each site, we sort the sample data by time, with the first
80 % being the training set and the last 20 % being the test
set. Due to the inconsistent sample length among different
sites, this approach is appropriate for sites with small sample
sizes (such as only 3-year observations). We use a 10-fold
cross-validation method (Browne, 2000) to train the model.
The test set is used to evaluate the predictive ability of the
model.

2.7 Evaluation metrics

2.7.1 Statistical metrics

We use the root mean square error (RMSE), mean absolute
error (MAE), and correlation coefficient (ρ) as evaluation
metrics to evaluate the model’s performance and predictive
ability. The formulas are given as follows:

MSE=

√
1
n

∑n

i=1

(
yi − ŷi

)2 (2)

MAE=
1
n

∑n

i=1

∣∣yi − ŷi∣∣ (3)

ρ =

∑n
i=1(yi − y)(ŷi − ŷ)

sqrt
(∑n

i=1(yi − y)2
∑n
i=1(ŷi − ŷ)2

) , (4)

where yi and y are the predicted value and the average of the
predicted values; ŷi and ŷ are the target and the average of
the target; and i = 1,2, . . .,n, where n is the length of the
sample.

2.7.2 Partial dependence

The importance of predictor variables is assessed via partial
dependence. Partial dependence represents the relationship
between the individual predictive variable and the predicted
response (Friedman, 2001). By marginalizing the other vari-
ables, the expected response of the predicted variable is cal-
culated. All the partial dependences of the predicted response
on the subset of predicted variables are calculated. The calcu-
lation process of the partial dependency method is described
next.

The dataset of the predictor is X, X = [X1, X2, . . .,Xn],
and n represents the number of predictive factors. The com-
plement of subset Xs is Xc, where Xs is a single variable in
X, and Xc is all other variables in X. The predicted response

f (x) depends on all variables in X, and it is expressed as
follows:

f (x) = f (Xs,Xc). (5)

The partial dependence of the predicted response to Xs is
expressed as follows:

f s (Xs)
=

∫
f
(
Xs,Xc)pC

(
Xc)dXc, (6)

where pC(Xc) is the marginal probability of Xc; that is,
pC(Xc)≈

∫
f (Xs,Xc)dXs. Assuming that the likelihood of

each observation is equal, the dependence between Xs and
Xc and the interactions of Xs and Xc in the response are not
strong. The partial dependence is shown as

f s (Xs)
≈

1
N

∑N

i=1
f
(
Xs,Xs

i

)
, (7)

where N is the number of observations, and i represents the
ith observation.

2.7.3 Generalized additive mixed model

The generalized additive mixed model (GAMM) originates
from two independent yet complementary statistical meth-
ods: the generalized additive model (GAM) and mixed-
effects models. GAM was introduced by Trevor Hastie and
Robert Tibshirani in the 1980s (Hastie and Tibshirani, 1987).
GAM employs smooth functions (such as splines) to replace
linear terms in traditional regression, capturing nonlinear re-
lationships between response and explanatory variables. The
primary aim of GAM is to enhance model flexibility, allow-
ing the data to determine the form of the nonlinear rela-
tionships rather than pre-specifying them. The mixed-effects
model includes both fixed and random effects, enabling the
analysis of hierarchical and correlated data (Verbeke and
Lesaffre, 1996). Fixed effects apply to the entire sample,
whereas random effects account for variations within indi-
viduals or groups, explaining data correlation and variability.
GAMM represents the evolution of statistical models from
linear to nonlinear, from simple to complex, and from sin-
gle effects to mixed effects. GAMM has been widely applied
in various fields, such as ecology, climate, and air pollution,
becoming an essential tool for studying complex nonlinear
relationships and hierarchical data (Park et al., 2013; Polan-
sky and Robbins, 2013; Chang et al., 2017; Ravindra et al.,
2019).

The relationship between PM2.5 concentrations and time
(e.g., months, seasons) is typically nonlinear and exhibits
seasonal variation. GAMM uses smooth functions (such as
splines) to capture the nonlinear variations and model the pe-
riodic features with cyclical smooth functions. Interannual
variations in PM2.5 concentrations can also be captured us-
ing smooth functions. Due to the inherent autocorrelation in
time series, GAMM effectively handles the autocorrelation
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by incorporating time-related smooth functions or random
effects, thereby enhancing the model accuracy. PM2.5 con-
centrations from neighboring locations often exhibit spatial
correlation. GAMM can address this spatial correlation by
introducing spatially correlated smooth functions or random
effects. Therefore, it is also suitable for spatial variations, es-
pecially when the spatial distribution of site observations is
uneven.

Based on the GAMM, the PM2.5 concentration y(i, t) at
site i and time t can be expressed as

y(i, t)= xβ + f (·)+ b(i, t)+ ε(i, t). (8)

The following is an explanation of the expression and param-
eter settings.

Linear terms. xβ includes the terms of site elevation and
the overall mean PM2.5 concentration, where x is the vector
of explanatory variables, and β is a coefficient vector.

Smooth terms. f (·) can be decomposed into three individ-
ual smooth terms, i.e., the seasonal smooth term, interannual
smooth term, and spatial smooth term, as shown in Eq. (9).

f (·)= f (month)+ f (year)+ f (spatial ) (9)

They are composed of linear combinations using spline ba-
sis functions. The seasonal smooth term is a function of
the month. The smooth function is the penalized regression
cyclic cubic splines (assumed with periodic nature) (Wood et
al., 2016), and the knot number is 12. The interannual smooth
term is a function of year. The smooth function is the penal-
ized regression cubic splines (Wood et al., 2016), and the
knot number is 64. The spatial smooth term is a function of
longitude and latitude. The smooth function is the Gaussian-
process-penalized regression splines (Kammann and Wand,
2003), and the knot number is 80. In this study, they are
used to describe the regional long-term PM2.5 concentration
annual cycle, interannual trends, and spatial distribution, re-
spectively.

The term of station-specific effects, b(i, t), is a random
effect term to describe the differences between observation
sites, based on the assumption that observations are indepen-
dent.

The residual noise term ε(i, t) is a first-order autoregres-
sive term.

More explanations about GAMM are detailed in the R
package mgcv. Some studies also provide an introduction
and selection of parameters (Polansky and Robbins, 2013;
Chang et al., 2017; Ravindra et al., 2019).

3 Results and discussion

3.1 Evaluation of variable importance

We evaluate the contribution of each variable to the response
by partial dependence. The variable with the highest par-
tial dependence value is the most important variable in the

model. Figure 2a shows the proportion of the most important
variables for all sites, and Fig. 2b shows the ranking of the
importance of all variables. The reciprocal of dry visibility
is the most important variable at 65.8 % of sites, and the re-
ciprocal of visibility is the second-most-important variable at
14.9 % of sites. The contribution of meteorological variables
ranges from 2.1 % to 6.6 %. The time variable contributes
1.7 %. The lowest contribution is the daily number of visi-
bility record at only 0.9 % because it is only a variable that
describes the daily representativeness of visibility. It also in-
dicates that daily visibility has high daily representativeness
(under the conditions of at least 3-hourly records).

The PM2.5 concentration level varies spatially, which is
related to regional geographical environment, climate, and
air quality laws and regulations. Therefore, we analyze the
importance of variables in different regions, as shown in
Fig. 2c–h. The two most important variables are still recipro-
cal of dry visibility and reciprocal of visibility, with a propor-
tion of 73.1 % in the United States, 77.5 % in Canada, 80.8 %
in Europe, 98.8 % in China, and 60.2 % in India. It indicates
that PM2.5 concentration is the most significantly correlated
with visibility in China. The contribution of meteorological
variables is significantly higher in the United States and India
than in other regions. It indicates that meteorological con-
ditions have a significant contribution to PM2.5 concentra-
tion in these regions, which may be related to the formation
mechanism and transport of particulate matter.

The above results indicate a strong correlation between
the PM2.5 concentration and visibility, as visibility can be
considered an indicator of air quality without fog or precip-
itation. Meteorological factors play secondary roles, which
influence the formation, dispersion, and deposition of PM2.5
(Gui et al., 2020; Zhong et al., 2022). Although the number of
daily records and the time have the most negligible impacts
on the PM2.5 concentration in the model, they have signif-
icant impacts on the cyclical changes and daily representa-
tiveness of PM2.5 concentration (Wang et al., 2012; Zhang et
al., 2020).

3.2 Evaluation of model performance

We analyze the linear regression relationship between all es-
timated and corresponding response values to evaluate the
model’s performance. Figure 3 is the density scatter plot of
the monitored PM2.5 concentration (response values) and the
estimated PM2.5 concentration (estimated values). There is a
total of 8 031 473 data pairs for all the sites. The linear regres-
sion slope (95 % confidence interval) is 0.955 [0.955, 0.955],
the R2 is 0.95, the RMSE is 7.2 µg m−3, and the MAE is
3.2 µg m−3.

Figure 4a–c show the spatial distribution (a–c) and fre-
quency of training of RMSE, MAE, and ρ. Table 2 lists the
model’s performance metrics in the United States, Canada,
Europe, China, and India. For all sites, the average RMSE
is 6.92 µg m−3, with a median of 4.76 µg m−3. The RMSE
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Figure 2. The most important variable (a) and the ranking (b) at all sites. The most important variable in each region (c–h). The stacked
bar shows the importance rankings of the variables (“rank= 1” represents the most important variable). The bar shows the proportion of
the most important variable. The variables are the reciprocal of dry visibility (Vis_Dry_In), reciprocal of visibility (Vis_In), temperature
(Temp), dew point temperature (Td), temperature−dew point difference (Temp-Td), relative humidity (RH), wind speed (WS), numerical
time (DateTime), and daily number of visibility record (DailyObsNum).

of 80 % of the sites is less than 10.01 µg m−3. The RRMSE
(the ratio of RMSE to the mean of PM2.5 concentration)
is 28.7 %. The MAE is 3.77 µg m−3, with a median of
2.72 µg m−3. The MAE is less than 5.66 µg m−3 for 80 % of
the sites. The RMAE (the ratio of MAE to the mean of the
PM2.5 concentration) is 15.4 %. The average ρ is 0.91, and
the median is 0.92. The ρ of 80 % of the sites is greater than
0.87. Previous studies have shown that for PM2.5 concentra-
tion retrieved from daily visibility or satellite aerosol optical
depth, the R2 range of the model is from 0.42 to 0.89, and
the RMSE range is from 9.59 to 32.09 µg m−3 (Shen et al.,
2016; Liu et al., 2017; Wei et al., 2019b; Gui et al., 2020; Li
et al., 2021; Zhong et al., 2021). This finding indicates that
our model performs well at the daily scale.

On the regional scale, the RMSE values for the United
States, Canada, Europe, China, and India are 3.10, 2.78, 4.92,
9.65, and 17.46 µg m−3, respectively, and the RRMSE values
are 34.9 %, 40.4 %, 29.8 %, 23.1 %, and 28.8 %, respectively.
The MAEs for the United States, Canada, Europe, China,

and India are 1.61, 1.35, 2.54, 5.47, and 9.13 µg m−3, re-
spectively. The RMAEs are 17.9 %, 19.5 %, 16.3 %, 13.1 %,
and 14.4 %, respectively. The ρ values for the United States,
Canada, Europe, China, and India are 0.87, 0.88, 0.91, 0.94,
and 0.92, respectively. The correlation coefficients are higher
in China and India and lower in the United States and
Canada.

The largest RMSE and MAE are in India, and the small-
est are in Canada. The RRMSE and RMAE are larger in the
United States, Canada, and Europe than in China and India
and other regions.

3.3 Evaluation of model’s predictive ability

A total of 1 911 183 pairs of test data are employed to evalu-
ate the model’s predictive ability. Figure 5 is the density scat-
ter plot between the predicted PM2.5 concentration and the
test PM2.5 concentration. The linear regression slope (95 %
CI) is 0.864 [0.863, 0.865],R2 is 0.79, RMSE is 14.8 µg m−3,
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Table 2. The metrics for all sites and sites in the United States, Canada, Europe, China, and India. RRMSE is the ratio of the RMSE to the
mean of PM2.5 concentration (in %). RMAE is the ratio of the MAE to the mean of PM2.5 concentration.

Region RMSE MAE ρ Mean RRMSE RMAE
(µg m−3) (µg m−3) (µg m−3) (%) (%)

All 6.92 3.77 0.91 26.7 28.7 15.4
United States 3.10 1.61 0.87 9.1 34.9 17.9
Canada 2.78 1.35 0.88 6.9 40.4 19.5
Europe 4.92 2.54 0.91 15.7 29.8 16.3
China 9.65 5.47 0.94 42.1 23.1 13.1
India 17.46 9.13 0.92 63.1 28.8 14.4
Other 6.11 3.32 0.91 23.4 24.8 14.1

Figure 3. Density scatter plot (a) between estimated PM2.5 concen-
tration and monitored PM2.5 concentration. The dashed black line
is the linear regression line. N is the length of the data pairs, and
slope is the linear regression coefficient within a 95 % confidence
interval (CI). R2 is the coefficient of determination, RMSE is the
root mean square error, and MAE is the mean absolute error.

and MAE is 7.6 µg m−3. Previous studies have shown that the
R2 range of the model’s predictive results at the daily scale
is 0.31–0.84, and the RMSE range is 13.8–29.0 µg m−3 (Gui
et al., 2020; Zhong et al., 2021). The test results exhibit ex-
cellent predictive capability.

We analyze the test results for Canada, the United States,
Europe, China, and India to assess the predictive ability of
the model in different regions. Figure 4d–f show the spa-
tial distributions of the test RMSE, MAE, and ρ and their
frequency. Table 3 lists the test results of the metrics. For
all sites, the average RMSE is 11.50 µg m−3. The RRMSE
is 46.0 %. The average MAE is 7.72 µg m−3. The RMAE is
30.7 %. The ρ is 0.81. For the United States, the RMSE,
MAE, and ρ are 5.06, 3.25 µg m−3, and 0.72, respectively.
For Canada, the RMSE, MAE, and ρ are 4.73, 2.88 µg m−3,

and 0.77, respectively. The results in the United States and
Canada are better in the west than in the east. The RMSE,
MAE, and ρ for Europe are 7.79, 5.10 µg m−3, and 0.80, re-
spectively. For China, the RMSE, MAE, and ρ are 16.83,
11.50 µg m−3, and 0.85, respectively. For India, the RMSE,
MAE, and ρ are 27.05, 17.89 µg m−3, and 0.85, respectively.
The results show that in developing regions (China and In-
dia), ρ is better than that in developed regions (the United
States, Canada, and Europe), which means that the predictive
ability of the model is better for severely polluted regions.

3.4 Uncertainties and limitations

3.4.1 Uncertainty in the pollution level

Figure 6 shows the uncertainty in the predicted PM2.5 con-
centration with respect to the pollution level of the moni-
tored PM2.5 concentration. For all sites, the uncertainty in
the bias increases as the pollution level increases. The mean
and median of the bias shift from positive to negative with
increasing pollution levels; 83.6 % of PM2.5 concentration
data is less than 45 µg m−3, and the mean bias (<0.8 µg m−3)
is positive; 36.8 % is less than 10 µg m−3, and the median
(<0.4 µg m−3) of the bias is positive; 16.4 % of PM2.5 con-
centration is greater than 45 µg m−3, and the mean bias is
negative; and 63.2 % of PM2.5 concentration is greater than
10 µg m−3, and the median is negative. It indicates that the
model overestimates at low pollution levels and underesti-
mates at high pollution levels.

The bias for each region also increases with pollution
level. For the United States, the mean bias of 69.4 % is posi-
tive and less than 0.8 µg m−3, and the PM2.5 concentration is
less than 10 µg m−3. When the PM2.5 concentration is greater
than 10 µg m−3, the mean bias is negative. For Canada, the
mean bias of 74.1 % is positive and less than 0.7 µg m−3.
When the PM2.5 concentration is greater than 8 µg m−3, the
mean bias is negative. For Europe, the mean bias of 67.1 %
is positive and less than 0.9 µg m−3. When the PM2.5 con-
centration is greater than 15 µg m−3, the mean bias is nega-
tive. For China, 67.7 % of the bias is positive and less than
2.7 µg m−3. When the PM2.5 concentration is greater than
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Figure 4. Statistical metrics’ distribution of training (a, b, c) and test (d, e, f) data. The bar is the frequency of sites. RMSE is the root mean
square error, MAE is the mean absolute error, and ρ is the correlation coefficient.

Table 3. The test results of the model’s performance metrics for all sites and sites in the United States, Canada, Europe, China, and India.
RRMSE is the ratio of the RMSE to the mean of PM2.5 concentration (in %). RMAE is the ratio of the MAE to the mean of PM2.5
concentration (in %).

Region RMSE MAE ρ Mean RRMSE RMAE
(µg m−3) (µg m−3) (µg m−3) (%) (%)

All 11.50 7.72 0.81 27.1 46.0 30.7
United States 5.06 3.25 0.72 9.4 54.3 35.0
Canada 4.73 2.88 0.77 7.2 65.6 40.0
Europe 7.79 5.10 0.80 15.9 47.0 32.0
China 16.83 11.50 0.85 42.6 39.6 27.1
India 27.05 17.89 0.85 63.7 42.9 27.8
Other 8.86 6.16 0.81 23.4 36.7 26.1

45 µg m−3, the mean bias is negative. For India, 80.1 % of
the bias is positive and less than 4.2 µg m−3, and when the
PM2.5 concentration is greater than 100 µg m−3, the mean
bias is negative. When the PM2.5 concentration is greater
than 60 µg m−3, the bias median is negative, with a percent-
age of 40.3 %. The uncertainty in each region is similar, and
the uncertainty increases as the pollution level increases.

3.4.2 Uncertainty in the station elevation

With the spatial variability in PM2.5 concentration, we ana-
lyze the mean bias at different visibility station elevations.
Figure 7 shows the relationships between the elevations of
the visibility stations and the bias. The bias exhibits varia-
tions across different elevations for all stations. The mean

bias of all sites ranges from −0.04 to 0.02 µg m−3. A total of
90.1 % of the stations have positive biases. The median of the
bias is almost positive, with a positive bias of 99.5 % stations,
except for the elevation at 4 km. The elevations of 86.5 % of
the stations are less than 1 km, with a positive median of the
bias. High uncertainties in bias occur at elevations of 0.05,
0.2, and 0.3 km. Negative biases are observed at elevations
of 0.4, 0.9–1, and 4 km. This finding indicates a nonsignifi-
cant overestimation of the predicted PM2.5 concentration due
to the various elevations.

The bias patterns vary across regions. For the United
States, a total of 88.8 % of the stations have negative bi-
ases. The median of the bias is negative with a percentage
of 63.4 %. High uncertainties in bias occur at elevations of
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Figure 5. Density scatter plot (a) between the predicted PM2.5 con-
centration and monitored PM2.5 concentration of the test results.
The dashed black line is the linear regression line. N is the length
of the data pairs, and slope is the linear regression coefficient within
a 95 % confidence interval (CI). R2 is the coefficient of determina-
tion, RMSE is the root mean square error, and MAE is the mean
absolute error.

0.05, 2, and 0.3 km. For Canada, 52.3 % of the stations have
positive biases. The median of the bias is negative with a
percentage of 33.8 %. High uncertainties in bias occur at ele-
vations of 0.05 and 1 km. For Europe, 58.9 % of the stations
have positive biases. The median of the bias is negative with
a percentage of 40.2 %. High uncertainties in bias occur at
elevations of 0.05 and 0.9 km. For China, 76.7 % of the sta-
tions have negative biases. The median of the bias is negative
with a percentage of 54.1 %. High uncertainties in bias oc-
cur at elevations of 0.05, 0.5, and 3 km. For India, 68.1 % of
the stations have positive biases. The median of the bias is
negative with a percentage of 63.8 %. The elevation of most
stations with a high uncertainty is at 0.05 km. High uncertain-
ties in bias occur at elevations of 0.1 and 3 km. More stations
with negative bias are in the United States and China. More
stations with positive bias are in Canada, Europe, and India.

3.4.3 Uncertainty in the station distance

As the visibility stations and PM2.5 sites are not collocated,
we analyze the mean bias of PM2.5 concentration at different
distances, as shown in Fig. 8. For all sites, 86.1 % of the sta-
tions have negative biases. The median of the bias is negative
with a percentage of 70.8 %. More stations have a negative
bias caused by the distance. The uncertainty has no significa-
tion with the distance. The distances with low uncertainties
are at 1 and 20–40 km. The distances with high uncertainties
are at 5 and 60 km.

For the United States, 63.1 % of the stations have negative
biases. The median of the bias is negative with a percent-
age of 69.2 %. The distance with the lowest uncertainty is
at 1 km. The distances with high uncertainties are at 5 and
60 km. For Canada, 60.0 % of the stations have positive bi-
ases. The median of the bias is positive with a percentage of
80.0 %. The uncertainty shows an increase with the distance
increasing. For Europe, 72.7 % of the stations have negative
biases. The median of the bias is positive with a percentage
of 67.1 %. When the distance is less than 10 km, the uncer-
tainty increases with the distance. The distances with low un-
certainties are at 1 and 30–40 km. The distances with high
uncertainties are at 10 and 75 km. For China, 64.3 % of the
stations have negative biases. The median of the bias is neg-
ative with a percentage of 72.7 %. The distance with a low
uncertainty is at 30 km. The distance with a high uncertainty
is at 60 km. For India, 62.3 % of the stations have negative bi-
ases. The median of the bias is positive with a percentage of
59.1 %. The distance with the lowest uncertainty is at 30 km.
The distance with the highest uncertainty is at 20 km.

More visibility stations have negative biases, except for
the stations in Canada. For the stations in the United States,
Canada, and Europe, the lowest uncertainty is at 1 km. For
the stations in China and India, the uncertainty has no sig-
nificant relationship with distance, though the distance has
caused a negative bias.

3.4.4 Discussion on the uncertainties and limitations

There are some uncertainties and limitations in this study.
The upper limit of visibility and PM2.5 concentration can
cause some uncertainties in model training. The maximum
distance between the visibility stations and PM2.5 monitoring
sites is 100 km due to the spatial variability in aerosols, which
may increase the uncertainty in the estimated PM2.5 concen-
tration. Because of the nonuniform vertical distribution of
aerosols, the different elevations of the visibility stations and
the PM2.5 monitoring sites further increase the uncertainty in
estimating PM2.5 concentration. In addition, the spatial cov-
erage of visibility stations, especially in China and India, is
still limited, which may increase the uncertainty in the repre-
sentativeness of regional PM2.5 concentration and pollution
levels. With the increasing human concern of air pollution
and the implementation of air pollution control measures, the
types of major atmospheric pollutants may have changed at
regional scale, the composition of particulate matter has also
evolved, the scattering and absorption characteristics may
have changed, and the relationship between visibility and
PM2.5 concentration may change. These changes may lead
to uncertainties in estimating historical PM2.5 concentration.
It is challenging to validate data using ground observations
and satellite-based estimation prior to 2000. Despite these
limitations and challenges, we establish a long-term PM2.5
concentration dataset based on visibility from 1959 to 2022,
which has been carefully validated and evaluated, providing
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Figure 6. Box plots of the pollution level and bias (predicted PM2.5 concentration – monitored PM2.5 concentration) for all sites (a) and sites
in the United States (b), Canada (c), Europe (d), China (e), and India (f). The box’s upper and lower limits represent ±1 standard deviation,
the whiskers represent 2 times the standard deviation, the red circle represents the median, and the short line represents the mean bias. The
frequency (%) on the right-hand y axis represents the percentage of data with different pollution levels (dashed line).

insights into the long-term spatiotemporal characteristics of
concentration PM2.5 in the Northern Hemisphere.

4 Comparisons with other PM2.5 concentration
datasets

We compare the daily and monthly estimated PM2.5 con-
centration with the LGHAP PM2.5 concentration from 2000
to 2021 to further demonstrate the reliability the estimated
PM2.5 concentration. When comparing on the regional scale,
we split the time range into 2000–2010 and 2011–2021 to
further validate the accuracy and consistency of estimated
PM2.5 concentrations, as in some regions such as India and
China, there are almost no continuous PM2.5 monitoring data
before 2010.

4.1 Comparisons on the daily scale

We spatiotemporally match the LGHAP PM2.5 concentra-
tion with the estimated PM2.5 concentration. Figure 9 shows
the density scatter plot between the estimated PM2.5 con-
centration and LGHAP PM2.5 concentration. There is a to-

tal of 96 188 682 pairs during the period of 2000 and 2021,
46 846 389 pairs during the period from 2000 to 2010, and
49 342 302 during the period of 2011 and 2021, with slopes
of 0.817, 0.758, and 0.867. The intercepts are 6.928, 8.933,
and 5.377 µg m−3, respectively. The slope decreases before
2010, which may be related to the upper limit of LGHAP
PM2.5 concentration with a significantly decreasing quantity
of the concentration (>300 µg m−3).

We further compare the PM2.5 concentrations of the an-
nual calendar cycles on the regional scale in Fig. 10. The
PM2.5 concentration of each day is the mean of the PM2.5
concentrations at all sites in the region. The correlation co-
efficients of the PM2.5 concentrations are greater than 0.89
from 2011 to 2021 and greater than 0.92 from 2000 to 2010.
The correlation is greater in Europe, China, and India than in
the United States and Canada. There is no significant differ-
ence in the variation of annual calendar cycles between two
periods on the regional scale. In the United States, PM2.5
concentration between 2000 and 2010 is more similar than
the concentration between 2011 and 2021, and the bias de-
creases. In Canada, the correlation coefficient increases, al-
though the bias increases. In Europe, the correlation coeffi-

https://doi.org/10.5194/essd-16-4051-2024 Earth Syst. Sci. Data, 16, 4051–4076, 2024



4064 H. Hao et al.: PM2.5 in the Northern Hemisphere from 1959 to 2022

Figure 7. Box plots of the bias (predicted PM2.5 concentration–monitored PM2.5 concentration) and the elevation of the visibility station for
all sites (a) and sites in the United States (b), Canada (c), Europe (d), China (e), and India (f). The box’s upper and lower limits represent±1
standard deviation, the whiskers represent 2 times the standard deviation, the red circle represents the median, and the short line represents
the mean bias. The station number (%) on the right-hand y axis represents the percentage of the station number at different elevations (dashed
line).

cient and bias increase. There are similar changes in China
and India. The bias increases on days 1 to 60 and 300 to
366, but the correlation remains significant. The difference
of PM2.5 concentration during the two periods is mainly re-
flected in the increasing bias in Canada and Europe, which
is a non-seasonal bias, and the increasing bias in winter in
China and India, which is a seasonal bias. Overall, PM2.5
concentrations show a good consistency before and after
2010 on the daily scale.

4.2 Comparisons on the monthly scale

Figure 11 shows the density scatter plot between the esti-
mated PM2.5 concentration and LGHAP PM2.5 concentra-
tion on the monthly scale. The monthly PM2.5 concentration
is calculated by the matched daily concentrations. There is a
total of 3 296 739 pairs during the period from 2000 to 2021,
1 582 161 pairs during the period from 2000 to 2010, and
1 714 578 during the period from 2011 to 2021, with slopes
of 0.857, 0.821 and 0.879. The intercepts are 6.774, 8.716,
and 5.272 µg m−3, respectively. The slope of monthly con-
centration significantly improves before 2010 and slightly in-
creases after 2010 compared to the daily scale.

We also compare the PM2.5 concentrations of the annual
cycles on the regional scale in Fig. 12. The PM2.5 concen-
tration of each month is the mean of the PM2.5 concentra-
tions at all sites in the region. The correlation coefficients of
the PM2.5 concentrations are greater than 0.92 from 2011 to
2021 and greater than 0.87 from 2000 to 2010. In the United
States, the PM2.5 concentrations before 2010 are closer com-
pared to those after 2010, except in April and August, and
the biases in other months have significantly decreased. In
Europe and Canada, the biases have increased. In China, the
result is similar to the result on the daily scale. In India, the
performance of the two is almost consistent, with a correla-
tion coefficient of 0.99 and 0.96. The two datasets have a very
high similarity in annual cycles, indicating that the estimated
PM2.5 concentration in this study is accurate and consistent
before and after 2010.

4.3 Discussion on the differences of PM2.5
concentration estimated using visibility and aerosol
optical depth

Both visibility and aerosol optical depth are excellent alter-
natives for estimating PM2.5 concentration, with its own ad-
vantages. However, they have differences in principle, which
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Figure 8. Box plots of the mean bias (predicted PM2.5 concentration–monitored PM2.5 concentration) and the distance between the visibility
station and the PM2.5 site and for all sites (a) and sites in the United States (b), Canada (c), Europe (d), China (e), and India (f). The box’s
upper and lower limits represent ±1 standard deviation, the whiskers represent 2 times the standard deviation, the red circle represents the
median, and the short line represents the mean bias. The station number (%) on the right-hand y axis represents the percentage of the station
number at different distances (dashed line).

Figure 9. Density scatter plot between the estimated PM2.5 concentration (this study) and LGHAP PM2.5 concentration on the daily scale
from 2000 to 2021 (a), from 2000 to 2010 (b), and from 2011 to 2021 (c). The dashed black line is the linear regression line. N is the length
of the data pairs, and slope is the linear regression coefficient. Intercept represents the y intercept.

may be the reason for the difference between the two datasets
in comparison.

Fine particulate matter near the ground surface affects at-
mospheric visibility through scattering. Studies have shown
visibility has a negative correlation with PM2.5 concentra-
tion, and the reciprocal of visibility has a positive correla-

tion with the extinction coefficient and has a negative corre-
lation with the particulate matter concentration (Wang et al.,
2012; Zhang et al., 2017, 2020). Therefore, visibility is of-
ten used as a proxy for particulate matter pollution (Huang et
al., 2009; Singh et al., 2020), and it is the basis for estimat-
ing PM2.5 concentration. In addition, studies have shown that
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Figure 10. Comparison of annual calendar cycle of PM2.5 concentration on the regional scale from 2011 to 2021 (left) and from 2000 to
2010 (right) between the estimated PM2.5 concentration (this study) and LGHAP PM2.5 concentration on the daily scale. ρ is the correlation
coefficient.

Figure 11. Density scatter plot between the estimated PM2.5 concentration (this study) and LGHAP PM2.5 concentration on the monthly
scale from 2000 to 2021 (a), from 2000 to 2010 (b), and from 2011 to 2021 (c). The dashed black line is the linear regression line. N is the
length of the data pairs, and slope is the linear regression coefficient. Intercept represents the y intercept.
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Figure 12. Comparison of annual cycle of monthly PM2.5 concentration on the regional scale from 2011 to 2021 (left) and from 2000 to
2010 (right) between the estimated PM2.5 concentration (this study) and LGHAP PM2.5 concentration on the daily scale. ρ is the correlation
coefficient.

meteorological observations such as temperature and humid-
ity also play an important role in estimating PM2.5 concen-
tration using visibility (Shen et al., 2016; Xue et al., 2019;
Zhong et al., 2021). Therefore, when estimating PM2.5 con-
centration based on visibility data, only conventional meteo-
rological variables need to be added, which is convenient and
accurate observational data. In addition, the long-term, com-
plete, and highly temporal ground-based observations are the
advantages of historical estimation of PM2.5 concentration.
The daily mean from continuous or equidistant hourly obser-
vations greatly increases the daily representativeness.

The aerosol optical depth is a physical quantity that de-
scribes aerosol column properties. It is the integration of
the extinction coefficient in the vertical direction. When es-
tablishing a connection between aerosol optical depth and
near-ground PM2.5 concentration, it is essential to consider
the vertical structure of aerosols. Studies have shown that
the aerosol vertical profiles usually are provided by obser-

vations, assumptions, or chemical transport models to ob-
tain the aerosol properties near the surface (Van Donkelaar
et al., 2010; Wei et al., 2019b; Van Donkelaar et al., 2021).
Van Donkelaar et al. (2006, 2010) have demonstrated that
aerosol vertical profile errors in chemical transport models
and aerosol optical depth retrieval and sampling result in
an approximately 25 % uncertainty of 1 standard deviation.
Sensitivity testing shows that a 1 % estimation error in the
aerosol optical depth can lead to a 0.27 % estimation error in
the PM2.5 concentration (Wei et al., 2021). In addition, the
retrieval of aerosol optical depth is affected by clouds or sur-
face types and a finite number of daily observations (usually
one to two times), though it has the advantage of high spatial
coverage (Liu et al., 2017; Singh et al., 2020; Zhong et al.,
2021).

Another difference is the upper limit of PM2.5 concen-
tration. In this study, the upper limit of the estimated daily
PM2.5 concentration is set to 1000 µg m−3 (the same for

https://doi.org/10.5194/essd-16-4051-2024 Earth Syst. Sci. Data, 16, 4051–4076, 2024



4068 H. Hao et al.: PM2.5 in the Northern Hemisphere from 1959 to 2022

input data). When the PM2.5 concentration is greater than
500 µg m−3 during heavy pollution, which may contribute
to the higher frequency at high pollution levels than in the
LGHAP dataset, especially before 2010. We do not remove
visibility records during dust weather when preprocessing
the data, which may lead to an overestimation of PM2.5 con-
centration in dusty areas, such as northern China and north-
western India. In Sect. 3.4, the uncertainty analysis has pro-
vided an explanation for the overestimation. Overall, our
PM2.5 concentration dataset has a good consistency with
PM2.5 concentration based on aerosol optical depth.

5 Regional trends and spatial patterns

We use the estimated PM2.5 concentrations (at least 10 d
records in a site) to calculate monthly PM2.5 concentra-
tions and analyze the annual cycles, interannual trends, and
spatial patterns of PM2.5 concentrations in different regions
based on the GAMM. The annual variation comes from the
monthly smooth term of GAMM, the interannual variation
comes from the annual smooth term, and the spatial pattern
comes from the spatial smooth term. The regions include
Canada, the United States, Europe, China, and India. The
results are shown in Fig. 13. The trend from 1959 to 2022
in each region is the slope of the Theil–Sen (ST slope) esti-
mators (Sen, 1968; Theil, 1992), and the Mann–Kendall test
(Mann, 1945; Kendall, 1948) is used to calculate the signifi-
cance of the trend. The test results show that the p values are
all less than 0.01 in all regions.

In the United States, the annual cycle curve shows that
the PM2.5 concentration is a “double peak and double val-
ley” shape. The peaks occur in July and December, re-
spectively, with the highest PM2.5 concentration in July
throughout the year. The valley values are in April and Oc-
tober, and the PM2.5 concentration levels are equivalent.
The trend is −0.40 µg m−3 per decade, and PM2.5 concen-
tration decreases significantly after 1992, with a trend of
−1.39 µg m−3 per decade. The areas of high PM2.5 concen-
tration are in the east and west. The areas with low PM2.5
concentrations are mainly located in the central and northern
regions. The high concentration in the eastern and western re-
gions is related to extensive industrial activities and densely
populated cities. The low concentration in the central and
northern regions is related to high vegetation coverage, low
industrial activity, and low population density.

In Canada, the annual cycle curve also shows that the
PM2.5 concentration is a “double peak and double valley”
shape. The peak values occur in August and February, with
the highest PM2.5 concentration in August. The valley val-
ues are in April and October. The trend is −0.10 µg m−3 per
decade, and PM2.5 concentration increases after 2010. The
PM2.5 concentration exhibits an east–high to west–low pat-
tern. The eastern regions, such as Ontario and Quebec, are

characterized by high population density and significant in-
dustrial and transportation activities.

In Europe, the annual cycle of PM2.5 concentration shows
that the PM2.5 concentration is the highest in February and is
low from May to September. The valley values are in April
and October. The trend is −1.55 µg m−3 per decade. High-
concentration areas are distributed in eastern Europe, while
low-concentration areas are in northern and western Europe.
Eastern Europe exhibits more industrialization, particularly
with a prevalence of traditional heavy industries and the use
of coal and other high-pollution energy sources. In contrast,
the energy structure in western Europe tends to favor cleaner
energy sources.

In China, the annual cycle curve of PM2.5 concentration
presents a V-like shape. It indicates that high concentrations
are in winter, while low concentrations are in summer. The
trend is 2.09 µg m−3 per decade. The trend is 2.65 µg m−3 per
decade from 1959 to 2011 and −22.23 µg m−3 per decade
from 2012 to 2022. High-concentration areas are distributed
in northern China, such as the North China Plain, northeast
China, the Sichuan Basin, Taklimakan Desert, and Badain
Jaran Desert. Low-concentration areas are in southern China
and the northern Tian Shan. Besides dust, industrial activities
and coal combustion for heating during winter are significant
contributors to the PM2.5 concentration in northern regions.

In India, the annual cycle curve of PM2.5 concentration
also presents a V-like shape. High concentrations are in win-
ter, and low concentrations are in summer. The trend is
0.92 µg m−3 per decade. The trend is 1.41 µg m−3 per decade
from 1959 to 2013 and−23.36 µg m−3 per decade from 2014
to 2022. Some studies have shown that the PM2.5 concentra-
tion in India has decreased since 2014, especially in northern
cities. Singh et al. (2021) found that five major cities in India
show a downward trend from 2014 to 2019, with the largest
decline of approximately −4.2 µg m−3 yr−1 in New Delhi.
Ravindra et al. (2024) also found that the trend in New Delhi
is about −5 µg m−3 yr−1 from 2014 to 2020. These stud-
ies have shown a faster downward trend than our study, as
these PM2.5 monitoring sites are mainly concentrated in ur-
ban areas. The PM2.5 concentration exhibits a north–high to
south–low pattern. High-concentration areas are distributed
in northern India, such as the Ganges Plain and Thar Desert,
because there are more industrial and densely populated ar-
eas, and the terrain leads to the retention of air pollutants.
Low-concentration areas are in the Deccan Plateau.

Above all, the PM2.5 concentrations in developed coun-
tries and regions are significantly lower than those in devel-
oping countries in the Northern Hemisphere. Regional trends
are similar to those of previous studies in different periods
(Van Donkelaar et al., 2010; Wang et al., 2012; Boys et
al., 2014; Ma et al., 2016; Li et al., 2017; Hammer et al.,
2020). The trends in PM2.5 concentration changes in dif-
ferent regions are closely associated with the implementa-
tion of relevant policies. The earlier pollution control mea-
sures are taken, the earlier the decreasing trend in the PM2.5
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Figure 13. Annual cycles, interannual trends, and spatial patterns of PM2.5 concentrations in the United States (a1–a3), Canada (b1–
b3), Europe (c1–c3), China (d1–d3), and India (e1–e3). The left column “f (month)” is the annual cycle, the middle column “f (year)” is
the interannual trend, and the right column “f (spatial)” is the spatial distribution from the generalized additive mixed model (GAMM). The
dashed blue lines represent±1 standard error of the month and annual mean of PM2.5 concentrations. The dashed red or black lines represent
the trends of the Theil–Sen estimators (ST slope). The Mann–Kendall test of trends shows that the p values are less than 0.01 in all regions.
The scatter points in right column are the locations of PM2.5 monitoring sites.

concentration occurs, and the lower the threat of particulate
matter pollution is to humans. In 1997, the U.S. EPA clas-
sified PM2.5 as a hazardous substance in the National Am-
bient Air Quality Standard, and subsequent regulations in
2006 further strengthened the source control and manage-
ment of fine particulate matter (Hall and Gilliam, 2016). In
1988, the Canadian federal government enacted the Cana-
dian Environmental Protection Act, which enhanced the reg-
ulation of PM2.5 (Davies, 1988). The European Union intro-
duced the Air Quality Directive in 1996, followed by mul-
tiple revisions and updates to regulate and restrict air pollu-
tants, including PM2.5 (Kuklinska et al., 2015). However, Eu-
rope stands out due to its early adoption of clean production
practices in heavy industries since the 1970s. Since 2012,
China has implemented numerous regulations and standards
for PM2.5. For instance, the Monitoring Method for Atmo-
spheric Particulate Matter (PM2.5) was issued in 2012, and
the Chinese Ministry of Environmental Protection released

the Ambient Air Quality Standards in 2013, including emis-
sion standards for PM2.5 (B. Zhao et al., 2016). In 2009, the
Indian Ministry of Environment and Forests issued the Na-
tional Ambient Air Quality Standards, which include con-
trol standards for PM2.5. In 2019, the Indian government
launched the National Clean Air Programme (NCAP) to im-
prove air quality by implementing a series of measures to re-
duce the emissions of PM2.5 and other pollutants (Ganguly et
al., 2020). These environmental regulations have contributed
significantly to the decline of PM2.5 concentrations. Some
studies have shown that the variation of PM2.5 concentrations
is also related to several factors, such as the energy structure,
urbanization process, population distribution, and vegetation
coverage (Shi et al., 2018; Wu et al., 2018; Li et al., 2019;
Wang et al., 2019; Lim et al., 2020; Qi et al., 2023).
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6 Data availability

Daily PM2.5 concentration data in the Northern Hemisphere
from 1959 to 2022 are available at https://doi.org/10.11888/
Atmos.tpdc.301127 (Hao et al., 2024).

All site-scale PM2.5 data files are in “PM25-
Daily_1959_2022. zip”. The file name includes a region
name and a site number. For example, the file name,
“China_1001. txt”, means that the site is in China, and the
site number is 1001, which describes the daily PM2.5 con-
centration at a single site and can be directly opened using a
text program (such as Notepad), separated by commas. The
data include four column names: “Date”, “PM25(µg/m3)”,
“Longitude(degree_east)”, and “Latitude(degree_north)”.
“Date” is UTC time, “PM25(µg/m3)” is the daily PM2.5
concentration (unit: µg m−3), “Longitude” is the longitude
that ranged from −180 to 180° E, and “Latitude” is the
latitude that ranged from 0 to 90° N.

7 Conclusions

In this study, we use a machine learning method to esti-
mate daily PM2.5 concentration for 5023 terrestrial sites in
the Northern Hemisphere from 1959 to 2022 based on daily
visibility and related meteorological variables. The first 80 %
of PM2.5 concentration data in each site are used to train the
model, and the last 20 % are used to test. The model’s perfor-
mance and predictive ability are evaluated, and a dataset of
daily PM2.5 concentration based on aerosol optical depth is
used to compare and evaluate the estimated PM2.5 concentra-
tion. We analyze the uncertainty and discuss the limitations
of our dataset. Finally, the PM2.5 concentration variation (an-
nual calendar cycle, interannual cycle, and spatial distribu-
tion) in five regions over the past 64 years is analyzed based
on GAMM. We hope our dataset will be useful for study-
ing the atmospheric environment, human health, and climate
change and provide auxiliary support for assimilation. Sev-
eral key results of this study are described as follows:

– The most important variable. Visibility is the most im-
portant variable at 80.7 % of the PM2.5 sites, as visibil-
ity can be considered an indicator of PM2.5 concentra-
tion without fog or precipitation. Other meteorological
variables play a secondary role in the model, especially
temperature and dew point temperature.

– Model performance and predictive ability. The train-
ing results show that the slope between the estimated
PM2.5 concentration and the monitored PM2.5 concen-
tration within the 95 % confidence interval is 0.955, the
R2 is 0.95, the RMSE is 7.2 µg m−3, and the MAE is
3.2 µg m−3. The test results show that the slope between
the predicted PM2.5 concentration and the monitored
PM2.5 concentration is 0.864 ±0.0010 within a 95 %
confidence interval, R2 is 0.79, RMSE is 14.8 µg m−3,

and MAE is 7.6 µg m−3. The model shows good stabil-
ity and predictive ability. Compared with a global PM2.5
concentration dataset based on satellite retrieval, the
slopes of linear regression on the daily (monthly) scale
are 0.817 (0.854) from 2000 to 2021, 0.758 (0.821) from
2000 to 2010, and 0.867 (0.879) from 2011 to 2022.
The result indicates the accuracy of the model and the
consistency of the estimated PM2.5 concentration on the
temporal scale.

– Regional trends and spatial patterns. The interannual
trends and spatial patterns of PM2.5 concentration on
the regional scale from 1959 to 2022 are analyzed based
on GAMM. In Canada, the trend is −0.10 µg m−3 per
decade in Canada, and the PM2.5 concentration ex-
hibits an east–high to west–low pattern. In the United
States, the trend is−0.40 µg m−3 per decade, and PM2.5
concentration decreases significantly after 1992, with a
trend of −1.39 µg m−3 per decade. The areas with high
PM2.5 concentration are in the east and west, and the ar-
eas with low PM2.5 concentration are in the central and
northern regions. In Europe, the trend is −1.55 µg m−3

per decade. High-concentration areas are distributed in
eastern Europe, while the low-concentration area is in
northern and western Europe. In China, the trend is
2.09 µg m−3 per decade. High-concentration areas are
distributed in northern China, and the low-concentration
areas are distributed in southern China and the north-
ern Tian Shan. The trend is 2.65 µg m−3 per decade
from 1959 to 2011 and −22.23 µg m−3 per decade
from 2012 to 2022. In India, the trend is 0.92 µg m−3

per decade. The concentration exhibits a north–high to
south–low pattern, with high-concentration areas dis-
tributed in northern India, such as the Ganges Plain and
Thar Desert, and the low-concentration area in the Dec-
can Plateau. The trend is 1.41 µg m−3 per decade from
1959 to 2013 and−23.36 µg m−3 per decade from 2014
to 2012. The variation of PM2.5 concentration is insepa-
rable with the implementation of pollution control laws
and regulations, the energy structure, industrialization,
population and vegetation coverage.
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