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Abstract. Accurate and timely global evapotranspiration (ET) data are crucial for agriculture, water resource
management, and drought forecasting. Although numerous satellite-based ET products are available, few offer
near-real-time data. For instance, products like NASA’s ECOsystem Spaceborne Thermal Radiometer Experi-
ment mounted on the International Space Station (ECOSTRESS) and MOD16 face challenges such as uneven
coverage and delays exceeding 1 week in data availability. In this study, we refined the Variation of the Stan-
dard Evapotranspiration Algorithm (VISEA) by fully integrating satellite-based data, e.g., European Centre for
Medium-Range Weather Forecasts ERA5-Land shortwave radiation (which includes satellite remote sensing
data within its assimilation system) and MODIS land surface data (which include surface reflectance, temper-
ature and/or emissivity, land cover, vegetation indices, and albedo as inputs). This enables VISEA to provide
near-real-time global daily ET estimates with a maximum delay of 1 week at a resolution of 0.05°. Its accuracy
was assessed globally using observation data from 149 flux towers across 12 land cover types and comparing
them with five other satellite-based ET products and Global Precipitation Climatology Centre (GPCC) data. The
results indicate that VISEA provides accurate ET estimates that are comparable to existing products, achieving
a mean correlation coefficient (R) of about 0.6 and an RMSE of 1.4 mmd−1. Furthermore, we demonstrated
VISEA’s utility in drought monitoring during a drought event in the Yangtze River basin in 2022 in which ET
changes correlated with precipitation. The near-real-time capability of VISEA is, thus, especially valuable in
meteorological and hydrological applications for coordinating drought relief efforts. The VISEA ET dataset is
available at https://doi.org/10.11888/Terre.tpdc.300782 (Huang, 2023a).
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1 Introduction

Global terrestrial evapotranspiration (ET) is a vital compo-
nent of Earth’s water cycle and energy budget. It includes
evaporation from the soil and water surfaces (some studies
also consider evaporation from the intercepted precipitation
in canopies) and plant transpiration (He et al., 2022; R. Wang
et al., 2021; Zhang et al., 2021). Accurate and timely estima-
tion of ET is essential for assessing changes in the water cy-
cle under climate change quantitatively, monitoring drought
vigilantly, and managing and allocating water resources ef-
fectively (Aschonitis et al., 2022; Han et al., 2021; Su et al.,
2020).

Near-real-time ET estimation from reanalysis data has
been widely used to assess ET changes in the global water
cycle under different climate changes (Copernicus Climate
Change Service, 2020). While these datasets, such as ERA5
(Albergel et al., 2012; Jarlan et al., 2008; Miller et al., 1992)
and CRA-40 (Liu et al., 2023; Zhao et al., 2019), offer near-
real-time latent heat flux (ET in energy units) with a delay of
just 6 d, they typically have coarser spatial resolutions, often
of 0.25° or more. This level of resolution may limit their ef-
fectiveness in detailed assessments of drought conditions and
the optimization of water resource allocation. On the other
hand, obtaining highly accurate, near-real-time, or real-time
ET measurements through local eddy covariance or lysime-
ter methods can be very valuable (Awada et al., 2022), but
collecting large-scale ET data on a fine grid using this equip-
ment is prohibitively expensive (Barrios et al., 2015; Tang et
al., 2009).

Satellite remote-sensing-based ET estimates outperform
reanalysis data by providing high spatial resolution for
detailed water utilization analysis, near-real-time data for
prompt environmental response, and global coverage for
comprehensive water cycle studies. These ET estimates rely
on direct observations, enhancing accuracy (especially where
ground data are sparse) and allowing for dynamic monitoring
of land and vegetation changes.

The selected ET products discussed below have con-
tributed significantly to estimating global ET and have gained
recognition within the scientific community. The MOD16
ET product developed by Mu et al. (2007, 2011a) utilizes a
Penman–Monteith-based approach and is driven by MODIS
land cover, albedo, fractional photosynthetically active ra-
diation, leaf area index, and daily meteorological reanal-
ysis data from NASA’s Global Modelling and Assimila-
tion Office (GMAO) to estimate ET. The Advanced Very
High Resolution Radiometer (AVHRR) ET product devel-
oped by Zhang et al. (2009, 2010) significantly advanced
the study of the global water cycle. It employed a modified
Penman–Monteith approach over land, integrated biome-
specific canopy conductance determined by the normalized
difference vegetation index (NDVI), and utilized a Priestley–

Taylor approach over water surfaces. These algorithms were
driven by the AVHRR Global Inventory Modeling and Map-
ping Studies (GIMMS) NDVI, daily surface meteorology
data from National Centers for Environmental Prediction/-
National Center for Atmospheric Research (NCEP/NCAR)
reanalysis, and solar radiation from the NASA/GEWEX Sur-
face Radiation Budget Release 3.0. The FLUXCOM frame-
work has made a substantial contribution to resolving the
evapotranspiration paradox. It utilizes machine learning to
integrate eddy covariance data from the global FLUXNET
tower network, surface meteorological data from Climatic
Research Unit (CRU) reanalysis, and remote sensing data
(Jung et al., 2009, 2010, 2019). Additionally, the Global
Land Evaporation Amsterdam Model (GLEAM), developed
by Miralles et al. (2011b) and Martens et al. (2017), is one of
the best satellite-based ET products using unique algorithmic
approaches that have advanced the estimation of global ET
and uses meteorological data from ERA5. Lastly, Penman–
Monteith–Leuning Evapotranspiration V2 (PML), developed
by Zhang et al. (2019, 2022), is the first to offer global ET
coverage at a 500 m resolution, demonstrating high accuracy
compared to local eddy covariance observations worldwide
with MODIS satellite data and Global Land Data Assimi-
lation System Version 2.1 (GLDAS-2.1) data (Zhang et al.,
2023).

However, these ET products cannot provide near-real-time
data due to reliance on local ground-based meteorology and
land surface or reanalysis models, which are time-consuming
to obtain globally. For example, MOD16 and PML use
GMAO data and GLDAS-2.1, respectively. While AVHRR
ET depends on AVHRR satellite data and NCEP/NCAR me-
teorology reanalysis data, GLEAM ET uses MODIS satellite
data and ECMWF meteorology reanalysis data. FLUXCOM
relies on FLUXNET and CRU reanalysis data, which are not
updated in real time. Recently, NASA’s ECOsystem Space-
borne Thermal Radiometer Experiment mounted on the In-
ternational Space Station (ECOSTRESS) was designed to
estimate global-scale ET (Fisher et al., 2019, 2020) thermal
infrared data at 70 m resolution every 1 to 7 d. This results
in uneven global coverage and reduced data frequency, espe-
cially in regions like the Middle East, as noted by Anderson
et al. (2021) and Jaafar et al. (2022). In contrast, the Varia-
tion of the Moderate Resolution Imaging Spectroradiometer
Standard Evapotranspiration Algorithm (VISEA) model only
uses MODIS land products and ERA5-Land shortwave radi-
ation, enabling near-real-time ET estimations.

The objective of this paper is twofold: (1) adapt the VISEA
model for near-real-time, global application by replacing
land-based solar radiation inputs with hourly shortwave ra-
diation data from the ECMWF ERA5-Land data assimila-
tion system (Muñoz Sabater, 2019) and (2) globally validate
the model using a comprehensive collection of datasets, in-
cluding meteorological instrument data and eddy covariance
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measurements from 149 FLUXNET towers (Pastorello et al.,
2020). Additionally, multiyear ET datasets from GLEAM
(Martens et al., 2017; Miralles et al., 2011), FLUXCOM
(Jung et al., 2009, 2010, 2018), AVHRR (Zhang et al., 2009,
2010), MOD16 (Mu et al., 2007, 2011a), PML (Zhang et al.,
2019, 2022), and precipitation from the Global Precipitation
Climatology Centre (GPCC) (Schneider et al., 2011) are em-
ployed in the assessment.

2 Methods

2.1 Description of the VISEA algorithm

VISEA is a modification of the standard MODIS ET algo-
rithm. The original MODIS algorithm, created by Mu et al.
(2007, 2011a), was based on the Penman–Monteith method.
VISEA introduces two significant modifications. First, it em-
ploys the vegetation (VI)–temperature (Ts) triangle method
originally developed by Nishida et al. (2003) to estimate the
air temperature. Second, VISEA incorporates hourly data on
shortwave downward radiation from the ERA5-Land dataset
to calculate daily average energy. These two advancements
enable VISEA to estimate large-scale ET without needing
local measurements as supplementary data.

This is unlike energy-budget-based ET algorithms, such
as SEBS (Surface Energy Balance System), METRIC (Map-
ping Evapotranspiration at high Resolution with Internalized
Calibration), and ALEXI (Atmosphere-Land Exchange In-
verse), which calculate ET (latent heat flux) as the residual
of the net radiation by subtracting soil heat flux and sensible
heat flux. VISEA estimates ET using the Penman–Monteith
equation, placing it in a different category of satellite-based
global ET products currently in use. VISEA is a two-source
model, which means that the ET in one grid cell was sepa-
rated as the transpiration from the full vegetation cover and
the evaporation from the bare soil surface if energy transfer
from the vegetation to the soil surface was ignored (Nishida
et al., 2003), i.e.,

ET= fvegETveg+ (1− fveg)ETsoil, (1)

where the subscript “veg” indicates the full vegetation cover
and the subscript “soil” indicates the soil exposed to solar ra-
diation (called bare soil). ETveg is the transpiration from the
full vegetation cover area (Wm−2), ETsoil is the evaporation
from bare soil (W m−2), and fveg is the portion of the area
with the vegetation cover, which can be calculated using the
NDVI (calculation details are provided in Appendix A and
Tang et al., 2009).

The available energy Q (Wm−2), which is the sum of the
latent heat flux and sensible heat flux (also known as the net
radiation minus the soil heat flux), is also separated into the
available energy for vegetation transpiration Qveg (Wm−2)
and Qsoil (Wm−2) for bare soil evaporation, which was ex-
pressed by Nishida et al. (2003) as

Q= fvegQveg+ (1− fveg)Qsoil. (2)

As satellites like Terra and Aqua only provide instanta-
neous snapshot observations of Earth, a temporal scaling
method is needed to convert instantaneous measurements
into daily ET values. Nishida et al. (2003) used the satellite-
based noontime instantaneous evaporation fraction (EF), de-
fined as the ratio of the latent heat flux (ET) to the available
energy as the daily EF (EF= ET

Q
), and multiplied the daily

Q to calculate the daily ET based on the assumption that the
EF is constant over a day:

ET= EFQ. (3)

In the next section, we will detail how VISEA calculates the
daily EF and Q in Eq. (3), daily air temperature, and daily
land surface temperature.

2.1.1 Daily evaporation fraction calculation

Combining Eqs. (1)–(3), we calculated the instantaneous
evaporation fraction EFi as

EFi
= fveg

Qi
veg

Qi EFi
veg+ (1− fveg)

Qi
soil
Qi EFi

soil. (4)

EFi
veg and EFi

soil are the instantaneous full vegetation cover-
age and bare soil EF, respectively. EFi

veg can be expressed as
a function of instantaneous parameters (Nishida et al., 2003):

EFi
veg =

α1i

1i+ γ
(
1+ r i

c veg/2r i
a veg

) , (5)

where α is the Priestley–Taylor parameter, which was set to
1.26 for wet surfaces (De Bruin, 1983). 1i is the instanta-
neous slope of the saturated vapor pressure, which is a func-
tion of the temperature (PaK−1). γ is the psychometric con-
stant (PaK−1). r i

c veg is the instantaneous surface resistance
of the vegetation canopy (sm−1). r i

a veg is the instantaneous
aerodynamics resistance of the vegetation canopy (sm−1).
EFi

soil was expressed by Nishida et al. (2003) as a function of
the instantaneous soil temperature and the available energy
based on the energy budget of the bare soil:

EFi
soil =

T i
soil max− T

i
soil

T i
soil max− T

i
a

Qi
soil 0

Qi
soil

, (6)

where T i
soil max is the instantaneous maximum possible tem-

perature at the surface reached when the land surface is dry
(K), T i

soil is the instantaneous temperature of the bare soil
(K), T i

a is the instantaneous air temperature, and Qi
soil 0 is

the instantaneous available energy for bare soil when T i
soil is

equal to T i
a (Wm−2).

As the assumption of the noontime instantaneous evapo-
ration fraction EFi equals the daily average evaporation frac-
tion, EFd (i.e., EFi

= EFd) caused a 10–30 % underestima-
tion of daily ET (Huang et al., 2017; Yang et al., 2013),
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and we introduced a decoupling parameter to covert EFi to
EFd (Huang et al., 2021; Tang et al., 2017; Tang and Li,
2017). The superscript “d” means “daily”, and the superscript
“i” means “instantaneous”. This new decoupling-parameter-
based evaporation fraction is developed from the Penman–
Monteith and McNaughton–Jarvis mathematical equations:

EFd
= EFi 1d

1d+ γ

1i
+ γ

1i
�∗ i

�∗ d
�d

�i , (7)

where � is the decoupling factor that represents the relative
contributions of radiative and aerodynamic terms to the over-
all evapotranspiration (Tang and Li, 2017), and �∗i is the
value of the decoupling factor � for wet surfaces. Follow-
ing Pereira (2004), the calculation details of � and �∗ are
presented in Appendix B.

For full vegetation-covered areas, the decoupling-
parameter-based daily EFd

veg is expressed as

EFd
veg =

α1i

1i+ γ

(
1+

r i
c veg

2r i
a veg

)
×

(
1d

1d+ γ

1i
+ γ

1i

�∗ i
veg

�∗ d
veg

�d
veg

�i
veg

)
,

(8)

where r i
c veg is the instantaneous canopy resistance (sm−1),

and r i
a veg is the instantaneous aerodynamic resistance

(sm−1). The process of determining these resistances is
presented in Appendix C. For bare soil, the decoupling-
parameter-based daily EFd

soil is calculated as

EFd
soil =

T i
soil max− T

i
soil

T i
soil max− T

i
a

Qi
soil 0

Qi
soil

×

(
1d

1d+ γ

1i
+ γ

1i

�∗ i
soil

�∗ d
soil

�d
soil

�i
soil

)
.

(9)

Thus, EFd is expressed as

EFd
= fveg

Qi
veg

Qi EFd
veg+ (1− fveg)

Qi
soil
Qi EFd

soil. (10)

The same energy balance equations are used to calculate the
instantaneous valuesQi,Qi

veg, andQi
soil and the daily values

Qd, Qd
veg, and Qd

soil, but with the parameters adjusted for
each time frame. The details of the calculation of the daily
values are outlined below.

2.1.2 Daily calculation of available energy Qd
veg and Qd

soil

We used an improved daily available energy Q (Wm−2)
method (Huang et al., 2023) for the vegetation, and the bare
soil surface is calculated using the energy balance equation:

Rn−G=Q, (11)

where Rn is the net radiation (Wm−2), which could be cal-
culated using the land surface energy balance. G is the soil
heat flux (Wm−2)G≈ 0 on a daily basis (Fritschen and Gay,
1979; Nishida et al., 2003; Tang et al., 2009):

Rd
n = (1−albedod)Rd

d−ε
d
s σT

d 4
s +(1+Cloudd)εd

aσT
d 4

a , (12)

where albedod is the daily albedo of the soil surface.Rd
d is the

daily incoming shortwave radiation (Wm−2) obtained from
the ERA5_Land shortwave radiation (called ERA5_Rd). εd

s
and εd

a are the daily emissivity of the land surface and atmo-
sphere. σ is the Stefan–Boltzmann constant. T d

a is the daily
near-surface air temperature (K). T d

s is the daily surface tem-
perature (K). The difference from the former study by Huang
et al. (2021) is that εd

s and εd
a were not made equal. Instead,

we calculated εd
a using the methods of Brutsaert (1975) and

Wang and Dickinson (2013) as detailed in Appendix D. εd
s

was retrieved from MOD11C1.
We account for the influence of clouds by assuming a lin-

ear correlation between downward longwave radiation and
cloud coverage in the calculation of downward longwave ra-
diation based on the study of Huang et al. (2023):

Cloudd
= (1−Kt ), (13)

where Cloudd is the daily clearness index and Kt is (Chang
and Zhang, 2019; Goforth et al., 2002)

Kt =
Rd

d
Rd

a
, (14)

where Rd
a is the daily extraterrestrial radiation calculated us-

ing the FAO (1998).
Qd

veg can be calculated by assuming T d
s = T

d
a according

to the VI–Ts method, which implies that the minimum land
surface temperature occurs in fully vegetated grid cells and
is equivalent to T d

a (Huang et al., 2023). According to the
land surface energy budget, the daily available energy of the
vegetation coverage area Qd

veg and the bare soil Qd
soil can be

calculated following the study of Huang et al. (2023):

Qd
veg =(1− albedod)Rd

d

+ (1+Cloudd)εd
aσT

d 4
a − ε

d
s σT

d 4
s ,

(15)

Qd
soil =(1−CG)(1− albedod)Rd

d

+ (1+Cloudd)εd
aσT

d 4
a − ε

d
s σT

d 4
s .

(16)

The daily mean air temperature T d
a can be extended by sine

and cosine functions based on the instantaneous air temper-
ature T i

a , which was calculated using the linear correlation
in the VI–Ts method. Thus, (1+Cloudd)εd

aσT
d 4

a is the daily
downward longwave radiation (Wm−2) and εd

s σT
d 4

s is the
daily upward longwave radiation (Wm−2), where CG is an
empirical coefficient ranging from 0.3 for a wet soil to 0.5
for a dry soil (Idso et al., 1975).
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Qd
veg and Qd

soil are calculated using the energy balance
equations, which are robust on both instantaneous and daily
scales. Thus, instantaneous Qi

veg and Qi
soil are calculated us-

ing the same set of Eqs. (17) and (18) by replacing the daily
parameters with the instantaneous parameters.

Following the study of Huang et al. (2023), the daily ETd

can be calculated using the daily EFd and Qd as

ETd
= EFdQd. (17)

Figure 1 illustrates the workflow of VISEA. VISEA uti-
lizes land cover data from the International Geosphere-
Biosphere Programme (IGBP) MOD12C1 land cover clas-
sification. When land cover in an IGBP MOD12C1 data
grid cell is identified as a water surface, VISEA uses the
Priestley–Taylor equation to compute water surface evapo-
ration. This process guarantees that the unique attributes of
water surfaces are precisely reflected in VISEA ET calcula-
tions.

2.1.3 The calculation of daily air temperature T d
a and

surface temperature T d
s

Daily air temperature T d
a is a critical parameter in the VISEA

algorithm and is used in calculations for downward longwave
radiation, daily aerodynamic resistance, and surface resis-
tance. The key innovation in calculating T d

a involves the VI–
Ts method to estimate the instantaneous air temperature T i

a
during the daytime (Huang et al., 2017; Nishida et al., 2003;
Tang et al., 2009).

The VI–Ts method was developed based on the empirical
linear relationship between the Ts and the VI. The surface
temperature increases when the vegetation index decreases,
and conversely the surface temperature decreases when the
vegetation index increases. In the scatterplot, defined by the
VI (horizontal axis) and Ts (vertical axis) from the neighbor-
ing 5× 5 grid cells, we identify the “warm edge” (character-
ized by a low vegetation cover fraction and a high Ts) and
the “cold edge” (characterized by a high vegetation cover
fraction and a low Ts). The warm edge is automatically se-
lected as the hypotenuse of the triangle formed by these scat-
ter points. Through simple interpolation, a Ts corresponding
to any given vegetation condition in the range of the warm
edge and cold edge can be determined. The lowest Ts can be
determined by the highest VI, and the highest Ts can be de-
termined by the lowest VI. Therefore, following Nishida et
al. (2003) and assuming that the lowest surface temperature
equals the air temperature (Ta), we can derive the daily air
temperature.

For the nighttime periods, it is assumed that air tempera-
ture is equivalent to the nighttime land surface temperature
provided by MOD11C1. These two temperature estimates
are then extended to hourly air temperature profiles using a
sine–cosine fitting curve. The 24 h average of T i

a is used as
T d

a . Similarly, T d
s is calculated using MOD11C1 land surface

temperature data for both daytime and nighttime. These es-
timates are extended to hourly surface temperature profiles
using a similar sine–cosine fitting curve, and the daily aver-
age of T d

s is determined (Huang et al., 2021).
This VI–Ts method allows for the estimation of T i

a and
T i

soil max without the need for additional meteorological data.
However, some studies have found that the VI–Ts method
may not consistently provide satisfactory results, especially
in colder regions where vegetation thrives better at higher
temperatures.

2.2 Technical validation

The correlation coefficient, RMSE, and Nash–Sutcliffe effi-
ciency are used to evaluate our global daily ET estimates with
eddy covariance measurements and compared with the other
five independent global ET products on a monthly scale.

The correlation coefficient R is calculated as

R =

∑
(X−X)(Y −Y )√∑

(X−X)2
∑

(Y −Y )2
. (18)

R is the correlation coefficient. X is the estimated variable.
X is the average of X. Y is the observed variable. Y is the
average of Y .

The RMSE is calculated as

RMSE=

√∑N
i=1(Xi −Yi)2

N
. (19)

For a more nuanced understanding of the RMSE, we have de-
constructed it into two distinct components: RMSEs (system-
atic RMSE) and RMSEu (unsystematic RMSE). This break-
down allows a more detailed examination of the systematic
and unsystematic sources contributing to the overall error
metric.

The systematic RMSEs is calculated as

RMSEs=

√∑N
i=1(Zi −Yi)2

N
. (20)

The unsystematic RMSEu is calculated as

RMSEu=

√∑N
i=1(Zi −Xi)2

N
, (21)

where Zi = a+ bYi , and a and b are the least-squares re-
gression coefficients of the estimated variable Xi and the
observed variable Yi . N is the sample size (Norman et al.,
1995).

The Nash–Sutcliffe efficiency (NSE) coefficient is

NSE= 1−
∑

(Xi −Yi)2∑
(Yi −Y )2

. (22)
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Figure 1. Schematic of the VISEA algorithm. The ovals in the top row are the databases, the square boxes are the algorithms, and the
parallelograms are the parameters. The numbers in the parentheses are the equations to determine the parameters.
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The ratio of the standard deviations of X and Y are

Ratio=
Xstandard deviation

Ystandard deviation
. (23)

The bias of X and Y is

Bias=X−Y . (24)

2.3 The gap-filling of MODIS data

MODIS sensors on board Terra and Aqua observe Earth
twice a day. However, there are always data gaps in the
MODIS land products because of cloud cover problems. In
the VISEA algorithm, we used the data from the neighbor-
ing days to fill the data gaps. The periods when MODIS land
temperature data were missing, primarily due to cloud cover,
accounted for approximately one-third of the observation pe-
riod. The accuracy of this gap-filling method is evaluated in
Sect. 4.

3 Data

3.1 The input data

The input data include the MODIS land products: daily 0.05°
surface reflectance (MOD09CMG), land surface tempera-
ture and emissivity (MOD11C1) and albedo (MCD43C3),
8 d 0.05° vegetation indices (MOD13C1), and yearly 0.05°
land cover products (MCD12C1). We also used hourly down-
ward surface solar radiation from the Fifth Generation of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis (ERA5), i.e., “ERA5-Land hourly
data from 1950 to present” data, as the energy input of
the VISEA algorithm. The surface solar radiation data from
ERA5-Land and the land data products from MODIS are
both near-real-time datasets with a 1-week delay, enabling
VISEA to provide global near-real-time ET estimations. De-
tails of the input data, their download links, the variable
names, the used parameters, and the spatial and temporal res-
olutions are given in Table 1.

3.2 The evaluation data

3.2.1 The flux tower measurements from FLUXNET

We evaluated the accuracy of the input ERA5-Land short-
wave radiation, estimated daily net radiation, air tempera-
ture, and ET by comparing them with measurements from
FLUXNET2015 (Pastorello et al., 2020). FLUXNET con-
sists of 212 globally distributed flux towers, and it has im-
plemented quality control measures for energy closure and is
considered reliable (Baldocchi et al., 2001; Pastorello et al.,
2020; Wang et al., 2022). The data from FLUXNET2015 can
be obtained at https://fluxnet.org/data/download-data (last
access: 12 May 2023). We selected data from 2001 to 2015

and excluded sites with zero ERA5-Land downward short-
wave radiation.

While there are records from 212 flux towers in our
datasets, not all met the stringent inclusion criteria. Each site
needed to fulfill three specific requirements to be included
in our analysis: (1) availability of data for the period span-
ning 2001 to 2015; (2) ERA5-Land downward shortwave ra-
diation greater than 0 within the 0.1°× 0.1° grid cell corre-
sponding to the flux tower’s location; and (3) conformity with
MODIS land cover data (MOD12C1) at the 0.05°×0.05° grid
cell level, ensuring that the flux tower was situated on land
rather than over the ocean. Based on these criteria, we se-
lected a subset of 149 flux towers that met these stringent cri-
teria. This approach ensures the reliability and relevance of
our analysis. The distribution of these 149 flux towers is pre-
sented in Fig. 2. Table S1 in the Supplement shows the lon-
gitude, latitude, elevation, and land cover type (classified by
the IGBP) of these sites. The 149 sites covered 12 IGBP land
cover types: 18 croplands (CRO), 1 closed shrubland (CSH),
15 deciduous broadleaf forests (DBF), 1 deciduous needle-
leaf forest (DNF), 10 evergreen broadleaf forests (EBF), 34
evergreen needleleaf forests (ENF), 30 grasslands (GRA), 5
mixed forests (MF), 8 open shrublands (OSH), 8 savannas
(SAV), 13 wetlands (WET), and 6 woody savannas (WSA).

3.2.2 The other gridded ET and precipitation products

Five independent globally gridded ET products and one pre-
cipitation product were used to evaluate VISEA-estimated
ET. The five ET products include two MODIS-based ET
products, i.e., MOD16 (Mu et al., 2007, 2011a) and PML
(Zhang et al., 2019, 2022), one AVHRR-based ET (Zhang et
al., 2009, 2010), one machine learning algorithm output, the
FLUXCOM ET data (Jung et al., 2009, 2010, 2018, 2019),
and one multi-satellite data-based GLEAM ET (Martens et
al., 2017; Miralles et al., 2011). The precipitation data were
from GPCC, which is based on local measurements (Becker
et al., 2013; Schneider et al., 2014, 2017) and the Global
Unified Gauge-Based Analysis of Daily Precipitation (GPC).
Details of these five ET products and the precipitation data
are given in Table 2. To maintain the consistency of the tem-
poral and spatial resolutions for comparison purposes, we
obtained the monthly MOD16 and PML despite their orig-
inal temporal resolution of 8 d. We used the 0.05°× 0.05°
version of MOD16, AVHRR ET, and PML. Additionally, for
multiyear-scale comparisons, we confined our dataset to the
time frame between 2001 and 2020. This selection enabled
us to utilize a diverse range of ET products, effectively min-
imizing the influence of temporal discrepancies on our com-
parative analysis. We also incorporated daily ET data from
GLEAM and VISEA alongside precipitation data from the
Climate Prediction Center (CPC) from 25 July to 2 August
2022. This allowed for near-real-time analysis of ET and pre-
cipitation during the Yangtze River drought incident within
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Table 1. The input of VISEA.

Data source Data name Used parameter Spatial and temporal resolutions

MODIS land product MOD11C1 Land surface temperature 0.05°/daily
MOD09CMG Surface reflectance 0.05°/daily
MCD43C3 Albedo 0.05°/daily
MOD13C1 NDVI 0.05°/16 d
MCD12C1 Land cover 0.05°/yearly

ERA5-Land hourly data Rd Downward surface solar radiation 0.1°/hourly

Figure 2. The distribution of the 149 flux towers from FLUXNET in different IGBP land cover types, specifically OW (water bodies), ENF
(evergreen needleleaf forests), EBF (evergreen broadleaf forests), DNF (deciduous needleleaf forests), DBF (deciduous broadleaf forests),
MF (mixed forests), CSH (closed shrublands), OSH (open shrublands), WSA (woody savannas), SAV (savannas), GRA (grasslands), WET
(permanent wetlands), CRO (croplands), UB (urban and built-up lands), CVM (cropland and natural vegetation mosaics), SI (snow and ice),
and BAR (barren).

that interval, despite the datasets potentially encompassing
more extensive periods.

4 Results

To evaluate the performance of ERA5_Rd across different
land cover initial categories, we juxtaposed downward solar
radiation input data from ERA5-Land (ERA5_Rd) with mea-
surements obtained from 149 flux towers (Obv_Rd) across
diverse IGBP land cover types, as illustrated in Fig. 3. The
results indicate commendable agreement between ERA5_Rd
and Obv_Rd measurements for the majority of land covers,
with notable exceptions observed in SAV. Specifically, the
mean NSE is 0.84, the mean R is 0.92, and the RMSE is
38.3 Wm−2.

Figure 3 shows that ERA5 input shortwave radiation gen-
erally agrees well with local measurements. ERA5_Rd ex-
hibits optimal performance in DNF and MF, which is re-
flected by NSE and R values surpassing 0.9. In these land
covers, the mean RMSEs is 11 Wm−2, the mean RMSEu
is 24.5 Wm−2, and the mean RMSE is 26.9 Wm−2. How-
ever, its performance in SAV is notably sub-par and charac-
terized by an NSE of 0.29, an R of 0.59, the highest RM-

SEs of 40 Wm−2, an RMSEu of 48.9 Wm−2, and an RMSE
of 63.2 Wm−2. For ERA5_Rd, the mean RMSEs amounts
to 16 Wm−2 and the mean RMSEu is 34.8 Wm−2, suggest-
ing that ERA5_Rd demonstrates high accuracy by effectively
capturing the systematic variation in Obv_Rd, as indicated
by its relatively low RMSEs and RMSEu close to the RMSE
(Willmott, 1981) in most land covers, except for SAV. Specif-
ically, in Fig. 3, the Rd is derived from ERA5 exhibits very
low P values (< 0.01).

Several factors come into play in understanding the dis-
parities in performance in ERA5_Rd across different land
cover types. In regions characterized by denser forests,
such as DNF and MF, ERA5_Rd’s good performance may
be attributed to the lower density of ground-based mete-
orology stations (DNF, N = 1096) and the relatively uni-
form subsurface and canopy coverage in MF, facilitating a
more accurate representation in the ERA5 radiative transfer
model. Conversely, savannas present unique challenges due
to their sparse vegetation and flat terrain, influencing sun-
light transmission dynamics (Yang and Friedl, 2003). Land
use changes, including farming and urban development, fur-
ther complicate the accuracy of sunlight transmission. Addi-
tionally, factors like aerosols from natural or anthropogenic
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Table 2. The five global gridded ET products and the one precipitation product used for comparison with our near-real-time global daily
terrestrial ET estimates.

Product name Spatial and temporal Time period Theory
resolution

GLEAM 0.25°/monthly 2001–2022 Priestley–Taylor equation
FLUXCOM 0.5°/monthly 2001–2016 Machine learning
MOD16 0.05°/monthly 2001–2014 Penman–Monteith equation
AVHRR 1°/monthly 2001–2006 Improved Penman–Monteith equation
PML 0.05°/8 d 2003–2018 Penman–Monteith equation and a diagnostic biophysical model
GPCC 0.25°/monthly 2001–2019 In situ observations
GPC 0.5°/daily 08/28/2022–09/01/2022 Global Unified Gauge-Based Analysis of Daily Precipitation

sources contribute to data variations (Naud et al., 2014;
Y. Wang et al., 2021). The inaccuracies in accounting for the
rainy season, leading to increased cloud cover and rainfall in
savannas, contribute to ERA5_Rd’s limitations (Jiang et al.,
2020).

We chose to utilize 0.05° MODIS data for their detailed
land surface information, daily time step, and global cover-
age, which are essential for accurate and near-real-time ET
calculations. Although ERA5 data have a coarser 0.1° res-
olution, they provide necessary atmospheric inputs that can
be effectively interpolated to match the MODIS resolution
without significant loss of accuracy. As illustrated in Figs. 3
and 4, our tests confirm that this method achieves accurate
ET despite the resolution differences.

Figure 4 depicts scatterplots illustrating the compari-
son between the estimated air temperature using the VI–
Ts method (VISEA_Ta) and local meteorological measure-
ments (Obv_Ta). The analysis reveals that VISEA_Ta gen-
erally aligns with Obv_Ta, exhibiting NSE values rang-
ing from −0.22 (MF) to 0.82 (OSH), R values ranging
from 0.44 (MF) to 0.97 (DNF), and RMSE values ranging
from 5.7 K (WSA) to 11.2 K (MF). Particularly noteworthy
is VISEA_Ta’s outstanding performance in OSH (NSE=
0.82, R = 0.93, RMSE= 6.6 K), WSA (NSE= 0.79, R =
0.92, RMSE= 5.7 K), and GRA (NSE= 0.66, R = 0.88,
RMSE= 6.8 K). Conversely, the least satisfactory perfor-
mance is evident in MF (NSE=−0.22, R = 0.44, RMSE=
11.2 K), SAV (NSE=−0.19, R = 0.57, RMSE= 6.4 K),
and CRO (NSE= 0.26, R = 0.70, RMSE= 8.1 K). The
RMSEs is lower than the RMSEu at most of the land cover
sites, except in DNF. Despite VISEA_Ta displaying a high
NSE of 0.8 and an R of 0.97 in DNF, it exhibits a higher
RMSEs (8.3 K) compared to the RMSEu (5.4 K), indicating
a systematic underestimation of VISEA_Ta in DNF.

As detailed in Sect. 2.4, the VI–Ts method relies on a neg-
ative correlation between the VI and the Ts, which is ideally
suited for cases with significant VI and Ts differences. How-
ever, the assumed negative correlation breaks down for land
cover types like DNF and MF in temperate regions with dis-
tinct seasons and cool to cold climates. In these regions, the
positive correlation between the VI and Ts, driven by vegeta-

tion growth proportional to a rising Ts, results in the failure
of the VI–Ts method. The challenges persist in SAV, where
the VI–Ts method encounters difficulties during the dry and
wet seasons. In the dry season, the method falters due to the
prevalence of bare soil, resulting in VI values approaching 0
and homogeneously high Ts values. Conversely, the wet sea-
son presents challenges, with both the VI and Ts exhibiting
relatively high values and limited variances between the grid
cells, ultimately undermining the accuracy of VISEA_Ta es-
timation.

The simulated daily net radiation (VISEA_Rn) from
VISEA is assessed against local meteorological measure-
ments (Obv_Rn) in Fig. 5. In contrast to the satisfactory
performance of ERA5_Rd in Fig. 3, VISEA_Rn exhibits
more notable discrepancies characterized by significant un-
derestimation compared to Obv_Rn. This is reflected in the
mean NSE of 0.49, mean R of 0.74, and mean RMSE of
43.3 Wm−2. Specifically, VISEA_Rn demonstrates good ac-
curacy in certain land cover types, including CHS with an
NSE of 0.67, an R of 0.84, and an RMSE of 29.7 Wm−2;
EBF with an NSE of 0.63, an R of 0.8, and an RMSE of
42.9 Wm−2; and ENF with an NSE of 0.66, anR of 0.83, and
an RMSE of 39.6 Wm−2. However, its performance notably
diminishes in OSH, where it records an NSE of 0.16, an R
of 0.61, and an RMSE of 56 Wm−2, as well as in SAV, with
an NSE of 0.21, an R of 0.52, and an RMSE of 44.2 Wm−2.
While VISEA_Rn appears to have lower accuracy compared
to ERA5_Rd, in the majority of the land cover types, the
RMSEs is smaller than the RMSEu, with a mean RMSEs of
25.2 Wm−2 and a mean RMSEu of 34.3 Wm−2. Moreover,
the RMSEu of 43.3 Wm−2 is almost the same as the RMSE.

In the context of VISEA_Rn, a consistent pattern of ap-
proximately 30 % underestimation of net radiation across
various land cover types raises noteworthy discussions. This
systematic discrepancy could be linked to the disparity in
vegetation coverage between the observed sites’ footprint
and the mean vegetation coverage of the 0.05°× 0.05° grid
cell. Specifically, the lower albedo within the footprint, com-
pared to the grid cell’s average albedo (as expressed by
Eq. 14), contributes to the underestimation of Obv_Rn. This
is particularly evident in OSH, where the vegetation cover-
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Figure 3. The scatterplot of downward solar radiation from ERA5-Land (ERA5_Rd) compared with local instrument measurements
(Obv_Rd) in 12 IGBP land cover types: CRO, CSH, DBF, DNF, EBF, ENF, GRA, MF, OSH, SAV, WSA, and WET. The red dotted line
is the 1 : 1 line. N is the number of data points, NSE is the Nash–Sutcliffe efficiency, R is the correlation coefficient, RMSE is the root
mean square error, RMSEs is the systematic RMSE, and RMSEu is the unsystematic RMSE. The frequency denotes the probability density
estimated using the kernel density estimation (KDE) method with a Gaussian kernel, and it is then scaled to ensure that the maximum value
of the probability density function equals 1. P is the P value for the correlation coefficient.

age within the footprint significantly exceeds the mean veg-
etation coverage of the grid cell (< 0.2 compared to > 0.5).
Factors such as the bias in ERA5_Rd (refer to Fig. 3j) and
VISEA_Ta (refer to Fig. 4j) contribute to the underestima-
tion of VISEA_Rn in SAV. Moreover, a substantial 50 % un-
derestimation of the DNF results from the underestimated
VISEA_Ta (refer to Fig. 4d) leads to a subsequent underesti-
mation of downward longwave radiation.

Figure 6 illustrates scatterplots of daily ET simulated
by VISEA (VISEA_ET) against eddy covariance measure-
ments obtained from 149 flux tower sites (Obv_ET) in 12
IGBP land cover types. The scatterplots of VISEA_ET re-
veal a dispersed distribution, as evidenced by an average
NSE of −0.08, an average R of 0.56, and an average RMSE
of 1.4 mmd−1. Notably, VISEA_ET tends to underestimate
daily ET across most of the land cover types. Of the 12
land cover types, VISEA_ET exhibits the highest accuracy
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Figure 4. The scatterplot of daily air temperature simulated by VISEA (VISEA_Ta) compared with local instrument measurements (Obv_Ta)
in 12 IGBP land cover types: CRO, CSH, DBF, DNF, EBF, ENF, GRA, MF, OSH, SAV, WSA, and WET. The red dotted line is the 1 : 1 line.
N is the number of data points, NSE is the Nash–Sutcliffe efficiency, R is the correlation coefficient, RMSE is the root mean square error,
RMSEs is the systematic RMSE, and RMSEu is the unsystematic RMSE. The frequency denotes the probability density estimated using the
KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value of the probability density function equals 1.

in DNF, with an NSE of 0.4, an R of 0.82, and an RMSE
of 0.9 mmd−1. This was closely followed by GRA, with
an NSE value of 0.26, an R value of 0.65, and an RMSE
value of 1.3 mmd−1. However, for the CRO, ENF, and WET
land cover types, the NSE values, while above 0, are close
to 0 (mean NSE of 0.11), with a mean R of 0.53 and a
mean RMSE of 1.3 mmd−1. In the remaining land cover
types, particularly in OSH and SAV, VISEA_ET appears
to struggle when aligning with local measurements, result-
ing in NSE values of −0.57 and −0.51, R values of 0.31

and 0.36, and RMSE values of 1.2 and 1.7 mmd−1, respec-
tively. With the evaluation of daily VISEA_ET with ob-
served ET (Obv_ET) in CRO and WET, the bias mainly
comes from the bias in ERA5_Rd (the third highest RMSE of
45.2 Wm−2 and the second highest RMSE of 59.4 Wm−2)
(Fig. 3a and l). In ENF, the biases are primarily caused by
the inability of VISEA_ET to capture Obv_ET in a cold cli-
mate, with low net radiation estimation (Fig. 5f) and air tem-
perature (Fig. 4f). For OSH, the bias mainly arises from the
poor estimation of VISEA_Rn, which has the lowest NSE
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Figure 5. The scatterplot of daily net radiation simulated by VISEA (VISEA_Rn) compared with local instrument measurements (Obv_Rn)
in 12 IGBP land cover types: CRO, CSH, DBF, DNF, EBF, ENF, GRA, MF, OSH, SAV, WSA, and WET. The red dotted line is the 1 : 1 line.
N is the number of data points, NSE is the Nash–Sutcliffe efficiency, R is the correlation coefficient, RMSE is the root mean square error,
RMSEs is the systematic RMSE, and RMSEu is the unsystematic RMSE. The frequency denotes the probability density estimated using the
KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value of the probability density function equals 1.

of 0.16 and the highest RMSE of 56 Wm−2 (Fig. 5i). The
bias of VISEA_ET in SAV is a result of the combined bi-
ases in ERA5_Rd (the lowest NSE and R values of 0.29 and
0.59, respectively, and the highest RMSE of 63.2 Wm−2) and
VISEA_Ta (the second lowest NSE and R values of −0.19
and 0.57, respectively).

The periods when MODIS land temperature data were
missing, primarily due to cloud cover, accounted for approx-
imately one-third of the observation period. Using the gap-
filling method (Sect. 2.3), it can be observed that, for most

surfaces, the accuracy of VISEA was not significantly af-
fected by clouds, as evidenced by the figures below. The ac-
curacy on cloudy days is slightly lower for some surfaces
compared to clear days. For example, in the case of DBF,
the correlation coefficient R is 0.52 on both clear and cloudy
days and the RMSE is 1.4 mmd−1 on both clear and cloudy
days, indicating a slight decrease in accuracy under cloudy
conditions. Similarly, for ENF, the R value is 0.59 on clear
days and 0.56 on cloudy days. At the same time, the RMSE
is 1.3 mmd−1 on clear days and 1.4 mmd−1 on cloudy days,
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Figure 6. The scatterplot of daily ET simulated by VISEA (VISEA_ET) compared with local instrument measurements (Obv_ET) in 12
IGBP land cover types: CRO, CSH, DBF, DNF, EBF, ENF, GRA, MF, OSH, SAV, WSA, and WET. The red dotted line is the 1 : 1 line. N is
the number of data points, NSE is the Nash–Sutcliffe efficiency, R is the correlation coefficient, RMSE is the root mean square error, RMSEs
is the systematic RMSE, and RMSEu is the unsystematic RMSE. The frequency denotes the probability density estimated using the KDE
method with a Gaussian kernel, and it is then scaled to ensure that the maximum value of the probability density function equals 1.

showing that, although there is some impact, the overall per-
formance of VISEA remains robust across different weather
conditions (Figs. S4 and S5 in the Supplement).

We also tested the VISEA sensitivity to different radiation
input data by comparing results obtained using the CERES
and ERA5 datasets. Specifically, we analyzed the perfor-
mance of the VISEA model in simulating net radiation (Rn)
and ET, comparing these simulations with ground-based ob-
servational data. Figures S1 and S2 in the Supplement com-

pare the downward shortwave radiation data from CERES
and ERA5 with ground-based observations of the 149 flux
towers. The CERES shortwave radiation data generally agree
with the observational data, with a mean R of 0.89, a mean
RMSE of 34.8 Wm2, and a mean NSE of 0.78. In contrast,
the ERA5 shortwave radiation data have a mean R of 0.85, a
mean RMSE of 40.4 Wm2, and a mean NSE of 0.58 when
compared with the ground-based observations, indicating
systematic bias and lower precision for the ERA5 net radi-
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ation compared with CERES. Figures S2 and S5 in the Sup-
plement compare the net radiation of the flux towers with that
calculated using the VISEA model with shortwave radiation
of CERES and ERA5 as input data. For the CERES data, the
mean R is 0.74, the mean RMSE is 34.3 Wm2, and the mean
NSE is 0.64. The ERA5 data yield a mean R of 0.64, a mean
RMSE of 39.44 W m2, and a mean NSE of 0.44. Finally, the
ET calculated with VISEA using the net radiation of CERES
and ERA5 as input is compared with ground-based data in
Figs. S3 and S6 in the Supplement. Again, CERES outper-
forms ERA5, as indicated by the statistical measures. The
sensitivity analysis reveals that the VISEA model’s perfor-
mance depends greatly on the quality of the incident radia-
tion data used as input. The model shows better accuracy and
consistency with CERES data than with ERA5 data. There-
fore, selecting high-precision radiation data is crucial for im-
proving the accuracy and reliability of VISEA model simu-
lations.

In Fig. 7, we utilized Taylor diagrams (Taylor, 2001) to
evaluate the performances of six global gridded monthly
ET products with simulated ET from VISEA (panel a),
GLEAM (panel b), FLUXCOM (panel c), AVHRR (panel
d), MOD16 (panel e), and PML (panel f). Table 3 lists the
statistical metrics, i.e., the correlation coefficient (CC), bias,
RMSE, RMSEu, RMSEs, and NSE across the different veg-
etation types and their mean values. The vegetation types are
CRO, CSH, DBF, DNF, EBF, ENF, GRA, MF, OSH, SAV,
WSA, WET, and the overall mean (MEAN).

VISEA, with a mean CC of 0.69, indicates moderate cor-
relation across vegetation types but suffers from significant
biases, notably in WET, with a mean bias of −9.56 mm
per month. It also has the highest mean RMSE of 31.6 mm
per month and a mean NSE of 0.25. MOD16 demonstrates
a slightly better correlation, with a mean CC of 0.72, and
presents less variation in bias, resulting in a marginally lower
mean RMSE of 28.7 mm per month and a higher mean NSE
of 0.36. AVHRR matches VISEA with a mean CC at 0.69 but
exhibits extreme biases, particularly in SAV, and achieves a
comparable mean RMSE of 26.3 mm per month. However,
its mean NSE of 0.10 is the lowest of the six products, sug-
gesting that its predictions are less reliable.

On the other hand, GLEAM, FLUXCOM, and PML show
better agreement. GLEAM has a high mean CC of 0.69 with
the lowest bias of−0.82 mm per month, indicating consistent
performance with a mean RMSE of 29.6 mm per month and a
mean NSE of 0.31. FLUXCOM exhibits a higher mean CC of
0.76, suggesting better overall correlation, but with a higher
mean bias of 6.2 mm per month it hints at a tendency towards
overestimation. The mean RMSE is 30.0 mm per month, with
a mean NSE of 0.22. PML outperforms the others, with the
highest mean CC of 0.75 and the highest mean NSE of 0.49,
indicating the strongest predictive accuracy. It also has the
lowest mean RMSE of 26.0 mm per month.

Figure 8 illustrates the spatial distribution of the multi-
year average (panels a–g), the zonal mean (panel h), and

the interannual variation (panel i) of (panel a) GPCC (2001–
2019), (panel b) VISEA (2001–2020), (panel c) GLEAM
(2001–2020), (panel d) FLUXCOM (2001–2016), (panel
e) AVHRR (2001–2006), (panel f) MOD16 (2001–2014),
and (panel g) PML (2003–2018).

The VISEA ET product demonstrates consistent spatial
distribution patterns among the six ET products across vari-
ous years in terms of annual means (panels a–g) and latitudi-
nal zonal means (panel h). These patterns closely align with
the precipitation distribution data from GPCC. Furthermore,
VISEA ET exhibits similar spatial distributions compared to
other ET products, particularly in the extremes of the distri-
bution below the 5th percentile and above the 95th percentile
(Figs. S6 and S7 in the Supplement). The highest ET values,
approximately 1500 mmyr−1, are predominantly in equa-
torial low-latitude regions with correspondingly high pre-
cipitation levels of approximately 2500 mmyr−1. These re-
gions include South America (Amazon basin), central Africa
(Congo basin), and Southeast Asia (encompassing Indone-
sia, Malaysia, parts of Thailand, and the Philippines), which
have tropical rainforest climates. Remote sensing data sup-
port the ET estimates and align with findings from previous
studies, such as Chen et al. (2021) and Zhang et al. (2019),
who reported that the multiyear average annual ET is nearly
1500 and the precipitation is approximately 2500 mmyr−1.
Also, Panagos et al. (2017) report similar multiyear average
annual ET and precipitation rates.

In this analysis, barren (BAR) landscapes such as the Sa-
haran, Arabian, Gobi, and Kalahari deserts; large areas of
Australia; and snow and ice (SI) regions including signifi-
cant parts of Canada, Russia, and the Qinghai–Tibet Plateau
in China are characterized by notably low ET. These regions
typically experience less than 400 mmyr−1 of annual ET, in
parallel with minimal yearly precipitation ranging from 200
to 400 mmyr−1, according to GPCC data. Comparative ET
rates for other land cover types generally range from 400
to 1400 mmyr−1, closely following the GPCC precipitation
amounts from 600 to 1600 mmyr−1.

In regions experiencing moisture-limited ET, the scarcity
of available water is the primary constraint. Conversely, in ar-
eas where sufficient water is available, ET is energy-limited,
and factors such as cloud cover or shading restrict the ab-
sorption of solar radiation, affecting the evapotranspiration
rate. Figure 8i illustrates interannual monthly variations over
the past 2 decades. It shows how VISEA and other satellite-
based ET products, alongside GPCC precipitation data, cap-
ture the rhythmic patterns of ET. These data reveal distinctive
seasonal fluctuations and highlight the significant interan-
nual climate variability. Of these products, FLUXCOM con-
sistently shows ET values of 10–20 mm per month higher
than those of other ET products. GLEAM and MOD16 ex-
hibit similar ET estimations closely mirroring each other,
as do PML and VISEA. Notably, after 2007, both GLEAM
and MOD16 reported higher ET estimations than PML and
VISEA in November, December, January, and February. For
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Figure 7. Taylor diagrams comparing monthly measurements of (a) VISEA, GLEAM (b), FLUXCOM (c), AVHRR (d), MOD16 (e), and
PML (f) with 150 flux towers (labeled “Obv”) in different IGBP land cover types. The diagrams display the normalized standard deviation
(represented by red circles), the correlation coefficient (shown as green lines), and the centered root mean square (depicted as blue circles).

the same months, PML consistently records lower ET esti-
mations than VISEA.

Analysis across the datasets reveals how ET estimates re-
spond to extreme climate events, providing insights into the
variability and resilience of these models. For instance, dur-
ing the 2011–2012 drought in the Horn of Africa – one of
the most severe droughts in recent decades – both ET es-

timations and GPCC precipitation data showed significant
decreases. Similarly, the prolonged California drought from
2012 to 2016 also saw a considerable decrease in ET val-
ues, aligning with the reduced precipitation levels captured
by GPCC.

Regarding the interannual monthly variations, panel (i)
shows the fluctuations in ET across different years for the
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Table 3. Statistical variables of six ET products – CC (correlation coefficient), ratio (the ratio of the standard deviations of simulated ET and
flux tower measurements), bias, RMSE, RMSEu, RMSEs, and NSE.

CRO CSH DBF DNF EBF ENF GRA MF OSH SAV WSA WET MEAN

VISEA CC 0.57 0.89 0.67 0.95 0.74 0.71 0.72 0.79 0.39 0.55 0.6 0.66 0.69
Ratio 0.77 1.27 0.99 0.76 1.29 1.02 0.8 1.27 1.06 0.7 0.78 0.63 0.95
Bias −14.16 −1.27 3.9 −19.06 1.37 −11.15 −13.47 1.53 −6.83 −0.45 −23.14 −31.98 −9.56
RMSE 39.4 12.5 34 22.1 30.4 29.3 32 23.3 30.4 32.5 41.2 51.6 31.56
RMSEu 27.4 12.1 30.7 7.4 30.4 25.3 23.1 23.2 25.4 22.5 25.8 25.4 23.23
RMSEs 28.3 3.1 14.5 20.8 2.2 14.7 22.2 1.5 16.8 23.5 32.1 44.9 18.72
NSE 0.18 0.64 0.34 0.45 0.24 0.3 0.41 0.38 −0.36 0.28 0.01 0.08 0.25

GLEAM CC 0.56 0.94 0.61 0.89 0.81 0.67 0.71 0.81 0.51 0.53 0.57 0.67 0.69
Ratio 0.7 1.28 0.79 0.82 0.99 1.1 0.78 1.04 1.12 0.96 0.95 0.56 0.92
Bias −6.13 12.52 5.8 −5.04 5.42 4.37 −1.16 10.51 5.62 −7.1 −16.73 −17.91 −0.82
RMSE 37.2 15.4 34.2 14.7 21.8 30.3 29.6 21.4 28.6 37.1 40.9 44.4 29.63
RMSEu 25.3 8 25.9 11.2 20.1 28.5 22.8 18 25.5 31.2 32.1 22.5 22.59
RMSEs 27.2 13.1 22.3 9.4 8.6 10.3 18.8 11.5 12.8 20 25.3 38.3 18.13
NSE 0.27 0.35 0.33 0.75 0.61 0.25 0.5 0.47 −0.17 0.06 0.02 0.32 0.31

FLUXCOM CC 0.66 0.98 0.69 0.95 0.79 0.77 0.75 0.83 0.78 0.59 0.65 0.69 0.76
Ratio 0.94 1.76 0.96 1.04 1.12 1.18 0.97 1.42 0.97 1.04 1.08 0.62 1.09
Bias 7.22 23.49 17.57 −2.26 6.29 7.08 6.91 21.02 10.04 0.74 −9.75 −14.04 6.19
RMSE 35.8 27.9 36.7 9.9 25.2 27.7 30 31.9 19.8 35.5 37.8 41.7 29.99
RMSEu 31 5.8 28.9 9.7 24.1 26.6 26.8 23.5 15.8 32.3 34.3 24.2 23.58
RMSEs 18 27.3 22.6 2.3 7.5 7.8 13.4 21.6 11.9 14.8 15.8 33.9 16.41
NSE 0.32 −1.14 0.23 0.88 0.48 0.38 0.48 −0.17 0.43 0.14 0.17 0.4 0.22

AVHRR CC 0.8 0 0.8 0 0.76 0.67 0.58 0.79 0.69 0.32 0.7 0.79 0.58
Ratio 0.91 0 0.87 0 0.87 1.14 0.83 0.9 0.89 0.3 0.95 0.43 0.67
Bias −1.15 0 5.96 0 5.24 −1.72 −7.04 0.16 −2.41 −47.83 −0.42 −25.32 −6.21
RMSE 23.6 0 26.1 0 23.3 31.1 36 18.8 22.1 54.7 33.2 46.6 26.29
RMSEu 21.2 0 22 0 19.5 29.9 27.9 16.6 18.8 8 29.8 14.6 17.36
RMSEs 10.4 0 14.1 0 12.7 8.5 22.7 8.7 11.6 54.2 14.6 44.2 16.81
NSE 0.63 0 0.61 0 0.54 0.22 0.24 0.62 0.43 −2.79 0.42 0.29 0.10

MOD16 CC 0.57 0.94 0.71 0.95 0.82 0.73 0.71 0.81 0.67 0.53 0.59 0.65 0.72
Ratio 0.64 1.26 0.77 0.8 1.11 0.81 0.74 1.09 0.66 1 1 0.46 0.86
Bias −7.88 14.03 5.79 −4.07 7.17 −4.34 −5.05 4.09 −6.41 −16.01 −23.76 −21.07 −4.79
RMSE 36.9 16.7 30.7 11.1 23.4 24.6 29.6 19.4 20.4 40.4 44.3 47.2 28.73
RMSEu 23 8.4 23 7.4 22 19.5 21.7 18.7 12.8 32.4 33.3 18.8 20.08
RMSEs 28.8 14.4 20.3 8.2 7.8 15 20.2 5.2 15.9 24.2 29.1 43.3 19.37
NSE 0.28 0.24 0.48 0.87 0.55 0.51 0.5 0.57 0.39 −0.12 −0.14 0.23 0.36

PML CC 0.68 0.99 0.68 0.93 0.8 0.79 0.68 0.77 0.7 0.57 0.61 0.82 0.75
Ratio 0.8 1.04 0.81 1.22 0.98 0.97 0.79 0.96 1.01 0.94 0.83 0.56 0.91
Bias −6.6 −3 3.39 0.47 −1.42 −5.43 −6.66 −0.59 6.48 −0.18 −16.04 −22.1 −4.31
RMSE 33.2 4.1 31.5 13.3 21.9 23 31.7 19.8 21.1 34.5 37.5 40.5 26.01
RMSEu 25.6 2.8 25.1 12.7 20.5 20.8 24.1 18.2 18.6 29.5 27.1 17.3 20.19
RMSEs 21.1 3.1 19 3.9 7.8 9.6 20.6 7.7 9.9 17.8 26 36.6 15.26
NSE 0.42 0.95 0.44 0.79 0.61 0.57 0.43 0.55 0.33 0.19 0.16 0.43 0.49

analyzed ET products and precipitation data. The graph re-
veals a rhythmic pattern of ET across the years. VISEA and
other ET products showed distinctive peaks and troughs cor-
responding to seasonal changes and interannual climate vari-
ability. The ET products’ data align closely with the precipi-
tation patterns reported by GPCC, highlighting the intercon-
nectedness between ET and precipitation as climatic vari-
ables. Notably, FLUXCOM consistently presents higher ET
estimations than the other products. GLEAM’s ET estima-
tions are also slightly higher during the winter, indicating a
trend of systematic overestimation in these products relative
to the others in the dataset.

Figure 9 presents the daily ET from VISEA and GLEAM,
alongside precipitation data from GPCC across the Yangtze
River basin, from 26 August to 2 September 2022. During
this period, a significant drought was observed in the region,
which began in July and showed signs of abating by late Au-
gust and early September, according to Zhang et al. (2023).
VISEA ET illustrates the evolving drought conditions, with
notably low ET levels (below 1 mmd−1) across the basin
from 26 to 28 August, as shown in panels (a–c). A marked
increase in precipitation on 29 August evident in panels (s)
and (u) correlates with an uptick in ET values (surpassing
1 mmd−1) throughout the basin as visualized in panels (d–f).
Although GLEAM generally captures the fluctuations in ET
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Figure 8. The spatial distribution of the multiyear average (a–g), the zonal mean (h), and the interannual variation (i) of (a) GPCC precipita-
tion (2001–2019), (b) VISEA (2001–2020), (c) GLEAM (2001–2020), (d) FLUXCOM (2001–2016), (e) AVHRR (2001–2006), (f) MOD16
(2001–2014), and (g) PML (2003–2018) ET data.

– both decreases and increases – during this period, it con-
sistently reports much higher ET values than VISEA. The
panel (y) graph in Fig. 9 shows the precipitation and ET cal-
culated using VISAE and GLEAM after 11 mm rainfall on
29 August. The VISEA ET increased and decreased, which
is expected because ET and soil moisture are positively cor-
related. GLEAM does not follow the expected pattern shown
in panel (y). This comprehensive analysis highlights the in-
terdependence of precipitation and ET and underscores the
importance of considering soil moisture dynamics to fully
understand the hydrological processes in the Yangtze River
basin during extreme weather events.

Beyond precipitation, soil moisture is a critical regulator
of ET, particularly during droughts and their recovery phases.
Acting as a buffer, soil moisture tempers ET rates during dry
periods and amplifies them after rainfall, as noted in late Au-
gust. This buffering capacity results in a delay between pre-
cipitation events and subsequent ET changes, which is key to
understanding drought recovery dynamics. VISEA’s data ac-
curately reflect these variations in precipitation, demonstrat-
ing their effectiveness in tracking daily ET fluctuations and
their reliability for near-real-time monitoring of ET during
hydrological extremes.
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Figure 9. Daily ET from VISEA (a–h), GLEAM (i–p), and CPC precipitation (q–x) distributions from 26 August to 2 September 2022,
alongside daily mean ET and precipitation variances in the Yangtze River basin (y) during the same period.
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5 Discussion

While global ET products (GLEAM, FLUXCOM, AVHRR,
MOD16, and PML ET) require at least 2 weeks to gen-
erate global actual ET estimation, we developed VISEA,
a satellite-based algorithm which is capable of generating
near-real-time evapotranspiration at a daily time step with
a resolution of 0.05°. To assess its accuracy, we compared
the calculated ET with data from 149 flux towers around the
world in various land use types.

Scale mismatch is a problem for many satellite-based ET
products. The footprints of these flux towers typically range
from 100 to 200 m, while the VISEA model outputs gridded
cells at a resolution of 0.05°× 0.05° (nearly 25 km2). This
discrepancy introduces errors, especially since flux towers
require a uniform fetch, which may not represent the larger
gridded cell (Sun et al., 2023). To enhance the validity of our
assessments, we assessed monthly values and spatial patterns
of our ET measurements with five other satellite-based ET
products, i.e., MOD16, AVHRR, GLEAM, FLUXCOM, and
PML (Figs. 7 and 8).

The VISEA model uses gridded ERA5-Land shortwave
downward radiation as its energy input. Utilizing this input,
along with MODIS land surface products, VISEA calculates
gridded daily air temperature and net radiation. These two
important intermediate variables are essential for estimating
daily ET. The calculated ET generally matches local mea-
surements and other model-calculated values well, but we
found significant biases (Figs. 6 and 7). These biases largely
arise from inaccuracies in the input ERA5-Land shortwave
radiation (Fig. 3), improper application of the VI–Ts method
(Fig. 4), and uncertainties in daily net radiation (Fig. 5).
Next, we look further into the causes of the biases.

Incoming shortwave radiation from ERA5-Land is em-
ployed to derive the available energy for vegetation coverage
and bare soil (Eqs. 15 and 16), which are the main param-
eters for calculating daily ET (Eq. 17), while ERA5-Land
is widely utilized as a reanalysis dataset, offering near-real-
time land variables by integrating model data with global ob-
servations based on physical laws. However, the accuracy of
shortwave radiation from ERA5-Land seems compromised
in savannas (Fig. 3) due to the challenges associated with
simulating radiation transmission under land use changes
and aerosol pollution from natural or anthropogenic sources
(Babar et al., 2019; Martens et al., 2020).

Air temperature is an important parameter in determin-
ing the daily evaporation fraction of bare soil (Appendix B),
canopy surface resistance, aerodynamic resistance of the bare
soil (Appendix C), atmospheric emissivity (Appendix D),
and available energy for vegetation coverage and bare soil.
Since air temperature is not measured directly by satellites,
many other ET products use ground observations, land mod-
els, or reanalysis data. In contrast, VISEA derives the air tem-
perature from the negative linear relationship between the VI
and Ts using the VI–Ts method (Sect. 2.1.3). It gives very

good results in the grassland, open shrubland, and woody sa-
vanna land cover types, as shown in Fig. 4. As previously
explained, the VI–Ts method relies on the negative linear cor-
relation between the VI and Ts within a 5× 5 grid window.
Therefore, the variance of VI values across these grid cells
and the strength of their negative correlation are crucial for
accurately calculating air temperature (Nishida et al., 2003).
However, the VI–Ts method is less effective in regions like
dense forests, bare landscapes, and deserts, where the vege-
tation index and temperature data vary little across the 5× 5
grid window. Also, in regions with freezing temperatures, the
VI–TS method does not perform well because warmer tem-
perature is related to increased vegetation, which is the op-
posite of warmer areas, where there is a positive correlation
between the vegetation index and surface temperature (Cui
et al., 2021).

Other bias sources of the VISEA model are the uncer-
tainties in daily net radiation, notably originating from input
downward shortwave radiation from ERA5-Land- (Fig. 2)
and VI–Ts-estimated air temperatures (Fig. 4). The energy
budget equation (Eq. 14) and these two figures indicate that
net radiation shows more uncertainties than shortwave radia-
tion and air temperature. At the same time, assuming a linear
relationship between cloud coverage (Eqs. 15 and 16) and
calculating downward longwave radiation (Eqs. 17 and 18)
may be an oversimplification that could introduce uncertain-
ties. Since available energy for ET depends on net radiation
(Eq. 14), addressing these uncertainties is crucial for enhanc-
ing overall model accuracy (Huang et al., 2023). Future re-
finements will contribute to a more precise daily net radiation
estimation in the VISEA model.

The VISEA model calculates ET primarily based on veg-
etation coverage, utilizing it as an indirect constraint to
estimate evapotranspiration. However, this model does not
directly incorporate variables related to water availability,
which is a critical factor in ET processes. In tropical re-
gions, where solar radiation is abundant (available energy),
the model tends to overestimate ET due to its emphasis on
vegetation coverage without adequately accounting for the
actual water available for evapotranspiration. This method-
ology, while effectively capturing the effect of vegetation on
ET under varied conditions, can lead to overestimations in
areas where energy availability significantly exceeds water
availability, which is typical of many tropical regions. Our
analysis and subsequent discussion aim to highlight this char-
acteristic of the VISEA model, acknowledging its implica-
tions for ET estimations in such energy-rich, water-variable
environments.

While the VISEA model provides ET globally, its best
ET is between 60° N and 90° S, as evidenced by an NSE of
0.4 and a correlation coefficient (R) of 0.9 in Fig. 6. The
VISEA model tends to underestimate ET in colder regions
within the 60° N to 90° S latitude range, such as the west-
ern territories of Canada. This underestimation is primarily
due to the model’s inability to incorporate evaporation from
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frozen surfaces into its ET calculations. These discrepancies
arise from several factors: inaccuracies in the ERA5-Land
shortwave radiation data (illustrated in Fig. 3), the misappli-
cation of the VI–Ts method (explained in Fig. 4), and the
uncertainties in daily net radiation (depicted in Fig. 5). De-
signed to amalgamate bare soil and full vegetation coverage,
as shown in Eq. (1), the VISEA model encounters difficulties
in accurately estimating ET at higher latitudes, especially un-
der conditions of reduced solar radiation. These challenges
are predominantly linked to the uncertainties associated with
ERA5-Land shortwave radiation data and are further com-
pounded by increased cloudiness levels in these regions, as
highlighted by Babar et al. (2019). Such uncertainties sub-
stantially impact the model’s performance at higher latitudes,
affecting its reliability under these conditions. Nevertheless,
VISEA’s ET estimates compare favorably with other ET data
products in cold regions above 60° N, as indicated by the lat-
itudinal zonal mean comparison in Fig. 8.

The accuracy of the VISEA model could be enhanced
by incorporating additional satellite and climate data with
higher resolution and improved accuracy. Moreover, the de-
lay in providing ET data could be reduced to 3 d or less by
integrating real-time updated satellite and climate data. We
propose developing alternative methods for estimating air
temperature and net radiation to enhance accuracy. Addition-
ally, incorporating variables such as soil moisture and water
availability into the model could further refine its precision.
These improvements provide a roadmap for future research,
aiming to significantly enhance satellite-based near-real-time
ET modeling.

6 Data availability

The VISEA ET data can be obtained from
https://doi.org/10.11888/Terre.tpdc.300782 (Huang, 2023a).
We are committed to continuously updating this dataset,
ensuring that the latest ET data will be made available
consistently and promptly.

6.1 Input data

MOD11C1 can be obtained at https://e4ftl01.cr.usgs.gov/
MOLT/MOD11C1.061/ (USGS, 2023a). MOD09CMG
can be obtained at https://e4ftl01.cr.usgs.gov/MOLT/
MOD09CMG.061/ (USGS, 2023b). MCD43C3 can be ob-
tained at https://e4ftl01.cr.usgs.gov/MOTA/MCD43C3.061/
(USGS, 2023c). MOD13C1 can be obtained at
https://e4ftl01.cr.usgs.gov/MOLT/MOD13C1.061/
(USGS, 2023d). MCD12C1 can be obtained at
https://e4ftl01.cr.usgs.gov/MOLT/MOD21C1.061/ (USGS,
2023e). ERA5-Land shortwave radiation data can be ob-
tained at https://doi.org/10.24381/cds.e2161bac (Muñoz
Sabater, 2019).

6.2 Evaluation data

FLUXNET2015 flux tower data (FLUXNET2015:
CC-BY-4.0 33) can be obtained at https://fluxnet.
org/data/download-data/ (last access: 12 May 2023).
The GLEAM 3.8a ET dataset was obtained from
https://www.gleam.eu/#downloads (last access: 12 May
2023) (an email is required to receive a password for
the Secure File Transfer Protocol (SFTP). The FLUX-
COM ET dataset is freely available (CC-BY-4.0 Li-
cense) from the https://www.fluxcom.org/EF-Download/
(last access: 12 May 2023) data portal (an email is
required to receive a password for the File Transfer
Protocol (FTP). The MOD16 ET with a resolution
of 0.05° was freely downloaded from http://files.ntsg.
umt.edu/data/NTSG_Products/MOD16/MOD16A2_
MONTHLY.MERRA_GMAO_1kmALB/Previous/ (Mu
et al., 2011b). Additionally, the AVHRR ET dataset with
1° was sourced from http://files.ntsg.umt.edu/data/ET_
global_monthly/Global_1DegResolution/ASCIIFormat/
(Zhang and Kimball, 2010). Lastly, the PML ET dataset
was obtained from https://data.tpdc.ac.cn/zh-hans/data/
48c16a8d-d307-4973-abab-972e9449627c (Zhang et al.,
2020).

The precipitation from the GPCC data was obtained
at https://doi.org/10.24381/cds.11dedf0c (Copernicus Cli-
mate Change Service, 2021). The precipitation from GPC
was obtained at https://downloads.psl.noaa.gov/Datasets/
cpc_global_precip/precip.2022.nc (NOAA, 2022).

Other data that support the analysis and conclusions of this
work are available at https://doi.org/10.6084/m9.figshare.
24669306.v1 (Huang, 2023b).

7 Code availability

Python code to synthesize the results and to generate the
figures from VISEA results and codes for the global ET
products can be obtained through the public repository
at https://doi.org/10.6084/m9.figshare.24647721.v1 (Huang,
2023c). The VISEA code to calculate daily ET is written in C
and can be executed on Windows 10 using an Intel(R) Core
(TM) i7-8565U CPU @ 1.80 GHz, 1.99 GHz, 16.0 GB RAM
with Visual Studio 2019 or compatible platforms. Addition-
ally, it can be run on high-performance-computing servers
equipped with an Intel(R) Xeon(R) CPU E5-2680 in a Cen-
tOS environment. The system is scalable, supporting config-
urations ranging from 20 nodes and 656 CPUs down to fewer
nodes and CPUs as required.

8 Conclusion

Several satellite-based ET products have been developed, but
few estimate near-real-time global terrestrial ET. We have
developed VISEA ET, which only uses satellite-based in-
put data and can provide near-real-time global daily terres-
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trial ET estimates at a 0.05° spatial resolution. The accuracy
of VISEA ET estimates is comparable to existing ET prod-
ucts sooner than existing products. Our evaluations show that
VISEA aligns well with measurements from 149 globally
distributed tower flux sites on daily and monthly scales. In
addition, VISEA captures spatial patterns of evapotranspira-
tion, aligning with GPCC precipitation data across diverse
geographical regions, in particular highlighting elevated val-
ues in tropical rainforest regions and lower values in arid
and semiarid zones. ET estimates are slightly too high in
the Sahara and slightly too low in western Canada. Specif-
ically, daily net radiation and ET estimations of VISEA in
savanna and frozen surfaces need improvements. We plan to
address these issues in future developments. The near-real-
time global daily terrestrial ET estimates provided by VISEA
are valuable for meteorology and hydrology applications, es-
pecially for coordinating relief efforts during droughts.

Appendix A: Determining the vegetation fraction
calculation

fveg =
NDVI−NDVImin

NDVImax−NDVImin
, (A1)

where the NDVI can be calculated as

NDVI=
Rnir−Rred

Rnir+Rred
, (A2)

where NDVImin is the NDVI of the bare soil without plants
and NDVImax is the NDVI of the full vegetation cover.
Rnir is the near-infrared reflectance and Rred is the red re-
flectance. The daily reflectancesRnir andRred were measured
by MODIS MOD09CMG reflectance data (Fig. 1). Based on
Tang et al. (2009), we set NDVImin to 0.22 and NDVImax
to 0.83. Missing observations for the daily MOD09CMG-
calculated NDVI data were filled with the 16 d averaged
NDVI values in the MOD13Q1 data product (Fig. 1).

Appendix B: Determining the decoupling factor

�∗i is the value of the decoupling factor, �, for wet surfaces.
According to Pereira (2004), � and �∗ can be expressed as

�=
1

1+ γ
1+γ

rc
ra

, (B1)

�∗ =
1

1+ γ
1+γ

r∗

ra

, (B2)

r∗ =
(1+ γ )ρCpVPD
1γ (Rn−G)

, (B3)

where rc is the surface resistance (sm−1) and ra is the aerody-
namic resistance (s m−1), which are the calculation details of
instantaneous and daily rc and ra for vegetation and soil. r∗ is
the critical surface resistance when the actual evapotranspira-
tion equals the potential evaporation (called the equilibrium

evapotranspiration, sm−1). ρ is the air density (kgm−3). Cp
is the specific heat of the air (Jkg−1 K−1). VPD is the vapor
pressure deficit of the air (Pa). 1 is the slope of the saturated
vapor pressure (PaK−1).

Appendix C: Determining the resistances of the
vegetation canopy and bare soil surface

The canopy surface resistance of the vegetation, denoted as
rc veg (sm−1) and determined using the relationship estab-
lished by Jarvis et al. (1976), is equivalent to

1
rc veg

=
f1(Ta)f2(PAR)f3(VPD)f4(ϕ)f5(co2)

rcMIN

+
1

rcuticle
.

(C1)

The minimum resistance rcMIN (sm−1) is defined as
33 sm−1 for cropland and 50 sm−1 for forest as determined
by Tang et al. (2009). The canopy resistance related to dif-
fusion through the cuticle layer of leaves rcuticle and set to
100 000 s m−1 in the Biome-Biosphere Model of the Carbon,
Nitrogen, and Water Cycles (Biome-BGC) is from White
et al. (2000). The relationships involving air temperature
Ta, f1(Ta), and photosynthetically active radiation (PAR),
f2(PAR), are expressed by the functions provided in Jarvis
et al. (1976):

f1(Ta)=
(
Ta− Tn

To− Tn

)(
Tx− Ta

Tx− Ta

)( Tx−To
To−Tn

)
. (C2)

The minimum, optimal, and maximum temperatures for
stomatal activity are denoted as Tn, To, and Tx, respectively.
As per Tang et al. (2009), Tn is set to 275.85 K, To to
304.25 K, and Tx to 318.45 K. The expression for the func-
tion f2(PAR) is provided below:

f2(PAR)=
PAR

PAR+A
, (C3)

where the PAR per unit area and time (µmolm−2 s−1) is cal-
culated using incoming solar radiation multiplied by 2.05
(White et al., 2000). A is a parameter related to photon
absorption efficiency at low light intensity, which was set
to 152 µmolm−2 s−1. Nishida et al. (2003) found that, in
Eq. (D1), the following functions can be omitted without
great loss of accuracy: the functions depend on vapor pres-
sure deficit f3(VPD), leaf water potential f4(ϕ), and carbon
dioxide vapor pressure f5(CO2).

The PAR per unit area and time (µmolm−2 s−1) is com-
puted by multiplying incoming solar radiation by 2.05, as
outlined by White et al. (2000). The parameter A, associ-
ated with photon absorption efficiency at low light inten-
sity, is set to 152 µmolm−2 s−1. Nishida et al. (2003) ob-
served that, in Eq. (D1), the functions tied to vapor pres-
sure deficit f3(VPD), leaf water potential f4(ϕ), and carbon
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dioxide vapor pressure f5(CO2) can be omitted without sig-
nificant loss of accuracy. Tang et al. (2009) employed this
canopy resistance approach to estimate ET at 500 m resolu-
tion in the Kalam River basin. The evaluation of their results
indicated that the simplification of these calculations did not
significantly impact the final accuracy of ET estimates. Addi-
tionally, Huang et al. (2017) evaluated this method for 0.05°
ET assessments across China. In this study, we follow the
methodologies originally developed by Tang et al. (2009) and
Nishida et al. (2003), with the goal of enhancing the VISEA
model to accurately estimate the daily-scale evaporation frac-
tion and net radiation. These efforts build on earlier work by
Huang et al. (2017, 2021, 2023) that introduced VPD and
leaf water potential in calculating canopy resistance. How-
ever, comparative analyses between VISEA and other mod-
els such as PML and MOD16 – particularly PML, which in-
tegrates VPD as a limiting factor in estimating gross primary
production (GPP) and ET – show that VISEA maintains ac-
curacy without significant biases. It is important to note that
none of the ET models in our comparison directly incorpo-
rates leaf water potential into their canopy resistance calcu-
lations. We are committed to addressing these gaps in our
future studies.

The aerodynamic resistance of the canopy, denoted as
ra veg (sm−1), is computed for forest cover, grassland, and
cropland using the empirical formulae presented by Nishida
et al. (2003) for both instantaneous and daily values:

1
ra veg (forest)

= 0.008U50 m. (C4)

The wind speed at a height of 50 m above the canopy
(U50 m) is used to determine the aerodynamic resistance for
grassland and cropland, as follows:

1
ra veg (grassland & cropland)

= 0.003U1 m, (C5)

where U1 m is the wind speed 1 m above the canopy (ms−1).
The wind speed as a function of the height z, U (z), can be
calculated using the logarithm profile of wind. A recent study
found that the velocity log law does not apply to a strati-
fied atmospheric boundary layer (Cheng et al., 2011). Thus,
Eqs. (D4) and (D5) are valid under neutral boundary layer
conditions. Since ra veg is calculated differently for forests
(Eq. D4) and grasslands or croplands (Eq. D5), we used the
land cover classes from the yearly IGBP MCD12C1 to iden-
tify the land cover and choice of the different equation of
ra veg. U50 m and U1 m were calculated using the logarithm
profile of wind:

U (z)= Ushear ln
[

(z− d)
z0

]
/k, (C6)

where Ushear is the shear velocity (ms−1), z is the height
(m), and d is the surface displacement (m). z0 is the rough-
ness length, where we followed Nishida et al. (2003), set to

0.005 m for bare soil and 0.01 m for grassland. k is the von
Kármán constant and is set to 0.4 following Nishida (2003).
The shear velocity Ushear was calculated as

Ushear = U1 m soil
0.4

ln
( 1

0.005

) , (C7)

where U1 m soil is the wind speed of bare soil at 1 m height
(ms−1). This was calculated as

U1 m soil = 1/0.0015ra soil. (C8)

The VI–Ts diagram (Nishida et al., 2003) can be utilized to
compute the instantaneous air temperature. This is achieved
by utilizing MODIS instantaneous surface temperature and
emissivity data (MOD11C1) and the daily calculated NDVI
as input parameters.

The aerodynamic resistance of the bare soil, denoted as
ra soil (sm−1), was determined by Nishida et al. (2003). This
calculation assumes that the maximum surface temperature
of bare soil Tsoil max (K) occurs when the sum of the latent
heat flux and sensible heat flux of the bare soil, referred to as
the available energy of bare soil Qsoil (Wm−2), is utilized as
the sensible heat flux while the latent heat flux is set to 0:

ra soil =
ρCp(Tsoil max− Ta)

Qsoil
. (C9)

ra soil is the aerodynamic resistance of the bare soil (sm−1),
ρ is the air density (kgm−3), Cp is the specific heat of the air
(Jkg−1 K−1), Ta is the air temperature (K), and Qsoil is the
available energy of bare soil (Wm−2).

To compute the canopy surface resistance of bare soil, de-
noted as rc soil (sm−1), we adhere to the methodologies out-
lined in the works of van de Griend and Owe (1994) and Mu
et al. (2007):

rc soil = rtot− ra soil, (C10)

rtot =
1.0(

Ta
293.15

)1.75 101 300
P

× 107.0. (C11)

The total aerodynamic resistance rtot (sm−1) is com-
posed of the aerodynamic resistance over the bare soil ra soil
(sm−1), with atmospheric pressure P set to 101 300 Pa.

Appendix D: The calculation of atmospheric
emissivity for clear skies

As per Brutsaert (1975), the atmospheric emissivity εd
a for

clear skies under standard humidity and temperature condi-
tions is

εd
a = 1.24×

(
ed

a/T
d

a
)1/7

, (D1)
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where ed
a represents the daily water vapor pressure (kPa). To

calculate ed
a , it is necessary to compute the slope of the satu-

rated vapor (1) as

1=
4098

[
0.6108exp

[
17.27Ta

(Ta+237.3)

]]
(Ta+ 237.3)2 . (D2)

VPD is the vapor pressure deficit of the air (kPa), which is
expressed as

VPD= e0(Ta)− ea, (D3)

e0(Ta)= 0.6108exp
[

17.27Ta

(Ta+ 237.3)

]
, (D4)

ea = e
0(Tdew), (D5)

e0(Tdew)= 0.6108exp
[

17.27Tdew

Tdew+ 237.3

]
. (D6)

The expression in parentheses denotes the independent vari-
able, where e0(Ta) represents the saturation vapor pressure
(kPa) at the air temperature Ta (°C), ea is the actual vapor
pressure (kPa), and e0(Tdew) is the saturation vapor pressure
(kPa) at the dew point temperature Tdew (°C). For forest, wa-
ter surface, and cropland, Tdew is set to the minimum air tem-
perature during the day. In arid regions such as bare soil and
non-irrigated grassland, Tdew may be 2–3 °C lower than Tmin.
Therefore, 2 °C is subtracted from Tmin in arid and semiarid
areas to derive Tdew. While these simplifications might in-
troduce a bias into the final calculated ET value, our initial
results indicate that the effect is negligible.
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