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Abstract. The ever-improving performances of physics-based simulations and the rapid developments of deep
learning are offering new perspectives to study earthquake-induced ground motion. Due to the large amount
of data required to train deep neural networks, applications have so far been limited to recorded data or two-
dimensional (2D) simulations. To bridge the gap between deep learning and high-fidelity numerical simulations,
this work introduces a new database of physics-based earthquake simulations.

The HEterogeneous Materials and Elastic Waves with Source variability in 3D (HEMEWS-3D) database com-
prises 30 000 simulations of elastic wave propagation in 3D geological domains. Each domain is parametrized
by a different geological model built from a random arrangement of layers augmented by random fields that
represent heterogeneities. Elastic waves originate from a randomly located pointwise source parametrized by
a random moment tensor. For each simulation, ground motion is synthesized at the surface by a grid of virtual
sensors. The high frequency of waveforms (fmax = 5 Hz) allows for extensive analyses of surface ground motion.

Existing and foreseen applications range from statistical analyses of the ground motion variability and ma-
chine learning methods on geological models to deep-learning-based predictions of ground motion that depend
on 3D heterogeneous geologies and source properties. Data are available at https://doi.org/10.57745/LAI6YU
(Lehmann, 2023).

1 Introduction

Deep learning has a long tradition in seismology thanks to
large networks of sensors recording earthquakes worldwide.
Applications are extremely diverse in terms of methods, data,
and scientific goals (see, for example, Mousavi and Beroza,
2023, for a review). Detecting earthquakes and distinguish-
ing them from other events such as explosions, quarry blasts,
or seismic noise are the most common applications of deep
learning in seismology (Mousavi and Beroza, 2023). A wide
variety of methods is also devoted to characterizing earth-
quakes from ground motion recordings – for instance, to es-
timate source mechanisms, earthquake location, and magni-
tude. The rapid improvements in deep learning in the last
few years have even enabled its use in operational frame-

works, thereby providing real-time predictions of earthquake
parameters (Zhu et al., 2022).

However, all those methods rely on databases of seis-
mic waveforms. While there exist several curated databases
of recorded ground motion, they are sparse in regions with
low to moderate seismicity or poor instrumental coverage
(Bahrampouri et al., 2021; Michelini et al., 2021; Mousavi
et al., 2019). In those cases, numerical simulations are a great
opportunity to complement existing databases. Simulations
rely on computational schemes to solve the wave propaga-
tion equations from the earthquake’s source to the Earth’s
surface and provide synthetic waveforms at any spatial point
of the simulation domain. Results of three-dimensional (3D)
physics-based simulations have been compiled for several
past earthquakes in, for example, the BB-SPEEDset dataset
(Paolucci et al., 2021) and the Southern California Earth-
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quake Center (SCEC) Broadband Platform (Maechling et al.,
2015), but the number of simulations is not appropriate for
machine learning approaches.

In fact, physics-based simulations show several limita-
tions. Firstly, they require a detailed description of the
ground properties that define the physical behaviour of the
waves propagating in the Earth. Especially, ground properties
should be given in the form of 3D geological models since
3D features have crucial effects that are not accounted for in
2D settings (e.g. sedimentary basins leading to site effects)
(Moczo et al., 2018; Smerzini et al., 2011; Zhu et al., 2020).
Since extensive geophysical investigations are needed to ob-
tain 3D geological models, they are rare, and when they exist,
they are still limited by epistemic uncertainties. Therefore,
when trying to reproduce an earthquake with physics-based
numerical simulations, uncertainties can be represented by
random heterogeneities added to the reference model to in-
troduce variability (Chaljub et al., 2021; Lehmann et al.,
2022).

Quantifying the effects of 3D geological features is made
more difficult by the second limitation of physics-based
simulations, which is their high computational cost, espe-
cially when dealing with high frequencies and large spa-
tial domains. Despite relying on high-performance comput-
ing (HPC) frameworks, seismic waves propagation simula-
tions can reach tens to hundreds of thousands of equivalent
core hours (Fu et al., 2017; Heinecke et al., 2014; Poursar-
tip et al., 2020). Since computational costs prevent statistical
studies on synthetic waveforms due to a limited number of
simulations per geological model, deep learning represents a
promising alternative to obtain waveforms.

When predicting the surface ground motion generated
by an earthquake, it is important to obtain time series that
describe the temporal evolution of shaking and not only
scalar features (such as peak ground acceleration and cumu-
lative absolute velocity) that give useful but limited infor-
mation. Physics-informed neural networks (PINNs; Raissi
et al., 2019) successfully solved the wave equation (Ding
et al., 2023; Karimpouli and Tahmasebi, 2020; Moseley
et al., 2020; Rasht-Behesht et al., 2022; Ren et al., 2024;
Song et al., 2023; Wu et al., 2023). However, applications
are mainly limited to 2D domains, and models cannot ex-
trapolate to different geological configuration to the one used
in the training phase. Alternatively, generative methods have
been used to enhance existing numerical simulations by in-
creasing their spatial resolution (e.g. Gadylshin et al., 2021)
or their frequency content (e.g. Gatti and Clouteau, 2020).

The recent emergence of scientific machine learning
(SciML) is offering a new paradigm for the prediction of
physics-based ground motion parametrized by 3D ground
properties and source parameters, with intrinsic ability to
generalize to various resolutions and geological configura-
tions. SciML has led to significant scientific developments
in communities with large, reliable, and freely available
databases. For instance, in numerical weather prediction,

Bonev et al. (2023) and Pathak et al. (2022) took advantage
of the ERA5 dataset provided by the European Centre for
Medium-Range Weather Forecasts (Hersbach et al., 2020).
In seismology, Mousavi and Beroza (2023) pointed out that
“the limitations on training data and generalization are the
main challenges in solving inverse and forward problems us-
ing supervised [deep neural networks].”

In this work, we describe the first open database of seismic
simulations associated with 3D heterogeneous geological
models. The HEMEWS-3D (HEterogeneous Materials and
Elastic Waves with Source variability in 3D) database con-
tains 30 000 high-fidelity simulations in 3D domains of 9.6×
9.6× 9.6 km3 in size. This represents a challenging compu-
tational task, accounting for 9×105 core hours and 4.4 MWh
in total. Ground motion was synthesized at the surface of the
simulation domain for 8 s on a grid of 32× 32 virtual sen-
sors. Data are available at https://doi.org/10.57745/LAI6YU
(Lehmann, 2023).

In the following text, Sect. 2 provides an overview of ex-
isting datasets in related fields; Sect. 3 describes the geolog-
ical models, sources, and surface wavefields in the database;
Sect. 4 analyses physical characteristics; Sect. 5 illustrates
applications; and Sect. 6 discusses limitations and perspec-
tives.

2 Related work

Datasets of recorded ground motion have enabled major deep
learning applications in seismology, but they have several
limitations in data-scarce regions. In this section, we focus
on datasets with 2D or 3D data used in geophysics and seis-
mology with SciML applications. Due to the mathematical
similarities between wave propagation and fluid flow (both
are governed by hyperbolic equations), related studies are re-
viewed beyond the field of seismology. This highlights the
challenges of high-fidelity numerical simulations for deep
learning applications.

2.1 Datasets of ground motion simulations

Ground motion simulations of past earthquakes have been
collected in databases for model verification, characteriza-
tion of complex near-field conditions, and machine learn-
ing purposes. The BB-SPEEDset provides 3D simulations
of 16 earthquake scenarios in various regions of the globe
(Paolucci et al., 2021). The SCEC Broadband Platform also
provides simulations of 17 past earthquakes with different
source models (Maechling et al., 2015). Other studies focus
on specific regions, such as the Hayward Fault (Petrone et al.,
2021) and Türkiye (Altindal and Askan, 2022). The limited
number of scenarios makes the abovementioned databases
less suitable for machine learning purposes, where dataset
variability and size are crucial factors. In addition, although
they provide some variability on the source, those datasets do
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not consider varying geological models but focus on regional
validated geological models.

2.2 3D datasets

Due to the high computational costs of solving 3D partial
differential equations (PDEs), only very few 3D datasets are
available. CO2 underground storage has been explored with
SciML based on 3D numerical simulations (Grady et al.,
2023; Wen et al., 2023; Witte et al., 2023). To support the
study of Witte et al. (2023), Annon (2022) provided 4000
simulation results for 3D CO2 flow through geological mod-
els based on the Sleipner dataset complemented by random
fields (Equinor, 2020). The Kimberlina dataset also contains
6000 CO2 leakage rate simulations (Mansoor et al., 2020).
However, the geological models in both of those databases
are all variants of the geological model that was carefully es-
timated for a given region, thereby limiting the reproducibil-
ity in other areas.

2.3 Geophysical datasets

A few datasets of realistic geological units have been devel-
oped, such as the Noddyverse dataset of 3D geological mod-
els (Jessell et al., 2022). In this dataset, geological models
result from the deformation of horizontal layers by succes-
sive geological events (folds, faults, unconformities, dykes,
plugs, shear zones, and tilts), but no associated ground mo-
tion is provided. Along the same line of geological defor-
mation, the OpenFWI database combines geological mod-
els with associated waveforms and targets 2D geophysical
inversion as the main application (Deng et al., 2022). Open-
FWI contains geological models made of horizontal and non-
horizontal layers with various folds. It also includes real ge-
ological models from field survey areas and models of CO2
geological storage. To generate the wavefields, the acoustic
wave equation is solved in the 2D domains. Waves originate
from a line of sources at the surface and wavefields are ac-
quired on a line of receivers at depth. The EFWI database is an
extension of OpenFWI to the elastic wave equation, provid-
ing two-component ground motion time series (Feng et al.,
2023).

Several other studies have computed simulation outputs
for the acoustic or elastic wave equation, but their data are
not public (e.g. Liu et al., 2021; Ovadia et al., 2023; Zhang
et al., 2023). Table 1 summarizes the characteristics of the
public datasets and shows that no database provides solutions
of the elastic wave equation in 3D domains. Our HEMEWS-
3D database intends to fill this gap.

3 Dataset creation

3.1 The elastic wave equation

Elastodynamics describes reversible wave propagation phe-
nomena in solid and fluid domains. In solid mechanics, the
solution is represented by a displacement field, u ∈ R3, that
propagates in a 3D Euclidean space. We consider a truncated
propagation domain, �= [0,L]3, with absorbing boundary
conditions all around, except the traction-free top surface,
and a solution, u :�×[0,T ] → R3. The domain length is
fixed to L= 9.6 km, and the total time is T = 8 s. In its most
general form, the elastic wave equation is written as

ρ
∂2u

∂t2
=∇λ (∇ ·u)+∇µ

[
∇u+ (∇u)T

]
+ (λ+ 2µ)∇ (∇ ·u)−µ∇ ×∇ ×u+f , (1)

where ρ :�→ R is the material unit mass density; λ :�→
R and µ :�→ R are the Lamé parameters, characterizing
the thermodynamically reversible mechanical behaviour of
the material; and f is the body force distribution. In ge-
omechanics, properties ρ, λ, and µ are rarely independently
characterized due to a lack of measurements. Therefore, it is
legitimate to assume that there is a single informative vari-
able from which all parameters can be deduced. In this work,
the velocity of shear waves, VS, is the informative variable.
Equation (1) can then be rewritten in the following general
form:

L(VS,u)= f . (2)

3.2 Earthquake source

In our database, the forcing term f (x, t)= div m(x) · s(t) is
the divergence of a moment tensor density, m, localized at a
pointwise location. m encodes the source radiation patterns
as a double couple representing a pointwise kinematic dis-
continuity in the media.

The source position is represented by the coordinates
(xs,ys,zs) ∈�, which is not too close from the boundaries
to avoid numerical issues due to absorbing boundary condi-
tions. The position is chosen from a product of Latin hyper-
cube sampling (LHS), with

xs ∈ [1.2,8.4]km,

ys ∈ [1.2,8.4]km,
zs ∈ [−9.0,−0.6]km. (3)

In addition to the source position, the source is
parametrized by the symmetric 3× 3 moment tensor. An
equivalent formulation is obtained with the three angles,
strike, dip, and rake (Aki and Richards, 1980). With this rep-
resentation, the angles are samples from a LHS with a strike
between 0 and 360°, dip between 0 and 90°, and rake be-
tween 0 and 360°.

Earth Syst. Sci. Data, 16, 3949–3972, 2024 https://doi.org/10.5194/essd-16-3949-2024
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The source amplitude corresponds to a seismic moment,
M0 = 2.47× 1016 Nm, and the source time evolution is a
spice bench given by s(t)= 1−

(
1+ t

τ

)
e−

t
τ , with τ = 0.1 s

(Fig. A1). Due to the linearity of the elastic wave equation
(Eq. 1), it is important to notice that the choice of the source
time function in the HEMEWS-3D database does not con-
strain the variability in resulting ground motions.

First, any magnitude can be obtained by applying a scalar
factor to the ground motion wavefields. Second, the response
to any source time function can be computed from the Green
function, G(x, t), which is the fundamental solution of the
elastic wave equation, Eq. (1), when the source is an im-
pulse point force located at xs and occurring at t = t0. For
the reference source time function, s(t), the solution, u(x, t),
provided in HEMEWS-3D can be written as the convolu-
tion of the Green function with the source time function, i.e.
u(x, t)=G(x, t) ∗ s(t).

Computing the solution, u1, for a new source time func-
tion, s1 (provided that the moment tensor density m and the
geological parameter VS remain the same), is straightforward
following the steps below:

1. compute the Fourier transform of the reference source
time function, ŝ := F(s), and the solution, û := F(u);

2. derive the Green function in the frequency domain, Ĝ=
û

ŝ
;

3. compute the Fourier transform of the new source time
function, ŝ1;

4. compute the new solution in the frequency domain,
û1 = Ĝ ∗ ŝ1;

5. deduce the new solution in the temporal domain, u1 =

F−1 (û1.
)

From these remarks, one should remember that ground
motion wavefields in the HEMEWS-3D database originate
from pointwise sources with a different location, xs ∈ R3,
and orientation, θ s ∈ R3, but the same source time function.

3.3 Heterogeneous geological models

The HEMEWS-3D database contains samples
{V

(i)
S ,x

(i)
s ,θ

(i)
s , u̇

(i)
}i that satisfy Eq. (2) (u̇ denotes the

velocity field obtained as the time derivative of the displace-
ment field u). The 3D geological model set, VS(x), is a set of
non-stationary random fields defined as a mean stair function
(horizontal homogeneous layers) to which fluctuations are
added, as illustrated in Fig. 1.

3.3.1 Homogeneous models

A homogeneous layer that is 1.8 km thick is imposed at
the bottom of each geological model, with a VS value
of VS,max = 4500 m s−1. The minimum S-wave velocity is

VS,min = 1071 m s−1. Above the bottom layer, the number
of horizontal layers and their thickness are randomly cho-
sen for each sample V (i)

S , with the sole constraint to fill
the total depth with two to seven layers. In particular,
this means that velocity values are not sorted by depth.
This choice is discussed in depth in Sect. 6. Then, the
mean layerwise value is drawn from the uniform distri-
bution, U([µ1,µ2]). All layerwise values are chosen in-
dependently. Values of µ1 = VS,min/0.6= 1785 m s−1 and
µ2 = VS,max/1.4= 3214 m s−1 were determined to ensure
that most values remain bounded within [VS,min,VS,max] af-
ter the addition of random fields in each layer (see Table 2
for a summary of the parameters).

To recover the other geological properties, the ratio of P-
to S-wave velocity was fixed to VP/VS = 1.7. The density, ρ,
is computed as a function of the P-wave velocity (Molinari
and Morelli, 2011):

ρ = 1.6612VP− 0.4721V 2
P + 0.0671V 3

P

− 0.0043V 4
P + 0.000106V 5

P . (4)

Attenuation factors for P waves (QP) and S waves (QS) are
computed as follows:

QP =max
(
VP

20
,
VS

5

)
, QS =

VS

10
. (5)

3.3.2 Addition of heterogeneities

The layers’ thicknesses and mean values describe the gen-
eral structure of the propagation domain and they correspond
to the prior physical information usually available. However,
geomaterials of the Earth’s crust contain a lot of variability,
especially along the horizontal directions. This heterogeneity
can be represented by random fields, characterized by their
correlation length and coefficient of variation. Following pre-
vious studies on geological heterogeneity (e.g. Hartzell et al.,
2010; Imperatori and Mai, 2013; Khazaie et al., 2016; Scalise
et al., 2021; Thompson et al., 2007), we drew random fields
with a von Kármán correlation kernel and a Hurst expo-
nent of 0.1 (Chernov, 1960) (marginal distributions are log-
normal to preserve positive values).

In order to provide a sufficient dataset variability, the
choice of correlation lengths and coefficients of variation
is tricky yet crucial (Colvez, 2021). The correlation length
gives an idea of the distance above which two points, xA
and xB , have independent geological properties, VS(xA) and
VS(xB ). We chose correlation lengths randomly from the set
{1.5, 3, 4.5, 6} km to mix samples with small- and large-
scale heterogeneity. In addition, large coefficients of varia-
tion were chosen to provide high geological contrasts, fol-
lowing the folded normal distribution, |N (0.2,0.1)|, with a
mean of 0.2 and coefficient of variation of 0.1. Coefficients
of variation of around 20 % are common at the surface (Ar-
roucau, 2020), while it is known that values of up to 40 %
can be found locally (El Haber et al., 2021).

https://doi.org/10.5194/essd-16-3949-2024 Earth Syst. Sci. Data, 16, 3949–3972, 2024
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Figure 1. Geological models are built by adding heterogeneities to randomly chosen horizontal layers. Elastic waves are then propagated
from a source with a random position and random orientation to the surface, where velocity wavefields are synthesized.

Table 2. Statistical distribution of each parameter describing the geological models. Mean VS values, coefficients of variation, and corre-
lation lengths are chosen independently in each layer. Since the bottom layer has a constant thickness of 1.8 km, it is not included in these
parameters.

Parameter Statistical distribution

Number of heterogeneous layers (N`) U({1,2,3,4,5,6})
Layer thickness (h1, · · ·,hN` ) U

(
{(h1, · · ·,hN` )> 0|h1+ ·· ·+hN` = 7.8}

)
Mean VS value per layer U([1785,3214])
Layerwise coefficient of variation |N (0.2,0.1)|
Layerwise correlation length along x U({1.5,3,4.5,6 km})
Layerwise correlation length along y U({1.5,3,4.5,6 km})
Layerwise correlation length along z U({1.5,3,4.5,6 km})

The 3D random field computation is made highly efficient
by the use of the spectral representation (Shinozuka and De-
odatis, 1991; de Carvalho Paludo et al., 2019). With this for-
mulation, a centred Gaussian random field, VS, determined
by its autocovariance function, R, can be decomposed as a
sum of independent identically distributed random variables
(VS,n)−N≤n≤N , with a uniform distribution over [0,2π ].

VS(x)=
N∑

n=−N

√
2R̂(n1k)cos(n1k · ×+VS,n),

where R̂ is the Fourier transform of the autocovariance func-
tion R and 1k is the unit volume in R3.

Finally, VS values are clipped between VS,min =

1071 m s−1 and VS,max = 4500 m s−1. These bounds
correspond to the velocity of shear waves in hard sediments
and at the bottom of the continental crust (Molinari and
Morelli, 2011).

It should be noted that all layers have distinct coefficients
of variation and correlation lengths, meaning that different
random fields are drawn inside each layer. Also, random
fields are drawn only once for each set of parameters.

3.3.3 Representation in the database

Geological realization, V (i)
S , is discretized over a grid of

32× 32× 32 elements (corresponding to x, y, and z axes).
The geological models are provided as .npy arrays. The to-
tal size of the geological dataset is 3.9 GB, split in 15 files
of 2000 geological models for easier data management. Ad-
ditionally, metadata give parameters of each layer: the mean
VS value; the thickness; the coefficient of variation; and the
correlation lengths along x, y, and z.

3.4 Solutions of the wave equation

The elastic wave equation was solved in each domain i by
means of the open-source code SEM3D (https://github.com/
sem3d/SEM, CEA et al., 2017) (Touhami et al., 2022) based
on the spectral element method (Faccioli et al., 1997; Ko-
matitsch and Tromp, 1999). The dimension of the simula-
tion mesh is prescribed by the maximum frequency, fmax,
one aims at exactly resolving. In this study, fmax was fixed
at 5 Hz, which is relatively high for this type of simula-
tion. Many simulations have been conducted so far with an
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accuracy of up to 1 or 2 Hz (Rekoske et al., 2023; Rosti
et al., 2023), while high-fidelity simulations for local realis-
tic earthquake scenarios extend to up to 10 Hz (Castro-Cruz
et al., 2021; De Martin et al., 2021; Heinecke et al., 2014)
(and exceptionally to up to 18 Hz, such as in Fu et al., 2017).
Then, the smallest wavelength, λmin = VS,min/fmax, must be
described on the mesh by at least five quadrature points. With
seven Gauss–Lobatto–Legendre quadrature points per mesh
element, this leads to elements of size h= 7

5 ·
VS,min
fmax
= 300 m.

This explains how 32 elements in each direction amount to
a domain size of L= 9.6 km. The time-marching scheme is
a leap-frog second-order accurate explicit scheme solved for
velocity fields.

To maintain reasonable computational loads and reflect re-
alistic scenarios, velocity fields were recorded only at the sur-
face of the propagation domain. A regular grid of 32× 32
sensors was placed between 150 and 9450 m in both hori-
zontal directions (implying a distance of 300 m between two
neighbouring sensors). At each monitoring point, the three-
component velocity field is synthesized with a 100 Hz sam-
pling frequency for between 0 and 8 s. Although the sam-
pling frequency is higher than the Nyquist frequency (i.e.
2×fmax = 10 Hz), the value of 100 Hz was chosen to match
the temporal resolution of recorded time series in several
publicly accessible datasets (e.g. STEAD, Mousavi et al.,
2019; INSTANCE, Michelini et al., 2021). The sampling fre-
quency is sufficient to allow for an accurate computation of
peak ground velocity (PGV), derive the acceleration time se-
ries with finite differences, and compute the peak ground ac-
celeration (PGA). Figure 2 illustrates velocity waveforms at
eight virtual sensors.

3.4.1 Representation in the database

Velocity fields are provided as .h5 files. Each file contains
three keys: uE, uN, and uZ that correspond to the three com-
ponents of ground motion (east–west, north–south, and ver-
tical). Each velocity field is of shape 32× 32× 800, where
the first index corresponds to the y axis, the second index to
the x axis, and the third index to the temporal axis.

Files are gathered in .zip archives containing 100 simu-
lation results. The 300 .zip files amount to 263.4 GB. They
are downloadable individually (0.87 GB per file).

4 Dataset analysis

4.1 Descriptive statistics of the temporal evolution

Since most of the geological parameters are chosen uni-
formly randomly (Table 2), the geological dataset is well bal-
anced: geological models with one to six layers are equipar-
titioned, and all random field parameters have approximately
the same frequency. Mean VS values range from 1756 to
3145 m s−1.

The first-wave arrival time is a crucial parameter for earth-
quake early warning, and seismic phase picking is a common
task with deep learning models. Arrival time depends on the
distance between the earthquake source and the monitoring
sensor as well as the geological properties on the propagation
path. Wave arrival times are usually determined from record-
ings, either manually by experts or using machine learning
methods. However, it is possible to compute almost exact ar-
rival times from synthetic velocity fields since ground mo-
tion is almost zero before the first wave arrival. Therefore,
we obtained wave arrival times for P-waves as the earliest
time step where the amplitude exceeds 0.1 % of the maxi-
mum amplitude. Due to the source depth variability and the
different wave velocities in the geological models, first wave
arrival times significantly vary among samples and among
sensors. Figure 3a shows that 10 % of velocity time series
are initiated before 0.65 s, while 10 % of time series are still
null after 2.17 s.

As expected, the P-wave arrival time is strongly corre-
lated with the hypocentral distance (Fig. 4a) since shorter
hypocentral distances are associated with shorter propaga-
tion paths. The mean velocity on the propagation path also
influences the first wave arrival time, but variability is higher.
Figure 4b indeed shows that the P-wave arrival time is nega-
tively correlated with the mean S-wave velocity in the whole
domain. It confirms that waves propagate more slowly when
the mean velocity is lower. The mean velocity gives an ap-
proximation of the velocity values encountered by the waves
along the propagation path. In particular, the mean velocity
does not depend on the sensor position with this approxima-
tion.

The temporal evolution of ground motion can also be char-
acterized by its relative significant duration (RSD). It corre-
sponds to the duration of the signal between 5 % and 95 % of
the Arias intensity (IA) (Arias, 1970).

IA =
π

2g

T∫
0

a2(t)dt, (6)

where a(t) is the acceleration field and T is the total dura-
tion of the signal. Figure 3b shows that RSD covers a large
variation range, from 0.17 to 7.60 s. This variability is illus-
trated in Fig. 2, where the grey areas represent the RSD. One
can especially notice that samples with a strong pulse have a
short RSD. Indeed, most of the energy is concentrated around
the pulse.

Quantitatively, the HEMEWS-3D database contains short
ground motions since 10 % of time series have a RSD lower
than 0.24 s as well as longer ground motions, where 10 % of
time series have a RSD longer than 3.42 s. The median RSD
is 1.06 s. These low RSD values are related to the absence of
high-frequency components in the coda and the dominance
of high pulse-like time series in cases with shallow sources
and low heterogeneity contrasts. Combined with the short P-
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Figure 2. Three-component velocity waveforms synthesized at eight virtual sensors on a line parallel to the y axis at x = 8.85 km. The shaded
area extends from 5 % to 95 % of the Arias intensity; hence, its length equals the relative significant duration (RSD). The corresponding
geological model is shown at the top. The source is located at (2.04, 3.64, −2.17) km. The associated frequency spectra are given in Fig. A3.

Figure 3. Distributions of the temporal features of velocity time series at each monitoring sensor and for 30 000 samples. (a) The first P-wave
arrival time is computed on the vertical component. (b) The relative significant duration (RSD) is shown for the east–west component, and
the results are very similar for the two other components.
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Figure 4. For each sample and each sensor, the P-wave arrival time is shown against (a) the hypocentral distance and (b) the mean S-wave
velocity in the 3D domain.

wave arrival times, RSD values also justify the fact that the
8 s window contains a significant part of ground motion.

4.2 Descriptive statistics related to energy content

The PGV is computed as the maximum absolute value over
all time steps separately for each component. The PGV is
slightly lower on the vertical component than the two hor-
izontal components (Fig. 5). It is very similar between the
east–west and north–south components, which is expected
since the HEMEWS-3D database is statistically invariant per
horizontal rotation. Figure 5 shows that the PGV extends
over 3 orders of magnitude, with the first percentile being
equal to 0.89 cm s−1, while the 99th percentile is equal to
129.3 cm s−1. The median PGV is 8.9 cm s−1. The 1st-to-
99th-percentile interval is in line with ground motion ob-
served within a few kilometres of moderate-magnitude earth-
quakes (e.g. Convertito et al., 2022).

When the propagation path is longer, seismic waves en-
counter more geological heterogeneities. They create a dis-
persion and diffraction of waves that spread the energy signal
over time. Larger hypocentral distances are associated with
longer propagation paths. Figure 6a then shows that the PGV
is negatively correlated with the hypocentral distance.

It is also known that the seismic energy, Es, generated by
a fault rupture is

Es =
M01σ

2µ
, (7)

where M0 is the seismic moment, 1σ is the stress drop, and
µ is the shear modulus at the fault location. Knowing that
the shear wave velocity is written as VS =

√
µ/ρ, Eq. (7)

indicates that the seismic energy is inversely proportional to
V 2

S . Furthermore, Fig. 6b confirms that the PGV is negatively
correlated with the velocity of S waves at the source location.

4.3 Distribution of pseudo-spectral acceleration (PSA)

The pseudo-spectral acceleration (PSA) is a commonly used
metric to estimate structural response. It evaluates the max-
imal acceleration of a 1-degree-of-freedom oscillator (with
a 5 % damping), with a natural period, T . At T = 0.2 s,
the PSA value in the HEMEWS-3D database is between
2.3× 10−3 and 81.2 g. It decreases to the interval between
5.8× 10−4 g and 6.1 g at T = 1.0 s. Figure 7 additionally
shows that there exists a negative correlation between the
PSA and the hypocentral distance. The distance-dependent
PSA values can be compared with existing ground motion
models (GMMs), as shown in Fig. 8.

GMMs provide an analytical formula to compute intensity
measures, such as PSA and PGV, based on regression anal-
yses. They are mainly derived from databases of recorded
earthquakes, although numerical simulations can also be
used. The PSA estimated from the HEMEWS-3D database is
compared with four GMMs (all taken with a moment mag-
nitude of 4.9 that corresponds to the seismic moment of the
HEMEWS-3D database):

1. GMM from Atkinson and Boore (2006), computed with
VS,30 = 2000 m s−1;

2. GMM from Atkinson (2015), computed with a depth of
1 km (solid line in Fig. 8) and a depth of 7.5 km (dashed
line in Fig. 8);

3. GMM from Chiou and Youngs (2014), computed with
VS,30 = 2000 m s−1, a depth of 1 km, and different dip
and rake angles (these last two factors having little in-
fluence on the PSA);

4. GMM from Shahjouei and Pezeshk (2016).

Figure 8 shows that the mean PSA computed from the
HEMEWS-3D database is in good agreement with all GMMs
and that the standard deviation is smaller than GMMs.
The Atkinson (2015) GMM illustrates the influence of
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Figure 5. The peak ground velocity (PGV) is computed as the maximum absolute value over all time steps separately on each component.
There is one value for each of the 32× 32 sensors and each of the 30 000 samples.

Figure 6. For each sample and each sensor, the PGV is shown against (a) the hypocentral distance and (b) the S-wave velocity at the source
location. The PGV is computed on the east–west component, results are very similar for the two other components.

depth, especially for the smallest hypocentral distances. The
HEMEWS-3D PSA values fit better with the GMM PSA
for shallow sources (solid purple line in Fig. 8) than deeper
sources (dashed purple line).

4.4 Dimensionality

In supervised deep learning, it is always challenging to de-
termine whether the size of the database (i.e. the number of
samples) is sufficient to represent its variability. This ques-
tion relates to the definition of the intrinsic dimension of
the dataset, which indicates the number of hidden variables
that should be necessary to represent the main features of
the samples. In the following sections, we provide insights
into this question, with the intrinsic dimension based on the
principal component analysis (Sect. 4.4.1), the correlation
dimension (Sect. 4.4.2), the maximum likelihood estimate
(Sect. 4.4.3), and the structural similarity index (Sect. 4.5).

4.4.1 Principal component analysis (PCA)

The principal component analysis (PCA) decomposes data
in principal components that correspond to the directions
where data vary the most. For different sizes of datasets,
we compute the number of principal components required
to retain 95 % of variance and define this number as the in-
trinsic dimension of data. The 3D geological models and the
3D ground motion wavefields are transformed into 1D vec-
tors to perform the PCA. To reduce the memory require-
ments, ground motions are analysed only on the east–west
component. Geological models are represented by 32×32×
32= 32 768 points, and ground motions contain 16× 16×
320= 81 920 points (16 sensors in directions x and y and
320 time steps between 0 and 6.4 s). To ease the computation
on the large sample covariance matrix, an incremental PCA
algorithm was used (Ross et al., 2008).

Table 3 and Fig. B1 show that more than 1000 principal
components are needed to reconstruct the geological mod-
els with high accuracy, whereas the intrinsic dimension of
ground motion wavefields is around 4900. It is a reasonable
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Figure 7. For each sample and each sensor, the pseudo-spectral acceleration is shown against the hypocentral distance at period T = 0.2 s (a)
and T = 1.0 s (b). The PSA is computed on the east–west component, and the results are very similar for the two other components.

Figure 8. Horizontal PSA at period T = 0.2 s as a function of hypocentral distance (a) and epicentral distance (b) for GMMs by Atkinson
(2015), with a depth of 1 km (solid purple line, a); Atkinson (2015), with a depth of 7.5 km (dashed purple line, a); Atkinson and Boore
(2006) (orange, b); Chiou and Youngs (2014) (blue, b); Shahjouei and Pezeshk (2016) (green, b); and our HEMEWS-3D database (black).
Solid lines correspond to the mean PSA and shaded areas to 1 standard deviation. Horizontal PSA is computed as the geometrical mean of
east–west and north–south components.

fact that the wavefield intrinsic dimension is larger than the
geological dimension since wavefield variability is created
by geological variations and the source position. However,
due to its linearity, the PCA requires a large number of com-
ponents to accurately represent complex patterns. Therefore,
it may overestimate the intrinsic data dimension.

4.4.2 Correlation dimension

An alternative dimensionality measure was introduced by
Grassberger and Procaccia (1983) as the correlation dimen-
sion, which characterizes the distance between pairs of sam-
ples. For a dataset of N samples {V (i)

S }1≤i≤N and a given ra-
dius r , the correlation dimension (CN (r)) is defined as the ra-
tio of sample pairs (V (i)

S ,V
(j )
S )i 6=j that are at a distance lower

than r:

CN (r)=
2

N (N − 1)

N∑
i=1

N∑
j=i+1

1
(
‖V

(i)
S −V

(j )
S ‖ ≤ r

)
. (8)

Figure B2 indicates a correlation dimension of 8 for the
geological dataset, which is significantly lower than the PCA
dimension. In fact, it is known that the correlation dimension
may underestimate the intrinsic dimension, especially “when
data are scattered” (Qiu et al., 2023), which is likely to be
the case in high-dimensional spaces. However, the correla-
tion dimension of the ground motion wavefields is debatable
as it drops to 2. Figure B3c shows that the log–log repre-
sentation of CN (r) does not produce an obvious linear part,
which makes it difficult to identify the correlation dimension.
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Table 3. Database intrinsic dimension estimated by PCA, correlation dimension, and maximum likelihood estimator (MLE) for the geological
database and the velocity fields database, depending on the number of data samples.

Geological database Velocity field database

No. of samples (×103) 2 6 10 20 30 2 6 10 20 30

PCA 491 766 880 1006 1094 853 2057 2853 4073 4875
Correlation dimension 8.8 8.3 8.4 8.3 8.2 2.2 2.3 2.3 2.3 2.3
MLE 17.9 23.4 26.7 31.5 33.9 107.2 129.0 116.6 113.8 110.9

4.4.3 Maximum likelihood estimator (MLE) intrinsic
dimension

Levina and Bickel (2004) proposed another approach based
on the maximum likelihood estimator (MLE) of the distance
to the closest neighbours. Figure B4 shows the evolution of
the intrinsic dimension as a function of the number of sam-
ples for geological models and velocity wavefields. The in-
trinsic dimension of geological models is 34, while the di-
mension of velocity wavefields is higher (around 110). Al-
though this method may still underestimate data with high
intrinsic dimensionality (Qiu et al., 2023), it provides higher
estimates than the correlation dimension.

It can also be noted that the intrinsic dimension increases
with the number of samples, as was observed for the PCA.
This may reflect a flaw in the intrinsic dimension’s defini-
tion, or it may indicate that despite being already large, our
database of 30 000 samples does not capture all the variabil-
ities.

4.5 Structural similarity

The correlation dimension is computed from the Euclidean
distance between pairs of geological models. However,
pointwise metrics do not necessarily best represent similari-
ties between geological models, and alternative metrics such
as the structural similarity index measure (SSIM) have been
introduced for this purpose (Wang et al., 2004). This index
theoretically ranges from 0 to 1, with 0 indicating no sim-
ilarity and 1 indicating perfectly similar geological models
(although values between −1 and 0 can be obtained numer-
ically from the covariance computation). The SSIM of two
geological models A and B is defined as

SSIM(A,B)=
(2µAµB +C1)(2σAB +C2)

(µ2
A+µ

2
B +C1)(σ 2

A+ σ
2
B +C2)

, (9)

where µA and µB are the means of A and B, σA and σB are
the unbiased estimators of the variance of A and B, σAB is
the unbiased estimator of the covariance of A and B, and C1
and C2 are constants determined from the range of A and B
values.

Figure B5a and b illustrate two pairs of geological mod-
els with the same SSIM (of 0.6), meaning there is a rather
high similarity. The first geologies have similar mean val-
ues but different heterogeneities, resulting in a low Euclidean

Figure 9. The structural similarity index measure (SSIM) quanti-
fies the visual resemblance between images, in a way that should
mimic human perception. For each SSIM value s on the x axis, the
percentage of geological pairs being more similar than s is reported
on the y axis.

distance (Fig. B5a), while the second geologies have dif-
ferent mean values, leading to a higher Euclidean distance
(Fig. B5b).

To give insights into the sparsity of the geological
database, Fig. 9 shows that only 1.4 % of geological pairs
have a SSIM greater than 0.2. This means that geological
models are generally very distinct from each other in the
HEMEWS-3D database. For comparison, the 2D OpenFWI
dataset leads to significantly higher SSIM, with 31 % of ge-
ologies having a SSIM larger than 0.2 (3000 models were
chosen from each of the 10 OpenFWI families; Deng et al.,
2022).

5 Applications

5.1 Dimensionality reduction in geological models

Dimensionality analyses have shown that at least 1000 prin-
cipal components are necessary to represent geological mod-
els with enough accuracy, as measured by the reconstructed
variance. This means that the PCA provides a basis for 3D
models to decompose a wide diversity of geological mod-
els. One can consider geological models that are very differ-
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ent from the random fields contained in the HEMEWS-3D
database – for instance, embedding a basin shape.

Figure 10 shows that 1000 principal components allow for
a good reconstruction of the basin shape with correct veloc-
ity values inside and outside the basin. Edges are slightly
blurred, which is expected since sharp contrasts correspond
to high spatial frequencies that require many principal com-
ponents. This example illustrates the generalization ability
of the HEMEWS-3D database from a geometrical point of
view. To match the design of the HEMEWS-3D database, the
velocity values are chosen within the same bounds. If one
were to consider real sedimentary basins, they should apply
rescaling to target lower velocity values.

The influence of the PCA reconstruction on the gener-
ated velocity wavefields was investigated in more details in
Lehmann et al. (2022). It was shown that wavefields created
by the propagation of seismic waves inside the reconstructed
geological models and the reference model are very similar.
When the initial geological model has strong heterogeneities,
heterogeneities tend to be blurred in the PCA reconstruc-
tion, which reduces the dispersion of seismic waves. As a
consequence, velocity wavefields generated inside the recon-
structed geological model have slightly larger amplitudes.

5.2 Velocity fields predictions

Since the HEMEWS-3D database associates geological mod-
els and sources with their corresponding velocity wavefields,
it can serve to predict the latter using the former. Neural op-
erators are one class of SciML models that have shown great
success in the prediction of parametric PDEs. One can men-
tion in particular the Multiple-Input Fourier Neural Operator
(MIFNO; Lehmann et al., 2024) that uses the fast Fourier
transform to learn the frequential representation of the elas-
tic wave equation and a dedicated handling of the source term
(Fig. C1).

For each geological model and source in the HEMEWS-
3D database, the MIFNO predicts the velocity field at each
surface point. Figure 11 illustrates that the MIFNO gives ac-
curate predictions for samples with different ground motions.
This shows that the variability and size of the HEMEWS-3D
database are appropriate to train complex SciML models.

5.3 Other potential applications

Thanks to the large number of simulations, one can also envi-
sion studying the variability in ground motion to capture its
statistical distribution. In particular, one can investigate the
best sampling that minimizes the number of samples while
preserving the largest ground motion variability (Tarbali and
Bradley, 2015).

The surface ground motion can also be considered an “out-
cropping bedrock” response, which is classically used in 1D
site–effect and soil–structure interaction analyses and which
may require deconvolution.

6 Limitations and perspectives

Since HEMEWS-3D is the first database that provides 3D
ground motion, it is constrained by some hypotheses to con-
trol its size and allow machine learning applications.

First, the minimum S-wave velocity of 1071 m s−1 is
rather high when compared to S-wave velocities in soft sedi-
ments (typically of a few hundred metres per second) but co-
herent for hard sediments (Molinari and Morelli, 2011). VS
values in the HEMEWS-3D database are also in line with na-
tional velocity models with a low spatial resolution that dis-
play surface values of around 2000 m s−1. The choice of min-
imum VS implies in particular that the HEMEWS-3D dataset
is not targeted towards site–effect analyses in sedimentary
basins. One should also note that the vertical resolution of
the geological models is 300 m, while very low VS values
are more commonly encountered in the first tens of metres.
These low values would be averaged with higher deeper val-
ues in our models. In particular, this means that the upper
velocity in the HEMEWS-3D database should be understood
as the average velocity between 0 and−300 m. It is not com-
parable with the common notion of VS,30 (average VS in the
first 30 m). Reducing the minimum velocity poses no theoret-
ical limitation but would increase the computational cost of
the subsequent numerical simulations since it increases the
number of mesh elements.

Second, the maximum S-wave velocity of 4500 m s−1 cor-
responds to existing VS values at the bottom of the Earth’s
crust that are often adopted in velocity models (Duverger
et al., 2021; Molinari and Morelli, 2011). In addition, the bot-
tom layer has a fixed thickness and value that originates from
earlier works. Therefore, variability is considered only above
this constant layer.

Third, we do not constrain the ordering of layerwise VS
values to provide a large database variability that is essen-
tial for machine learning perspectives. Similar choices were
made in the widely used OpenFWI database (Deng et al.,
2022), in which the FlatVel-B family is based on a random
arrangement of layers. This means that some layer arrange-
ments may be unphysical – for instance, if the mean values
are linearly decreasing with depth. However, it is important
to notice that the physics of wave propagation is still satis-
fied in those situations, which is the main concern of this
work. One choice opposite to ours would be to impose layer-
wise values increasing with depth (as done in the OpenFWI
FlatVel-A family for instance). However, this would remove
all models with velocity inversion, which can be found in
complex geological contexts. From the metadata provided,
users can filter geological models with custom criteria to ex-
clude those outliers from their study. For instance, one cus-
tom criterion could be the impedance contrast, defined as
the ratio between impedance (Z = VS×ρ) in one geological
layer, Z`, and the layer above, Z`−1. Figure A2 illustrates the
distribution of impedance contrasts and shows that they are
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Figure 10. The original geological model (a) contains two homogeneous layers and a circular basin inserted inside the top layer. The PCA
reconstruction was obtained with 1000 PCA components (b).

Figure 11. For two spatial points, the velocity field predicted by the MIFNO (dashed red line) is compared with the reference from the
HEMEWS-3D database (black line).

realistic. A total of 9028 geological models have a minimum
impedance contrast smaller than 0.7.

Additionally, more diverse configurations could be de-
signed by relaxing the assumption that all geological param-
eters depend on a single variable. This would imply, for in-
stance, varying the VP/VS ratio. Random anisotropic hetero-
geneities can also be generated for more diversity (Ta et al.,
2010).

The domain size was limited to 9.6 km to prove that SciML
was possible with a manageable dataset size. This size al-
lows for reasonable local studies and is already larger than
existing 2D databases (Table 1). Extending the spatial size is
certainly of interest for some seismological applications and
requires additional computational costs. In summary, with
larger computational budgets and lesser memory constraints,
it would become possible to

– consider larger and deeper geological models,

– design models with a higher spatial resolution,

– include lower minimum VS values,

– increase the frequency limit of the wave propagation
simulations,

– increase the spatial sampling of virtual sensors,

– increase the temporal duration of signals to match the
longer epicentral distances coming from larger models.

It should also be noted that numerical simulations are only
valid for a frequency of up to 5 Hz due to the mesh design,
with numerical pollution for frequencies larger than 5 Hz. We
observed that it is crucial to apply a low-pass filter (with a
cutoff frequency of 5 Hz) to the velocity fields before using
machine learning models; otherwise, the model may try to fit
numerical noise.

7 Code and data availability

The database is referred to as Lehmann (2023) and can be
downloaded at https://doi.org/10.57745/LAI6YU. The wave
propagation code, SEM3D, is available at https://github.com/
sem3d/SEM (CEA et al., 2017). The code used to gener-
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ate the HEMEWS-3D database is given at https://github.com/
lehmannfa/HEMEW3D (Lehmann, 2024).

8 Conclusions

We presented the HEMEWS-3D (HEterogeneous Materials
and Elastic Waves with Source variability in 3D) database
that contains 30 000 geological models, source parameters,
and time- and space-dependent surface wavefields generated
by the propagation of seismic waves through each geologi-
cal model. This database was conceived as a solution to the
forward problem of wave propagation.

Geological models are built from horizontal layers that
are randomly arranged, and they correspond to the veloc-
ity of shear waves (VS). They represent a domain of size
9.6×9.6×9.6 km discretized in 300 m wide elements. VS val-
ues are comprised between 1071 and 4500 m s−1. Random
fields are then added independently in each geological layer
to create 3D heterogeneities. Their parameters (coefficients
of variation and correlation lengths) vary widely to cover di-
verse geological configurations and are given as metadata.
Geological models are provided as cubes with 32× 32× 32
voxels.

Seismic waves propagate numerically from the earthquake
source to the surface. Pointwise sources have a random po-
sition and orientation. Ground motion wavefields are syn-
thesized at the surface of the propagation domain by a grid
of 32× 32 sensors recording for 8 s. Simulations are con-
ducted with the high-performance computing code SEM3D
and amount to a total computational time of 9× 105 core
hours. The dataset description shows that the 8 s time win-
dow covers most significant ground motion at the surface.

Ground motion characteristics differ strongly between
samples. They were analysed in terms of relative significant
duration (RSD), P-wave arrival time, peak ground velocity
(PGV), and pseudo-spectral acceleration (PSA). In addition
to quantifying the distributions of essential intensity mea-
sures in seismology, these analyses confirm expected rela-
tionships between physical parameters and ground motion
characteristics. In particular, hypocentral distance, VS at the
source location, and mean velocity were investigated. Com-
parisons with ground motion models (GMMs) show that PSA
is comparable with estimates from recorded earthquakes.
This indicates the usefulness of the HEMEWS-3D database
in complementing databases of recorded earthquakes.

Due to the size of individual samples in the HEMEWS-3D
database, one may wonder whether data could be represented
with fewer parameters to reduce memory requirements. To
this end, we explored different methods to estimate the data-
intrinsic dimension, and we exemplified the well-known fact
that they can lead to very different values. Taking the MLE as
a lower bound, one can argue that the intrinsic dimension of
the geological database is at least 30. In addition, the low
values of the SSIM indicate that geologies are sparse and
distant from each other in the HEMEWS-3D database.

Concerning the velocity wavefields, the PCA and the MLE
confirm the intuition that the intrinsic dimension is larger
than the geological dimension since the source adds variabil-
ity to the time arrival of wavefields as well as their location at
the surface. In this situation, it is reasonable to consider that
the intrinsic dimension of ground motion is at least on the or-
der of 100. However, if data are decomposed with the PCA,
then the number of principal components is a few thousand.
The correlation dimension yields questionable estimates of
the intrinsic dimension that contradict our intuition and the
PCA and MLE outcomes.

By providing a large number of physics-based simula-
tions, the HEMEWS-3D database offers new perspectives
from which the relationship between geological properties
and surface ground motion can be studied. It led to the first
neural operator that predicts 3D ground motion, but many ap-
plications in statistics, scientific machine learning, and deep
learning are envisioned. We designed the database to be as
generic as possible, and we believe that several scientific
communities can benefit from it.
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Appendix A: Dataset description

Figure A1. The seismic moment function in the HEMEWS-3D database.

Figure A2. Distribution of impedance contrasts in the HEMEWS-3D database. The impedance contrast is computed as the ratio between
impedance in one layer (Z` = V s`× ρ`) and impedance in the layer above it (Z`−1).
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Figure A3. Frequency spectra corresponding to Fig. 2. Each row corresponds to a different sensor, located on a line parallel to the y axis at
x= 8.85 km. Each column corresponds to one of the three components. The grey line denotes frequencies larger than 5 Hz where numerical
simulations are not accurate.
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Appendix B: Dimensionality of data

B1 Principal component analysis

The intrinsic dimension based on the principal component
analysis (PCA) components has been evaluated with the
scikit-dimension package. Figure B1 illustrates the
number of PCA components required to retain 95 % of the
data variance depending on the number of samples. It can
be noted that, for computational reasons, the velocity fields
are represented by a single component (the east–west com-
ponent, parallel to the x axis) for all three methods.

For comparison purposes, the wavefield intrin-
sic dimension is also computed for a previous ver-
sion of the database, where the source has a fixed
position and orientation (HEMEW-3D database,
https://entrepot.recherche.data.gouv.fr/dataset.xhtml?
persistentId=doi:10.57745/LAI6YU&version=1.0 (last
access: 12 July 2024)). With this database, the wavefield
intrinsic dimension was around 3200. It is a reasonable
fact that adding degrees of freedom with a random source
increases the variability in data.

Figure B1. Number of principal components (y axis) required to represent 95 % of the variance in data as a function of the dataset size (x
axis) for geological models (a) and ground motion wavefields (b). For ground motion, the HEMEW-3D database is used for the fixed source
(black line) and the HEMEWS-3D database corresponds to the blue line.

B2 Correlation dimension

The correlation dimension is determined as the slope of the
linear part in the log–log representation ofCN (Fig. B3). This
definition is subject to some interpretation since one should
determine which portion constitutes the linear part. Never-
theless, we found that small variations in the linear part lim-
its had very little influence on the slope estimate (less than
one unit).

B3 MLE-based intrinsic dimension

The intrinsic dimension based on the maximum like-
lihood estimator (MLE) has been computed with the
scikit-dimension package. Figure B4 shows the evo-
lution of the intrinsic dimension as a function of the number
of samples for geological models and velocity fields.
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Figure B2. Correlation dimension (y axis) as a function of the dataset size (x axis) for geological models (a) and ground motion wavefields
(b). For ground motion, the HEMEW-3D database is used for the fixed source (black line) and the HEMEWS-3D database corresponds to
the blue line.

Figure B3. The correlation dimension, CN (r), is computed from the number of samples that are at (Euclidean) distance lower than r
for different values of r (Eq. 8). The correlation dimension is then obtained as the slope of the linear part in the log–log representation.
(a) Correlation dimension for 30 000 geological models. (b) Correlation dimension for 30 000 ground motion wavefields with a fixed source
(HEMEW-3D database). (c) Correlation dimension for 30 000 ground motion wavefields with a random source (HEMEWS-3D database).
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B4 Structural similarity index

Figure B5 exemplifies two pairs of geological models with
high similarity (SSIM of 0.6) but different properties. The
first pair (Fig. B5a and b) has similar mean values but dif-
ferent heterogeneities, while in the second pair, geological
models are almost homogeneous but exhibit different mean
values (Fig. B5c and d).

Figure B4. Intrinsic dimension estimated by the MLE (y axis) as a function of the dataset size (x axis) for geological models (a) and ground
motion wavefields (b). For ground motion, the HEMEW-3D database is used for the fixed source (black line) and the HEMEWS-3D database
corresponds to the blue line.

Figure B5. Two pairs of geological models with a high SSIM of 0.6. (a, b) Geological models with a SSIM of 0.6 and normalized distance
of 0.03 (c, d) Geological models with a SSIM of 0.6 and normalized distance of 0.15.
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Appendix C: Multiple-Input Fourier Neural Operator
(MIFNO)

The Multiple-Input Fourier Neural Operator (MIFNO) archi-
tecture is shown in Fig. C1. Details about the model are given
in Lehmann et al. (2024).

Figure C1. The MIFNO is made of a geology branch that encodes the geology with factorized Fourier (F-Fourier) layers and a source branch
that transforms the vector of source parameters (xs,θ s) into a 4D variable vS that matches the dimensions of the geology branch output, vK .
Outputs of each branch are concatenated after elementary mathematical operations and the remaining factorized Fourier layers are applied.
Uplift, P , and projection QE , QN , and QZ blocks are made of two dense layers with 128 neurons each.
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