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Abstract. Floodplains are a vital part of the global riverine system. Among all the global floodplain delineation
strategies empowered by remote sensing, digital elevation model (DEM)-based delineation is considered to be
computationally efficient with relatively low uncertainties, but the parsimonious model struggles with incor-
porating the basin-level spatial heterogeneity of the hydrological and geomorphic influences into the map. In
this study, we propose a globally applicable thresholding scheme for DEM-based floodplain delineation to im-
prove the representation of spatial heterogeneity. Specifically, we develop a stepwise approach to estimate the
floodplain hydraulic geometry (FHG) scaling parameters for river basins worldwide at the scale of the level-3
HydroBASINS to best respect the scaling law while approximating the spatial extent of two publicly available
global flood maps derived from hydrodynamic modeling. The estimated FHG exponent exhibits a significant
positive relationship with the basins’ hydroclimatic conditions, particularly in 33 of the world’s major river
basins, indicating the ability of the approach to capture fingerprints from heterogeneous hydrological and geo-
morphic influences. Based on the spatially varying FHG parameters, a ∼ 90 m resolution global floodplain map
named the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT) is delineated, which takes
the hydrologically corrected MERIT Hydro dataset as the DEM inputs and the height above nearest drainage
(HAND) as the terrain attribute. Our results demonstrate that SHIFT validates better with reference maps than
both hydrodynamic-modeling- and DEM-based approaches with universal parameters. The improved delineation
mainly includes better differentiation between main streams and tributaries in major basins and a more compre-
hensive representation of stream networks in aggregated river basins. SHIFT estimates the global floodplain area
to be 9.91×106 km2, representing 6.6 % of the world’s total land area. SHIFT data layers are available at two spa-
tial resolutions (90 m and 1 km), along with the updated parameters, at https://doi.org/10.5281/zenodo.11835133
(Zheng et al., 2024). We anticipate that SHIFT will be used to support applications requiring boundary delin-
eations of the global geomorphic floodplains.

Highlights.

– We develop a globally applicable thresholding scheme for
DEM-based floodplain mapping that improves the integration
of floodplain spatial heterogeneity.

– We create a new 90 m geomorphic floodplain map named the
Spatial Heterogeneity Improved Floodplain by Terrain analysis
(SHIFT).

– SHIFT has better delineation of main streams in major river
basins and more comprehensive representation of stream net-
works in aggregated river basins.

– The estimated exponent in floodplain hydraulic geometry
(FHG) exhibits a statistically significant positive relation with
hydroclimatic factors.

– Global floodplain area is estimated to be 9.91× 106 km2, rep-
resenting 6.6 % of the world’s total land area.
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1 Introduction

Floodplains are an integral component of the global river-
ine system – they act as a river’s ecological buffer and of-
fer conveniences for human settlements while also harbor-
ing flood risks (Di Baldassarre et al., 2013). Floodplains ac-
commodate over half of the world’s human habitation and
development due to their favorable nature (Andreadis et al.,
2022; Best, 2019). Thus, accurate delineation of floodplain
boundaries has attracted wide attention among ecologists,
flood practitioners and/or engineers, and geomorphologists
(Wohl, 2021). Among various mapping efforts across differ-
ent scales and resolutions (Dhote et al., 2023), global-scale
floodplain maps are particularly valuable as they require a
consistent and spatially continuous framework, which can be
leveraged to offer insights into the changing global floodplain
characteristics and flood risks (Du et al., 2018; Lindersson
et al., 2020; Rajib et al., 2021, 2023; Rentschler et al., 2022,
2023).

Terrestrial observation empowered by satellite remote
sensing provides essential data that allow for the delin-
eation of global-scale floodplains by estimating inundation
caused by flood extremes. One strategy for the delineation
is to directly detect the flood inundation areas from opti-
cal or synthetic aperture radar (SAR) remote sensing im-
ageries (e.g., Tellman et al., 2021). This requires the his-
torical occurrence of a flood event to define a floodplain,
but such an event-based approach often results in spatially
discrete global floodplain maps that are limited by satellite
data quality and accessibility. It also overlooks unflooded yet
at-risk locations, potentially underestimating floodplain ex-
tents. Other strategies involve running hydrodynamic or hy-
draulic models, which take input data from terrain and runoff
forcing and then simulate detailed flood inundation dynam-
ics in a computationally demanding manner (Bates et al.,
2018; Trigg et al., 2021). This method derives continuous
floodplain maps, and it emphasizes the inundation area un-
der different flood return periods (e.g., 100-year floodplain),
which is more commonly used in engineering and hazard
mitigation practices (Wohl, 2021). Various global floodplain
maps are available from different hydrodynamic models, in-
cluding the European Commission’s Joint Research Centre
(JRC) (Dottori et al., 2016), the CIMA-UNEP model from
the Global Assessment Report (GAR) (Rudari et al., 2015),
CaMa-Flood (Yamazaki et al., 2011), Fathom Global (Samp-
son et al., 2015), and GLOFRIS (Winsemius et al., 2013).
Yet, due to the uncertainties concerning the forcing inputs,
model structure, and parameters, notable inconsistencies are
reported across these datasets (Bates, 2023; Bernhofen et al.,
2022; Trigg et al., 2016). Thus, the uncertainties associated
with the above approaches highlight the need for continuous
efforts to improve global floodplain-mapping strategies.

Recent advancements in remote sensing offer ever-
growing spatial coverage, refined resolutions, and improved
accuracy in terms of global terrain products, motivating the

third strategy to directly delineate floodplains with satellite-
derived terrain data. The digital elevation model (DEM)-
based or terrain analysis approach is often considered to ex-
hibit higher computational efficiencies as it requires fewer
data and parameters, and the sufficiently accurate DEMs are
already recognized as the least uncertain component com-
pared to other uncertainty sources in global floodplain map-
ping with hydrodynamic models (Bates, 2023). As a result,
the parsimonious DEM-based floodplain-mapping method is
receiving growing attention in large-scale studies and un-
gauged basins (Manfreda et al., 2014; Nardi et al., 2013,
2018; Tavares da Costa et al., 2019). DEM-based flood-
plain mapping generally consists of two steps. First, essen-
tial terrain attributes such as height above nearest drainage
(i.e., HAND), topography wetness index, slope position,
and/or their derivatives are calculated from DEMs to repre-
sent river proximity (Beven and Kirkby, 1979; Rennó et al.,
2008; Weiss, 2001; Xiong et al., 2022). Second, thresholding
schemes are applied to these attributes to delineate the flood-
plain boundary (Dhote et al., 2023). For example, the GF-
PLAIN algorithm, a widely applied method for terrain-based
floodplain delineation (Knox et al., 2022; Manfreda et al.,
2014; Nardi et al., 2006; Rajib et al., 2023), adopts such an
approach to create the GFPLAIN250m dataset (Nardi et al.,
2019). In a recent comparative study, GFPLAIN250m was
proven to show the highest consistency with several exist-
ing floodplain maps, highlighting the potential of geomor-
phic floodplain delineation in reducing model uncertainties
(Lindersson et al., 2021).

However, DEM-based mapping methods also face chal-
lenges, particularly in characterizing the spatial heterogene-
ity (Annis et al., 2019) or spatial variations in floodplain
characteristics and processes discovered across scales, such
as topography, morphology, climate, stratigraphy, biodiver-
sity, and river fluxes (Iskin and Wohl, 2023; Wohl, 2021;
Wohl and Iskin, 2019). In a DEM-based mapping approach,
one generally addresses the impact of heterogeneous factors
on floodplain extents through thresholding schemes, but, cur-
rently, there is no universal large-scale thresholding scheme
available (Dhote et al., 2023). Many previous attempts as-
sume homogeneous determining factors within the study
area and directly assume a universal threshold (e.g., a spe-
cific HAND threshold for all pixels) in obtaining geomor-
phic floodplains, which may suffice at smaller scales but
could significantly skew results in large-scale studies (Af-
shari et al., 2018; Hocini et al., 2021; Manfreda et al., 2014;
Nardi et al., 2013). To better account for spatial heterogene-
ity, the aforementioned GFPLAIN algorithm (Nardi et al.,
2006) applied the floodplain hydraulic geometry (hereafter
FHG; Bhowmik, 1984) as the foundation of their threshold-
ing scheme. In the FHG scaling-law relationship, the flood-
plain extent scales exponentially with the river’s upstream
drainage area (UPA), which adds UPA as the primary deter-
mining factor in deriving floodplain maps. However, it often
adopts universal values for FHG parameters across basins
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(Nardi et al., 2019), implying that other sources of hetero-
geneity encapsulated by the FHG scaling parameters are ig-
nored. While studies attempting to estimate the empirical
parameters of FHG with statistical fitting methods exist, it
remains difficult to derive FHG parameters worldwide and
to offer further physical interpretations for the parameters.
Such an inadequate representation and understanding of spa-
tial heterogeneity in FHG parameters may lead to inaccu-
rate delineations in less well-documented regions: for exam-
ple, overestimated floodplains in arid or semi-arid areas, as
reported by existing assessments of geomorphic floodplains
(Lindersson et al., 2021).

To complement existing studies, here, we develop a glob-
ally applicable framework to estimate FHG parameters that
better integrates spatial heterogeneity into our threshold-
ing scheme. It takes two publicly available hydrodynamic
floodplain maps as the reference to estimate spatially varied
FHG parameters across all global river basins at the scale
of the level-3 HydroBASINS. Based on this, we develop
a 90 m global geomorphic floodplain map named the Spa-
tial Heterogeneity Improved Floodplain by Terrain analysis
(SHIFT). SHIFT calculates HAND above the nearest river
pixel to which it drains by utilizing the hydrologically cor-
rected MERIT Hydro (Yamazaki et al., 2019) dataset. Due to
the use of the MERIT Hydro dataset, SHIFT also addresses
limitations in the existing global geomorphic mapping that
uses an uncorrected digital terrain model (DTM) with limited
spatial coverages (60° N to 60° S) and relatively low spatial
resolutions. Our article is organized as follows: Section 2 in-
troduces our methods and data in detail. Section 3 presents
our geomorphic floodplain data and the accuracy assessment
against several reference maps. Sections 4 and 6 close with a
discussion and the conclusions of this study.

2 Methods and data

SHIFT is developed following the technical flowchart in
Fig. 1. Below, we will describe our data and methods in de-
tail.

2.1 Data

2.1.1 Terrain data

1. MERIT Hydro hydrography map. We take terrain in-
puts (i.e., elevation, D-8 flow direction, and upstream
drainage area) from the MERIT Hydro dataset (Ya-
mazaki et al., 2019). It is a 90 m resolution global
dataset that combines data from the Space Shuttle
Radar Topography Mission (SRTM) and airborne li-
dar, which has undergone rigorous error correction pro-
cesses to remove various types of errors such as strip-
ing noise, speckle noise, absolute errors, and biases in
tree heights. Multiple remote sensing datasets and vol-
unteer geographic information system (Volunteer GIS)

water data are used to further enhance its ability to
identify river locations. Specifically, it combines Open-
StreetMap river vector data, SRTM waterbody data, and
Landsat-derived water data to calculate the likelihood
of a grid cell representing a water body. In areas with a
high likelihood of water, the elevation is adjusted to be
lower. This approach effectively improves the accuracy
of flow direction calculations and minimizes deviations
in flat areas. The dataset is georeferenced to the WGS84
and EGM96 geodetic reference systems, with a spatial
resolution of 3 arcsec (approximately 90 m at the Equa-
tor).

2. HydroBASINS global basins. We applied basin bound-
ary data from the level-3 HydroBASINS dataset to
introduce the basin-by-basin spatial variability in pa-
rameter estimation. This is a multi-level global basin
dataset derived from the SRTM DEM data as part of
the HydroSHEDS project (Lehner and Grill, 2013). Hy-
droBASINS is structured into 12 levels of basins, with
higher levels representing finer basins. The dataset ap-
plies the Pfafstetter coding system to support the anal-
ysis of watershed topology, including upstream and
downstream connectivity. The first three levels are as-
signed, with level 1 categorizing continents, level 2
dividing continents into major sub-units, and level 3
delineating the largest river basins on each continent
(Lehner and Grill, 2013). The level-3 sub-basins in Hy-
droBASINS consist of 269 units globally, with an aver-
age size of 555 600 km2. Level-4 and level-5 boundaries
are also applied for further analysis on scales.

3. MERIT-Basins. MERIT-Basins is a global vector hy-
drography database derived from the 90 m MERIT Hy-
dro product, based on a 25 km2 threshold for drainage
areas (Lin et al., 2019). It aligns well with the MERIT
Hydro dataset. To obtain the corresponding boundaries
for parameter estimation, we combined MERIT-Basins
into groups equivalent to level 3 to level 5 of Hy-
droBASINS. We aggregated MERIT-Basins based on
its spatial relationship with basins from HydroBASINS,
ensuring that the centroid of a MERIT-Basin falls within
the corresponding boundary. This approach accounts
for slight differences in boundaries due to the use of
different terrain data, preventing confusion in hydro-
logical representation. Among the level-3 basins, the
40 largest hydrologically connected basins were man-
ually selected based on the hypothesis that connected
basins better apply the scaling law due to shared at-
tributes within the same hydrological system. A total of
7 of these 40 basins, with centroids located above 60° N,
were excluded since one of our reference maps does not
cover regions above 60° N.
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Figure 1. Technical workflow of the study. Parallelograms denote data; rectangles denote processing; highlighted rectangles are the key
features of SHIFT. Stepwise parameter estimation is marked in the gray box.

2.1.2 Reference and benchmark datasets

1. JRC flood map. The flood hazard map created by the
European Commission’s JRC is selected as part of
the reference and validation dataset. It is based on
the 3 arcsec SRTM DEM, which combines hydrologi-
cal simulations from the Global Flood Awareness Sys-
tem (GloFAS) with a two-dimensional CA2D hydraulic
model for flood inundation mapping. The GloFAS sim-
ulations utilize ERA-Interim data, covering the period
from 1980 to 2013, and operate at a resolution of 0.1°
(approximately 11 km at the Equator). The system sim-
ulates streamflow by coupling two distributed global
models: HTESSEL, which estimates surface water and
energy fluxes in response to atmospheric forcing, and
the LISFLOOD Global, which uses the output from HT-
ESSEL to simulate routing processes and streamflow.
The flood hazard maps produced are at a 30 s resolution
and focus on river channels with an upstream catchment
area greater than 5000 km2 (Dottori et al., 2016). The
JRC dataset provides flood hazard maps with different
return periods from 10 to 1000 years. Here, we used the
500-year flood map as a reference floodplain map based
on the notion that geomorphic floodplains are domi-
nantly shaped by high-impact yet low-possibility events
(Annis et al., 2019; Bhowmik, 1984; Lindersson et al.,
2021).

2. GAR flood map. We also select the 500-year flood map
of the hydrodynamic model from the GAR of the United
Nations Office for Disaster Risk Reduction (UNDRR)

and the CIMA foundation as a reference and validation
dataset. The GAR data employ a global database of dis-
charge data from over 8000 stations to estimate extreme
streamflows and a DEM from HydroSHEDS for hy-
draulic modeling. This one-dimensional model applies
Manning’s equation to calculate river stages. The GAR
flood map also considers artificial flood defense by as-
suming target return periods of flood defenses based on
the GDP distribution, thereby locally reducing the es-
timated flooded volume within the estimated protected
area. The dataset is characterized by return periods of
25, 50, 100, 200, 500, and 1000 years, a coverage of
60° N to 60° S, with a native resolution of 90 m from
the SRTM DEM, later aggregated to 1 km for risk com-
putation (Rudari et al., 2015).

3. GFPLAIN250m floodplain map. The aforementioned
geomorphically delineated GFPLAIN250m floodplain
map is used as the benchmark and another validation
dataset (Nardi et al., 2019). It has the same coverage
as GAR (60° N to 60° S). For each grid, it calculates
the height above the lowest elevation grid within the
same watershed (i.e., the basin outlet) as the terrain
attribute rather than the nearest river grid to which it
drains. This exaggerates the vertical distance to streams
for upstream pixels and may thus lead to underestima-
tion of the floodplain. FHG is applied as the threshold-
ing scheme (Nardi et al., 2006), but the exponent takes
universal values across different basins (i.e., exponen-
tial parameter b= 0.3, proportional parameter a= 0.01)
for convenient global applications. It takes the 250 m
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SRTM DTM as terrain input and implements the hydro-
logical analysis workflow by using the ArcPy library.

4. Global Lake and Wetland Dataset (GLWD) lake and
reservoir dataset. We apply a global lake mask to crop
the reference map before using it for parameter estima-
tion, which helps to avoid inconsistent lake represen-
tations from our reference and validation datasets. To
do that, the Global Lake and Wetland Dataset (GLWD),
jointly developed by the World Wildlife Fund (WWF)
and the Center for Environmental Systems Research at
the University of Kassel (Lehner and Döll, 2004), is
used. It consists of three layers, and the level-1 layer
represents large lakes and reservoirs, including 3067
lakes and 654 reservoirs with lake area ≥ 50 km2 and
storage capacity ≥ 0.5 km3, respectively. The dataset
takes its reference from multiple sources and is further
refined with independent data from USGS and extensive
visual inspections and quality-controlling.

2.1.3 Datasets for correlation

1. Global-AI_PET_v3 aridity index database. We use
the aridity index (AI) from the Global Aridity In-
dex and Potential Evapotranspiration Database (Global-
AI_PET_v3) to assess its linkage with the FHG param-
eter. The database provides 30 arcsec global potential
evapotranspiration (ET0) and AI data. AI is calculated
as the ratio of the mean annual precipitation to the mean
annual reference ET0, which is estimated by the FAO
Penman–Monteith Reference evapotranspiration equa-
tion. It has been validated against various weather sta-
tion data and shows an improved correlation with real-
world data compared to previous versions (Zomer et al.,
2022).

2. Leaf area index (LAI) climatology. Developed for a
model intercomparison project (HighResMIP v1.0) of
CMIP6, this dataset provides a global 0.25°× 0.25°
gridded monthly mean leaf area index (LAI) clima-
tology, averaged from August 1981 to August 2015
(Haarsma et al., 2016). Derived from the Advanced
Very High Resolution Radiometer (AVHRR) Global
Inventory Modeling and Mapping Studies (GIMMS)
LAI3g version 2, it includes bi-weekly data from 1981
to 2015. The raw LAI3g version 2 data were regridded
from 1/12°× 1/12° to 0.25°× 0.25°, processed to re-
move missing and unreasonable values, scaled to obtain
LAI values, and averaged bi-weekly to monthly. The fi-
nal product is a monthly long-term mean LAI (1981–
2015) provided in a single NetCDF (.nc4) file.

2.2 Methods

This section introduces HAND, FHG and our parameter es-
timation scheme for SHIFT.

1. HAND as a terrain attribute. HAND is a derivative ter-
rain index that describes the relative elevation difference
between any grid cell in a DEM and its nearest river grid
(Rennó et al., 2008). Here, the river grid is identified by
applying a 1000 km2 threshold to the upstream drainage
area (UPA), supported by previous studies (Nardi et al.,
2019). The threshold is determined by preliminary ex-
periments to ensure that it is neither too small, which
would mis-attribute large-river-dominated floodplains
to small rivers, nor too large, which would overlook
rivers with notable influence. Accurate HAND calcu-
lation requires defining the nearest river network grids
either by flow direction or by distance. The flow direc-
tion model defines the first river network grid reached
by tracing the D-8 flow as the nearest drainage, result-
ing in floodplain maps that capture regional hydrologi-
cal characteristics but that are influenced by local terrain
fluctuations. The distance model searches for the near-
est drainage grid within a specific distance (e.g., two-
dimensional or three-dimensional Euclidean distance),
highlighting geometric considerations, but ignores nat-
ural geomorphic separations. We adopt the flow direc-
tion method to avoid discontinuities in HAND intro-
duced by the distance model (not shown); subsequent
results in floodplain delineation are derived from using
the D-8 flow directions obtained from the MERIT Hy-
dro dataset.

2. FHG as a thresholding scheme. FHG is an adapted
form of the original river channel hydraulic geometry
(Leopold and Maddock, 1953). It posits a power-law
relationship between floodplain characteristics (width,
depth, 100-year discharge) and river size (UPA or
Strahler stream order). In the context of floodplain de-
lineation, it considers a power-law relationship between
the potential inundation depth (h) of a river grid cell and
its UPA:

h= a ·UPAb, (1)

where a and b are empirical parameters containing
heterogeneous factors determining floodplain extents.
Then, the algorithm determines grid cells with HAND
lower than h for the corresponding river grid (hriver) to
be floodplain, which can be represented by Eq. (2):

f (HAND,hriver)=

{
1,HAND≤ hriver

0,HAND> hriver
. (2)

3. FHG parameter estimation. Estimating FHG parame-
ters requires either reference floodplain extents or esti-
mated runoff as inputs (Annis et al., 2019; Nardi et al.,
2013). We take two hydrodynamic model outputs as the
reference map (i.e., the 500-year return period JRC and
GAR flood maps) as they intrinsically contain flood-
plain spatial heterogeneity by feeding gauged stream-
flow observations or climate reanalysis data (Lindersson
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et al., 2021). The goal of using these reference datasets
is to capture information regarding the spatial hetero-
geneity of these two datasets while trying our best to
constrain model-related uncertainties.

With the above reference map, two methods can be used
to estimate FHG parameters: parameter space sampling
(PSS) and logarithmic regression (LR). PSS defines a
feasible range for two parameters in Eq. (1) and then
samples the parameters from the parameter space and
tests their combinations against a reference map by us-
ing a fitness index (Annis et al., 2019). LR assumes that
all floodplain grids from the reference map satisfy the
scaling law so that the FHG parameters b and a can
be estimated by statistical approximation (Nardi et al.,
2013). For LR, we expect all floodplain pixels in the
reference map to satisfy the following:

HAND≤ a ·UPAriver
b, (3)

which could be transformed into

ln(HAND)≤ b · ln(UPAriver)+ ln(a). (4)

Apparently, PSS can best approximate the output but
could lead to equifinality, while LR emphasizes the scal-
ing law but could be influenced by uncertainties in the
reference data (see more details below). Therefore, we
combine the two methods above and propose a stepwise
parameter estimation framework. Specifically, we first
determine baseline values for parameter a0 from prior
research, and then we estimate b by forcing logarithmic
regression based on the reference dataset to best respect
the FHG scaling law; following this, the coefficient a
is calculated by sampling the parameter space based on
the reference map and the determined b value.

Equation (4) predicts a positive linear relationship
(see Fig. 2a) between ln(UPAriver) and the maximum
ln(HAND) values, which represent the most distant
floodable grid for each river grid. However, our ob-
servations do not align with this expectation. This dis-
crepancy occurs because some river grids with small
drainage areas can exhibit unexpectedly high HAND
values. These can be ascribed to uncertainties within
our reference map, which inherits the model chain er-
rors, terrain data, and spatial resolution inconsistencies,
as well as other unaccounted within-basin variabilities
that may break the scaling law. While results from the
Gaussian kernel density plot (Fig. 2b) prove that the ma-
jority of data still conform to the power law, the patterns
indicate that one cannot simply apply LR to the maxi-
mum ln(HAND) and ln(UPAriver) to obtain the required
parameters.

Therefore, we develop a scheme to effectively mitigate
data noises in estimating parameter b while maintain-
ing the power law for the majority of grids. First, we

take floodplain grids from the intersection of the two
reference maps as we suggest the intersection map to be
more accurate. Then we set a universal HAND thresh-
old of 20 m to screen out the most obvious high anoma-
lies. We then group HAND values by UPAriver and ap-
ply an iterative moving-window data-filtering scheme
based on 3σ statistics, where every grid would be fil-
tered by 20 windows (window size= 1, step= 0.1). In
each iteration, we compute the mean and standard de-
viation for the data within each window. A grid point
is retained only if it consistently meets the 3σ criteria
across all 20 windows. This iterative process stops ei-
ther when every data point fits within all moving win-
dows or if the procedure fails to converge towards a
stable solution (e.g., for highly noised or significantly
non-normal data). Instead of directly performing LR,
we calculate a sequence of theoretical b values from
the maximum HAND of each UPAriver unit with a base-
line estimate of a0= 0.01 based on prior research (Nardi
et al., 2019). The binning parameter is tuned to effec-
tively reduce data noise for all basins. As the optimal b
will lean towards the higher end of our calculated se-
quence but will not be at the highest end as it could pos-
sibly be interfered with by the remaining high HAND
anomalies, we evaluate the 10 % to 50 % percentiles of
these b sequences across all basins to identify the best
percentile that centers around the previously estimated
global b value of 0.3 (Nardi et al., 2019). The b value
under this identified percentile is then chosen as the op-
timal parameter for each individual basin.

After b is determined, the coefficient a is optimized
with an iterative PSS method. We take both hydrody-
namic maps as our reference dataset as we would like to
highlight the “consensus” of existing maps while trying
to achieve better consistency from both maps. Numer-
ous indices for the optimization target exist, including
overall accuracy (OA), the kappa coefficient (Cohen,
1960), Fleiss’s kappa (Fleiss, 1971), the model agree-
ment index (MAI, Trigg et al., 2016), or the measure-
of-fit function (Nardi et al., 2019). While the MAI and
measure-of-fit function emphasize data overlap, they do
not address overprediction. OA considers unpredicted
areas but may overly reward non-floodplains since they
are the major landmass type. Fleiss’s kappa can as-
sess agreement among multiple datasets, but using it
alone with two existing datasets may bias our estimated
boundary towards the dataset with larger predictions as
it maximizes mathematical consistency values. This is
undesirable since we aim for agreement with each in-
dividual dataset to balance the information from both.
Therefore, our target function is defined as follows:

Consistency= FK− σ · (MAIJRC−MAIGAR)2. (5)
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Here, Fleiss’s kappa (FK) represents how well the three
datasets (including the product with the parameter to
be optimized) match. The penalty term, based on the
squared difference between the two MAI values, re-
duces bias towards one dataset over the other. The
weight term (σ ), ranging from 0 to 1, is determined
by the normalized number of available reference data
grids in the basin. This assumes that basins with fewer
common data grids have less reliable datasets; thus,
overemphasizing the penalty term would unnecessarily
and overly influence FK.

Fleiss’s Kappa (FK) is calculated as follows:

FK=
Po−Pe

1−Pe
, (6)

where Po and Pe are, respectively, calculated by

Po =
1
N

N∑
i=1

C∑
j=1

nij (nij − 1)

K(K − 1)
, (7)

Pe =

C∑
j=1


K∑
i=1
nij

NK


2

. (8)

In these equations, K is the number of models
(three here),N is the number of pixels, i represents each
grid, and j represents different possible values (1 or 0
here). The MAI is calculated as follows:

MAI=
A

A+B +C
, (9)

where A, B, and C denote overlapping (true positive),
over-prediction (false positive), and under-prediction
(false negative), respectively. Considering the fact that
the previously estimated a values range from 0.001 to
0.06 (Nardi et al., 2018), we first sample 20 equidis-
tant a values between 0 and 1 against the reference data.
Then the direct neighbor of the best-performing a value,
constraining its precision to at least one decimal place,
is used to search for the true optimal a. We apply five
iterations, each with a new set of 20 equidistant a val-
ues within the estimated direct neighbors from the last
iteration. The optimal a from the final iteration is then
selected as the basin-specific coefficient.

4. Development of SHIFT. Based on the above, we esti-
mate the FHG parameter with the HydroBASINS level-
3 basins, and we derive the floodplain maps for each
basin and then integrate them into a 90 m global flood-
plain map. We use Python 3.10 libraries (e.g., pandas,

NumPy, and GeoPandas), the GDAL command line in-
terface, and the TauDEM toolkit (Tarboton, 2016) for
the FHG parameter estimation and the thresholding. We
also downsize the dataset to a 1 km resolution flood-
plain map for convenient large-scale applications – the
1 km resolution floodplain map is provided as part of
the final output. We used the median as the resampling
method for continuous variables like UPA and HAND
and the mode for categorical data, such as the reference
maps, SHIFT, and watershed division. Permanent wa-
terbodies are removed for all processes.

5. Validation and correlation. After getting the updated
floodplain boundary with the optimized parameters
(SHIFT), we conduct a pairwise consistency analysis
among five maps, i.e., SHIFT, GFPLAIN250m, UPs
(universal parameters, applying b= 0.3 and a= 0.01 in
MERIT Hydro), JRC, and GAR. UPs were generated
to allow the assessment of how changes in parameters
influence the results. We apply both MAI (see Eq. 9)
and OA for this pairwise consistency analysis in ref-
erence to previous research (Lindersson et al., 2021).
Note that MAI is a critical index: an MAI of 0.2 rep-
resents 20 % to 33 % overlap between models, while an
MAI of 0.5 represents 50 % to 67 % overlap. Previous
large-scale assessments of floodplain map consistencies
revealed that the median MAI is in the range of 0.1 to
0.4 (Lindersson et al., 2021). OA is calculated as fol-
lows:

OA=
A+D

A+B +C+D
, (10)

where D denotes non-prediction by both maps, and A,
B, and C are as defined in Eq. (9). The two types of
indices applied here have different focuses: OA con-
siders non-floodplain areas, while MAI focuses exclu-
sively on overlapping floodplain areas. Considering the
overall land mass is non-floodplains, we also calculated
OA within 20 km buffer zones, with distance measured
as the hydrological distance to the stream. In the pair-
wise comparison, group comparisons were conducted
with JRC and GAR, where each hydrodynamic map was
tested against SHIFT, GFPLAIN, and UPs. The JRC–
GAR pair serves as the baseline.

For our analysis, we focus on parameter b. Theoret-
ically, b influences rivers differently based on their
drainage area, with larger b values highlighting the
dominance of large rivers over tributaries in shaping
floodplain extents. Thus, we expect b to be closely asso-
ciated with the spatial heterogeneity of basin-level hy-
drological and geomorphic characteristics. Our primary
hypothesis is that b should be related to climate aridity
as more humid areas are expected to show a stronger
dominance of large rivers. Additionally, vegetation, in-
dicated by LAI (leaf area index), may also play a role
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since it is involved in the runoff generation process, as
well as in modulating soil erosion, which can be key to
floodplain formation. Therefore, we calculate the cor-
relation of b with average AI (aridity index) and LAI
across all basins to validate whether our thresholding
scheme can better capture the spatial heterogeneity of
floodplain characteristics.

3 Results

3.1 Global FHG parameter estimation

Following the stepwise parameter estimation scheme pro-
posed in Sect. 2.2 (3), we obtain the statistical distributions
of different b percentiles in Fig. 3b. While distributions from
all percentiles exhibit similar patterns, especially for the 20th
to 50th percentiles, we apply the 30th percentile worldwide
as it distributes best around the previously estimated global
b value of 0.3 (Nardi et al., 2019; see dashed line in Fig. 3b).
The majority of estimated parameter b values lie within the
range of 0.25 and 0.35. Based on the estimation, the coeffi-
cient a is also optimized, varying from 0.0001 to a maximum
of 0.12 across all basins.

Spatially, the distribution of the estimated b (Fig. 3a)
shows that regions characterized by abundant precipitation
and water resources (e.g., southern East Asia, Southeast
Asia, and the Mississippi and Amazon river basins) generally
exhibit relatively higher b values. Conversely, regions such
as central western Asia, the Arabian Peninsula, the Sahara
region, and central Australia tend to have relatively lower
b values. There are also exceptions: for instance, the overall
high b values in the Arctic Circle and the low values in river
deltas (e.g., the western Mississippi Delta in Louisiana and
Jiaodong Peninsula in eastern Asia). The estimated parame-
ter a exhibits a less clear spatial pattern (Fig. S1 in the Sup-
plement) as it is less uniform in terms of unit and is highly
dependent on the estimated b value.

Statistically, results show that b from all basins exhibits
significant but weak positive correlations with the AI (aridity
index, r = 0.335, Fig. 4a) and an insignificant positive cor-
relation with LAI (leaf area index, r = 0.083, Fig. 4b). For
the selected 33 major basins, which are hydrologically con-
nected and thus expected to have more internally consistent
hydrological characteristics, both correlations are stronger
(r = 0.680 for AI and r = 0.668 for LAI) and significant. We
investigate other potentially relevant factors (Fig. S1), but no
significant and consistent linear correlations were observed,
suggesting that more complex mechanisms may be involved
that do not manifest as observable linear correlations.

3.2 Global floodplain delineation

Based on the estimated FHG parameters, the global distri-
bution of floodplain areas is delineated and shown in Fig. 5a.
Overall, the spatial pattern of the floodplains aligns well with

the low-lying areas in major river systems. More specifically,
floodplains in northern Asia are mainly distributed around
the western Siberian Plain and the central western Siberian
Plateau, e.g., the Ob and Yenisei River basins. Western and
central Asia’s floodplains are primarily near the Caspian Sea,
the Aral Sea, and the Mesopotamian Plain. In East Asia,
the Yangtze River Basin dominates floodplains in the mid-
dle and lower reaches, along with contributions from the
North China Plain, some Yellow River tributaries such as the
Hetao Plain, and river mouths in the southeast. The Lancang–
Mekong River basin and the Salween–Irrawaddy River basin
in Southeast Asia also breed the largest floodplains world-
wide, along with the Indus and Ganges–Brahmaputra River
basins from southern Asia. In Europe, the primary flood-
plains are concentrated in the Danube River basin between
the Alps and the Carpathian Mountains, alongside the Rhine,
Dnieper, and Po River basins. In Africa, floodplains are pre-
dominantly distributed in the upstream Nile River, includ-
ing the Nile Delta and the Niger River basin, as well as in
the Congo River Basin, in the Chari River–Lake Chad basin,
and around Lake Victoria, with additional areas near west-
ern and eastern Africa’s coasts. North America’s floodplains
are mainly in the Mississippi River basin and Alaska’s Yukon
River basin. South America’s floodplains are primarily in the
Amazon River basin, the Orinoco Plain, and the La Plata
Plain. In Oceania, floodplains center in the interior lowlands
around the Murray–Darling River basin.

To show more regional details, we use two cases with dif-
ferent climatic conditions (Fig. 5b and c) to further illus-
trate the differences between SHIFT and the widely used GF-
PLAIN250m dataset. Case 1 (Fig. 5b) is the Indus–Ganges–
Brahmaputra River basin, which flows through Bangladesh,
India, Pakistan, and Nepal. These countries are primarily
characterized by frequent floods and are strongly influenced
by the south Asia monsoon. SHIFT captures detailed flood-
plains in the Indus River basin, a major basin in southern
Asia which GFPLAIN250m leaves out. Additionally, SHIFT
offers finer details in upstream areas and can better distin-
guish main river floodplains from those of the tributaries.
Case 2 (Fig. 5c) is situated in the Yellow River basin (Hetao
Plain) in Inner Mongolia, China, a region dominated by arid
to semi-arid continental climate. Comparing the floodplain
maps with visual interpretations of the satellite images sug-
gests that SHIFT can provide a more comprehensive depic-
tion of the Hetao Plain. The floodplains outside of the Hetao
Plain in SHIFT are relatively limited, which aligns with its
generally dry climate conditions.

According to SHIFT, global floodplains take up approxi-
mately 9.91×106 km2, representing 6.6 % of the world’s to-
tal land area. Figure 6 further shows the floodplain area and
the percentage of floodplains within each of the global ma-
jor river basins. Overall, the Amazon River basin possesses
the largest total floodplain area globally (625 431.3 km2), fol-
lowed by the Paraná, Nile, Ganges, and Mississippi River
basins. Floodplains in the Haihe River basin take up the
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Figure 2. The expected and actual scenario of floodplain grids within a basin. The x axis represents ln(UPAriver), and the y axis represents
ln(HAND). Panel (a) shows the scatterplot of the expected linear relationship between maximum ln(HAND) and ln(UPAriver). Blue scatters
are the maximum HAND values, while gray scatters are non-maximum reference floodplain grids. Panel (b) shows an actual scenario (i.e.,
the Yangtze River basin corresponding to the level-3 HydroBASINS, PFAF ID no. 434) which approximately arrives at the power-law
relationship in the kernel density plot.

Figure 3. Statistical and spatial distribution of estimated FHG parameter b. (a) Spatial distribution of parameter b across HydroBASINS
level-3 basins. (b) The distribution of parameter b across basins; p10 to p50 represent the percentiles during estimation, and the b= 0.3 line
shows the universal value applied in previous research.

greatest area percentage (∼ 20 %), highlighting the great ge-
omorphic flood inundation potential of such basins. Com-
paring across continents, South America and Asia breed the
most widespread floodplain extent worldwide and tend to
have the highest floodplain percentages.

3.3 Validation and consistency analysis

Figure 7 shows the basin-level distribution of MAI be-
tween SHIFT and the two hydrodynamic maps. It shows that
(1) SHIFT exhibits stabler consistency with the two maps
in major basins (e.g., the Yangtze and the Amazon) com-
pared to smaller basins and that (2) better consistency be-
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Figure 4. Scatterplots of FHG parameter b against relevant hydroclimatic factors. (a) Scatterplot with AI (aridity index). (b) Scatterplot with
LAI (leaf area index). In each plot, gray points represent all basins, including the largest ones, while red points represent the 33 selected
basins. Pearson’s r and significance levels are indicated on the plots.

tween SHIFT and reference maps is found in humid basins,
with some exceptions in arid areas (e.g., the Niger). These
patterns may be attributed to the greater number of refer-
ence data grids in larger and wetter basins, which also have
strong scaling relationships that support a geomorphic ap-
proach for floodplain mapping. In addition, SHIFT generally
aligns better with JRC in major river basins, while consis-
tency with GAR is higher in smaller basins and inland river
basins. The median MAI with JRC is 0.271, while, for GAR,
it is 0.308. For the 33 major basins, the median MAI val-
ues with JRC and GAR are 0.415 and 0.289, respectively.
This difference can be ascribed to the different river stream
delineation strategies adopted by the two datasets. That is,
JRC uses a stream threshold of 5000 km2 for drainage area,
while GAR uses 1000 km2. Consequently, JRC is less effec-
tive in capturing features of inland basins (e.g., the Tibetan
Plateau) and fragmented river deltas (e.g., west of the An-
des), where few rivers meet the 5000 km2 threshold. For large
basins, JRC performs better, as it highlights the inundation
of larger rivers (e.g., the Mississippi), while, in GAR, small
rivers also yield large floodplain extents. Notably, SHIFT
generally aligns better with JRC for the Arctic basins as GAR
lacks data north of 60° N.

Figure 8a shows the pairwise consistency analysis among
different floodplain maps to more objectively document the
pros and cons of each dataset. Prominently, it shows that
the consistency between SHIFT and JRC significantly im-
proves over UP and GFPLAIN, but that with GAR does not
(as shown in MAI). The consistency pattern can be explained
by delving into the inner workings of each dataset. For large
basins, SHIFT highlights the main streams and reduces the
prediction of tributaries, thus aligning more closely with JRC
as it highlights major rivers, leading to a decrease in consis-
tency with GAR. UP and GFPLAIN align better with GAR

in these regions as they all tend to overpredict, especially
in tributaries. For other basins, SHIFT strikes a balance be-
tween the two datasets. Comparing SHIFT with UP, SHIFT
increases the lower interquartile range for JRC’s OA and the
upper interquartile range for GAR’s OA, highlighting a gen-
eral improvement with SHIFT. For MAI, the upper quartile
with GAR decreases, while the lower quartile improves, sug-
gesting a consistency trade-off between the two datasets. No-
tably, all geomorphic maps show a better consistency with
the hydrodynamic outputs than the hydrodynamic pair, prov-
ing again that the hydrogeomorphic delineation method is a
more globally consistent framework.

To better understand the impact of our estimated param-
eters on the consistency performance, we analyze the most
consistent pair and corresponding MAI values for each basin.
Among all pairs, SHIFT–JRC aligns the best in 62 basins,
with SHIFT–GAR aligning best in 74, UP–JRC aligning best
in 8, and UP–GAR aligning best in 37 (Fig. 8b). This vali-
dates that SHIFT exhibits better consistencies with the ref-
erence maps even though the difference between SHIFT and
UP seems to be not statistically significant (Fig. 8a). Spa-
tial patterns (Fig. 8b) show that SHIFT–JRC pairs align best
in humid major basins (e.g., the Mississippi and Amazon)
and very arid regions (e.g., the Taklamakan and central Aus-
tralia). SHIFT–GAR pairs are the most consistent in moun-
tainous regions (e.g., the Rockies and Andes), aggregated
deltas (e.g., eastern Australia and southern Africa), islands
(e.g., Indonesia), and inland river basins (e.g., the Tibetan
Plateau), where few rivers meet the 5000 km2 drainage area
threshold of JRC. In contrast, cases where UP pairs align best
are less common. UPs align better with GAR due to their
shared large prediction extents, such as around the Caspian
Sea. In rare instances where UP–JRC pairs perform best,
it is typically in deltas or regions where SHIFT–GAR per-
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Figure 5. Geomorphic floodplain extent in SHIFT. (a) Global spatial distribution of floodplains, with major river basins or plains marked
out. (b, c) Two cases comparing SHIFT with GFPLAIN250m, with the background image from © Google Earth on EPSG: 3857 projection.
Panel (b) is located in the humid Indus and Ganges–Brahmaputra river basin, while panel (c) is located in the semi-arid Yellow River basin
in Inner Mongolia, China. Major rivers of the region are marked on the map. SHIFT delineates fewer areas in the upstream Ganges River (b)
and reduces the floodplain extent outside the Yellow River main stream (c). It also offers more comprehensive coverage, including the Indus
River basin (b) and the Hetao Basin (c).

forms well, such as deltas and islands. This is likely because
our method balances consistency between the datasets, but
GAR’s wider prediction coverage makes this strategy less ef-
fective in these infrequent cases.

Note that GFPLAIN and UPs use the same parameters
for geomorphic delineation, but their consistency with JRC
and GAR differs significantly (Fig. 8a). This is because GF-
PLAIN uses 250 m SRTM as the terrain input, while UPs use
MERIT Hydro, which has undergone hydrological correction
to lower the elevation of waterbody pixels, resulting in higher
HAND values and smaller floodplain extents. GAR, which
generally overpredicts floodplain extents, especially in arid
regions, aligns better with GFPLAIN. The overprediction
of GAR is evidenced by GAR pairs having the lowest OA

as OA strictly penalizes overprediction. At the same time,
we found that the difference between SHIFT and UPs may
be underrepresented in the statistical plots (Fig. 8a), while
the actual impact of variable parameters brought about by
SHIFT is substantial: the global floodplain extent estimates
are 14.95× 106 km2 for UPs and 9.91× 106 km2 for SHIFT,
showing a 50.85 % difference in total predicted areas. Addi-
tionally, regions where UP–GAR has the highest consistency
(Fig. 8b) generally coincide with regions where SHIFT–JRC
aligns best. This reversed pattern of consistency further sup-
ports the fact that the statistical differences between UPs and
SHIFT are underrepresented in Fig. 8a.

https://doi.org/10.5194/essd-16-3873-2024 Earth Syst. Sci. Data, 16, 3873–3891, 2024



3884 K. Zheng et al.: SHIFT

Figure 6. Floodplain area statistics in major river basins. Blue bars stand for total floodplain area (left y axis), and red bars stand for the ratio
of floodplain area to the total basin area (right y axis). Basins are ranked by total floodplain area. AF: Africa, AS: Asia, AU: Australia, EU:
Europe, NA: North America, and SA: South America.

Figure 7. Validation of SHIFT against two reference datasets. In the bivariate map, the two variables are the MAI against the JRC map
(magenta) and the GAR map (yellow). A balanced MAI results in red basins.
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Figure 8. Results of the consistency analysis. (a) Boxplots of pairwise analysis among SHIFT, GFPLAIN, UPs (MERIT Hydro but with
universal parameters), JRC, and GAR across three metrics: MAI (left), OA (middle), and OA within a 20 km buffer (right). Two group
comparisons are marked in different colors (magenta for JRC and yellow for GAR). Statistics for all basins with valid data inputs (see
“Methods and data” section) are shown in blue boxes, and those for the 33 major river basins are shown in orange. (b) Bivariate choropleth
map of the highest-performance MAI pair among four pairs (SHIFT and JRC, SHIFT and GAR, UPs and JRC, UPs and GAR) and the
corresponding MAI value for each basin. Different pairs are represented by different hues, with higher MAI values shown with a higher
saturation. Basins where a SHIFT pair performs best are marked in cold colors, while those where a UP pair performs best are represented in
warm colors. Among all pairs, SHIFT–JRC performed best in 62 basins, SHIFT–GAR performed best in 74, UP–JRC performed best in 8,
and UP–GAR performed best in 37.

4 Discussion

Several conceptual and technical details warrant discussion
when developing our improved geomorphic parameter es-
timation approach. Here, we discuss the pros and cons of

SHIFT with respect to its FHG thresholding scheme, resid-
ual uncertainty, hydrogeomorphic floodplain boundary, and
the spatial scale used in our methodological development.
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4.1 FHG as a thresholding scheme

The primary contribution of this study is the estimation of lo-
calized parameters for the FHG model. In Sect. 3.3, we com-
pared the performance of localized versus global parameters,
but several aspects require further clarification.

First, we believe the need for localized parameters arises
from the role that empirical parameters in FHG play in de-
termining floodplain boundaries. A higher b value empha-
sizes the influence of larger rivers in shaping geomorphic
floodplains, reflecting hydrogeomorphic processes that vary
across different basins, and should be better represented.
Given the absence of ground truth for floodplain boundaries,
we attempt to improve the representation of these heteroge-
neous processes by balancing information from two exist-
ing reference maps for hydrodynamic modeling. Despite ac-
knowledged inconsistencies, the hydrodynamic maps are in-
formed by climatic forcing, providing a common basis that is
more likely to be spatially heterogeneous than universal ge-
omorphic parameters. In other words, while we do acknowl-
edge that these maps can be uncertain, they contain use-
ful information that can be applied to constrain geomorphic
floodplain boundaries. This leads to our data-filtering pro-
cess to reduce inconsistencies and to identify a scaling law
from the references. By incorporating outputs from hydrody-
namic maps, our approach optimizes the DEM-based model
without altering its foundation, as evidenced by the overall
better consistency regardless of parameters used (Fig. 8a).
Although certain regions may benefit less from our strategy
(e.g., where UP–JRC performs best), results (Fig. 8b) show
convincing general improvements and consistency patterns.
The estimated parameters derived here are also provided to
support potential future studies with regionalized focuses.

Second, our estimated parameters aim to capture finger-
prints from spatially varying hydrological and geomorphic
processes that can influence the floodplain extent. We con-
sider aridity to be the primary factor influencing the spa-
tial variability of b based on the assumption that, in hu-
mid basins, rivers with larger upstream drainage areas exert
greater dominance over smaller segments in shaping flood-
plains. Vegetation also plays a role as it influences runoff
generation and modulates soil erosion, both key to floodplain
formation. Additionally, factors such as terrain and soil com-
position might influence the results. Given the data uncer-
tainties and the complex physical interpretations of b, it is
important to note that we do not expect perfect relationships
between these factors and the derived exponent b. The corre-
lation analysis indeed aligns with our expectations: AI is sta-
tistically significant in explaining the spatial variability of b,
while LAI plays a role, and terrain does not show strong cor-
relations with b. Soil compositions (Poggio et al., 2021) do
not exhibit a consistent pattern across analyses done at dif-
ferent scales (Table S1 in the Supplement). Although the cor-
relations between the b values and both AI and LAI are not
strong, the statistical significance of these relationships sup-

ports the effectiveness of our proposed methods, which help
to derive spatially varying parameters that are also physically
meaningful. The parameter a could also encapsulate influ-
ences from relevant processes, but its physical interpretation
is highly dependent on b as its unit is less uniform (Nardi
et al., 2006). Therefore, clarifying the influencing processes
of a is beyond the scope of this study.

Third, although alternative thresholding methods that use
river discharge and synthetic rating curves exist (e.g., those
used by the US National Water Model, Zheng et al., 2018),
these methods come with more sources of uncertainty by
requiring high-quality data inputs (e.g., gauged discharge,
Manning’s coefficient). Thus, while they may work well
with in situ observations, replicating this globally poses chal-
lenges and is conceptually different from our approach. Our
proposed FHG method requires only terrain input, which is
recognized as the least uncertain component in the global
floodplain-mapping method (Bates, 2023). By providing the
optimized parameters derived here, we consider the FHG
thresholding to be more globally consistent and easily ap-
plicable.

4.2 Residual uncertainties associated with FHG
parameter estimation

We also recognize several uncertainties associated with the
FHG relation. The primary source of uncertainty comes from
the inconsistency between the two reference hydrodynamic
datasets across regions, which can be traced back to their
model chain errors. Several measures are taken to mitigate
the potential influence: we take the intersection of the two
datasets as the reference, apply an iterative moving-window
scheme to filter the data, and force scaling-law relationships
to estimate the parameter b. However, residual uncertainties
may still exist due to three aspects: (1) inconsistencies in ter-
rain data as both JRC and GAR use SRTM as the inputs,
while we use MERIT-Hydro; (2) potential intra-basin hetero-
geneity of scaling relationships, which may lead to unstable
estimates; and (3) the lack of reference data in certain basins,
which lowers our credibility with regard to the estimated pa-
rameters. To evaluate how the residual uncertainty influences
our FHG parameter estimation, we quantify the uncertainty
of b by calculating the standard deviation among all possi-
ble b values derived at different percentiles. This metric as-
sesses how well the data conform to the power law: a better-
conforming set of data results in a narrower range of the esti-
mated b sequence and, consequently, a lower standard devia-
tion. A lower standard deviation also supports the application
of uniformly filtering percentiles globally (see “Methods and
data” section) and proves the robustness of our approach.

Figure 9 reveals the residual uncertainty in parameter b,
which ranges from 0 to 0.03, with a median of 0.01. This is
considered to be reasonable for a global median b of 0.3. The
pattern is similar to that of parameter b itself (Fig. 3), with
lower uncertainties in large humid basins (blue color) and the
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Figure 9. Spatial pattern of the residual uncertainty of parameter b by basin. Residual uncertainty is quantified as the standard deviation
among all possible b values derived at different percentiles (see Sect. 2.2 for details).

greatest uncertainty (red color) observed in arid regions (e.g.,
the Saharan regions and western central Australia), moun-
tainous areas (e.g., the Rocky Mountains and the Andes), and
deltas (e.g., The Jiaodong Peninsula, the western Mississippi
Delta, and the Nile Delta). High residual uncertainty in these
regions is possibly due to the particularly strong differences
between the reference datasets. For deltas, the great incon-
sistencies in spatial extents are amplified by their different
definition of rivers as JRC and GAR, respectively, take up a
stream threshold of 5000 and 1000 km2. This also explains
the unexpectedly low b values in deltas observed in Fig. 3. In
contrast, the Arctic exhibits generally low uncertainty, likely
because only one reference dataset is available above 60° N,
reducing discrepancies and thus lowering the remaining un-
certainty.

4.3 Floodplain definition and inundation maps

We also dedicate some discussion to the definition of flood-
plains here as numerous definitions exist for different in-
tended uses. Geomorphically, a floodplain is an accumula-
tion plain along a watercourse, formed by unconsolidated
sediment transported and deposited by the stream, usually
flooded during high flows (Brierley and Fryirs, 2013). This
definition emphasizes the formation process. From a hy-
drologist or a flood manager’s perspective, the floodplain is
often associated with inundation attached to certain flood
strengths (Krizek et al., 2006), which can also be referred
to as the hydraulic floodplain. Alternatively, focusing on
material flux exchanges yields different boundaries (Wohl,
2021). We consider these perspectives to be not contradic-
tory but complementary in floodplain-mapping processes as
they highlight different aspects of floodplains. Specifically,
geomorphic floodplains are predominantly shaped by low-

probability but high-impact flood occurrences (Lindersson
et al., 2021), which subsequently connects our goal of de-
lineating a geomorphic floodplain with identifying a bound-
ary that encompasses all potentially inundated areas under
extreme conditions. Therefore, we have used two 500-year
return period flood maps as references for estimating our
parameters in order to ensure a sufficiently large boundary
for the carrying out of this algorithm. This way, the geomor-
phic definition of a floodplain is still obeyed. While the FHG
parameters can be approximated for various return periods
(Nardi et al., 2006), our approach does not focus on or in-
volve a specific return period for inundation. In other words,
our goal is not to provide a mere substitute for inundation
maps. Instead, we aim to leverage a river’s geographical char-
acteristics and hydrological extreme conditions to identify
scaling relationships that align with geomorphic principles
and to offer a more comprehensive understanding of global
floodplain extents.

4.4 Spatial scales of SHIFT

The spatially varying parameters for SHIFT are derived at
the scale of HydroBASINS level-3 basins, which depict 269
river basins globally, with some containing aggregations of
smaller basins. These aggregated basins are not hydrolog-
ically connected and are less suitable for our thresholding
scheme, which estimates one set of parameters for each
basin, compared to the largest basins, which share internally
consistency hydrogeomorphic processes. A possible strategy
to improve the scheme is to further divide these basins into
smaller sub-basins, but smaller-scale analysis can increase
the impact of reference data uncertainties, especially in delta
regions with high floodplain discordance (Fig. 5a). Parame-
ters for level-4 and level-5 basins were also calculated (statis-
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tics are given in Table S1), but many basins had insufficient
reference grids to give reliable estimations. Considering the
high data noise that may limit further integration of sub-
basin-level heterogeneity in estimating parameters, the spa-
tial disaggregation scheme used by SHIFT (i.e., level 3) is
sufficient for improving heterogeneity while offering reason-
able physical interpretations of the parameters.

Lastly, when calculating HAND as the terrain attribute for
SHIFT, we set a UPA threshold of 1000 km2 to delineate the
river network grids following past studies (Nardi et al., 2019;
Rudari et al., 2015). A sensitivity test on a smaller thresh-
old (50 km2), not shown here, suggests that more detailed
floodplains around smaller rivers can be derived, but, at the
same time, such a threshold can limit the expected flood-
plains of large rivers. Conversely, a larger threshold, such as
the 5000 km2 one used by the JRC dataset, imposes a stricter
criterion on river streams, leading to fewer river networks
and reduced floodplain boundaries in areas like deltas. Thus,
this study considers the 1000 km2 UPA threshold to be valid.
Future large-scale studies can further investigate the above-
mentioned scale parameters, but we expect the gains to be
minimal.

5 Code and data availability

SHIFT is openly available at
https://doi.org/10.5281/zenodo.11835133 (Zheng et al.,
2024). The core codes involved in terrain analy-
sis and FHG parameter estimation are available at
https://doi.org/10.5281/zenodo.13311752 (Zheng, 2024).

6 Conclusions

In this study, we develop an improved thresholding scheme
for large-scale DEM-based floodplain delineation, the core of
which is a stepwise estimation framework for floodplain hy-
draulic geometry (FHG) parameters that respects the power
law while better integrating spatial heterogeneity from two
publicly available hydrodynamic flood maps. We applied the
framework at the scale equivalent to HydroBASINS level-
3 basins to derive localized FHG parameters as an update
to previously global parameters that do not account for the
heterogenous factors influencing floodplain extents. The op-
timized empirical exponent b in FHG exhibits statistically
significant positive correlations with hydroclimatic condi-
tions, particularly in major river basins. Based on the pro-
posed framework, we created a global geomorphic flood-
plain map named SHIFT (Spatial Heterogeneity Improved
Floodplain by Terrain analysis) using terrain inputs from the
90 m MERIT Hydro dataset, where SHIFT is demonstrated
to capture both the global patterns and the regional details of
geomorphic floodplains well. The effectiveness of our frame-
work is supported by the following:

1. The parameters show statistically significant but rela-
tively weak relationships with hydroclimatic variables
(e.g., AI, LAI), suggesting an enhanced representation
of spatially heterogeneous hydrological and geomor-
phic information at the basin level.

2. The filtered data conform to a relatively stable power
law, suggesting a robust regionalized scaling relation-
ship.

3. Parameter changes lead to improved consistency with
existing maps, with better differentiation between main
streams and tributaries in major basins and more com-
prehensive representation of stream networks in aggre-
gated river basins.

We provide the SHIFT data layers at two spatial resolu-
tions (i.e., 90 m and 1 km) for the convenience of the users.
The optimized parameters are also provided to support future
studies.

Overall, we offer a framework for estimating spatially
varying FHG parameters, contribute an updated geomorphic
floodplain dataset, provide a better understanding of observ-
able influences in the FHG scaling relationships, and expand
on the discussion regarding the different focuses and implica-
tions of various floodplain-mapping techniques. We hope our
analysis proves to be helpful in enhancing the understanding
of current methodologies for defining and identifying active
floodplains, especially in the context of changing climate.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-3873-2024-supplement.
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