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Abstract. The Arctic region has undergone warming at a rate more than 3 times higher than the global aver-
age. This warming has led to the degradation of near-surface permafrost, resulting in decreased ground stability.
This instability not only poses a primary hazard to Arctic infrastructure and human-impacted areas but can also
lead to secondary ecological hazards from infrastructure failure associated with hazardous materials. This de-
velopment underscores the need for a comprehensive inventory of critical infrastructure and human-impacted
areas. The inventory should be linked to environmental data to assess their susceptibility to permafrost degra-
dation as well as the ecological consequences that may arise from infrastructure failure. Here, we provide such
an inventory for Alaska, a vast state covering approximately 1.7× 106 km2, with a population of over 733 000
people and a history of industrial development on permafrost. Our Synthesized Inventory of CRitical Infrastruc-
ture and HUman-Impacted Areas in AlaSka (SIRIUS) integrates data from (i) the Sentinel-1/2-derived Arctic
Coastal Human Impact dataset (SACHI); (ii) OpenStreetMap (OSM); (iii) the pan-Arctic Catchment Database
(ARCADE); (iv) a dataset of permafrost extent, probability and mean annual ground temperatures; and (v) the
Contaminated Sites Database and reports to create a unified new dataset of critical infrastructure and human-
impacted areas as well as permafrost and watershed information for Alaska. The integration process included
harmonizing spatial references, extents and geometries across all the datasets as well as incorporating a uniform
usage type classification scheme for the infrastructure data. Additionally, we employed text-mining techniques
to generate complementary geospatial data from textual reports on contaminated sites, including details on con-
taminants, cleanup duration and the affected media. The combination of SACHI and OSM enhanced the detail
of the usage type classification for infrastructure from 5 to 13 categories, allowing the identification of elements
critical to Arctic communities beyond industrial sites. Further, the new inventory integrates the high spatial de-
tail of OSM with the unbiased infrastructure detection capability of SACHI, accurately representing 94 % of the
polygonal infrastructure and 78 % of the linear infrastructure, respectively. The SIRIUS dataset is presented as a
GeoPackage, enabling spatial analysis and queries of its components, either as a function of or in combination
with one another. The dataset is available on Zenodo at https://doi.org/10.5281/zenodo.8311243 (Kaiser et al.,
2023).
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1 Introduction

In the past decades, the Arctic has experienced a pronounced
warming, entailing an increase in air temperature that is
more than 3 times higher than the global average (Ranta-
nen et al., 2022), referred to as Arctic amplification (Cohen
et al., 2014). These increasing air temperatures have led to
warming and thawing of permafrost since the 1980s, as bore-
hole measurements across the Arctic demonstrate (Biskaborn
et al., 2019; Smith et al., 2022). Modeling studies indicate
that the initiation of permafrost warming can be traced back
to as early as 1900 (Langer et al., 2024). As 15 % of the ex-
posed land surface of the Northern Hemisphere is underlain
by permafrost (Obu et al., 2019), this warming trend affects
a vast area and has major implications for ecosystems and
livelihoods in the Arctic and sub-Arctic. With permafrost de-
grading, we expect not only the mobilization of one of the
largest soil carbon pools (Schuur et al., 2015, 2022), but also
substantial land surface changes that result from ground sub-
sidence and thermal erosion (Kokelj and Jorgenson, 2013).
Permafrost warming trends can also be observed in moun-
tain regions worldwide (Biskaborn et al., 2019), leading to
the destabilization of slopes and increased movement of rock
glaciers (Haeberli, 2013; Haeberli et al., 2024). Numerous
studies demonstrate intensifying land surface changes in the
permafrost region which encompass, e.g., processes such as
thaw slumping (e.g., Runge et al., 2022; Ramage et al., 2017;
Leibman et al., 2021), the development of thermokarst ponds
and lakes (e.g., Muster et al., 2017; Jones et al., 2011), ther-
moerosional gullying (e.g., Fortier et al., 2007; Godin et al.,
2012), ice wedge degradation (e.g., Liljedahl et al., 2016;
Jorgenson et al., 2006), and mass movement processes such
as rock avalanches and falls in mountainous regions (e.g.,
Bessette-Kirton and Coe, 2020; Smith et al., 2023; Stoffel
et al., 2024), all pointing to an increasing loss in ground sta-
bility. Some of these processes, such as thaw slumps, have
impacts not just locally but even far away in downstream
areas, as sediments, solubles and organic matter are eroded
from thaw features and may follow different trajectories of
transport, biogeochemical processing and sedimentation de-
pending on environmental conditions (Lamhonwah et al.,
2016; Keskitalo et al., 2021; Kokelj et al., 2013) and can
also impact ecosystems in these downstream areas (Leven-
stein et al., 2020).

For Arctic settlements, the destabilization of the ground
can cause severe infrastructure failure. Damage to housing
units, transport networks (roads and airstrips), and water
supply and sewage systems are frequently reported (Liew
et al., 2022). Degradation of permafrost also poses a hazard
to industrial infrastructure, including sites relevant for natu-
ral resource extraction and energy production, whose failure
can result in environmental contamination (Rajendran et al.,
2021; Langer et al., 2023). With the expansion of human ac-
tivities and infrastructure development in the Arctic (Bartsch
et al., 2021), increasing human-induced effects on snow and

vegetation, as well as permafrost degradation, are observed
in their vicinity, which further accelerates the destabilization
of the ground (Walker et al., 2022; Bergstedt et al., 2022;
Raynolds et al., 2014; Hammar et al., 2023). Model pro-
jections focusing on Representative Concentration Pathway
(RCP) 4.5 (van Vuuren et al., 2011) indicate that approx-
imately 69 % of Arctic infrastructure will face impacts of
near-surface permafrost degradation by 2050 (Hjort et al.,
2018). This will influence the lives of about 5 million peo-
ple living in more than 1000 settlements across the Arctic
permafrost region (Ramage et al., 2021) (see Fig. 1a). Given
the potential impact of near-future permafrost degradation, it
is becoming imperative to generate comprehensive invento-
ries of critical Arctic infrastructure and areas of human activ-
ity, allowing the assessment of their specific usage types, po-
tential for failure, and relevance to local and regional liveli-
hoods. Such an inventory is a prerequisite for determining
exposure to natural hazards, e.g., thaw-induced ground desta-
bilization, coastal erosion and flooding, which are pivotal for
risk assessments.

Therefore, substantial efforts are being made to map settle-
ments, areas of human activity and industrial sites through-
out the Arctic. Extensive databases have been compiled re-
garding population numbers (Wang et al., 2021; Ramage
et al., 2021), the occurrence and development of infrastruc-
ture along coastlines (Bartsch et al., 2020, 2021), and the dis-
tribution of industrial sites in the Arctic (Langer et al., 2023).
The datasets focusing on Arctic infrastructure in particular
and areas of human activities in general, however, are limited
in spatial coverage (coastal areas, north of the treeline e.g.,
Bartsch et al., 2021; Xu et al., 2022) and spatial resolution
and lack specific details regarding usage type. Furthermore,
because of their diverse research approaches, these datasets
are inconsistent with respect to spatial references and ge-
ometry types (vector or raster). To date, there has been no
comprehensive inventory that synthesizes various data about
infrastructure and areas of human activity in the Arctic and
that combines this information with essential environmen-
tal data such as permafrost occurrence and watersheds. In
addition, for Canada and the US there is a substantial vol-
ume available of state and federal data on contaminated sites
(Langer et al., 2023). However, the geospatial data provided
by government agencies are highly heterogeneous, offering
the full range from detailed site chronologies (e.g., affected
containment structures, mandated cleanup measures) as well
as data about the polluting substances to sometimes only ba-
sic information about location, cleanup status and responsi-
ble personnel. Additional details can then be found in written
reports (Langer et al., 2023; State of Alaska Department of
Environmental Conservation, 2023a), and each detail has to
be extracted first before it can be put into a spatial context.
However, this detailed information is urgently required in a
geospatial data format over large regions, not only to esti-
mate the vulnerability of critical infrastructure and human-
affected areas to permafrost degradation, but also to assess
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Figure 1. Panel (a) shows the pan-Arctic permafrost extent as modeled by Obu et al. (2019) together with the population numbers of
settlements in the Arctic Circumpolar Permafrost Region (ACPR) (Wang et al., 2021). The different sizes of the circles represent logarithmic
scaling of the population numbers. Our study focuses on the state of Alaska as shown in the inset map (b). The basemap was made with
Natural Earth. Free vector and raster map data at http://www.naturalearthdata.com (last access: 14 August 2023).

the ecological consequences of contamination resulting from
industrial infrastructure site failures.

Focusing on Alaska, we thus (i) harmonized existing mul-
tisource data on infrastructure and human-impacted areas
into a coherent usage type classification scheme; (ii) cre-
ated a statewide inventory of these elements and enriched it
with data on permafrost characteristics (extent, probability
and ground temperatures), watersheds and sites of contami-
nation, for which we extracted information on contaminants,
cleanup duration and the affected medium from available text
reports; and (iii) enabled the spatial analysis and queries of
the inventory together with the ecological information in a
database-like structure.

Following the CIIP manual (Critical Information Infras-
tructure Protection, CIIP2008) (Brunner and Suter, 2008),
we define critical infrastructure as those sectors essential for
the reliable functioning of communities. These core cate-
gories include among others food and water supply as well as
health and sanitation. To better align with the modern and tra-
ditional ways of life in the Arctic and sub-Arctic regions, we
have adjusted the internationally recognized core categories
and extended them. Please refer to Sect. 2.2.1 (“infrastruc-
ture usage types”) and Table 1 for a full list of the categories.

2 Materials and methods

2.1 Study site

Alaska is the largest and northernmost state of the United
States of America (US). With a population of over 733000
inhabitants and a land area of approximately 1.7× 106 km2

(The Information Architects of Encyclopaedia Britannica,
2023), it is also the least densely populated state in the US,
with a population density of 0.5 people per square kilometer
(1.3 people per square mile), compared to the rest of the US
with a density of 35.9 people per square kilometer (93 people
per square mile) (Department of Labor and Workforce De-
velopment, 2020; World Bank, 2024). Alaska is home to over
300 communities, with Anchorage, Juneau and Fairbanks be-
ing the biggest municipalities, housing 49 % of the overall
population. Nearly half of the rest of the population (44 %)
resides in smaller settlements with fewer than 10000 people
(Department of Labor and Workforce Development, 2020)
dispersed across the entire state. Many of these smaller set-
tlements are only reachable by air or barge (Hamilton et al.,
2016).
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Alaska encompasses a range of different landscapes, from
glaciers in the Brooks Range to tundra in the North Slope
and boreal forests in the Alaska–Yukon region (Raynolds
et al., 2019; Jorgensen and Meidlinger, 2015). There are also
substantial variations in meteorological and permafrost char-
acteristics, following a north–south gradient. In the north, a
cold polar tundra climate (Beck et al., 2018) prevails, with a
mean annual air temperature (MAAT) of −10.4 °C (Climate
Normals 1991–2010 of Deadhorse; see National Oceanic and
Atmospheric Administration, National Centers for Environ-
mental Information, 2023a) and a continuous permafrost ex-
tent (see Fig. 1). The south, on the other hand, is still charac-
terized by a cold climate (Beck et al., 2018) but with much
higher temperatures (4.5 °C MAAT for Homer; see National
Oceanic and Atmospheric Administration, National Centers
for Environmental Information, 2023b) and a permafrost ex-
tent transitioning to a sporadically underlain land surface and
isolated patches.

It is important to note that approximately 80 % of the
state’s area – accounting for nearly 200 settlements (refer to
Fig. 1) – falls within the permafrost region (Jorgenson et al.,
2008; Ramage et al., 2021), which is projected to undergo
massive changes in the upcoming decades (Chadburn et al.,
2017; McGuire et al., 2018). Challenges such as ground sub-
sidence across the region and coastal erosion along the ex-
tensive and populated coastline (occupied by 83 % of the
population; NOAA Office for Coastal Management, 2023)
will pose a high risk to the Alaskan population and economy
(Melvin et al., 2016; Liew et al., 2022; Wang et al., 2023).

The most important contributions to Alaska’s economy
stem from the mining, quarrying, and oil and gas extraction
industries (Bureau of Economic Analysis, 2023a). Notably,
the oil exploration units in the North Slope and Cook In-
let play a vital role in Alaska’s revenue, having contributed
38 % of the general funds in the 2019 fiscal year (Alaska Oil
and Gas Association, 2020, 2021). In addition to the signif-
icant impact of oil and gas, Alaska’s fishing industry plays
a crucial role in the economy. The Alaska Seafood Market-
ing Institute (Alaska Seafood Marketing Institute, 2024) re-
ports that, in 2021/22, the fishing industry employed 17 000
Alaskans (from a total of 48 000 workers) from more than
142 communities, making it the top employer in the Alaskan
manufacturing sector. Moreover, more than 60 % of the total
US seafood harvest comes from Alaska’s fisheries (Alaska
Seafood Marketing Institute, 2024). Further industries con-
tributing to the economy are transportation and warehousing
(including cargo and passengers but also tourism), finance,
insurance, real estate, and government and government enter-
prises (including community services, e.g., military or postal
services) (Bureau of Economic Analysis, 2023a, b). How-
ever, the economic growth comes with environmental con-
sequences. The continued development of infrastructure, the
expansion of human-impacted areas and oil exploration sites
in the north as well as the associated transportation and
infrastructure networks have already led to an increase in

thermokarst occurrence (Raynolds et al., 2014; Walker et al.,
2022). Furthermore, given the extensive oil and gas produc-
tion operations, there is an inherent risk of environmental
contamination resulting from infrastructure failures. This, in
conjunction with both natural and human-induced degrada-
tion processes, underscores the need for a comprehensive and
freely accessible database encompassing critical infrastruc-
ture and human-impacted areas on the one hand and environ-
mental information concerning watersheds and permafrost
on the other.

2.2 Data harmonization and mining

The SIRIUS (Synthesized Inventory of CRitical Infrastruc-
ture and HUman-Impacted Areas in AlasSka) dataset syn-
thesizes data from five different sources:

1. the Sentinel-1/2-derived Arctic Coastal Human Impact
dataset (SACHI) (Bartsch et al., 2021) (acquired on
11 June 2021);

2. the OpenStreetMap dataset for the infrastructure and
land use information (OpenStreetMap Contributors and
Geofabrik GmbH, 2018) (acquired on 20 January 2023);

3. the pan-Arctic Catchment Database (ARCADE) for the
watersheds (Speetjens et al., 2023) (acquired on 17 Jan-
uary 2023);

4. the modeled Northern Hemisphere permafrost map by
Obu et al. (2018) (acquired on 31 August 2023); and

5. the Contaminated Sites Database and reports by the
State of Alaska Department of Environmental Conser-
vation (2023a) (DEC) (acquired on 2 March 2023).

The primary task was to harmonize them to create a seman-
tically and geometrically coherent and uniform data prod-
uct (see Fig. 2). Initially, a thorough homogenization of
the spatial reference was required. All the datasets were
reprojected to the World Geodetic System 1984 with an
Alaskan polar stereographic map projection (EPSG Code
5936). Subsequently, we clipped every dataset’s spatial ex-
tent to the state boundary of Alaska as provided by the
National Weather Service (2023). Each dataset had to un-
dergo further geometric harmonization processes, e.g., merg-
ing individual vector files, creating buffer zones along lin-
ear features and clipping to layer spatial extents. There-
after, we performed spatial analyses such as spatial over-
lays and joins to determine overlapping features and to re-
trieve their information. All data processing was done using
Python with its geospatial data processing libraries geopan-
das, pandas, numpy, gdal, rasterio and rioxarray (Jordahl
et al., 2022; pandas development team, 2023; Harris et al.,
2020; Rouault et al., 2023; Gillies et al., 2013; Rio, 2024).
The data processing scripts are downloadable from our Zen-
odo repository at https://doi.org/10.5281/zenodo.8311243
(Kaiser et al., 2023).
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Figure 2. Flowchart of the harmonization process. If not indicated otherwise, all the input datasets have an ESRI Shapefile format.

2.2.1 Infrastructure and human-impacted areas

SACHI

The SACHI dataset contains buildings, road and railway net-
works, and other human-impacted areas in the Arctic coastal
regions up to 100 km inland (Bartsch et al., 2020). The in-
frastructure features in SACHI were derived from Sentinel
satellite imagery using machine learning and were blended
with auxiliary information from other datasets (Bartsch et al.,
2021). Each infrastructure feature has among other things in-
formation on the settlement name, the feature’s class, the pri-

mary economic activity (attribute “use”) and the general eco-
nomic activity (attribute “use main”) (Bartsch et al., 2021).
The value of the attribute “settlement name” was assigned on
the basis of the settlement dataset by Wang et al. (2021), with
a 40 km buffer applied to also incorporate the surrounding in-
frastructure. Features outside this buffer were labeled follow-
ing the Google hybrid data layer (Bartsch et al., 2021). Each
settlement (and surrounding area) was then assigned one eco-
nomic activity category. This procedure resulted in a rather
coarse definition of use categories. For example, the settle-
ment of Nome is assigned the general use category “mining”,
with no further distinction, and for the Nome–Teller highway
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connecting the settlements of Nome and Teller the south-
ern part (Nome) is assigned “mining”, while the northern
part contributes towards the “fishing” industry in Teller. This
generalization does not allow the differentiation of use cate-
gories within settlements and beyond. As the SACHI dataset
was derived using a pixel-based approach, linear infrastruc-
ture is also represented as polygons. The “class” attribute
specifies whether a feature corresponds to linear transport
infrastructure (class= 1), a building (class= 2) or another
human-impacted area (class= 3). When we visually exam-
ined the linear transport infrastructure, we observed some
gaps in the data, particularly in the settlements: extracting
narrow paths or distinguishing between a linear gravel road
and other human-impacted areas, such as driveways or explo-
ration pads, was difficult with the limited spatial resolution
of the Sentinel sensors (10 m). In addition, the “road” class
showed a particularly low mapping accuracy compared to the
“building” class (Bartsch et al., 2021). As OpenStreetMap
(OSM) on the other hand is estimated to represent 83 % of
the global road network (Barrington-Leigh and Millard-Ball,
2017; Hjort et al., 2018), we decided to use OpenStreetMap
data to represent the linear transport infrastructure.

OpenStreetMap

The OSM project is a collaborative initiative involving map-
pers from around the globe, aiming to provide highly de-
tailed and comprehensive map data (OpenStreetMap Foun-
dation, 2023). It offers a wide range of geographic features,
encompassing various categories such as settlement types
(e.g., cities, hamlets, villages), road classifications (e.g., mo-
torways, footways, primary and secondary roads), railway
networks, amenities, human structures and more (Open-
StreetMap Wiki, 2023). Notably, the road and railway net-
works in OSM are represented as line features. This trait fa-
cilitates queries about the total length of the road network
sections situated on different types of permafrost or within
specific catchment areas as well as the identification of po-
tential contamination along the transportation routes. An-
other advantage of OSM is its data availability for the en-
tire region of Alaska. Our focus is on areas (farmland, com-
mercial areas, etc.) and elements (small-scale features, e.g.,
hunting stands or memorials) that are directly influenced by
human activities and that are shaped by practical land use.
Therefore, we excluded OSM files which contained informa-
tion about water bodies and natural features: “waterways”
for the linear infrastructure files and “natural” and “water”
for the polygonal and point infrastructure files. We also ex-
cluded information on the orientation (Buddhist, Jewish, etc.)
of religious sites: “pofw” (places of worship). Buildings such
as churches, chapels and burial grounds (cemeteries) were
retained. Subsequently, we merged the linear OSM infras-
tructure files into one dataset. To assess how the linear OSM
infrastructure dataset compares to the pixel-based SACHI
dataset, we compared their polygonal representations. For

this, we converted the linear OSM infrastructure to polygons
by applying a buffer around each linear feature: major high-
ways and roads (OpenStreetMap Wiki, 2023) were assigned
a width of 20 m to account for possible embankments, slip
roads or ramps. For the rest of the road network and the rail-
way lines, we assumed a width of 10 m. Subsequently, we
clipped the polygonal OSM dataset – representing the linear
infrastructure features – to the spatial extent of the SACHI
dataset and compared their respective areas to each other.

After merging the linear railway and road network OSM
data, we combined the polygonal OSM infrastructure data
into a single GeoDataFrame. The attribute “fclass” of the
polygonal OSM GeoDataFrame contains the tag, which peo-
ple use to describe the mapped feature. In the OSM Wiki
(OpenStreetMap Wiki, 2023), these tags are listed follow-
ing a certain key and value combination, a mapping stan-
dard most members of the community follow. As a first
step, we derived the unique values of fclass and com-
pared them to the OSM values defined in the Wiki (Open-
StreetMap Wiki, 2023). Generally, the tags under fclass
were in agreement with the OSM values of the Wiki.
Some mismatches originated from different expressions, e.g.,
“town_hall” instead of “townhall”, “archaeological” instead
of “archaeological_site” or “mobile_phone_shop” instead
of “mobile_phone”. Some tags were unofficial additions
created individually by the OSM community, e.g., “park-
ing_multistorey” or “recycling_paper”. Further, we removed
any tags describing natural features (waterfalls, etc.) and
places (island, heath, village, etc.), which portray localities
and their population in which multiple usage types are pos-
sible. Table A1 shows the retrieved values of fclass and
their corresponding OSM keys and values, which we as-
signed manually following the abovementioned Wiki. The
predominant tag under fclass was “building”. This tag rep-
resented 81 % of the polygonal OSM dataset. To determine
the usage type for these buildings, we analyzed their at-
tribute “osm_type” of the dataset and once again compared
the tags under osm_type to the OSM keys and values of the
OSM Wiki. Having identified all of the tags under fclass and
osm_type and assigned them an OSM key and value, we had
gathered information on the features’ main usage and pur-
pose and could put them into usage categories.

Infrastructure usage types

For this, we followed the Land Use/Cover Area frame sta-
tistical Survey (LUCAS) of Eurostat (E4.LUCAS (ESTAT),
2018), which provides a framework for a consistent classi-
fication and harmonization of land use and land cover data
(see Table 1).

This categorization allows us to incorporate the aspect of
sectors critical to the functioning of Arctic communities. Our
core categories of critical infrastructure align with interna-
tionally defined sectors (Brunner and Suter, 2008), which in-
clude food and water supply, banking and finance, govern-
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Table 1. LUCAS categories with their respective sectors critical to the Arctic and sub-Arctic communities.

Category no. LUCAS Critical sector

01 Agriculture Food supply
02 Commerce, finance and business Banking and finance
03 Community services Health and sanitation, government services, ecological

and traditional sustainability
04 Construction –
05 Energy production Energy production
06 Fishing Ecological and traditional sustainability
07 Forestry Ecological and traditional sustainability
08 Hunting Ecological and traditional sustainability
09 Industry and manufacturing Environmental protection
10 Mining and quarrying Environmental protection
11 Recreational, leisure and sport –
12 Residential –
13 Transport, communication networks, storage and pro-

tective works
Transport and mobility, information and communica-
tion

14 Unused –
15 Water and waste treatment Water supply, health and sanitation

ment services and institutions, transport and mobility, infor-
mation and communication, energy production, and health
and sanitation. In addition, we introduce two supplementary
categories: ecological and traditional sustainability and en-
vironmental protection. The latter category refers to any in-
frastructure that may pose environmental hazards in the event
of failure. This category is particularly significant for tradi-
tional lifestyles, such as hunting and fishing, which we con-
sider to fall into the ecological and traditional sustainability
category, as they rely on intact terrestrial and aquatic ecosys-
tems. In this category, we also include sites of cultural her-
itage (cemeteries, tents, yerts, etc.; see, e.g., Irrgang et al.,
2019).

Table A1 shows the assigned LUCAS category for each
OSM tag. As the linear OSM data only consist of railway
and road network data, no further classification was needed.

After implementing the initial assignment based on the
given scheme, we noticed that all of the tags under fclass
were effectively categorized, except for one: the “building”
tag posed a challenge as the corresponding osm_type at-
tribute lacked detailed information on the usage type for 86 %
of the 144000 building features. To address this, we subsam-
pled the features with the fclass building that had not been
assigned a usage type yet and “internally” overlaid them with
features of any other fclass (other than building) that already
had a usage type assigned. We then assigned the usage type
of the non-building feature to the building feature in the over-
lapping areas. This analysis revealed that features with the
tag “building” (e.g., a shopping mall) frequently contain var-
ious smaller features and, thus, usage types, such as shops,
offices, parking areas and more. To harmonize this, we ag-
gregated these diverse usage types and assigned the predom-
inant usage type.

We processed the point OSM infrastructure data files in
the same way: generating one GeoDataFrame containing all
point features and assigning them a LUCAS category based
on their tag under fclass. Eventually, we repeated the LUCAS
category assignment for the SACHI dataset: each usage value
was assigned a LUCAS category (see Table A2).

Combining SACHI and OSM

When visually examining subsets of the SACHI and OSM
datasets, we again observed that the OSM data had a higher
level of detail. The building boundaries of the OSM dataset
were delineated accurately (see Fig. 3a), while the build-
ing outlines of the SACHI dataset were coarse and con-
tained adjacent non-building areas due to the pixel-based ap-
proach (Fig. 3b). However, the SACHI approach detected
more building areas. Therefore, we implemented a decision
tree structure for the last harmonization step of the infrastruc-
ture and usage type datasets. As a first step, we retrieved all
overlapping features of the OSM and SACHI datasets with
a spatial join (see Fig. 2). When the OSM feature already
had a LUCAS category assigned, we stored it in the final
infrastructure and usage type dataset. If not, we assigned it
the LUCAS category of the overlapping SACHI feature. All
other non-overlapping SACHI and OSM features were also
stored in the final infrastructure and usage type dataset.

2.2.2 Accuracy assessment

To assess and quantify the accuracy of our data integration
of infrastructure and human-impacted areas, we subsampled
an area of 0.3 km2 of the coastal settlement of Shishmaref,
for which very high-resolution imagery was available. We
built a reference dataset by manually digitizing all presum-
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Figure 3. Comparison of the level of detail of the original (a) OSM and (b) SACHI datasets. OSM shows greater detail in mapping buildings,
land use boundaries and linear transport infrastructure, in contrast to SACHI, where the delineation is done with a pixel-based classifier
(Bartsch et al., 2021). The background RGB high-resolution imagery of Deadhorse is from WorldView-3 (copyright: DigitalGlobe, 2016).
OSM data copyrighted by © OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL)
v1.0.

ably permanent infrastructure elements using multispectral
(RGB+NIR) orthophotos with a spatial resolution of 10 cm
acquired in 2021 with the Modular Aerial Camera System
(MACS) by Rettelbach et al. (2023). Buildings and other
polygonal infrastructure features, such as re-purposed ship-
ping containers, small sheds and coastal protection struc-
tures, were mapped at a scale of 1 : 500. An infrastructure
feature was considered permanent when it exhibited charac-
teristics indicating a fixed location, such as supply pipes for
shipping containers or fixed roofing. Roads were mapped at a
scale of 1 : 2500 and solely if they exhibited an approximate
width of 10 m or more to comply with the spatial resolution
of the Sentinel sensors of SACHI. Subsequently, we created
a grid layer spanning the mapped area with a size of 10 m
by 10 m for each grid cell. Each grid cell was assigned the
corresponding values of the (i) reference dataset and (ii) the
SIRIUS infrastructure and human-impacted area dataset: the
OSM keys and values, fclass, and the binary information if
an infrastructure feature intersected the grid cell (yes or no).
This allowed the calculation of a confusion matrix for the
linear and polygonal infrastructures to determine the perfor-
mance of the SIRIUS dataset.

In a confusion matrix, the classified dataset – in our case
the SIRIUS infrastructure and human-impacted area dataset
– is compared with the reference dataset to determine the
performance of the classification (Maxwell et al., 2021). The
matrix provides information on correctly classified pixels

(with true positives, a “true” infrastructure feature of the ref-
erence dataset is also represented in the SIRIUS inventory;
with true negatives, a grid cell of the reference dataset does
not show an infrastructure feature, and nor does the SIRIUS
inventory) and misclassifications (false positives and false
negatives). A common metric derived from a confusion ma-
trix is the overall accuracy (OA), the ratio of correctly classi-
fied pixels (true positive and true negative) to the total num-
ber of pixels (true or false) (Albertini et al., 2022).

2.2.3 Contaminated sites of Alaska

The Contaminated Sites Program (CSP) of the Alaska DEC
provides statewide information about the contamination by
hazardous substances and manages their cleanup (State of
Alaska Department of Environmental Conservation, 2023a).
The DEC dataset contains information on the site name,
address, geographic coordinates, cleanup status, responsible
staff, contact person and URL to a detailed site report. This
site report contains complementary information on the con-
taminated medium (soil, groundwater, etc.), the substances
(diesel, petroleum, etc.), and the date and type of cleanup
measurements. We downloaded the detailed site report for
each location to provide a harmonized dataset on contam-
ination, infrastructure and human-impacted areas, which al-
lows users to assess their interrelation with permafrost degra-
dation and hydrological watersheds in Alaska. With basic
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text-mining tasks (regular expressions, filtering for uppercase
words, etc.), we first derived all the abbreviations of the site
report. We compared the abbreviations to the DEC’s glossary
(State of Alaska Department of Environmental Conservation,
2023b) and saved the ones indicating a substance or contain-
ment structure associated with contamination (e.g., LUST –
leaking underground storage tank; PCBs – polychlorinated
biphenyls) as a new attribute, “contaminants”, of the dataset.
Subsequently, we made the dates followed by the expressions
“site added to database”, “site closure approved” or “cleanup
complete” (after 2008, State of Alaska Department of En-
vironmental Conservation, 2023c) the start and end dates of
the cleanup and saved them to the attributes “first_date” and
“last_date”, which allowed us to calculate the total cleanup
time (attribute “cleanup_days”). If these expressions did not
appear in the site chronology report, we assumed the first and
last mentioned dates to be the start and finish of the cleanup.
From this, we calculated the total cleanup time in days and
saved it as an additional attribute. These simple text-mining
analyses were sufficient for deriving dates and uppercase ab-
breviations as well as for comparing our list of toxic sub-
stances and containment-related keywords to the full-text re-
ports. However, we also wanted to provide information on
the predominantly contaminated medium, i.e., whether the
groundwater, soil or adjacent waterbodies were impacted.
Here, we had to deal with high heterogeneity in the structure
of each report. Some reports listed the contaminated medium
under the section “contaminant information”. By comparing
a set of medium keywords (soil, groundwater, river, etc.) with
this section, we retrieved the contaminated media.

2.2.4 Permafrost data

As described for the infrastructure and contamination
datasets, we assigned the joint spatial reference to the per-
mafrost datasets and clipped their extent to the state bound-
ary of Alaska. We derived the permafrost information from
the modeled Northern Hemisphere permafrost map for 2000–
2016 of Obu et al. (2018). The dataset is comprised of three
GeoTIFF raster files containing the mean annual ground tem-
perature (MAGT), the MAGT standard deviation, the per-
mafrost probability fraction and one vector file (ESRI Shape-
file) with information on the permafrost extent. The dataset
is an estimation based on the TTOP (temperature at the top
of permafrost) model, which uses the MAATs to model the
MAGTs and subsequently the permafrost probability and
zonation (Obu et al., 2019). It has a resolution of 1 km2 and
was validated by borehole data (Obu et al., 2019). Within
our study, we integrated the data on a permafrost probability
fraction and filtered for raster values where the probability
of permafrost occurrence was greater than 50 %, complying
with the definition of the permafrost model domain (Langer
et al., 2023). The filtering step provides users with an ad-
ditional filtering option for relevant permafrost information,
as it allows the integration of mean annual ground tempera-

tures. Subsequently, we vectorized the raster data to ensure
compatibility with the other vector datasets. Given that each
pixel value in the MAGT raster file was provided with a pre-
cision of up to five decimal places, our initial step involved
rounding these values to a single decimal place before pro-
ceeding with the vectorization process. We also included the
vector data on the permafrost extent (zones) to allow the user
to query data dependent on the permafrost zone, e.g., contin-
uous or sporadic.

2.2.5 ARCADE watershed database

The pan-Arctic Catchment Database, referred to as AR-
CADE, comprises a comprehensive collection of over 40 000
catchments draining into the Arctic Ocean down to a Strahler
order of 5 (Speetjens et al., 2023). The geometries of the wa-
tersheds were derived from the Copernicus Digital Elevation
Model with a spatial resolution of 30 arcsec (approximately
1 km). Additional information regarding the catchment char-
acteristics (elevation, slope, etc.), climatology (precipitation,
snowfall, runoff, etc.) and physiography (soil characteristics,
permafrost parameters and extent, land surface data, etc.) has
already been incorporated to enrich the dataset (Speetjens
et al., 2023). However, the permafrost extent and information
on the MAGTs were averaged over the extents of all the wa-
tersheds, which reach sizes of up to 3.1×106 km2 (Speetjens
et al., 2023). Therefore, we chose to include the information
on every 1 km2 grid cell of the permafrost MAGT dataset of
Obu et al. (2019) (see Sect. 2.2.4).

2.3 Data usability

To enhance spatial queries involving different usage types,
contaminated sites, watersheds and permafrost information,
it was necessary to consolidate the individual preprocessed
files into a single container. For this, we chose the GeoPack-
age format as specified by the Open Geospatial Consortium
(OGC). The GeoPackage format facilitates the exchange of
geospatial data across different platforms, is open-source
(Open Geospatial Consortium, 2023) and eliminates the need
to handle multi-file data formats like ESRI Shapefiles. Thus,
it is highly suitable for accommodating the diverse data-
handling preferences of potential users. As GeoPackage uses
a SQLite database container, the user is able to conduct their
analyses within established geographic information systems
such as ArcGIS, QGIS or spatial databases (Geopackage
Contributors, 2020; GDAL/OGR contributors, 2023).

3 Results

3.1 Data harmonization and mining

In this section, we outline the enhancements made to the in-
frastructure and human-impacted area dataset of Alaska as
well as the information on contaminated sites. To showcase
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the advancements achieved by combining the SACHI and
OSM data, we focused on two coastal regions, Nome and
Prudhoe Bay, by subsampling their respective datasets. Fur-
thermore, we investigated the performance of simple text-
mining tasks for the contaminated sites. For this, we ran-
domly selected 10 sites from the dataset and verified the ac-
curacy of the derived start and end dates, cleanup duration,
and information regarding the substances and the contam-
inated medium. Subsequently, we analyzed in which cases
the simple text-mining approach performed well and identi-
fied its limitations in other instances.

3.1.1 Infrastructure and human-impacted areas

The data fusion of the OSM and SACHI datasets resulted in
an infrastructure and human-impacted area map with higher
spatial detail and coverage than the original datasets. While
the polygonal features of SACHI only covered the coastal
region with an area of 62 km2, the incorporation of OSM
data extended the infrastructure map to encompass the entire
state, now covering an expansive 640593 km2.

Furthermore, the integration allowed us to enhance the
level of detail regarding the usage categories for various in-
frastructure features. While we were able to initially assign
five LUCAS categories to the SACHI data, i.e., fishing; min-
ing and quarrying; energy production; community services;
and recreational, leisure and sport, the inclusion of OSM
data expanded this categorization to include an additional
eight categories: agriculture; commerce, finance and busi-
ness; construction; forestry; industry and manufacturing; res-
idential; transport and communication networks; and waste
and water treatment (refer to Table A3 and Fig. 6 for a de-
tailed breakdown).

This comprehensive categorization enhancement enabled
us to refine the generalized approach. For example, we dis-
covered that energy production sites, initially thought of as
dominant with an area of 28 km2 in coastal regions, were, in
fact, less extensive, covering only 17 km2 across the entire
state (see Table A3 and Fig. 6).

However, by incorporating the SACHI dataset, the map
now also encompasses small and isolated elements like
gravel pads and small paths, which were not mapped by the
OSM community but which were successfully derived from
the satellites (refer to Sect. 2.2). On the other hand, the in-
tegration of OSM data provided a heightened level of detail,
enabling clear identification and differentiation of roads and
single buildings (see Fig. 5c).

Looking at the settlement of Nome using SACHI, we iden-
tified mining and quarrying as the primary land use category,
apart from the transport network. These categories were de-
termined by applying a buffer around each settlement (refer
to Sect. 2.2.1) and assigning it one predominant value (see
Fig. 5b). Combining SACHI with the OSM data enhanced the
quality of the transport network, where the streets are clearly
defined even within areas with a high density of buildings

and other human-impacted areas. It also improved the detail
of these usage type categories (Fig. 5c). We learned that the
majority of the settlement’s area is actually residential, char-
acterized by houses and recreational areas such as pitches
and parks (see Fig. 5a and c). The OSM data also added de-
tail, where the spatial resolution of the SACHI product de-
rived from Sentinel satellites fell short. For example, the pier
in the western area was not captured by the Sentinel satel-
lites, but it was digitized by the OSM community. However,
comparing the resulting human-impacted areas and the in-
frastructure map with aerial imagery from Bing (as accessed
via the QGIS plugin OpenLayers; Sourcepole AG, 2024) re-
vealed that there is a second pier, which did not appear in
OSM or in the SACHI dataset. Nonetheless, the true added
value of the SACHI dataset is in its information on small
features such as extraction pads and others, which only occa-
sionally appear in OSM data.

A closer examination of the Prudhoe Bay area confirmed
this observation. Once again, the SACHI dataset showed
more human-impacted areas, probably from expanding ex-
ploration sites, while OSM offered more spatial detail. Fur-
thermore, at both sites, we found that OSM exhibited higher
quality in terms of linear infrastructure objects such as road
and railway lines. As mentioned in Sect. 2.2, we compared
the areas of the linear transport network between SACHI and
OSM to evaluate the potential limitations of using OSM data.
However, we discovered that the difference in area was only
5 km2 (or 6 % of the total SACHI linear infrastructure area),
as shown in Table A3.

The resulting SIRIUS infrastructure and the human-
impacted area inventory not only represents economic activ-
ities, but also incorporates fundamental functions for living
(Maier et al., 1977), including agricultural areas, commer-
cial and residential zones, recreational spaces, waste and wa-
ter treatment, and community services. We also observed a
significant decrease in the number of features with unknown
land use types by internally overlaying OSM buildings with
non-building OSM information (see Fig. 6 and Table A3).
Prior to the internal overlay, the area with unknown land use
was 34 km2, whereas, after the overlay, it decreased to only
13 km2 (refer to Table A3). This enhanced level of usage
type detail allows for various applications, such as risk as-
sessments for energy production facilities and transportation
networks as well as evaluations of contaminated sites close
to recreational or agricultural areas (refer to Sect. 3.2.1).

3.1.2 Accuracy assessment

The OA of the confusion matrix represents the ratio of cor-
rectly classified pixels to the total number of all pixels (pos-
itive and negative, true and false). The OA of the linear in-
frastructure data of SIRIUS is 0.5. While this value seems
relatively low, we need to zoom in on a specific detail: of
all 310 true road grid cells of the reference dataset showing
a road infrastructure, 241 grid cells, i.e., 78 %, were accu-
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Figure 4. Overview of the synthesized data: contaminated sites and (a) modeled permafrost zones, (b) combined SACHI and OSM in-
frastructure and human-impacted areas, and (c) watersheds draining into the Arctic Ocean and the Bering Sea. OSM data copyrighted by
© OpenStreetMap contributors 2023. Distributed under ODbL v1.0. The basemap was made with Natural Earth. Free vector and raster map
data at http://www.naturalearthdata.com (last access: 14 August 2023).

rately represented in the SIRIUS dataset (see Fig. 7a). A vi-
sual examination further revealed that, of the remaining 69
true road grid cells supposedly not represented by SIRIUS,
45 (65 %) were captured but with a slight spatial offset (see
Fig. 8a), leading to a false negative when indeed it was only
a positional inaccuracy. Taking into account these offset grid
cells, the overall accuracy of the SIRIUS dataset improves to
0.69 and the true positive value increases from 0.78 to 0.92,
indicating that 92 % of the road infrastructure is mapped in
the SIRIUS inventory. All of the SIRIUS road grid cells not
mapped in the reference dataset (false positives) were ei-
ther small tracks, footways or narrow residential roads with
widths of less than 10 m, and thus they were not mapped (see
Fig. 8b).

The overall accuracy of the polygonal infrastructure and
human-impacted areas of the SIRIUS dataset shows a sim-
ilarly low value of 0.53. However, the true positive value,
representing the ratio of the correctly classified values in
SIRIUS to the actual positive values, is 94 % (686 of 731
true polygonal infrastructure grid cells) (Fig. 7b). Of the re-
maining 45 false negative grid cells, 13 % were indeed miss-

ing, another 18 % occurred again because of a spatial offset
and 69 % appeared along the breakwater, protecting the shore
(see Fig. 9a). OSM did not capture this structure, and due to
the relatively coarse spatial resolution of the Sentinel sensors,
the representation of the breakwater was sparse and patchy in
SACHI, leading to an underestimation and a high number of
false negatives.

However, substantially distorting the overall accuracy is
the high number of false positives: 568 grid cells showed an
intersection with the polygonal infrastructure in the SIRIUS
dataset (Fig. 7b), which was not captured in the reference
dataset; 23 % of these false positives stem from an overesti-
mation of the airport area in SACHI and an altogether more
generous mapping of the area in the OSM data. The eastern
part of the runway, for instance, appears revegetated and al-
lows the conclusion that it is no longer in use despite still
being represented in the OSM data (refer to Fig. 9b). How-
ever, the highest number of false positives originates from
areas affected by human activities represented in the SIR-
IUS dataset. These human-impacted areas posed a challenge
to accurately mapping them for the reference dataset on the
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Figure 5. Input data from (a) OSM and (b) SACHI assigned to LUCAS categories for the example of the settlement of Nome located along
the Bering Sea coast. Map (c) shows the harmonized data on the infrastructure and human-impacted areas of SIRIUS. OSM data copyrighted
by © OpenStreetMap contributors 2023. Distributed under ODbL v1.0. The basemap was made with Natural Earth. Free vector and raster
map data at http://www.naturalearthdata.com (last access: 14 August 2023).

basis of the orthophotos alone. Some features, e.g., a play-
ground, were either not visible or were difficult to delineate
accurately. Figure 9c shows an example of a human-impacted
area mapped as industrial land use by the OSM community.
While the single storage structures are represented in the ref-
erence dataset, there was no indication of an enclosed area.

In summary, the low overall accuracy of the polygonal in-
frastructure data is distorted by a high number of false posi-
tives that originate from either an overestimation of the ar-
eas (e.g., airport) or a (conceptual) definition of land use
(e.g., playground, industrial usage) that is difficult to repro-
duce with orthophotos alone. However, it is important to note
that SIRIUS achieved representations of 78 % for the linear

infrastructure and 94 % for the polygonal infrastructure, re-
spectively, of the true infrastructure values.

3.1.3 Contaminated sites of Alaska

With the text-mining approach, we successfully extracted ad-
ditional information from the site reports of the Contami-
nated Sites Program. The use of regular expressions allowed
us to identify dates, abbreviations and references to sub-
stances from the DEC glossary or any contaminated medium
mentioned in the text. Consequently, we were able to cal-
culate the total cleanup time at inactive sites and provide a
comprehensive list of the substances mentioned in the site
reports. To assess the accuracy, we retrieved a sample of
10 data entries from the dataset (see Table A4). We con-
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Figure 6. Improvement of the spatial coverage and usage type categorization. Area (km2) per LUCAS category for (i) the original SACHI
dataset (only coastal areas), (ii) OSM before and (iii) after the internal overlay (complete extent of Alaska), and (iv) after combining both
datasets within our SIRIUS inventory of infrastructure and human-impacted areas. For detailed values, refer to Table A3.

Figure 7. Confusion matrices were used to evaluate the accuracy
of the SIRIUS dataset. The integrated SIRIUS inventory is com-
pared with the reference data, which were mapped on the basis
of orthophotos acquired in 2021. The matrices were normalized to
the “true” value, representing the ratio of correctly and incorrectly
SIRIUS-mapped features for each true class label (values [0–1]).
Panel (a) shows the accuracy of the linear infrastructure features
with a true positive value of 0.78 and a false negative value of 0.22.
For the polygonal infrastructure, as seen in panel (b), the true posi-
tive value is 0.94, making the SIRIUS inventory highly thorough.

firm the successful extraction of dates, following the pat-
tern described in Sect. 2.2.3. The expressions “sites added
to database” and “sites closure approved/cleanup complete”
were considered to be the first and last action dates, re-

spectively. In the cases where no specific expressions were
present, the first and last mentioned action dates were used
instead. However, in 491 (6 %) entries, the cleanup duration
was recorded as 0 d (for an example, see Hazard ID 2361 of
the sample in Table A4), and in 214 (2 %) cases, negative
values were even reported. This again points to a heteroge-
neous approach or methodology used by the agency to input
data into the database. In these cases, “site closure approved/-
cleanup complete” was entered on the same date or even be-
fore “sites added to database”. For the sample, the retrieval
of the contaminants was highly successful, as all substances
and containment structures listed in the DEC glossary (see
Table A5) were found. However, any substances not appear-
ing in the glossary will not be retrieved with our approach.
Also, the information regarding the contaminated medium
was limited, as the DEC rarely provides details in the “con-
taminant information” section of the reports. Consequently,
we were only able to derive the contaminated medium for
3321 (39 %) of the 8533 sites.

3.2 Data usability

The resulting GeoPackage with our preprocessed spatial data
layers contains all the input data on watersheds, permafrost
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Figure 8. Comparison of the road network as represented in the SIRIUS inventory (integrated from OSM and SACHI from 2023 and 2021,
respectively) and the reference data, which were mapped on the basis of multispectral (RGB+NIR) very high-resolution orthophotos from
2021. Panel (a) showcases the presumably false negative values (0.22) of the SIRIUS road network, revealing that the roads are indeed present
but exhibit a slight offset. Panel (b) shows a section of the SIRIUS road network, which was deemed a false positive (1.0). However, the
roads in SIRIUS are clearly visible in the imagery, yet they were not mapped due to their width being less than 10 m. Background imagery:
orthophotos of Shishmaref used to build the reference dataset (Rettelbach et al., 2023).

Figure 9. Comparison of the polygonal infrastructure and human-impacted areas as represented in the SIRIUS inventory (integrated from
OSM and SACHI from 2023 and 2021, respectively) and the reference data, which were mapped on the basis of multispectral (RGB+NIR)
very high-resolution orthophotos from 2021. Panel (a) shows a subset of false negatives (0.06 in total) along the breakwater as a consequence
of the patchy representation of this feature in SACHI. Panel (b) displays the overestimation of the airport’s runway in the SIRIUS dataset
by including a revegetated area seemingly no longer in use. In panel (c), the area close to the storage features is represented as industrial
land use in SIRIUS, which could not be identified on the basis of the orthophotos alone and is thus considered a false positive. Background
imagery: orthophotos of Shishmaref used to build the reference dataset (Rettelbach et al., 2023).

probability, zones and MAGT within the geographic ex-
tent of Alaska, projected to a joint spatial reference (EPSG
code 5936). Additionally, it includes information on the con-
taminated sites, infrastructure features and other human-
impacted areas. These datasets have undergone harmoniza-
tion and enrichment, specifically focusing on the retrieval of
the detailed land usage information and the types of contam-
ination and the duration of cleanup measures, as outlined in

Sect. 2.2.1 and 2.2.3. These datasets are now stored as sep-
arate layers (see Fig. A2), eliminating the need for manag-
ing multiple ESRI Shapefiles and their auxiliary files. While
retaining their original fields such as ID, geometry or water-
shed names, the files have been enriched with new informa-
tion recorded in additional fields.

We deployed two GeoPackages with the same data. How-
ever, in PermaRisk_RRNetworkLine.gpkg, the railway and
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road networks are represented as linear geometries and
in PermaRisk_RRNetworkPolygonal.gpkg as polygonal ge-
ometries, based on the geometry buffers we defined in
Sect. 2.2.1. This allows more detailed spatial queries, such
as deriving the length of a road or railway line within a spe-
cific research domain (see Sect. 3.2.1). Considering the dif-
ferent user requirements, the GeoPackage can be imported
into a spatially enabled database, such as PostgreSQL/Post-
GIS, loaded into a geographic information system (GIS), or
used within geospatial processing libraries, such as Python’s
GeoPandas. In this section, we will showcase the use of our
GeoPackage within QGIS, perform SQL queries and access
it using GeoPandas to generate exemplary statistics and ex-
plore potential application scenarios.

3.2.1 Application

As a first application scenario, we wanted to retrieve the to-
tal length of the road and railway lines within Alaska’s con-
tinuous permafrost zone. As GeoPackage uses an SQLite
database container, we were easily able to query spatial in-
formation by using the “execute SQL” command in QGIS.

SELECT SUM(ST_Length(RRnetwork.geom))
FROM SACHI_OSM_InfrastructureHIElements_RRNetwork AS RRnetwork
JOIN UiO_PermafrostZones AS permafrost
ON ST_Intersects(RRnetwork.geom, permafrost.geom)
WHERE permafrost.EXTENT = 'Cont';

This query provided us with a length of 8456 km for the
railway and road networks intersecting the continuous per-
mafrost zone.

Another possible application is to determine the number
of contaminated sites per watershed. To achieve this, the user
can for example use the QGIS tool “count points in poly-
gon”. We tested this and discovered that the Yukon water-
shed, which is also Alaska’s largest watershed draining into
the Arctic Ocean, contained the highest number of contami-
nated sites, totaling 2256. However, to account for the huge
differences in watershed sizes and to normalize the number
of sites per area, we further calculated the number of contam-
inated sites per square kilometer per watershed, showing that
the watersheds along the coast of the Beaufort Sea (Fig. 10a
and c) and Kotzebue (Fig. 10b) depict the highest density of
contaminated sites per square kilometer (see Fig. 10).

We further derived which land use category or infrastruc-
ture type shows the most contamination. For this analysis,
we showcase the use of GeoPandas as a third processing
option for our GeoPackage. By creating a spatial join
between the SACHI_OSM_InfrastructureHIElements and
SACHI_OSM_InfrastructureHIElements_RRNetwork
(as a polygonal representation) layers along with
DEC_ContaminatedSitesAK, we first derived all infrastruc-
ture and human-impacted areas and elements intersecting
a contaminated site. Next, we dissolved these intersecting
elements based on their LUCAS attribute. Subsequently,
we counted the number of contaminated sites by examining
the points within these dissolved polygons, representing

the aggregated LUCAS attribute. For the Python code, see
Appendix B.

This application example showed that most of the contam-
ination occurs in the land use categories “community ser-
vices” (into which among others fall, e.g., military installa-
tions; see Table A1), “transport, communication networks,
storage and protective works”, “industry and manufactur-
ing”, and “recreational, leisure and sport” (see Table 2).

4 Discussion

4.1 Data harmonization and mining

4.1.1 Infrastructure and human-impacted areas

The resulting inventory on infrastructure and human-
impacted areas and elements in Alaska provides a detailed
and comprehensive overview of various human activities, en-
compassing not only economic functions, but also funda-
mental functions for living. Compared to the original SACHI
dataset, we have achieved higher spatial detail and coverage
throughout the entire state by incorporating OSM data (see
Table A3 and Fig. 6). On the other hand, the SACHI dataset
has made a substantial contribution by capturing small ele-
ments that had been missed by the mapping efforts of the
OSM community. This limitation may be attributed to the pe-
ripheral status of Arctic environments within the global OSM
network, primarily due to their sparse population. Hjort et al.
(2018) report such a limitation for isolated, smaller commu-
nities and with regional variability (e.g., better coverage in
North America and Eurasia compared to Asia). This deficit
in the mapped regions underscores the necessity for infras-
tructure products derived from remote sensing images, such
as SACHI, as the underlying algorithms used to retrieve these
features remain unbiased in terms of area selection. How-
ever, as described in Sect. 2.2.1, the algorithms fell short
in densely populated areas, which makes distinguishing be-
tween adjacent features of different classes – e.g., buildings,
roads or extraction pads – challenging. To achieve the spa-
tial detail of the OSM additions, the retrieval of infrastruc-
ture and human-impacted features could be enhanced by an-
alyzing remote sensing data with sub-meter spatial resolu-
tion. However, this improvement would come at a significant
cost, as most of these satellite images are commercial. On a
pan-Arctic scale, this approach is nearly impossible due to
the large spatial coverage necessary and the associated high-
resolution imagery costs (Manos et al., 2022). A compromise
could involve using satellite imagery from providers that of-
fer educational programs or discounted rates for researchers,
such as Planet’s Planetscope with a spatial resolution of 4 m
(Sentinel Hub, 2024). Alternatively, deep-learning models
could be leveraged to generate high-resolution images from
lower-resolution sources like Sentinel-2 (Wang et al., 2018).
Considering these challenges emphasizes the need to rely on
crowd-sourced map data. These map data can also be gener-
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Figure 10. Number of contaminated sites per ARCADE watershed per square kilometer. The inset map (a) shows a watershed along the
coast of the Beaufort Sea, with the highest value of 1.76 contaminated sites per square kilometer. Other watersheds exceeding more than one
contamination per square kilometer were located in Kotzebue (inset map b) and on St. Lawrence Island. The inset map (c) shows a range of
watersheds of the Prudhoe Bay area. The basemap was made with Natural Earth. Free vector and raster map data @ naturalearthdata.com at
http://www.naturalearthdata.com (last access: 14 August 2023).

Table 2. Number of contaminated sites per land use category.

LUCAS No. of contaminated sites

Agriculture 6
Commerce, finance and business 654
Community services 1989
Energy production 37
Fishing 79
Forestry 144
Industry and manufacturing 840
Mining and quarrying 32
Recreational, leisure and sport 755
Residential 531
Transport, communication networks, storage and protective works 1978
Unknown 210
Water and waste treatment 11

ated remotely using accessible Web Map Servers or GIS plu-
gins (e.g., Bing). Using OpenStreetMap as this data source
serves as a gateway for this purpose. It establishes a low
threshold for non-researchers, including citizen scientists,
who can not only map various elements but can eventually
also incorporate valuable information on contamination that
has not been captured by official environmental agencies,

highlighting the unique potential of OSM in this context. In
addition, this approach allows the continuous development of
suitable tags (the attribute fclass in our data). However, based
on our own field visits, we have identified instances where
certain areas and elements that contribute to the critical sec-
tor of “health and sanitation” are not accurately represented
in OSM. For example, the Middle Salt Lagoon in Utqiaġvik
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(formerly Barrow), which is used for sewage purposes, is la-
beled “water” in OSM and is thus not included in our SIRIUS
dataset. This underlines the need for a comprehensive review
of the mapping tags before basing future inventories of crit-
ical infrastructure and human-impacted areas on OSM. For-
tunately, due to OSM’s open design and accessibility, these
revisions can be easily implemented. Given that OSM under-
goes daily updates through user contributions, the integration
of OSM data also facilitates periodic updates within our in-
ventory.

4.1.2 Accuracy assessment

While the linear infrastructure data exhibited low overall ac-
curacy in our Shishmaref test area, about two-thirds of the
false negatives resulted from a spatial offset (see Fig. 8). This
indicates the presence of roads but with reduced positional
accuracy, likely due to an image offset between the MACS
imagery and the OSM data. All false positives were narrow
residential roads or small paths visible in orthophotos but not
digitized in the reference dataset, in order to comply with the
10 m Sentinel resolution. Including these narrow features in
the reference dataset would have substantially improved the
accuracy.

Nonetheless, 78 % of the true road grid cells were accu-
rately represented in the SIRIUS dataset, increasing to 92 %
when accounting for offset grid cells. This highlights the ef-
fectiveness of OSM in representing linear infrastructure com-
pared to SACHI. OSM distinguishes between roads and adja-
cent infrastructure areas and includes narrow roads and foot-
ways. To improve the accuracy, it could be beneficial to in-
tegrate official data from local or federal agencies (e.g., the
Alaska Department of Transportation) to evaluate the com-
prehensiveness of the OSM linear infrastructure data. Fur-
ther, incorporating the Trans-Alaskan Pipeline would provide
a spatial context for contamination, oil exploration and trans-
portation data.

In the case of the polygonal infrastructure for the Shish-
maref test area, the SIRIUS dataset achieves a representa-
tion of 94 % of all the true values. Distorting the overall ac-
curacy are the false positives, approximately one-fourth of
which belong to the area of Shishmaref’s airport runway that
is no longer in use. It is important to note that OSM encour-
ages users to regularly update features. If a user finds that a
feature no longer physically exists, they should delete it or
tag it as “nonexistent” (OpenStreetMap Wiki, 2024b). If a
feature still physically exists but is no longer in use, users
are encouraged to tag it as “disused” (OpenStreetMap Wiki,
2024a). In this specific context, and considering the poten-
tials of the contamination, it could be seen as an asset to have
former land usage and industrial legacies represented in the
SIRIUS dataset. An interesting approach might thus be to
specifically filter for the OSM tags nonexistent and disused
– in the regularly updated and historical OSM database – to
highlight potential contamination sites.

The same applies to the human-impacted areas, such as
playgrounds and industrial land use. While these features are
important infrastructures critical to Arctic communities, they
largely cannot be mapped on the basis of orthophotos alone.
Accordingly, the polygonal infrastructure lacks this level of
detail when derived from SACHI. As discussed in Sect. 4.1.1,
the coarse spatial resolution of the Sentinel sensors poses a
challenge in densely populated areas. In such regions, build-
ings and human-impacted areas become difficult to separate
from adjacent roads. This challenge contributes to the high
number of false positives, where roads are misclassified as
buildings and areas of human activities are overestimated.
However, this issue could be addressed using imagery with a
higher spatial resolution.

It is important to note that the high mapping accuracies
of 78 % (92 %) for the linear infrastructure and 94 % for
the polygonal infrastructure in our test area of Shishmaref
can likely be expected for most of the coastal regions (un-
til 100 km inland). For inland areas (beyond the extent of
SACHI), the infrastructure data rely solely on OSM, which
may show the abovementioned limitations. Once again, inte-
grating further official data sources could improve their qual-
ity.

4.1.3 Contaminated sites of Alaska

We were able to successfully enhance the DEC Contami-
nated Sites dataset with complementary information regard-
ing the substances, the affected medium and the duration
of the cleanup measurements. However, the text-mining ap-
proach, using regular expressions to compare site reports to
the DEC glossary to retrieve the contaminant and the af-
fected medium, encountered limitations where data were en-
tered heterogeneously into the database (see Sect. 3.1.3). For
instance, only 39 % of the site reports included informa-
tion about the contaminated medium in the designated sec-
tion “contaminant information”. In addition, in some cases,
comparing the medium’s keywords (soil, groundwater, etc.)
to this section led to false positives as these terms are fre-
quently used to describe the hazard level of the substances.
The first entry (Hazard ID 26994) of our validation sample
(refer to Table A4) is one of these false positives. The site
report actually lists “soil” as a contaminated medium, but
the level description for the substances “benzo[a]anthracene
and benzo[a]pyrene” is “between method 2 migration to
groundwater and human health/ingestion/inhalation”. Con-
sequently, our approach also lists groundwater as a contam-
inated medium, which is not accurate. If we were to com-
pare the full report to these keywords, this would result in
even more incorrect classifications, as these terms are also
employed to describe a suspicion of contamination. Further-
more, using regular expressions for the retrieval of the pol-
luting substances does not differentiate between the pres-
ence and absence of a contaminant, e.g., “PCB was found”
vs. “PCB was not found”. Although we did not encounter
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statements of absent contaminants in the reports of our sam-
ple, we cannot rule out the possibility of false positives of
this kind.

These shortfalls could be addressed by implementing ad-
vanced text classification approaches from natural language
processing and text mining. This could provide a more
comprehensive understanding of toxic substances, including
those not mentioned in the DEC glossary. Furthermore, these
methods would extract and classify information on the con-
taminated medium from the entire report, rather than solely
relying on the sampled section labeled “contaminant infor-
mation”. Another viable alternative would be the integration
of large language models (LLMs). We tested our particular
false positive case (Hazard ID 26994) with the LLM chat-
bot ChatGPT Version 3.5 by copying the full report into
the prompt and requesting “reading this text, tell me what
medium (soil, groundwater, river, lake, etc.) was contami-
nated:”, and it correctly classified the affected medium:

Based on the provided text, the medium that
was contaminated is ‘Soil’. The text mentions
that soil samples collected during site assess-
ment activities showed elevated concentrations
of contaminants, specifically ‘benzo(a)pyrene’
and ‘benzo(a)anthracene’, which exceeded certain
cleanup levels. Therefore, the contamination oc-
curred in the soil medium.

In this way, inconsistencies in data entries and false clas-
sifications could be easily addressed.

4.2 Data usability

4.2.1 Application

All the resulting datasets have been organized as individual
layers within a single GeoPackage, which is available for
download from our Zenodo repository (see the “Code and
data availability” section). The GeoPackage does not have
to be extracted (e.g., like a .zip archive), nor does it rely on
the handling of multi-file data formats such as ESRI Shape-
files. The user can seamlessly integrate it by either opening
it in a GIS application or importing it into a spatially en-
abled database like PostgreSQL/PostGIS. In this way, each
layer can be analyzed independently or in conjunction with
the others, facilitating easy querying of critical infrastructure
and human-impacted areas and their interrelation with envi-
ronmental parameters.

To achieve a more comprehensive understanding of the so-
cioeconomic implications of permafrost degradation, we ad-
vocate incorporating additional environmental data, such as
soil and waterbody databases, which are important for as-
sessing the contamination severity and the significance of
waterbodies as water resources. Additionally, incorporating
demographic factors like age distribution, education, em-
ployment and income numbers can provide valuable insights

into the impacts of permafrost degradation on the popula-
tion’s wellbeing.

5 Code and data availability

The GeoPackage and Python codes are available from
https://doi.org/10.5281/zenodo.8311243 (last access:
25 September 2023) (Kaiser et al., 2023).

6 Conclusions

The SIRIUS dataset offers a comprehensive inventory of crit-
ical infrastructure and human-impacted areas in Alaska. It
enables researchers and local communities to explore data
in a spatial context, providing valuable information on per-
mafrost extent, permafrost probability, mean annual ground
temperatures and watersheds, allowing for an in-depth anal-
ysis of their interdependencies.

By combining the OSM and SACHI datasets, the informa-
tion content regarding the type of infrastructure usage was
greatly improved, increasing the number of usage categories
from 5 (in SACHI) to a total of 13. The new usage cate-
gories now go beyond industrial and other economically im-
portant infrastructure by distinguishing elements of health-
care, food and water supply, sanitation, and areas of cultural
heritage that are crucial to the well-being of local commu-
nities. Leveraging the OSM data and internally overlaying
building features with non-building features, we were also
able to reduce the number of buildings with the unknown us-
age type by 63 % (from 34.15 to 12.58 km2).

As we move forward, we have identified several steps to
enhance the SIRIUS dataset further. Future updates will in-
corporate the new version of the SACHI dataset, which was
released during the review period of this paper. Version 2.0
encompasses (i) a refinement of the linear infrastructure fea-
tures, now distinguishing between asphalt and gravel trans-
port infrastructures; (ii) airstrips; (iii) human-influenced wa-
terbodies and reservoirs; and (iv) additional regions further
inland (Bartsch et al., 2023). The inclusion of water reser-
voirs affected by human activity is expected to improve the
health and sanitation category by providing information on
water and waste treatment facilities.

Further, an improvement of the text-mining approach
could be achieved by implementing transformer-based large
language models such as GPT (Generative Pre-trained Trans-
former by OpenAI) or BERT (Bidirectional Encoder Rep-
resentations from Transformers by Google). This could en-
hance information accuracy and density and open up new
pathways to incorporate contamination-related data from het-
erogeneous text sources, including online reports, historical
documents and analog text data.

Researchers and volunteers can contribute to improving
the dataset by providing feedback and additional data or par-
ticipating in (community) collaborative mapping efforts. The
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integration of OpenStreetMap into the LUCAS framework
not only promotes harmonization across international bound-
aries, but also opens avenues for automated and regularly
updated data retrieval through Python libraries like OMSnx
(Boeing, 2017). Leveraging crowd-sourced data can encour-
age future mapping endeavors, including the identification of
previously unregistered contamination sources.

We aim to establish the SIRIUS dataset as a foundation for
multisource synthesis and data integration initiatives, consol-
idating infrastructure, environmental and health-related in-
formation to facilitate the analysis of spatial trends and pat-
terns, with the potential to be upscaled to the pan-Arctic re-
gion.

Appendix A

A1 Figures

Figure A1. Tree structure of the OSM input data folder. OSM data
were retrieved from OpenStreetMap Contributors and Geofabrik
GmbH (2018) on 20 January 2023.

Figure A2. Tree structure of the GeoPackage.
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A2 Tables

Table A1. Assigning OSM keys and values to the “fclass” and “osm_type” attributes of the OSM ESRI Shapefiles, followed by LUCAS
categorization.

fclass osm_type OSM_key OSM_value LUCAS

airfield NaN military airfield Community services
airport NaN aeroway aerodrome Transport, communication networks, etc.
allotments NaN landuse allotments Residential
allotments NaN place allotments Residential
alpine_hut NaN tourism alpine_hut Recreational, leisure and sport
apron NaN aeroway apron Transport, communication networks, etc.
archaeological NaN historic archaeological_site Community services
arts_centre NaN amenity (entertainment, arts

and culture)
arts_centre Recreational, leisure and sport

artwork NaN tourism artwork Recreational, leisure and sport
atm NaN amenity (financial) atm Commerce, finance and business
attraction NaN tourism attraction Recreational, leisure and sport
bakery NaN shop (food and beverages) bakery Commerce, finance and business
bank NaN amenity (financial) bank Commerce, finance and business
bar NaN amenity (sustenance) bar Recreational, leisure and sport
beauty_shop NaN shop (health and beauty) beauty Commerce, finance and business
bench NaN amenity (facilities) bench Community services
beverages NaN shop (food and beverages) beverages Commerce, finance and business
bicycle_rental NaN amenity (transportation) bicycle_rental Transport, communication networks, etc.
bicycle_shop NaN shop (outdoors and sport, vehi-

cles)
bicycle Commerce, finance and business

biergarten NaN amenity (sustenance) biergarten Recreational, leisure and sport
bookshop NaN shop (stationery, gifts, books,

newspapers)
books Commerce, finance and business

building NaN NaN NaN NaN
bus_station NaN amenity (transportation) bus_station Transport, communication networks, etc.
bus_stop NaN highway (other highway fea-

tures)
bus_stop Transport, communication networks, etc.

butcher NaN shop (food and beverages) butcher Commerce, finance and business
cafe NaN amenity (sustenance) cafe Recreational, leisure and sport
camera_surveillance NaN man_made surveillance Transport, communication networks, etc.
camp_site NaN tourism camp_site Recreational, leisure and sport
car_dealership NaN shop (outdoors and sport, vehi-

cles)
car Commerce, finance and business

car_rental NaN amenity (transportation) car_rental Transport, communication networks, etc.
car_wash NaN amenity (transportation) car_wash Transport, communication networks, etc.
caravan_site NaN tourism caravan_site Recreational, leisure and sport
cemetery NaN landuse cemetery Community services
chalet NaN tourism chalet Recreational, leisure and sport
chemist NaN shop (health and beauty) chemist Commerce, finance and business
cinema NaN amenity (entertainment, arts

and culture)
cinema Recreational, leisure and sport

city NaN NaN NaN (Removed)
clinic NaN amenity (healthcare) clinic Community services
clothes NaN shop (clothing, shoes, acces-

sories)
clothes Commerce, finance and business

college NaN amenity (education) college Community services
college NaN building college Community services
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Table A1. Continued.

fclass osm_type OSM_key OSM_value LUCAS

commercial NaN building commercial Commerce, finance and business
commercial NaN landuse commercial Commerce, finance and business
comms_tower NaN man_made communications_tower Transport, communication networks, etc.
community_centre NaN amenity (entertain-

ment, arts and culture)
community_centre Recreational, leisure and sport

computer_shop NaN shop (electronics) computer Commerce, finance and business
convenience NaN shop (food and bever-

ages)
convenience Commerce, finance and business

county NaN NaN NaN (Removed)
courthouse NaN amenity (public ser-

vice)
courthouse Community services

crossing NaN footway crossing Transport, communication networks, etc.
crossing NaN highway (other high-

way features)
crossing Transport, communication networks, etc.

crossing NaN railway crossing Transport, communication networks, etc.
dam NaN waterway (barriers on

waterways)
dam Community services

dentist NaN amenity (healthcare) dentist Community services
department_store NaN shop (general store, de-

partment store, mall)
department_store Commerce, finance and business

doctors NaN amenity (healthcare) doctors Community services
dog_park NaN leisure dog_park Recreational, leisure and sport
doityourself NaN shop (do it yourself,

household, building
material, etc.)

doityourself Commerce, finance and business

drinking_water NaN amenity (facilities) drinking_water Community services
drinking_water NaN emergency drinking_water Community services
embassy NaN office diplomatic Community services
farmland NaN landuse farmland Agriculture
farmyard NaN landuse farmyard Agriculture
fast_food NaN amenity (sustenance) fast_food Recreational, leisure and sport
ferry_terminal NaN amenity (transporta-

tion)
ferry_terminal Transport, communication networks, etc.

fire_station NaN amenity (public ser-
vice)

fire_station Community services

fire_station NaN building fire_station Community services
florist NaN shop (do it yourself,

household, building
material, etc.

florist Commerce, finance and business

food_court NaN amenity (sustenance) food_court Recreational, leisure and sport
forest NaN boundary forest Forestry
forest NaN landuse forest Forestry
fort NaN historic fort Community services
fountain NaN amenity (entertain-

ment, arts and culture)
fountain Recreational, leisure and sport

fuel NaN amenity (transporta-
tion)

fuel Transport, communication networks, etc.

fuel NaN waterway fuel Transport, communication networks, etc.
furniture_shop NaN shop (furniture and in-

terior)
furniture Commerce, finance and business

garden_centre NaN shop (do it yourself,
household, building
material, etc.)

garden_centre Commerce, finance and business

general NaN shop (general store, de-
partment store, mall)

general Commerce, finance and business

gift_shop NaN shop (stationery, gifts,
books, newspapers)

gift Commerce, finance and business

golf_course NaN NaN none Recreational, leisure and sport
grass NaN landuse grass Community services

https://doi.org/10.5194/essd-16-3719-2024 Earth Syst. Sci. Data, 16, 3719–3753, 2024



3740 S. Kaiser et al.: SIRIUS

Table A1. Continued.

fclass osm_type OSM_key OSM_value LUCAS

graveyard NaN amenity (others) grave_yard Community services
greengrocer NaN shop (food and bever-

ages)
greengrocer Commerce, finance and business

guesthouse NaN tourism guest_house Recreational, leisure and sport
hairdresser NaN shop (health and

beauty)
hairdresser Commerce, finance and business

hamlet NaN NaN NaN (Removed)
heath NaN NaN NaN (Removed)
helipad NaN aeroway helipad Transport, communication networks, etc.
hospital NaN amenity (healthcare) hospital Community services
hospital NaN building hospital Community services
hostel NaN tourism hostel Recreational, leisure and sport
hotel NaN building hotel Recreational, leisure and sport
hotel NaN tourism hotel Recreational, leisure and sport
hunting_stand NaN amenity (others) hunting_stand Hunting
ice_rink NaN leisure ice_rink Recreational, leisure and sport
industrial NaN building industrial Industry and manufacturing
industrial NaN landuse industrial Industry and manufacturing
industrial NaN usage industrial Industry and manufacturing
island NaN NaN NaN (Removed)
jeweller NaN shop (clothing, shoes,

accessories)
jeweller Commerce, finance and business

jeweller NaN shop (clothing, shoes,
accessories)

jewelry Commerce, finance and business

kindergarten NaN amenity (education) kindergarten Community services
kindergarten NaN building kindergarten Community services
kiosk NaN building kiosk Commerce, finance and business
laundry NaN shop (others) laundry Commerce, finance and business
library NaN amenity (education) library Community services
lighthouse NaN man_made lighthouse Community services
locality NaN NaN NaN (Removed)
mall NaN shop (general store, de-

partment store, mall)
mall Commerce, finance and business

marina NaN leisure marina Recreational, leisure and sport
market_place NaN amenity (others) marketplace Commerce, finance and business
meadow NaN landuse meadow Agriculture
memorial NaN historic memorial Community services
military NaN building military Community services
military NaN landuse military Community services
military NaN usage military Community services
mini_roundabout NaN highway (other high-

way features)
mini_roundabout Transport, communication networks, etc.

mobile_phone_shop NaN shop (electronics) mobile_phone Commerce, finance and business
monument NaN historic monument Community services
motel NaN tourism motel Recreational, leisure and sport
motorway_junction NaN highway (other high-

way features)
motorway_junction Transport, communication networks, etc.

museum NaN tourism museum Recreational, leisure and sport
nature_reserve NaN leisure nature_reserve Recreational, leisure and sport
newsagent NaN shop (stationery, gifts,

books, newspapers)
newsagent Commerce, finance and business

nightclub NaN amenity (entertain-
ment, arts and culture)

nightclub Recreational, leisure and sport

observation_tower NaN NaN none Community services
optician NaN shop (health and

beauty)
optician Commerce, finance and business

orchard NaN landuse orchard Agriculture
outdoor_shop NaN shop (outdoors and

sport, vehicles)
outdoor Commerce, finance and business
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Table A1. Continued.

fclass osm_type OSM_key OSM_value LUCAS

park NaN leisure park Recreational, leisure and sport
parking NaN amenity (transporta-

tion)
parking Transport, communication networks, etc.

parking NaN building parking Transport, communication networks, etc.
parking_bicycle NaN amenity (transporta-

tion)
bicycle_parking Transport, communication networks, etc.

parking_multistorey NaN NaN none Transport, communication networks, etc.
parking_underground NaN NaN none Transport, communication networks, etc.
pharmacy NaN amenity (healthcare) pharmacy Community services
picnic_site NaN tourism picnic_site Recreational, leisure and sport
pier NaN man_made pier Community services
pitch NaN leisure pitch Recreational, leisure and sport
playground NaN leisure playground Recreational, leisure and sport
police NaN amenity (public ser-

vice)
police Community services

post_box NaN amenity (public ser-
vice)

post_box Community services

post_office NaN amenity (public ser-
vice)

post_office Community services

prison NaN amenity (public ser-
vice)

prison Community services

pub NaN amenity (sustenance) pub Recreational, leisure and sport
public_building NaN man_made public_building Community services
quarry NaN landuse quarry Mining and quarrying
railway_halt NaN railway halt Transport, communication networks, etc.
railway_station NaN railway station Transport, communication networks, etc.
recreation_ground NaN landuse recreation_ground Recreational, leisure and sport
recycling NaN amenity (waste man-

agement)
recycling Water and waste treatment

recycling_clothes NaN NaN none Water and waste treatment
recycling_glass NaN NaN none Water and waste treatment
recycling_metal NaN NaN none Water and waste treatment
recycling_paper NaN NaN none Water and waste treatment
residential NaN building residential Residential
residential NaN highway residential Residential
residential NaN landuse residential Residential
restaurant NaN amenity (sustenance) restaurant Recreational, leisure and sport
retail NaN building retail Commerce, finance and business
retail NaN landuse retail Commerce, finance and business
ruins NaN building ruins Community services
ruins NaN historic ruins Community services
school NaN amenity (education) school Community services
school NaN building school Community services
school NaN military school Community services
scrub NaN NaN NaN (Removed)
service NaN building (power and

technical buildings)
service Unknown

service NaN highway (special road
types)

service Unknown

shelter NaN amenity (facilities) shelter Community services
shoe_shop NaN shop (clothing, shoes,

accessories)
shoes Commerce, finance and business

slipway NaN leisure slipway Recreational, leisure and sport
speed_camera NaN highway (other high-

way features)
speed_camera Transport, communication networks, etc.

sports_centre NaN leisure sports_centre Recreational, leisure and sport
sports_shop NaN shop (outdoors and

sport, vehicles)
sports Commerce, finance and business

stadium NaN building stadium Recreational, leisure and sport
stadium NaN leisure stadium Recreational, leisure and sport
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Table A1. Continued.

fclass osm_type OSM_key OSM_value LUCAS

stationery NaN shop (stationery, gifts,
books, newspapers)

stationery Commerce, finance and business

stop NaN highway (other high-
way features)

stop Transport, communication networks, etc.

street_lamp NaN highway (other high-
way features)

street_lamp Transport, communication networks, etc.

suburb NaN NaN NaN (Removed)
supermarket NaN building supermarket Commerce, finance and business
supermarket NaN shop (general store, de-

partment store, mall)
supermarket Commerce, finance and business

swimming_pool NaN leisure swimming_pool Recreational, leisure and sport
taxi NaN amenity (transporta-

tion)
taxi Transport, communication networks, etc.

telephone NaN amenity (facilities) telephone Community services
theatre NaN amenity (entertain-

ment, arts and culture)
theatre Recreational, leisure and sport

theme_park NaN tourism theme_park Recreational, leisure and sport
toilet NaN amenity (facilities) toilets Community services
toilet NaN building toilets Community services
tourist_info NaN tourism information Recreational, leisure and sport
tower NaN historic tower Unknown
tower NaN lifeguard tower Unknown
tower NaN man_made tower Unknown
tower NaN power tower Unknown
town NaN NaN NaN (Removed)
town_hall NaN amenity (public ser-

vice)
townhall Community services

toy_shop NaN shop (others) toys Commerce, finance and business
track NaN leisure track Recreational, leisure and sport
traffic_signals NaN highway (other high-

way features)
traffic_signals Transport, communication networks, etc.

travel_agent NaN office travel_agent Commerce, finance and business
turning_circle NaN highway (other high-

way features)
turning_circle Transport, communication networks, etc.

university NaN amenity (education) university Community services
university NaN building university Community services
vending_any NaN NaN none Unknown
vending_machine NaN amenity (others) vending_machine Unknown
vending_parking NaN NaN none Transport, communication networks, etc.
veterinary NaN amenity (healthcare) veterinary Community services
video_shop NaN shop (art, music, hob-

bies)
video Commerce, finance and business

viewpoint NaN tourism viewpoint Recreational, leisure and sport
village NaN NaN NaN (Removed)
waste_basket NaN amenity (waste man-

agement)
waste_basket Water and waste treatment

wastewater_plant NaN man_made wastewater_plant Water and waste treatment
water_tower NaN building water_tower Water and waste treatment
water_tower NaN man_made water_tower Water and waste treatment
water_well NaN man_made water_well Water and waste treatment
water_works NaN man_made water_works Water and waste treatment
waterfall NaN NaN NaN (Removed)
wayside_cross NaN historic wayside_cross Community services
weir NaN waterway (barriers on

waterways)
weir Community services

windmill NaN man_made windmill Community services
zoo NaN tourism zoo Recreational, leisure and sport
NaN Dump station NaN none Water and waste treatment
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Table A1. Continued.

fclass osm_type OSM_key OSM_value LUCAS

NaN amphitheatre NaN none Recreational, leisure and sport
NaN apartments building apartments Residential
NaN barn building barn Agriculture
NaN boathouse NaN none Transport, communication networks, etc.
NaN bridge building bridge Transport, communication networks, etc.
NaN bungalow building bungalow Residential
NaN bunker building bunker Community services
NaN cabin building cabin Residential
NaN carport building carport Residential
NaN cathedral building cathedral Community services
NaN chapel building chapel Community services
NaN church building church Community services
NaN civic building civic Community services
NaN classrooms NaN none Community services
NaN commercial;apartment NaN none Unknown
NaN construction building construction Construction
NaN construction landuse construction Construction
NaN container NaN none Transport, communication networks, etc.
NaN cowshed building cowshed Agriculture
NaN detached building detached Residential
NaN disused NaN none Unused
NaN dormitory building dormitory Community services
NaN farm building farm Agriculture
NaN farm_auxiliary building farm_auxiliary Agriculture
NaN fire station building fire_station Community services
NaN garage building garage Residential
NaN garages building garages Transport, communication networks, etc.
NaN gazebo NaN none Community services
NaN government building government Community services
NaN grandstand building grandstand Recreational, leisure and sport
NaN greenhouse building greenhouse Agriculture
NaN hangar building hangar Transport, communication networks, etc.
NaN historic NaN none Community services
NaN house building house Residential
NaN houseboat building houseboat Residential
NaN hut building hut Transport, communication networks, etc.
NaN lodge NaN none Recreational, leisure and sport
NaN manufacture NaN none Industry and manufacturing
NaN mil building military Community services
NaN monastery building monastery Community services
NaN no NaN none Unknown
NaN office building office Commerce, finance and business
NaN pavilion building pavilion Recreational, leisure and sport
NaN public building public Community services
NaN radio_station NaN none Transport, communication networks, etc.
NaN railway_shed NaN none Transport, communication networks, etc.
NaN recreation center NaN none Recreational, leisure and sport
NaN religious building religious Community services
NaN roof building roof Unknown
NaN roof;office NaN none Unknown
NaN sauna NaN none Recreational, leisure and sport
NaN semidetached_house building semidetached_house Residential
NaN shed building shed Transport, communication networks, etc.
NaN ship NaN none Transport, communication networks, etc.
NaN sports_hall building sports_hall Recreational, leisure and sport
NaN stable building stable Agriculture
NaN static_caravan building static_caravan Recreational, leisure and sport
NaN storage NaN none Transport, communication networks, etc.

https://doi.org/10.5194/essd-16-3719-2024 Earth Syst. Sci. Data, 16, 3719–3753, 2024



3744 S. Kaiser et al.: SIRIUS

Table A1. Continued.

fclass osm_type OSM_key OSM_value LUCAS

NaN storage_tank building storage_tank Transport, communication networks, etc.
NaN strip mall NaN none Commerce, finance and business
NaN tent building tent Community services
NaN terminal aeroway terminal Transport, communication networks, etc.
NaN terrace building terrace Residential
NaN toilets amenity (facilities) toilets Community services
NaN toilets building toilets Community services
NaN tower_block NaN none Unknown
NaN train_station building train_station Transport, communication networks, etc.
NaN transmitter NaN none Transport, communication networks, etc.
NaN transportation building transportation Transport, communication networks, etc.
NaN wall barrier wall Unknown
NaN warehouse building warehouse Commerce, finance and business
NaN yert building ger Community services
NaN NaN NaN none Unknown

Table A2. Assigning use categories of the SACHI dataset to the LUCAS classification.

SACHI.Use_main SACHI.Use LUCAS

Fishing Fishing Fishing
Fishing Fishing, tourism Fishing
Mining Mining Mining and quarrying
Mining Quartz mining Mining and quarrying
Mining Gold mining Mining and quarrying
Other NaN NaN
Gas/oil Gas, oil, tourism Energy production
Gas/oil Gas, oil Energy production
Military Military Community services
NaN Historical Community services
NaN Tourism Recreational, leisure and sport
NaN NaN NaN
NaN Unknown NaN
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Table A3. Improvement of the spatial coverage and usage type categorization. Area (km2) per LUCAS category for (i) the original SACHI
dataset (only coastal areas), (ii) OSM before and (iii) after the internal overlay (complete extent of Alaska) and (iv) after combining both
datasets within our SIRIUS inventory of critical infrastructure and human-impacted areas. For a visualization, see Fig. 6.

SACHI (original) OSM before OSM after SIRIUS
internal overlay internal overlay

Spatial extent Coastal areas of
Alaska

Entire state of Alaska, including the Alaskan Peninsula, the
Aleutian Islands and the Inside Passage

Total area (km2) 62 641 631 641 631 640 593

Area per category (km2)

Agriculture NaN 328.33 328.35 328.34
Commerce, finance and business NaN 28.90 31.32 31.29
Community services 0.36 9662.34 9665.45 9657.55
Construction NaN 0.01 0.01 0.01
Energy production 28.21 NaN NaN 16.72
Fishing 19.05 NaN NaN 10.42
Forestry NaN 10 207.61 10 207.88 10 207.73
Industry and manufacturing NaN 175.00 177.53 177.52
Mining and quarrying 10.35 224.77 224.81 227.18
Recreational, leisure and sport 1.19 620 546.48 620 547.67 619 495.11
Residential NaN 271.87 283.13 283.04
Transport, communication networks,
storage and protective works

NaN 149.27 149.98 141.91

Unused NaN 0.00 0.00 0.00
Water and waste treatment NaN 2.08 2.11 2.11
Unknown 2.78 34.15 12.58 14.00

Linear infrastructure clipped to the
SACHI extent

86.42 81.07 And after fusion: 826.21
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Table A5. Abbreviations indicating the toxic substances and contaminant-related containment structures. Source: Alaska DEC glossary
(State of Alaska Department of Environmental Conservation, 2023b).

Abbreviation Meaning

AST Aboveground storage tank
Petroleum

BTEX Benzene, toluene, ethylbenzene and xylene
Benzene
Toluene
Ethylbenzene
Xylene

DNAPL Dense nonaqueous-phase liquid
DROs Diesel range organics

Diesel
Fuel
Kerosine
Dioxin

EDB Ethylene dibromide
GROs Gasoline range organics

Gasoline
HAZMAT Hazardous material
LNAPL Light nonaqueous-phase liquid
LUST Leaking underground storage tank
NAPL Nonaqueous-phase liquid
PAHs Polycyclic aromatic hydrocarbons
PCB Polychlorinated biphenyl
PCE Perchloroethylene
PCE Tetrachloroethylene
PERC Tetrachloroethylene
POL Petroleum, oil and lubricant
RROs Residual range organics
TCE Trichloroethylene
TPH Total petroleum hydrocarbon
UXO Unexploded ordnance
VOC Volatile organic compound

Appendix B: Application code snippets

import geopandas as gpd

## load GPKG file
geopackage_path = "/path/to/geopackage/PermaRisk_RRNetworkPolygonal_v01_r00.gpkg"

## load layers
polygon_layer = gpd.read_file(geopackage_path,

layer = 'SACHI_OSM_InfrastructureHIElements')
line_area_layer = gpd.read_file(geopackage_path,

layer = 'SACHI_OSM_InfrastructureHIElements_RRNetwork')
points_layer = gpd.read_file(geopackage_path,

layer = 'DEC_ContaminatedSitesAK')

## join IS-HI polygon and line layer
polygon_layer = polygon_layer.append(line_area_layer)

## create query
subset = gpd.sjoin(polygon_layer, points_layer, how='inner', predicate='intersects')
dfcount = subset.groupby('LUCAS')['geometry'].count().rename('pointcount').reset_index()
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