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Abstract. China has undergone rapid urbanization and internal migration in the past few years, and its up-
to-date gridded population datasets are essential for various applications. Existing datasets for China, however,
suffer from either outdatedness or failure to incorporate data from the latest Seventh National Population Census
of China, conducted in 2020. In this study, we develop a novel population downscaling approach that leverages
stacking ensemble learning and big geospatial data to produce up-to-date population grids at a 100 m resolution
for China using seventh census data at both county and town levels. The proposed approach employs stacking
ensemble learning to integrate the strengths of random forest, XGBoost, and LightGBM through fusing their
predictions in a training mechanism, and it delineates the inhabited areas from big geospatial data to enhance
the gridded population estimation. Experimental results demonstrate that the proposed approach exhibits the
best-fit performance compared to individual base models. Meanwhile, the out-of-sample town-level test set in-
dicates that the estimated gridded population dataset (R2

= 0.8936) is more accurate than existing WorldPop
(R2
= 0.7427) and LandScan (R2

= 0.7165) products for China in 2020. Furthermore, with the inhabited area
enhancement, the spatial distribution of population grids is intuitively more reasonable than the two existing
products. Hence, the proposed population downscaling approach provides a valuable option for producing grid-
ded population datasets. The estimated 100 m gridded population dataset of China holds great significance for
future applications, and it is publicly available at https://doi.org/10.6084/m9.figshare.24916140.v1 (Chen et al.,
2024b).

1 Introduction

Human population distribution is a critical factor in measur-
ing, mapping, and understanding human–nature interactions
(Leyk et al., 2019; Wardrop et al., 2018). It serves as a fun-
damental variable in a wide range of applications (Baynes
et al., 2022; Yi et al., 2019), including exposure to disasters
and pollutants (Zhang et al., 2022; Fang et al., 2014; Nadim
et al., 2006; MacManus et al., 2021), access to resources and
facilities (Song et al., 2018; Chen et al., 2023; Tatem and
J., 2014; Linard et al., 2010), and impact on the environment
(Feng et al., 2021; Zhou et al., 2021; Wang et al., 2020; Samir
and Lutz, 2017). The general manner of collecting population
distribution data is through demographical data linked to spa-

tial boundary datasets (e.g., administrative units) (Chen et al.,
2019; Leyk et al., 2019). Census data are the primary source
of demographic information; however, this form of popula-
tion data provides only a single value for each irregular cen-
sus unit and cannot specify detailed distribution at grid scales
within each census unit (Wardrop et al., 2018; Qiu et al.,
2022). Converting irregular census data into regular popula-
tion grids (termed as population spatialization or population
downscaling) has proven itself to be an effective technique
to overcome the limitations of census data. The benefits of
gridded population data have been widely acknowledged in
integration with other gridded spatial variables, such as re-
mote sensing products (Leyk et al., 2019; Chen et al., 2019).
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In recent years, there has been increasing demand for grid-
ded population data for a variety of applications (Kubíček et
al., 2018; Stevens et al., 2019; Chen et al., 2024a). Timely
and reliable gridded population data are highly desired to
meet this demand, especially in countries experiencing rapid
urbanization and internal migration like China. In China, in-
formed decision-making and sustainable urban development
greatly depend on timely and accurate gridded population
distribution data (Chen et al., 2020a; Cheng et al., 2020; Guo
et al., 2023b; Tu et al., 2022). The Seventh National Popula-
tion Census of China, conducted in 2020, presents a valuable
opportunity to produce the required up-to-date and reliable
gridded population data.

In recent years, several continuous and significant ef-
forts have been made to generate gridded population data
for China. Ye et al. (2019) used a random forest algorithm
to downscale the Sixth National Population Census data of
China in 2010 to gridded population data at a 1 km res-
olution. Zhao et al. (2020) converted China’s county-level
population data in 2015 into 1 km gridded population data.
Cheng et al. (2020) combined the random forest algorithm
and area-to-point kriging to disaggregate the town-level pop-
ulation sample survey data of China in 2015 to 1 km monthly
population grids. M. Chen et al. (2022) employed geograph-
ically weighted regression to generate 0.01° population grids
from the county-level population of China in 2018. Tu et
al. (2022) utilized human digital footprints to produce grid-
ded population dynamics at a 0.01° resolution in 2018. Chen
et al. (2020a) leveraged existing gridded population data to
simulate future gridded population distribution every 5 years
from 2015 to 2050. Chen et al. (2020b) projected provin-
cial population data from 2010 to 2100 under shared so-
cioeconomic pathways and spatially allocated the projected
population into grids at a 30 arcsec resolution. Apart from
estimating population grids at the national scale in China,
recent similar efforts have been made for individual cities
(Chen et al., 2019; Guo et al., 2023a; Yang et al., 2023;
Liu et al., 2023; Wu et al., 2020; Zhao et al., 2021a, b) and
provinces (Gao et al., 2021; Yi et al., 2019). Additionally,
several global gridded population datasets are available for
China, including LandScan and WorldPop (Bright and Cole-
man, 2000; Tatem, 2017). The LandScan program, initiated
at the Oak Ridge National Laboratory, provides global yearly
population grids at a 30 arcsec resolution (Bright and Cole-
man, 2000). WorldPop, a research project launched in the
United Kingdom, also offers global yearly population grids
up to year 2020 with a higher resolution of 100 m (Tatem,
2017; Stevens et al., 2015). Although these efforts can pro-
vide abundant gridded population datasets for China, they
are either outdated (several datasets before 2020) or lack the
ability to utilize the actual county-level and finer town-level
Seventh National Population Census data of China in 2020.

In the past few years, these studies have developed var-
ious methods to downscale population census data to pop-
ulation grids. However, they usually employ a single ma-

chine learning method to model the complex relationship
between population and its auxiliary variables (i.e., covari-
ates) when producing gridded population datasets (Stevens
et al., 2015; Ye et al., 2019; Zhao et al., 2020; Bright and
Coleman, 2000). Individual machine learning methods of-
ten have their inherent disadvantages (e.g., overfitting and
instability), which can be addressed by the recently popular
method of ensemble learning to simultaneously take advan-
tages of multiple homogeneous and heterogeneous individual
methods (Yao et al., 2022; Tu et al., 2022; Costache and Bui,
2019; Fang et al., 2021). Ensemble learning is a technique
in machine learning that focuses on combining multiple al-
gorithms to improve the overall performance and robustness
of predictions (Dong et al., 2020). Stacking ensemble learn-
ing is considered to be one of the most effective ensemble
learning techniques due to its utilization of a training mech-
anism to merge the predictions of individual machine learn-
ing algorithms (Costache and Bui, 2019). Ensemble learning
has been widely recognized for its merits in various applica-
tions (Dong et al., 2020; Wu et al., 2021; Xu et al., 2023).
For instance, Yao et al. (2022) demonstrated that stacking
ensemble learning outperformed typical individual machine
learning algorithms in evaluating flash flood susceptibility.
Despite its success in other domains, the potential of stack-
ing ensemble learning in population disaggregation remains
relatively unexplored.

To address these research and data gaps in the current liter-
ature, we develop a novel population downscaling approach
that leverages stacking ensemble learning and big geospatial
data to generate a 100 m gridded population dataset for China
from the seventh census data in 2020. The county-level and
town-level census data of China in 2020 and 10 related co-
variates at the 100 m resolution were first collected as the
input datasets. Subsequently, three popular machine learning
algorithms (i.e., random forest, XGBoost, and LightGBM)
were chosen as base models to create and train the stacking
ensemble learning to generate a gridded population dataset
for China. Finally, we assessed the generated gridded popu-
lation dataset using the town-level census data and compared
it with the LandScan and WorldPop datasets.

2 Data

Three types of datasets are utilized in this study. The first
type consists of the county-level and town-level population
data obtained from the Seventh National Population Census
of China, which are considered to be the dependent variable.
The second type comprises the 100 m gridded auxiliary data,
which are regarded as the independent variables (i.e., covari-
ates). Finally, the third type is the inhabited area data, which
represents the areas of human activity (Baynes et al., 2022;
Tu et al., 2022).
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2.1 County-level and town-level census data

The seventh census data were collected at both county and
town levels to generate population grids. The population
count for 2848 counties across entire mainland China in
2020 was obtained from the seventh census data, as shown in
Fig. 1a. As the town-level census data were released for parts
of towns, the population count of 15 564 towns within 1135
counties was also collected. The county-level and town-level
population datasets were split into two subsets: a training set
and a test set. Due to the limited number of county-level sam-
ples, all were used for training. Taking the county as the basic
sampling unit, we randomly selected 85 % of town-level cen-
sus data in Fig. 1b, and they were combined with all county-
level census data as the training set. That is to say, all counties
in Fig. 1a and the towns in Fig. 1b were combined to train the
base models and the stacking ensemble learning model for
estimating population grids. The remaining 15 % of town-
level census data formed the test set, as depicted in Fig. 1c.
The test samples were randomly distributed across China, in-
dicating their feasibility for evaluating the fitted models. In
this study, Hong Kong SAR, Macao SAR, and Taiwan were
excluded due to the different ways the census is conducted.

2.2 Gridded auxiliary data of the population

Gridded auxiliary datasets play a pivotal role in estimating
accurate gridded population distributions. In accordance with
previous studies (Chen et al., 2016, 2021; Cheng et al., 2020;
Tu et al., 2022; Tatem, 2017; Ye et al., 2019; Zhao et al.,
2020), we collected eight categories of 100 m gridded big
geospatial data that are associated with population distribu-
tion in Fig. 2.

The Tencent density user positioning data, sourced from
China’s largest social media company, Tencent, has been
convincingly validated as a reliable proxy for human dis-
tribution (Chen et al., 2019; Tu et al., 2022; M. Chen et
al., 2022; Cheng et al., 2020). Real-time density images
of Tencent user positions, captured at a resolution of 0.01°
(https://heat.qq.com/, last access: 30 June 2019), were col-
lected every 5 min between 1 January and 30 June 2019.
These images were subsequently averaged to yield an aggre-
gated Tencent user density image. A projection transforma-
tion was conducted, and the bilinear resampling process was
further implemented to convert it into a 100 m Tencent user
density image, as illustrated in Fig. 2a.

Points of interest (POIs) often represent important places
of human activities and they are valuable for characteriz-
ing population distribution. We gathered an extensive dataset
of over 60 million POIs from AutoNavi maps (https://amap.
com/, last access: 30 November 2020), one of China’s promi-
nent online map platforms. Only POIs associated with human
activities were used. These POIs were classified into 10 main
categories: restaurant, shopping, life service, working, edu-
cation, medical facility, residence, transportation, recreation,

and other. The Point Density tool in ArcMap summarized the
number of POIs within each 100 m grid and this information
was used as the POI density in Fig. 2b.

Human travel and activities are heavily reliant on road
networks, and a higher density of roads often corresponds
to increased human activity. The length of roads within
each 100 m grid was computed by the Line Density tool in
ArcMap using the road data acquired from the online map
of AutoNavi maps, and it was considered the road density in
Fig. 2c. Note that the roads used in this study mainly included
city roads as well as provincial-, county-, and township-level
roads, while excluding railways and expressways.

The nighttime light (NTL) data are proficient in effec-
tively characterizing nocturnal human activities, and they
have been demonstrated to be a significant indictor of human
distribution (Elvidge et al., 2021). The annually composited
Visible Infrared Imaging Radiometer Suite (VIIRS) NTL im-
age in 2020 was acquired from the following website: https://
eogdata.mines.edu/nighttime_light/annual/v20/ (last access:
30 June 2022). The original VIIRS NTL image, initially at
a resolution of 500 m, was resampled by the bilinear algo-
rithm to a 100 m NTL image as one covariate, as depicted in
Fig. 2d.

Taller buildings tend to accommodate more population,
and there exists a strong correlation between building height
and population distribution. First, the building height at a
10 m resolution of China in 2020 was collected (Wu et al.,
2023). It was then aggregated to the 100 m resolution build-
ing height covariate in Fig. 2e.

The built area is the geographical space covered by
both residential and non-residential buildings, serv-
ing as a primary location for human activities. It is
also related to population distribution. The 10 m land
cover data of China in 2020 released by Esri Inc.
(https://www.arcgis.com/apps/instant/media/index.html?
appid=fc92d38533d440078f17678ebc20e8e2, last access:
30 June 2022) were first achieved, and then the class of built
area was extracted to calculate the percentage of built area
within each 100 m grid in Fig. 2f.

Digital elevation model (DEM) data are widely used
in population downscaling, such as the WorldPop dataset
(Tatem, 2017; Stevens et al., 2015) and the gridded popula-
tion estimations in China (Cheng et al., 2020; Ye et al., 2019;
Tu et al., 2022). In this context, the 30 m DEM data known
as ALOS World 3D-30m (AW3D30) were procured from
the official website at https://www.eorc.jaxa.jp/ALOS/en/
dataset/aw3d30/aw3d30_e.htm (last access: 30 June 2022).
For analytical purposes, this dataset was resampled to 100 m
DEM by the nearest-neighbor algorithm in Fig. 2g, and its
100 m slope was further calculated in Fig. 2h.

Two location-related items of data, longitude and latitude,
were calculated for each 100 m grid to account for the geo-
graphical properties of the dependent variable and its covari-
ates.
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Figure 1. The seventh census data of China. (a) The county-level census data, (b) the town-level census data for training, and (c) the
town-level census data for testing.

Figure 2. The 100 m gridded covariates of China. (a) Tencent user density, (b) POI density, (c) road density, (d) NTL image, (e) building
height, (f) percentage of built area, (g) DEM, and (h) slope.

From the eight categories of auxiliary data, 10 ultimate
gridded covariates at a 100 m resolution were extracted. They
were employed in downscaling the seventh census data of
mainland China to population grids, as illustrated in Table 1.

2.3 Inhabited area data

Recent studies on population downscaling have highlighted
the effectiveness of excluding uninhabited areas to enhance
the accuracy of gridded population estimates (Baynes et al.,
2022; Tu et al., 2022). Usually, inhabited areas are identi-
fied as regions with human activities. Therefore, we gener-
ated inhabited areas using the gathered gridded big geospa-
tial data in Fig. 2. According to the inhabited area definition
(Baynes et al., 2022; Tu et al., 2022), these areas should con-
tain at least one non-zero human-activity-related covariate.

To achieve this, we employed the six covariates depicted in
Fig. 2a–f to extract the inhabited areas of China, as illustrated
in Fig. 3. During the census data downscaling process, only
grids that fell within these inhabited areas were used to allo-
cate the population counts.

3 Methodology

We devised a population downscaling approach by stacking
ensemble learning (PopSE) to produce population grids. The
framework illustrated in Fig. 4 outlines the use of the pro-
posed PopSE model for generating population grids in China.
The framework contains seven main steps as follows:

1. Collecting population data and covariates. The county-
level and town-level population data were obtained
from the Seventh National Population Census of China.
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Table 1. Covariates for the population downscaling of China.

Covariate Description and source Time

Tencent user density image Tencent user positioning data 2019

POI density image Number of POIs within each grid from the online map of
AutoNavi maps

2020

Road density image Road length within each grid from the online map of AutoNavi
maps

2020

NTL image VIIRS NTL data 2020

Building height image Building height data 2020

Percentage of built area The proportion of built area within each grid from Esri 10 m
global land cover data

2020

DEM ALOS World 3D-30m (AW3D30) data –
Slope

Longitude image Centroid of grids –
Latitude image

Figure 3. The 100 m inhabited areas of China.

These data were spatially linked to their respective ad-
ministrative boundaries, as depicted in Fig. 1. As seen in
Fig. 2, gridded covariates were collected and processed
at the 100 m resolution. To facilitate analysis, both pop-
ulation data and covariates underwent a transformation
to the Albers equal-area conic coordinate system.

2. Extracting the inhabited area. Six 100 m covariates (i.e.,
Tencent user density, POI density, road density, NTL
image, building height, and percentage of built area)
were used to generate the gridded inhabited area. Ac-
cording to the definition of an inhabited area, this was
calculated using the logic operations of the Map Alge-

bra tool in ArcMap. If a grid contains at least one non-
zero value in each of the six covariates, the grid is la-
beled as an inhabited area.

3. Calculating county-level and town-level population
density and covariates. Compared to population count,
population density is more suitable for comparing re-
gions of different sizes and is frequently used as the de-
pendent variable in population estimations (Stevens et
al., 2015; Cheng et al., 2020; Ye et al., 2019). There-
fore, the county-level and town-level population density
values were calculated through dividing the population
count of each census unit by the size of the inhabited
area of its corresponding unit. The logarithm of county-
level and town-level population density was used as a
dependent variable during the training of the proposed
PopSE. Here, 10 county-level and town-level covariates
were aggregated separately from the 100 m gridded co-
variates. This aggregation for covariates ensured spatial
alignment with the county-level and town-level popula-
tion density. The aggregated covariates were utilized as
independent variables in the modeling process.

4. Building and training PopSE. PopSE was built based
on stacking ensemble learning to combine individual
algorithms to achieve a better result than any individ-
ual algorithm. Population density and covariates at both
county-level and town-level served as inputs for training
the proposed PopSE.

5. Predicting gridded population density using the trained
PopSE. Utilizing 100 m gridded covariates as inputs, the
trained PopSE model was applied to predict the 100 m
gridded population density for China.
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6. Converting gridded population density to gridded pop-
ulation data. To maintain the coherency between the
population count of each census unit and the aggregated
sum of population grids within the unit from the grid-
ded population density, an adjustment was made to the
gridded population density to generate the gridded pop-
ulation count.

7. Assessing and comparing gridded population data. The
accuracy of the estimated 100 m population grids was
evaluated using town-level population test data. This as-
sessment aimed to compare the town-level census data
with the corresponding town-level population count ag-
gregated from the estimated population grids. Addition-
ally, the WorldPop data and the LandScan data in 2020
were further gathered to compare with the estimated
population grids of China in 2020.

3.1 Building PopSE

PopSE aims to leverage stacking ensemble learning to capi-
talize on the strengths of multiple individual machine learn-
ing algorithms to accurately characterize the complex rela-
tionship between population distribution and its covariates.
PopSE follows the principles of typical stacking ensemble
learning and needs multiple base models and a metamodel, as
shown in Fig. 5. Three widely used algorithms – random for-
est, XGBoost, and LightGBM – were adopted as base models
to construct PopSE. The random forest algorithm is a popu-
lar machine learning technique that trains different decision
trees on various subsets of the training data to enhance accu-
racy and reduce variance, and it is widely used in population
downscaling (Cheng et al., 2020; Stevens et al., 2015; Zhao
et al., 2020). XGBoost is a powerful machine learning algo-
rithm that operates on an ensemble of decision trees using a
gradient boosting framework, and it is widely applied in var-
ious domains, including population and gross domestic prod-
uct downscaling (Xu et al., 2023; Wu et al., 2020; Tu et al.,
2022; Chen and Guestrin, 2016). LightGBM is a highly effi-
cient gradient boosting decision tree algorithm that achieves
a higher training speed and better accuracy through efficient
histogram-based techniques, and it is also applied in diverse
domains (Ke et al., 2017; Qiu et al., 2022; Xu et al., 2023;
Y. Chen et al., 2022). PopSE inherits the common metamodel
of linear regression in a standard stacking ensemble learning
model to amalgamate the predictions of the three base mod-
els.

3.2 Training and testing

With the population density and covariates as inputs, the base
models and metamodel of the constructed PopSE can be fit-
ted. The metamodel (i.e., linear regression) underwent train-
ing using cross-validation (CV) on the out-of-fold predic-
tions from the base models. Before the PopSE training, we

tuned the hyperparameters for random forest, XGBoost, and
LightGBM using the grid search approach to achieve their
optimum hyperparameters. During PopSE training, a five-
fold CV was used to divide the training set into two parts,
as illustrated in Fig. 5. Four folds were utilized to fit each
base model and the remaining fold was generated predictions
from the fitted base models in Fig. 5. This process iterated
through the five folds. Finally, the metamodel was fitted us-
ing predictions from all base models. After the training, the
test set was employed to evaluate the fitted PopSE. As shown
in Fig. 5, each base model was trained using four-fold train-
ing data and the fitted base model generated the prediction of
the out-of-fold data. After five iterations, the five predictions
from each base model were combined to form new features
for the metamodel. The new feature set from the three base
models was then used to fit the metamodel, completing the
stacking ensemble learning process.

3.3 Generating population grids

With the fitted PopSE and the gridded covariates, the 100 m
gridded population density for China can be estimated by

Dj = ef (xj ), (1)

where Dj is the estimated population density for grid j , f is
the fitted PopSE model, and xj is the vector of covariates for
grid j .

To align the gridded population density with the popula-
tion census count within each census unit, we adjusted the
gridded population density by multiplying the ratio of the
population census count to the sum of estimated population
grids within a census unit as follows:

Pj =Dj

Ci∑
j∈iDj

, (2)

where Pj is the estimated population count for grid j within
census unit i and Ci is the population count for census unit i.

3.4 Accuracy assessment

Due to the lack of population ground truth at a grid scale,
the available town-level census data are the finest-scale pop-
ulation data for accuracy assessment. Thus, the town-level
population test set was adopted to evaluate the performance
of the proposed PopSE and the existing gridded population
products. The town-level population census counts in the test
set were compared with the corresponding town-level pop-
ulation counts aggregated from gridded population data to
compute performance metrics. Three metrics, the mean abso-
lute error (MAE), the root mean square error (RMSE) and the
coefficient of determination (R2), were calculated for com-
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Figure 4. Framework of generating population grids for China.

Figure 5. Procedure of PopSE.
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Table 2. Model performance metrics on population test set.

Model R2 RMSE MAE

Random forest 0.826 0.479 0.317
XGBoost 0.821 0.486 0.314
LightGBM 0.825 0.481 0.311
PopSE 0.832 0.471 0.304

parison. Their formulas are expressed as follows:

MAE=
1
N

∑N

k=1

∣∣∣Pk − P̂k

∣∣∣ , (3)

RMSE=

√
1
N

∑N

k=1
(Pk − P̂k)2, (4)

R2
= 1−

∑N
k=1(Pk − P̂k)2∑N
k=1(Pk −P )2

, (5)

where Pk is the population census count for town k, P̂k is the
estimated population count for town k, P is the mean of the
estimated population count for all towns, and N is the size of
the town-level population test set.

4 Results

4.1 Model evaluation

Both base and PopSE models were initially fitted to the
training set using hyperparameters. Subsequently, predic-
tions were generated using the test set. Table 2 presents the
performance metrics for each model on the test set. Notably,
the proposed PopSE exhibited superior performance over the
three base models, as indicated by the highest R2 (0.832)
and the lowest RMSE (0.471) and MAE (0.304). In contrast,
the random forest algorithm achieved the highest R2 (0.826)
and lowest RMSE (0.479) among the base models, while it
recorded the highest MAE (0.317). XGBoost achieved the
worst performance among the base models, with the lowest
R2 (0.821) and the highest RMSE (0.486). For LightGBM,
its performance metrics fell between those of random for-
est and XGBoost. According to these metrics, the proposed
PopSE performed the best on the test set, suggesting its po-
tential to theoretically generate the most accurate gridded
population dataset compared to the three base models.

4.2 Gridded population map of China

The fitted PopSE utilized 100 m covariates to generate grid-
ded population density, and it was adjusted to the gridded
population count using data from China’s seventh census at
both county level and town level. Figure 6 presents the grid-
ded population map, derived from the proposed PopSE, at a
spatial resolution of 100 m. Notably, numerous grids in the
map exhibit zero population in uninhabited areas, mirroring

the pattern observed in Fig. 4. Areas with a relatively high
number of population grids are concentrated in southeastern
China, including the North China Plain, the Sichuan Basin,
the middle and lower reaches of the Yangtze River, and the
Pearl River Basin. This distribution aligns with the spatial
patterns observed in Fig. 1. The gridded population map
also reveals a hierarchical clustered distribution. The primary
population hotspots in the first hierarchy distribute around
urban agglomerations like the Beijing–Tianjin–Hebei region,
the Pearl River Delta, and the Yangtze River Delta. In the sec-
ond hierarchy, hotspots are predominantly found in provin-
cial cities such as Chengdu, Chongqing, Xi’an, Zhengzhou,
and Wuhan. The third hierarchy includes population hotspots
in other city centers. Four representative regions in focus,
namely Chengdu, Guangzhou, Beijing, and Nanjing, were
selected for a detailed analysis of the spatial distribution of
population grids. The examination of these four regions in
focus revealed that city centers contain a higher number of
population grids compared to suburbs. In both city centers
and suburbs of the four regions in focus, uninhabited areas
such as water surfaces and mountains are shown to contain
zero population. This spatial distribution of population grids
intuitively aligns with the fundamental understanding of pop-
ulation patterns in China, suggesting the effectiveness of the
proposed PopSE in visual form.

4.3 Accuracy assessment

The test set was partially comprised of town-level census
data (15 %, i.e., 1931 towns). During accuracy assessment,
it was deemed necessary to exclude this set when adjusting
estimated population density grids to population count grids.
Consequently, for accuracy assessment, the 100 m population
count grids were adjusted solely using county-level census
data from estimated population density grids. The metrics for
the accuracy assessment of estimated population count grids
by PopSE are presented in Fig. 7. It can be seen from Fig. 7
that the R2 reached a high value (0.8936), indicating that the
100 m estimated population grids achieved a high accuracy at
the town-level scale. The RMSE (22 798) and MAE (10 173)
also imply a relatively low error in the estimated population
grids. The coefficient (0.9904) of the fitted regression line in
Fig. 7 closely approximates to 1, signifying a strong fit be-
tween the census population counts and the estimated popu-
lation counts. This robustly demonstrates the effectiveness of
the proposed PopSE.

5 Discussion

5.1 Comparison with two existing gridded population
products

In this study, we selected two existing widely used grid-
ded population products to compare with the estimated grid-
ded population dataset by the proposed PopSE. The 3 arcsec
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Figure 6. The 100 m gridded population map of China in 2020 by PopSE.

Figure 7. Accuracy of the 100 m gridded population map of China
by PopSE.

(∼ 100 m) WorldPop dataset (i.e., “Constrained individual
countries 2020 UN adjusted”) and the 30 arcsec (∼ 1 km)
LandScan dataset in 2020 were extracted and processed for
the geographical region of China. The WorldPop dataset has
the same spatial resolution as the estimated population grids,
while the LandScan dataset is different from them. To en-
sure a consistent basis for comparison, the LandScan dataset
was directly resampled to the spatial resolution of 3 arcsec
(∼ 100 m) with the nearest-neighbor algorithm. It is evident
from Fig. 8 that areas with a higher number of population
grids are predominantly located in southeastern China, con-
sistent with the patterns observed in Fig. 6. The WorldPop
product exhibits slightly more zero-population grids com-
pared to the LandScan product, yet it closely aligns with es-
timated population dataset in Fig. 6. The examination of the
four regions in focus in particular reveals such a detailed pop-
ulation distribution pattern. It means that the LandScan prod-

uct allocated more population to uninhabited areas, such as
water surfaces and mountains. Focusing on the four regions,
it can be further seen that WorldPop shows fewer population
grids exceeding 300 than LandScan. However, both products
exhibit a lower number of high-value population grids, espe-
cially those exceeding 300, compared to the estimated pop-
ulation dataset in Fig. 6. This suggests a potential underesti-
mation of grid population counts in the two existing products.
In addition, the four regions in focus show that LandScan
is obviously coarser than both WorldPop and the estimated
population datasets. The primary reason for this discrepancy
is that the spatial resolution of the LandScan product is 1/10
of other two gridded population products.

The town-level census test set was also adopted to evaluate
the accuracy of the two existing gridded population products.
Figure 9 depicts the evaluated metrics for the two products.
It can be seen from Fig. 9 that the R2 values for WorldPop
and LandScan are 0.7427 and 0.7165, respectively, indicat-
ing a decrease of 0.1509 and 0.1771 compared to the esti-
mated population product by PopSE in Fig. 7. The RMSE
values of WorldPop and LandScan are separately 34 315 and
36 508, while the MAE values of WorldPop and LandScan
are 18 366 and 17 756, respectively. The RMSE and MAE
for WorldPop and LandScan are notably higher than those
in Fig. 7. Specifically, the RMSE values for WorldPop and
LandScan are, respectively, 1.5 and 1.6 times of that for the
estimated product, and the MAE values are, respectively, 0.8
and 0.7 times higher. The coefficients of the fitted regression
line in Fig. 9 are 0.8155 and 0.6136 for WorldPop and Land-
Scan, respectively. These values are noticeably lower than 1
and also lower than the coefficient in Fig. 7. This quantita-
tively demonstrates an underestimation of gridded popula-
tion counts for both WorldPop and LandScan.
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Figure 8. Two existing gridded population maps of China in 2020. (a) WorldPop and (b) LandScan.

Figure 9. Accuracy of two existing gridded population maps of China in 2020. (a) WorldPop and (b) LandScan.

5.2 Feature importance analysis in machine learning
algorithms

To investigate the influence of 10 covariates on the fitted
PopSE, the feature importance (i.e., weight) of covariates
was obtained using the ELI5 Python package. It allows us
to show the feature importance of various machine learning

algorithms, including random forest, XGBoost, LightGBM,
and stacking ensemble learning. Figure 10 illustrates the fea-
ture importance of each covariate for the fitted PopSE and
its three base models. Notably, POI density emerges as the
most impactful in fitting PopSE and the three base models,
with a significantly higher feature importance compared to
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Figure 10. Feature importance of the proposed PopSE and its three
base models.

the other nine covariates. Following closely are the four co-
variates of latitude, percentage of built area, NTL, and build-
ing height and they have a similar importance level, with rel-
atively equal feature importance. Subsequently, the covari-
ates Tencent user density, slope, DEM, and longitude exhibit
comparable levels of feature importance in PopSE and the
three base models. Road density has the lowest contribution
to build PopSE with the lowest feature importance. Apart
from building height, the feature importance of PopSE and
its base models is comparable for each covariate in Fig. 10.

5.3 Hyperparameter tuning

The three base models of PopSE incorporate multiple hyper-
parameters which have substantial influence on the learning
outcomes. Consequently, fine-tuning these hyperparameters
is often imperative for achieving optimal performance. Our
hyperparameter tuning employed the grid search technique
by exploring a defined parameter search space. Specifically,
we tuned the number of trees and the maximum depth of a
tree for each base model. The search interval was set to 1 for
both the number of trees and the maximum depth of a tree.
The initial search space for each base model was determined
through a combination of trial and error along with empirical
findings, as illustrated in Table 3. The optimal hyperparame-
ter values were derived through cross validation utilizing the
grid search technique, as shown in Table 3. Hyperparame-
ters not listed in Table 3 retained default values from their
respective Python packages.

5.4 Advantages and limitations

This study offers three main advantages compared to previ-
ous studies. First, we employed stacking ensemble learning
to leverage the strengths of three popular machine learning
algorithms (i.e., random forest, XGBoost, and LightGBM)
and to possibly improve the overall performance and robust-

ness of the gridded population estimation. Previous studies
on estimating population grids often relied on a single ma-
chine learning algorithm, and random forest was the most
common choice (Cheng et al., 2020; Stevens et al., 2015; Ye
et al., 2019). The results in Table 2 show that PopSE had bet-
ter performance than the three base models, including ran-
dom forest. Second, we utilized a variety of big geospatial
datasets to predict accurate population grids and delineate
the inhabited area to enhance population estimation. Previous
studies often lacked either abundant covariates or detailed in-
habited area data for national-scale population grid estima-
tion (Cheng et al., 2020; Stevens et al., 2015; Ye et al., 2019;
Chen et al., 2016, 2020b). Third, the proposed PopSE and
big geospatial data were used to generate a 100 m gridded
population dataset from China’s seventh census. This dataset
outperformed two widely used gridded population datasets
(i.e., LandScan and WorldPop).

Although the proposed PopSE outperformed three base
models using the test set and generated more accurate grid-
ded population dataset for China than two existing prod-
ucts, this study still has its inherent limitations. The pro-
posed PopSE shares similarities with many previous popu-
lation downscaling methods, and they assumed the scale in-
variance between the training set and the gridded covariates
during training and prediction phases (Baynes et al., 2022;
M. Chen et al., 2022; Chen et al., 2020a; Cheng et al., 2020;
Gao et al., 2021; Leyk et al., 2019; Qiu et al., 2022; Stevens
et al., 2015; Wardrop et al., 2018; Ye et al., 2019; Zhao et
al., 2020). There is often a shortage of gridded ground-truth
population data. Alternatively, census data collected in irreg-
ular administrative units were used as the ground truth for
training population downscaling methods. Population down-
scaling methods, including the proposed PopSE fitted on cen-
sus data, were typically executed on regular covariate grids
to generate gridded population products. However, irregular
census data have a spatial-scale difference compared to the
target regular population grids. This disparity may introduce
uncertainty in the generation of population grids. At the same
time, we employed only three widely used machine learning
algorithms as base models, limiting the learning ability of the
proposed PopSE.

Future work could benefit from incorporating more so-
phisticated and powerful algorithms into PopSE. Meanwhile,
the use of high-quality covariates is crucial for generating ac-
curate gridded population datasets. With the increasing avail-
ability of higher-resolution data, integrating more of these
high-quality covariates (e.g., mobile phone signaling data,
Weibo check-in data, and house renting data) can further en-
hance the accuracy of gridded population datasets. In addi-
tion, the proposed method can be applied to other regions
and time periods for generating gridded population datasets.
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Table 3. Search space for hyperparameters in base models of PopSE.

Hyperparameter Model Search space Optimal value

Random forest [90,120] 105
Number of trees XGBoost [100,130] 105

LightGBM [150,165] 163

Random forest [23,30] 25
Maximum depth of a tree XGBoost [5,15] 6

LightGBM [5,15] 6

6 Data availability

The dataset of the 100 m gridded population counts for China
in 2020 is stored in GeoTIFF format and is freely available
at https://doi.org/10.6084/m9.figshare.24916140.v1 (Chen et
al., 2024b).

7 Conclusions

In this study, we developed a novel population downscal-
ing approach by leveraging stacking ensemble learning and
big geospatial data. It aimed to employ stacking ensemble
learning to combine the advantages of individual base mod-
els of random forest, XGBoost, and LightGBM. By integrat-
ing the predictions of these base models, the overall perfor-
mance and robustness of gridded population estimation were
enhanced compared to individual algorithms. Meanwhile, a
variety of 100 m gridded big geospatial datasets were col-
lected to delineate inhabited areas to specify and estimate
population counts exclusively for China’s seventh population
census data. Experimental results have demonstrated that the
proposed population downscaling approach outperformed in-
dividual base models and generated a better gridded popu-
lation dataset for China in 2020 than two existing gridded
population products, WorldPop and LandScan, in both quan-
titative and visual aspects. Hence, the proposed population
downscaling approach will be a valuable option to generate
population grids in other regions, and the dataset described
here will be useful for a wide range of applications, such as
disaster and pollutant exposure assessment and resource and
facility allocation.
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