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Supplementary Figures 1 
 2 
Figures referred to in the main text. 3 
 4 

 5 
Figure S1: Influence of modes of climate variability on Burned Area (BA) in the period 2001-6 
2020. The figure maps the mode of climate variability with a dominant (and secondary, and 7 
tertiary) influence on interannual variability in BA. The coefficient of covariation (R2) value 8 
linking BA to each mode is also shown. The modes included are: Antarctic Oscillation (AAO); 9 
West Pacific (WP) pattern; Pacific–North American (PNA) pattern; El Niño–Southern 10 
Oscillation (ENSO); Indian Ocean Dipole (IOD); tropical South Atlantic (TSA) pattern; tropical 11 
North Atlantic (TNA) pattern; East Atlantic/Western Russia (EAWR) pattern; North Atlantic 12 
Oscillation (NAO); Polar-Eurasian (POL) pattern;and the Arctic Oscillation (AO). 13 
 14 
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 19 
Figure S2: (Top panel) first month, (middle panel) peak month, and (lower panel) final 20 
month of positive BA anomalies at Global Administrative Level 1 during March 2023-February 21 
2024. Peak anomalies are identified relative to the monthly climatology in 2002-2023. The first 22 
and final months of the BA anomaly incorporate the period when BA was continuously above 23 
the climatological mean. Graduated colours are separated seasonally. 24 
  25 
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 26 
 27 
Figure S3: Perimeter and daily progression of the largest fire ever recorded in the EU 28 
(Xanthopoulos et al., 2024; EU Science Hub, 2023), near Alexandroupolis in Macedonia and 29 
Thrace, Greece. Panel (a) shows a Sentinel-2 true colour composite image (10 m resolution) 30 
from 12th September 2023, the day after the fire ceased to grow. The darker colour of recently-31 
burned surfaces contrasts with green unburned forests in surrounding areas. Overlaying the 32 
image are lines marking the perimeter of the Alexandroupolis fire from the Global Fire Atlas. 33 
Panel (b) additionally shows the burn date according to the MODIS BA dataset MCD64A1 34 
(500 m resolution), and for comparison panel (c) shows the burn date from active fire 35 
detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor (375 m 36 
resolution; Schroeder et al., 2014).  37 
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 38 
 39 
Figure  S4: Perimeter and daily progression of extreme individual fires in (a-b) Valparaíso, 40 
Chile, and (c-d) Lahaina, Hawai’i. Panels (a) and (c) show Sentinel-2 true colour composite 41 
images (10 m resolution) from 8th March 2024 and 18th August 2023, on the first cloud-free 42 
day after each fire. Overlaying the image are lines marking the perimeter of the impactful fire 43 
events from the Global Fire Atlas. Panels (b) and (d) additionally show the burn date according 44 
to the MODIS BA dataset MCD64A1 (500 m resolution).  45 
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 46 
Figure  S5: Perimeter and daily progression of extreme individual fires (a-b) near La Grande 47 
Reservoir in Quebec, Canada, and (c-d) in the Great Sandy Desert and Anna Plains, 48 
Australia. Panels (a) and (c) show Sentinel-2 true colour composite images (10 m resolution) 49 
based on observations in the periods 25/04/2023-25/08/2023 and 02/09/2023 to 08/09/2023, 50 
respectively. Overlaying the image (a) are white lines marking the perimeter of the La Grande 51 
fire according to the Global Fire Atlas. Overlaying the image (c) are white areas marking the 52 
area burned by the La Grande fire according to the Global Fire Atlas, and black lines marking 53 
the wildfire perimeter from the Department of Fire and Emergency Services in Western 54 
Australia. Panels (b) and (d) additionally show the burn date according to the MODIS BA 55 
dataset MCD64A1 (500 m resolution). 56 
 57 
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 58 
Figure S6: Summary of the 2023-2024 fire season in Lao PDR. Time series of annual fire 59 
count, BA, C emissions, PM2.5 emissions, 95th percentile fire size, fastest daily rate of growth, 60 
and 95th percentile fire daily rate of growth. Black dots show annual values prior to the latest 61 
fire season, red dots the values during the latest fire season, and blue dashed lines the 62 
average values across all fire seasons.  63 
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 64 
Figure S7: Summary of the 2023-2024 fire season in the state of Western Australia. Time 65 
series of annual fire count, BA, C emissions, PM2.5 emissions, 95th percentile fire size, fastest 66 
daily rate of growth, and 95th percentile fire daily rate of growth. Black dots show annual values 67 
prior to the latest fire season, red dots the values during the latest fire season, and blue dashed 68 
lines the average values across all fire seasons.  69 
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 70 
Figure S8: Summary of the 2023-2024 fire season in Venezuela. Time series of annual fire 71 
count, BA, C emissions, PM2.5 emissions, 95th percentile fire size, fastest daily rate of growth, 72 
and 95th percentile fire daily rate of growth. Black dots show annual values prior to the latest 73 
fire season, red dots the values during the latest fire season, and blue dashed lines the 74 
average values across all fire seasons. 75 
  76 
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 77 
Figure  S9: Monthly BA fraction anomaly at 0.25° for Canada for 2023 compare 2002-2023 78 
climatological average. Boxes indicate focal months and regions in driver attribution 79 
(Section 3). 80 
 81 
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 82 
Figure S10: Same as Figure S9 for Greece 83 
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 84 
Figure  S11: Same as Figure S9 for Western Amazonia 85 
 86 
 87 
  88 
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 91 
Figure S12: shows the co-occurrence of anomalies for 2023 of our four controls in different 92 
regions. In each box of 16 bins, the bottom left corresponds to the negative influence of fuel 93 
and moisture on fire anomalies, the top is the positive influence of fuel moisture, and the right 94 
indicates a positive influence of fuel load. The bottom left box indicates the negative influence 95 
of fire weather and humans, while the right boxes indicate the positive influence of fire weather, 96 
and the top indicates the positive influence of humans. The shading of each bin for each region 97 
indicates how much of that region falls into that bin. The shades themselves represent the 98 
uncertainty range, with grey indicating the 10th percentile and black indicating the 90th 99 
percentile. 100 
 101 
 102 
 103 
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Figure  S13: Same as Figure 11 but for the Canadian Western Shield. 105 

 106 

 107 
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Figure S14: Same as Figure 11 but for Western Amazonia. 109 

 110 
 111 
 112 
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 113 
 114 
Figure  S15: Change in median BA anomaly due to socioeconomic factors (population and 115 
land-use change) from FireMIP. Present day BA (2003-2019) for counterfactual (detrended 116 
climate, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 117 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 118 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North West 119 
South America (NWS, RIGHT). Probability is shown on a log scale.  120 
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 121 
Figure  S16: Change in median BA anomaly due to all forcing (climate change and 122 
socioeconomic factors) from FireMIP. Present day BA (2003-2019) for factual (historical 123 
forcing, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 124 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 125 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North West 126 
South America (NWS, RIGHT). Probability is shown on a log scale. 127 
  128 
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 137 
Figure  S17: Same as Figure 18 but covering 2030-2040 138 
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 139 
Figure  S18: Same as Figure 18 but covering 2040-2050  140 
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 141 
Figure  S19: Same as Figure 19 but covering 2030-2040 142 
 143 



20 
 

 144 
Figure  S20: Same as Figure 19 but covering 2040-2050 145 
 146 
  147 
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 148 

 149 
Figure  S21: Same as Figure 18 but Western Amazonia covering 2030-2040 August-150 
October. 151 
 152 

 153 
Figure  S22: Same as Figure S21 but covering 2040-2050 154 
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 155 

 156 
Figure S23:  Same as Figure S21 but for 2090-2100. 157 
 158 
 159 

 160 
Figure S24: Ensemble spread in the prediction of the FWI in the first 10 days of forecast for 161 
Canada. The horizontal lines indicate changes in temporal resolution in the ECMWF weather 162 
forecasting systems. The spread accounts for as much as 10%-15% of the predicted values 163 
and, as expected, increases with lead time. 164 
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   166 
Figure S25: Same as Figure S24 but for Greece.  167 
 168 

 169 
Figure S26: Same as Figure S24 but for Western Amazonia.  170 
 171 
 172 
 173 
 174 
 175 
  176 
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Table S1: Overall PoF driver statistics summary from Figure 9. Values refer to variance in 177 
active fire counts explained by each control. 178 
 

Canada Greece  Western Amazonia Target 

Weather  43% (Early May) 
25% (June-July) 

20%(August) 42% (August) 
22% (Sept-Oct) 

Active fires  

Fuel dryness 13% (Early May) 
11% (June-July)  

9%(August) 26% (August) 
10% (Sept-Oct) 

Fuel Abundance 14% (Early May) 
12% (June-July) 

11%(August) 22% (August) 
22% (Sept-Oct) 

Others  29% (Early May) 
52% (June-July) 

60%(August) 10%(August) 
46%(Sept-Oct) 

 179 
Table S2: Overall ConFire driver statistics summary from Figure 10. Values refer to the 180 
median and 5th-90th percentile range of anomalies in burned area caused by each control. 181 
 

Canada Greece  Western 
Amazonia 

Target 

Weather  19[5-45]% (May) 
 
16[1-100]% 
(June-July)  

24[4-140] % 
(August) 

14[1-140]% 
(August) 
29[2-45]% (Sept-
Oct) 

Burned Area 
Anomaly 

Fuel dryness 6[-41-65]% 
(May) 
 
9[-110-88]% 
(June-July) 

-11[-170-21]% 
(August)  

340[79-400]% 
(August)  
 
100[62-370]% 
(Sept-Oct) 

Fuel 
Abundance 

-1[-7- 0]% (May) 
 
1[-3.9- 3.3]% 
(June-July) 

7.5[1-72]% 
(August) 

3[-0-16]% 
(August) 
 
0 [-1-3.6]% (Sept-
Oct) 

Humans 5[1-97]% (May) 
 
-0[-25-4]% 
(June-July) 

19[-33 - 220]% 
(August) 

8[1-68]% 
(August) 
 
3[-1-20]% (Sept-
Oct) 

 182 
 183 
  184 
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S1. Extended Methods 185 
 186 
S1.1 Data and Data Processing  187 
 188 
S1.1.1 ConFire vegetation fraction driving data  189 
 190 
In Section 2.4.4.1, we drive ConFire with tree and non-tree vegetated cover from the Joint UK 191 
Land Environment Simulator Earth System  impacts model (JULES-ES) at version 5.5 (Clark 192 
et al., 2011; Mathison et al., 2023) driven with GSWP3-W5E5 forcings provided at a 0.5° 193 
spatial resolution by ISIMIP3a. These runs are freely available at 194 
https://www.isimip.org/impactmodels/details/292/. JULES-ES dynamically models vegetation 195 
cover in response to meteorology, hydrology, nitrogen availability, and land use change. 196 
JULES-ES has been extensively evaluated against snapshots and site-based measurements 197 
of vegetation cover and carbon (Mathison et al., 2023; Burton et al., 2022; Clark et al., 2011; 198 
Burton et al., 2019; Sellar et al., 2019). JULES-ES-ISIMIP has previously been used as driving 199 
data for ConFire to perform future projections (UNEP et al., 2022), though using a previous 200 
round of ISIMIP climate forcing (ISIMIP2b). As per (UNEP et al., 2022), vegetation responses 201 
to JULES-ES’s internal fire model were turned off so as not to double-count the effects of 202 
burning. However, in (UNEP et al., 2022), residual JULES-ES simulated biases in vegetation 203 
cover were allowed to persist, increasing the uncertainty range of local vegetation cover and 204 
resultant burned area responses. We therefore correct the bias in JULES-ES’s vegetation 205 
cover using a trend-preserving empirical quantile mapping bias adjustment method, 206 
implemented using the ibicus software package (Spuler et al., 2024). The bias adjustment 207 
method calibrates a mapping between the empirical cumulative distribution function of each 208 
surface cover type at each grid cell derived from the JULES-ES model output and the 209 
corresponding quantiles in the MODIS remote sensed data at this grid cell over the reference 210 
period (2003-2019). The method corrects the bias induced by the JULES-ES model rather 211 
than the bias of the climate model, assuming that this has been removed by the ISIMIP3BASD 212 
method (Lange, 2019). 213 
  214 
The bias adjustment approach maps the empirical cumulative distribution function of each 215 
surface cover type at each grid cell derived from the JULES-ES model output to the 216 
corresponding quantiles in the MODIS VCF collection 6.1 remote sensed data (DiMiceli et al., 217 
2017) at this grid cell over the reference period (2002-2019). For  Canada, where collection 218 
6.1 does not extend north of 60DEG, we used collection 6 (Dimiceli and Others, 2015). This 219 
mapping is subsequently applied to the surface information output from JULES-ES driven by 220 
climate models over the historical (1994-2014) and future (2015-2099) period. To preserve 221 
the trend in the vegetation cover over the future periods, additive detrending of the mean is 222 
applied: 223 
 224 

  (1) 225 
 226 
Here 𝐹!"_$%& is the empirical cumulative distribution of the model over the reference period,   227 
𝐹'()*+the inverse cumulative distribution function of the observations, 𝑥!"_&,$ the quantile that 228 
is adjusted and 𝑥!"_$%& and 𝑥!"_&,$ the means of the model output over the reference and 229 
future periods. This mapping is applied over a rolling window of 9 years over the future period. 230 
  231 
The approach ensures that not only the mean but also the shape of the distribution is corrected 232 
without assuming a parametric form, whilst also preserving additive trends driven by the future 233 
climate model. Furthermore ensures continuity between the historical and future period by 234 
using a rolling window over the future period. 235 

https://paperpile.com/c/Kt4qp7/4TWI1+IZB5V
https://paperpile.com/c/Kt4qp7/4TWI1+IZB5V
https://paperpile.com/c/Kt4qp7/IZB5V+lZqeB+4TWI1+RooZb+NEPS4
https://paperpile.com/c/Kt4qp7/IZB5V+lZqeB+4TWI1+RooZb+NEPS4
https://paperpile.com/c/Kt4qp7/5wrwB
https://paperpile.com/c/Kt4qp7/5wrwB
https://paperpile.com/c/Kt4qp7/5wrwB
https://paperpile.com/c/Kt4qp7/M5Llt
https://paperpile.com/c/Kt4qp7/05aVi
https://paperpile.com/c/Kt4qp7/AH7MD
https://paperpile.com/c/Kt4qp7/AH7MD
https://paperpile.com/c/Kt4qp7/keNkL
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 236 
The results were evaluated in terms of the ability of the bias correction method to reduce the 237 
model bias over the historical period, as well as preserve the trend between the future and 238 
historical period. It was found that the method corrects the bias well over the historical period 239 
for most regions, variables and gridcells in both the mean and 80th percentile at each grid cell. 240 
The trend between the future and historical period is well preserved in most regions and 241 
gridcells, with less than 0.1% of gridcells overall experiencing an absolute trend modification 242 
larger than 5%. 243 
  244 
To demonstrate the evaluation conducted, Figure S24 shows the results for treecover over 245 
North-Western Canada. The plots for the remaining regions, including tree and no-tree cover, 246 
can be found in a notebook https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment. 247 
Investigating the timeseries of average treecover over the region, we find that the correction 248 
method reduces the bias over the historical period and matches the future period to the 249 
historical period (Figure S24a). The cumulative distribution functions of average tree cover 250 
merged over all spatial locations in observations and model match better after bias adjustment 251 
(Figure S24b). They do not match perfectly, and we note that this is a non-calibrated aspect 252 
that we do not expect to have zero bias but that is important to evaluate. Furthermore, we find 253 
that the improvement in both mean and 80th percentile hold across the region (Figure 19c). 254 
The trend between future and historical period is preserved for the majority of grid-cells, with 255 
the absolute change in trend being close to zero for most grid-cells. 256 
 257 

https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment
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 258 
Figure S24: Evaluation of the JULES vegetation model bias adjustment for tree cover over 259 
North-Western Canada. a) Timeseries of tree cover over the area for different climate models 260 
both with historical and scenario runs, raw model in solid lines, bias corrected models in 261 
dashed lines and MODIS VCF in black. b) Cumulative distribution function of tree cover values 262 
across region and historical time period for different climate models for observations (blue), 263 
raw models (orange), debiased models (green). c) Absolute model bias in mean and 80th 264 
percentile for the GFDL-ESM4 climate model before (left two plots) and after bias adjustment 265 
(right two plots). d) Absolute difference in trend (difference between future and historical 266 
period) between raw and bias corrected GFDL-ESM4 model for ssp126, ssp370 and ssp585 267 
scenarios. 268 
  269 
 270 
S1.2 Modelling Frameworks 271 
 272 
S1.2.1 PoF  273 
 274 
The Probability of Fire (PoF) system uses gradient-boosted decision trees to provide a 275 
probability forecast of active fire occurrence (McNorton and Di Giuseppe, 2024). The 276 
supervised algorithm which trains an ensemble of decision trees uses regularization 277 
techniques to prevent overfitting (Chen & Guestrin, 2016). The training, based on 2010-2014 278 
MODIS active fire detections, classifies a positive fire event as any detection within  a 9 km 279 
grid cell. 280 
 281 

https://paperpile.com/c/Kt4qp7/oz2OA
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The relative contribution of each input control to the model prediction is evaluated using 282 
Shapley values, computed using the Shapley Additive exPlanations python library (Lundberg 283 
& Lee, 2017). The SHAP value indicates the importance of each feature in a model, where a 284 
positive SHAP value reflects a positive impact on the model prediction and a negative SHAP 285 
value reflects a negative impact. Specifically for this study we use the TreeExplainer, which 286 
computes the SHAP values by interrogating the structure of the decision trees within the model 287 
based on the input feature values. The probability controls are then normalised and grouped 288 
into the four categories given in Table 3 of the main text. By combining these with the total 289 
amount of fires predicted for a given area we can attribute those fires into one of the four 290 
controls. The ‘Other’ control also includes fire occurrences not predicted by the model. This is 291 
computed given by: 292 
 293 

𝑂𝑡ℎ𝑒𝑟 = 𝑆𝐻𝐴𝑃[𝑂𝑡ℎ𝑒𝑟] + 𝑚𝑎𝑥	(0, 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑294 
− 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)	295 

           (2) 296 
 297 
Where, SHAP[Other], is the contribution of the ‘Other’ control to the total predicted fires for a 298 
given region and, 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are the total 299 
number of observed and predicted fires for the same region. 300 
 301 
S1.2.2 ConFire 302 
 303 
ConFire is a burned area attribution tool, used for trend detection and attribution (Kelley et al., 304 
2019), event attribution (Kelley et al., 2021) and future projections (UNEP et al., 2022). 305 
ConFire finds the likelihood of causes of or changes in BA by optimising a simple, semi-306 
empirical process representation model by applying Bayes Theorem. In our case, Bayes 307 
Theorem states that the likelihood of a model configuration described by a parameter set {𝛽} 308 
and monthly explanatory variables (i.e model driving data) {𝑋-.}	 given some training 309 
observation of monthly burned area fraction {𝑂𝑏𝑠-} from MODIS MCD64A1, for cells i, is 310 
proportional to the prior probability of {𝛽} (𝑃({𝛽})) multiplied by the probability of the 311 
observations given that model configuration: 312 
𝑃({𝛽}|{𝑂𝑏𝑠-}, {𝑋-.}) 	∝ 	𝑃({𝛽}) 	× 	𝑃({𝑂𝑏𝑠-}	|	{𝑋.}, {𝛽}	)    (3) 313 
 314 
We use the zero-inflated logit distribution introduced by (Kelley et al., 2021) as our update 315 
distribution, as this is specifically designed to better represent the tails of the distribution during 316 
fire events: 317 

𝑃({𝑂𝑏𝑠-}	|	{𝑋-.}, {𝛽}) 		= 	I⬚
/

-

𝑃(𝑂𝑏𝑠-|	{𝑋.}- , {𝛽}	)	318 

𝑃(𝑂𝑏𝑠- 	= 	0	|	{𝑋.}- , {𝛽}	) 	= 	 (1 −𝑀({𝑋.}- , {𝛽0})1!) 	× (1 − 𝑃2)	319 
𝑃(𝑂𝑏𝑠- 	> 	0	|	{𝑋.}- , {𝛽}	) 	320 

=	 (1	 − 𝑃(𝑂𝑏𝑠- 	= 	0	|	{𝛽}	)	) 	× ℵ(𝑙𝑜𝑔𝑖𝑡(𝑂𝑏𝑠-) 	− 	𝑙𝑜𝑔𝑖𝑡(𝑀({𝑋.}- , {𝛽0})	), 𝜎)	321 
           (4) 322 
 323 
where {𝛽0} is the set of parameters related solely to the underlying model, M, 𝑙𝑜𝑔𝑖𝑡(𝑥) 	=324 
	𝑙𝑜𝑔 Q 3

('3
R, P0, P1 and 𝜎 are parameters within the full set {𝛽} which describe the model error 325 

and ℵ(𝜇, 𝑠𝑑) is a normal distribution with mean of 𝞵 and standard deviation of sd. 326 
 327 
The model, M, simulates fractional BA (fraction) via a number of controls. For attribution and 328 
outlook, these controls follow (Kelley et al., 2021; Burton et al., 2019): Fuel load, fuel moisture, 329 
ignitions and suppressions. This follows the general model structure of global fire models 330 
(Hantson et al., 2016; Rabin et al., 2017) and is most appropriate for looking at long term, 331 
coarse fire drivers (Moritz et al., 2005). For driver assessment, we separate out an additional 332 

https://paperpile.com/c/Kt4qp7/gvoXe
https://paperpile.com/c/Kt4qp7/gvoXe
https://paperpile.com/c/Kt4qp7/NTz9x
https://paperpile.com/c/Kt4qp7/5wrwB
https://paperpile.com/c/Kt4qp7/NTz9x
https://paperpile.com/c/Kt4qp7/NTz9x+RooZb
https://paperpile.com/c/Kt4qp7/xr3iq+ZaqFC
https://paperpile.com/c/Kt4qp7/6Nica
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control for “fire weather” and introduce a “snow cover” control. Model BA is the product of 333 
these controls, c: 334 
 335 
𝑀({𝑋.}, {𝛽0}) 	= 	𝐹"43 ×∏ ⬚⬚

! 𝑓({𝑋!}, {𝛽!})      (5) 336 
 337 
Where 	𝐹"43 describes maximum monthly burned area fraction and is an optimizable 338 
parameter in set  {𝛽0}, {𝑋!} are the BA driving variables, {𝛽!} the parameters related to control 339 
c and f is the function that describes the control influence on BA. Each control describes the 340 
expected BA if all other controls imposed no limitation on burning - for example, when c is fuel, 341 
𝑓({𝑋!}, {𝛽!}) describes the BA in perfectly dry conditions with saturated ignitions and no 342 
suppression. To achieve this, f is the logical function: 343 
 344 
𝑓({𝑋!}, {𝛽!}) 	= 	1/ Q1	 − 	𝑒𝑥𝑝Y−𝛽!,2 	− 	∑ ⬚⬚

7 𝛽!,7 	× 𝑋7[R    (6) 345 
 346 
 347 
where 𝛽!,7 is the contribution of driving variable 𝑋7 to the control  and −𝛽!,2 is a parameter that 348 
can shift the midpoint of the sigmoid curve. 349 
 350 
All variables 𝑋. where normalised to be between [0, 1] based on the training data to aid priors 351 
selection and optimization - though analytically this should have no impact on our results. Our 352 
priors fix the direction each drive can influence a control (drivers and direction are listed in 353 
Table 3 and 5) but beyond this relatively uninformed. Priors for 𝛽!,7 where described by a log-354 
normal distribution with a 𝜇 of 0 and 𝜎 of 10, and set to be positive for liberative drivers (one 355 
that increases the strength of a control) and negative for suppressive (ones that reduce the 356 
strength of a control). 𝛽!,2 priors were set to a normal distribution with a mean of 0.5 and a 357 
standard deviation of 1.  	𝐹"43  and P0 priors were set as a uniform distribution between 0 and 358 
1 𝝈 was set to a half-normal with mean of 0 and standard deviation of 10. 359 
 360 
We sampled the posterior distribution using Bayesian inference following a similar protocol 361 
to (Barbosa, 2024) with the pymc python package version 5 (Abril-Pla et al., 2023), 362 
employing 100 chains each over 1000 warm-up iterations (that were not subsequently used) 363 
and 100 sample iterations using the No-U-Turns Hamilton Monte Carlo sampler (Hoffman 364 
and Gelman, 2011)  while utilising 50 % of the data or a minimum of 6000 grid cells. To 365 
sample the posterior distribution, we then randomly sample 50 iterations from each chain, 366 
thereby approximating the posterior with 1000 ensemble members. As per Barbosa (2024), 367 
for evaluation (Figure S28-S39) we trained the first half of the period and tested on the 368 
second half. For the rest of the results, we trained on the full period. 369 
 370 
We obtaining probability distributions from the model posterior for our results, ConFire offers 371 
two probability, which we have adapted slightly from (2021) :  372 
 373 

1. The likelihood of different levels of burning for a specific event (i.e a grid cell in a 374 
given timestep) which considers uncertainty explained by the model and residual 375 
uncertainty described by our error parameter, 𝞼 . We use this when we are 376 
comparing a single grid of cells and months, such as for evaluation, and for 377 
assessing the un. The likelihood of a Burned Area, BA, under drivers, X, which can 378 
be out-of-training sample, is: 379 
 380 
𝑃(	𝐵𝐴|	(𝑋. , 𝛽|		{𝑂𝑏𝑠-}, {𝑋-.})) 	= 	∫ ⬚⬚

8 𝑃(𝛽|		{𝑂𝑏𝑠-}, {𝑋-.}) 	× 𝑃(𝐵𝐴|𝛽)	𝑑𝛽	   (7)                  381 
 382 
Where 𝑃(𝐵𝐴|𝛽) is take from equation 4. 383 
 384 

https://paperpile.com/c/Kt4qp7/J4IMD
https://paperpile.com/c/Kt4qp7/hB5vx
https://paperpile.com/c/Kt4qp7/kx9Bk
https://paperpile.com/c/Kt4qp7/kx9Bk
https://paperpile.com/c/Kt4qp7/J4IMD
https://paperpile.com/c/Kt4qp7/J4IMD
https://paperpile.com/c/Kt4qp7/J4IMD
https://paperpile.com/c/Kt4qp7/NTz9x
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When building distributions for multiple grid cells or time periods, as with building a 385 
climatology in Section 3, we convolute the probability distributions of individual time 386 
periods and cells following equations in  (Kelley et al., 2021). Converting probabilities 387 
over a large number of cells gives us the second measure.  388 
 389 

The emergent probability of different mean levels of BA over many events explained directly 390 
by the model and its driving variables. We use this when assessing the emergent likelihood 391 
of burning in Section 4 and Section 5. This is the same as taking the mean of n simulations 392 
in equation 7 as n tends to infinity. Doing this, 𝑃({𝑂𝑏𝑠-}	|	{𝑋-.}, {𝛽})	from equation 4 will tend 393 

towards a BA of model M output weighted by the likelihood of a zero BA: 394 
 395 

𝐷(𝐵𝐴) 	= 	 𝑙𝑖𝑚
9→;

ab⬚
9

-<(

𝑃(	𝐵𝐴|	(𝑋. , 𝛽|		{𝑂𝑏𝑠-}, {𝑋-.}))	/	𝑛d		396 

2.   397 
   = ∫ ⬚⬚

8 𝑀({𝑋.}- , {𝛽0}) 	× (1 −𝑀({𝑋.}- , {𝛽0})=) 	× (1 − 𝑃2)	𝑑	𝛽 (8) 398 
 399 
For attribution and future projections, ConFire produces correctly ranked by consistently 400 
biassed probability distributions (Supplement Section “Change in Likelihood of High 401 
Burned Area in 2023 due to Total Climate Forcing and Socioeconomic factors”). The 402 
final step is therefore to introduce a correction factor. As this distribution bias is constant 403 
across  the observed BA distribution, a simple scaling factor is all that's needed. To do this, 404 
we  assign the likelihood associated with the BA in equation 8 with a scaled burned area 405 
(𝐵𝐴∗) so that the mean of the sample distribution matches the mean of the observation for 406 
the period 2003-2019. 407 
 𝐵𝐴∗ 	= 	𝐵𝐴	 × 𝛴({𝑂𝑏𝑠-}	/	∫ ⬚(2	 𝐷(𝐵𝐴)	× 𝐵𝐴	𝑑𝐵𝐴      (9) 408 
 409 
𝐵𝐴∗ is then used in equation 8. 410 
 411 
S1.2.3 Attributing Fire Weather 412 
 413 

Bias Correction 414 
We evaluated the individual variables in the FWI (see evaluation), and found that each variable 415 
was slightly biased compared to ERA5 reanalysis. We therefore applied a bias correction to 416 
the final FWI, rather than bias-correcting each individual variable.  417 
 418 
We bias-corrected the HadGEM3 2023 large ensemble based on a bias assessment of the 15 419 
historical members from 1960-2013 vs. ERA5 observation-driven FWI, using a simple linear 420 
regression on fwi transformed using: 421 
 422 
 𝑓𝑤𝑖∗ 	= 	𝑙𝑜𝑔(𝑒𝑥𝑝(𝑓𝑤𝑖) 	− 1)         (10) 423 
to remove the physical bound at 0. We use this instead of using a straight log transformation 424 
as it ensures numerical stability at higher values, crucial when dealing with extreme FWI 425 
values, thereby avoiding blow-up effects. It also preserves the extreme tail of the FWI 426 
distribution, allowing us to accurately capture and analyse critical events associated with high 427 
fire risk.. 428 
 429 
We perform a simple linear regression on ERA5 and on each historical member to obtain the 430 
basic regression parameters: 431 
𝑓𝑤𝑖∗	~	𝑓𝑤𝑖∗,2 + 𝛥&@- × 𝑡        (11) 432 

https://paperpile.com/c/Kt4qp7/NTz9x
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Where t is time, and t = 0 is set to 2023, 𝛥&@- is the rate of change, or trend, of 𝑓𝑤𝑖∗ and 𝑓𝑤𝑖∗,2 433 
is the estimated 𝑓𝑤𝑖∗for 2023. Our bias correction is therefore based on present-day levels of 434 
warming, taking account of the additional warming from 2013-2023 (assuming the trend from 435 
1960-2013 continues to 2023 linearly). If anything this is likely conservative given that warming 436 
rates may have increased more rapidly in the last 10 years.  437 
 438 
We generate the bias-corrected 2023 ensemble by correcting each of the 525 present-day 439 
ensemble members against each of the 15 historical members (creating an ensemble of 7875 440 
members). Due to the perturbation procedure used to generate the 2023 ensemble from the 441 
historic (Ciavarella et al., 2018), we can not assume that present-day members pair to 442 
historical members. We therefore iterate over all possible pairs: 443 
	444 

𝑓𝑤𝑖!"##$!%$& 	= 	 (	𝑓𝑤𝑖∗(	 − 	𝑓𝑤𝑖∗*,,) 	× 	𝜎(𝑓𝑤𝑖∗$#-.)/	𝜎(𝑓𝑤𝑖∗,) 	+ 	𝑓𝑤𝑖*,∗	$#-.	 														(12)445 
   446 
𝜎A(𝑓𝑤𝑖∗) = 	𝑠𝑑𝑒𝑣(𝑓𝑤𝑖∗ −	𝛥&@- × 𝑡) 	447 

Where i is a present-day ensemble member, and j is a historical member.  448 
 449 
We finish by applying the  inverse of the transformation from equation 10 :		450 
	451 
𝑓𝑤𝑖	!)$$%!B%C	 	= 	𝑙𝑜𝑔(𝑒𝑥𝑝(𝑓𝑤𝑖∗,!)$$%!B%C	) 	+ 	1)		 	 	 	 	 (13)	452 

 453 

Probability Ratio 454 

We use the ERA5 2023 FWI for our event threshold in each region, using the month of peak 455 
anomaly from Figure S2 in each region. We use this threshold to calculate the probability ratio 456 
(PR) of the event occurring with and without climate change.  To calculate the PR, we find the 457 
number of ensemble members that exceed the 2023 ERA5 FWI value in the bias-corrected 458 
ALL simulation, and divide this by the number of members that exceed the same value in the 459 
bias-corrected NAT simulation, bootstrapping 10,000 times to giving the probability of 460 
exceeding the observed 2023 FWI value in a world with and without climate change plus 461 
uncertainty bound for the 5-95th percentile. 462 
PR = p(ALL) / p(NAT) 463 
 464 
S1.2.4 FireMIP 465 
 466 
For the multi-model ensemble we use simulations from the ISIMIP3a fire sector, as published 467 
in (Burton & Lampe et al. 2023). The 7 models reporting BA for ISIMIP3a are shown in the 468 
table below. The methodology follows the ISIMIP3a Impacts Attribution protocol, as outlined 469 
in (Mengel et al., 2021), where the factual historical simulations are driven with GSWP3-W5E5 470 
reanalysis data, and the counterfactual simulations are the same historical data which has 471 
been detrended via quantile mapping (Mengel et al., 2021).  472 
 473 
As outlined in (Hantson et al., 2016), the spread in the absolute BA is large amongst the 474 
observations, models and regions and therefore a normalised relative anomaly (RA) rather 475 
than absolute BA is used for the analysis. To calculate the RA in present day BA, we subtract 476 
the counterfactual mean, and divide by the counterfactual mean. By comparing both factual 477 
and counterfactual experiments to the counterfactual mean, we are looking at the fractional 478 
increase in BA driven by climate change compared to a baseline without climate change. 479 
Based on model performance by AR6 region, a region-specific weighting is also applied 480 
following  (Knutti et al., 2017). The weighting is based on the model's distance to the observed 481 
BA temporal RA using both FireCCI5.1 and GFED5, measured using NME as per (Kelley et 482 

https://paperpile.com/c/Kt4qp7/6i0E5
https://paperpile.com/c/Kt4qp7/RjnbT/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
https://paperpile.com/c/Kt4qp7/guJrj
https://paperpile.com/c/Kt4qp7/guJrj
https://paperpile.com/c/Kt4qp7/xr3iq
https://paperpile.com/c/Kt4qp7/a8UqC
https://paperpile.com/c/Kt4qp7/DWmy6
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al., 2013). To measure the uncertainty, random noise is generated and scaled by the 483 
climatological RMSE of each model. This noise is then added to the modelled relative 484 
anomaly, this process is repeated 1000 times. This performs the same function and the 485 
uncertainty quantification from model error as Equation 4 does for ConFire Then, 486 
bootstrapping is applied to the monthly regional BA RA (now with noise added in) according 487 
to the weight for each model. Uncertainty is calculated by taking the 2.5-97.5th percentile of 488 
the resultant histogram. All results are reported as P50 [P2.5, P97.5]. The methods are 489 
explained in full in (Burton & Lampe et al. 2023). 490 

https://paperpile.com/c/Kt4qp7/DWmy6
https://paperpile.com/c/Kt4qp7/RjnbT/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
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Table S3: FireMIP Models used for attributing median burned area. Table reproduced from (Burton & Lampe et al. 2023)  491 

Model CLASSIC INFERNO LPJ-GUESS- 
SIMFIRE- 
BLAZE 

LPJ- 
GUESS- 

SPITFIRE 

ORCHIDEE- 
MICT- 

SPITFIRE 

SSiB4/TRIFFID VISIT 

Fire Model CLASSIC INFERNO SIMFIRE SPITFIRE SPITFIRE Li After (Thonicke 
et al., 2001)  

Land / Vegetation CLASSIC JULES LPJ-GUESS LPJ-GUESS ORCHIDEE SSiB VISIT 

Dynamic 
Veg 

Physiology Yes Yes, via 
TRIFFID 

Yes Yes Yes Yes, via TRIFFID Yes 

LAI Yes Yes, via 
TRIFFID 

Yes Yes Yes Yes Yes 

Bio- 
geography 

No Yes, via 
TRIFFID 

Yes Yes Yes Yes No 

Nitrogen Cycle Yes Yes Yes Yes No Yes Yes, but C-N 
coupling is 

limited 

No. PFTs 9 13 17 17 19 7 33 (biome 
types) 

No. Soil Layers 20 4 2 2 11 3 2 

Fuel Vegetation and 
litter 

Vegetation & 
top soil layer 
as proxy for 

litter 

Vegetation, litter Litter Vegetation and 
litter 

Vegetation and 
litter Litter 

Ignitions Natural Prescribed 
lightning 

Prescribed 
lightning 

SIMFIRE 
describes annual 

BA + fire-
climatology -> 

daily BA used as 
Fire-Probability 

Prescribed 
lightning 

Prescribed 
lightning 

Prescribed 
lightning Probabilistic 

based on fuel 
wetness 

https://paperpile.com/c/Kt4qp7/RjnbT/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
https://paperpile.com/c/Kt4qp7/AwXOL
https://paperpile.com/c/Kt4qp7/AwXOL
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Anthropog
enic 

Prescribed 
population 

density 

Prescribed 
Population 

density 

SIMFIRE 
includes 

suppression by 
humans 

Prescribed 
population 

density 

Prescribed 
population 

density 

Prescribed 
population density No 

Suppression Prescribed 
population 

density 

Crops, 
population 

density 

Crops (100%), 
prescribed 
population 

density 
(Hyde3.1) 

Crops, 
population 

density 

Prescribed 
population 

density, crops 

Prescribed 
population density 

and GDP 
Low fuel load 

Spread Wind speed and 
soil moisture 

None Daily BA (no 
explicit spread) 

Rothermel 
equations 

including wind 
speed, tree 

fraction, grass 
fraction, fuel 
moisture, fuel 

load and 
characteristics 

wind speed, tree 
fraction, grass 
fraction, fuel 
moisture, fuel 

load 

Wind speed and 
soil moisture None 

Model inputs SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, 
population 

density, lightning 

SW & LW 
radiation, 

precipitation, 
air 

temperature, 
specific 

humidity, wind 
speed, 

population 
density, 
lightning  

SW radiation,  
precipitation, air 

temperature 
(mean, min, 

max), relative 
humidity, wind 

speed 

SW radiation, 
precipitation, air 

temperature, 
specific humidity, 

wind speed, 
atmospheric 

pressure,  
population 

density, lightning 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific humidity, 
wind speed, 
atmospheric 

pressure, PFT 
map, population 

density 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific humidity, 
wind speed, 
atmospheric 

pressure, 
population density, 

and GDP, peat 
map, land cover 

change 

Air 
temperature, 

precipitation, air 
vapor pressure, 

cloudiness, 
wind 

Resolution 1 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 

References  

(Melton et al., 2020)  

(Burton et al., 2019, 

2020; Mangeon et 

al., 2016) 

(Rabin et al., 2017; Smith 

et al., 2014; Knorr et al., 

2014) 

 

(Rabin et al., 2017; Smith 

et al., 2014; Thonicke et 

al., 2010; Lehsten et al., 

2009) 

(Yue et al., 2014, 2015) (Huang et al., 2021, 2020; Li 

et al., 2012; Hugelius et al., 

2013; Li et al., 2013) 

(Ito, 2019) 
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https://paperpile.com/c/Kt4qp7/eQ6oY
https://paperpile.com/c/Kt4qp7/RooZb+HPVmw+MDRVI
https://paperpile.com/c/Kt4qp7/RooZb+HPVmw+MDRVI
https://paperpile.com/c/Kt4qp7/RooZb+HPVmw+MDRVI
https://paperpile.com/c/Kt4qp7/ZaqFC+CyJDp+6jZoK
https://paperpile.com/c/Kt4qp7/ZaqFC+CyJDp+6jZoK
https://paperpile.com/c/Kt4qp7/ZaqFC+CyJDp+6jZoK
https://paperpile.com/c/Kt4qp7/ZaqFC+CyJDp+CzrLy+cwMSG
https://paperpile.com/c/Kt4qp7/ZaqFC+CyJDp+CzrLy+cwMSG
https://paperpile.com/c/Kt4qp7/ZaqFC+CyJDp+CzrLy+cwMSG
https://paperpile.com/c/Kt4qp7/ZaqFC+CyJDp+CzrLy+cwMSG
https://paperpile.com/c/Kt4qp7/q9ULL+OYADU
https://paperpile.com/c/Kt4qp7/7P91E+pLJZl+BELhC+tZCpb+qyMXq
https://paperpile.com/c/Kt4qp7/7P91E+pLJZl+BELhC+tZCpb+qyMXq
https://paperpile.com/c/Kt4qp7/7P91E+pLJZl+BELhC+tZCpb+qyMXq
https://paperpile.com/c/Kt4qp7/yOXhN
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 493 
 494 
S2. Evaluation 495 
S2.1 POF 496 
 497 
The PoF model, trained on observed fire activity, provides a daily probability of fire occurrence 498 
based on the input variables described in Table 3 of the main text. The three cases explored 499 
in the main study can be visualised as fire risk maps at a 1 km resolution, higher than the 9 500 
km used for attribution. The 1km predictions show that whilst PoF often fails to capture the 501 
true total number of active fires, the relative attribution is likely to be accurate given by the 502 
models ability to capture the spatiotemporal pattern of fire activity reflected by the forecast 503 
danger shown in the figures below. Of the three case studies the model accurately reflects fire 504 
activity for Canada and Western Amazonia, and whilst high fire danger is modelled over 505 
Alexandroupolis, Greece, it fails to capture the severity of the event. 506 
 507 

 508 
 509 

 510 
Figure S25: Spatial representation of the day 1 PoF forecast at ~1km resolution expressed 511 
as a danger rating for the 15th May over Canada (top). MODIS active fire detections for the 512 
same day and domain (bottom). 513 
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 514 

 515 
Figure S26: Spatial representation of the day 1 PoF forecast at ~1km resolution expressed 516 
as a danger rating for the 21st August over Northern Greece (top). MODIS active fire 517 
detections for the same day and domain (bottom). 518 
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 519 

 520 
Figure S27: Spatial representation of the day 1 PoF forecast at ~1km resolution expressed 521 
as a danger rating for the 9th September over Western Amazonia (top). MODIS active fire 522 
detections for the same day and domain (bottom). 523 
 524 
 525 
S2.2 ConFire 526 
 527 
The ConFire model simulates a probability distribution of BA which, unlike most numerical or 528 
ensemble-based models, requires a probabilistic technique for evaluation. 529 
The uncertainty range of the ConFire is crucial for the analysis in this study. We obtain 530 
confidence in our results by seeing if the shift of the model's probability distributions is 531 
significant compared to the size of the uncertainty of that distribution. Suppose the uncertainty 532 
range is larger than any change when testing for i.e, attributing with or without climate change, 533 
future changes, or seasonal anomaly. In that case, the framework will tell us, and our results 534 
will show that these are unlikely/not significant. Conversely, if the change in distribution is 535 
larger than the model's uncertainty range, we can make a confident statement even if that 536 
model is uncertain.  537 
 538 
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As the precision of the modeling framework is inherent in the analysis itself, the main aspect 539 
to evaluate is the ability of the model's probability distribution to represent the range of 540 
uncertainties when tested against observations accurately. To do this, we followed the 541 
evaluation procedure outlined in (Barbosa, 2024), which we summarise here. 542 
 543 
We trained the model during the first half of each period used in the analysis and performed 544 
subsequent evaluations on the second half. The training period for near-real-time driver 545 
assessment was 2014-2018, and for the attribution/future projections run, 2003-2011. The 546 
evaluation period was 2019-2023 for driver assessment and 2012-2019 for attribution/future 547 
projections. Using a different period from the optimization ensures an independent model 548 
evaluation and provides an indication of how well the framework captures uncertainty in out-549 
of-temporal sample observations.  550 
 551 
The FLAME system (Barbosa, 2024) that we merge with ConFire automatically generates a 552 
series of evaluations which we show for region region in turn in the subsequent two sections. 553 
While the techniques are outlined in (Barbosa, 2024), these automated figures have not 554 
previously been published. So alongside the evaluation procedure below is a guide to interpret 555 
if these plots show a good model performance. 556 
 557 
For the evaluation period, we assess how well the model predicts new observations by testing 558 
how likely the observations are given the optimized model (equation 7). While this sounds 559 
counter-intuitive, we do this rather than test the model given the observations because the 560 
model doesn't yield a single answer or a set of numbers, but rather a distribution of model 561 
parameters and output, reflecting inherent uncertainty in the processes. This approach allows 562 
for comprehensive testing of the entire model's posterior probability distribution at once and 563 
provides insight into the model's ability to generate the observed distribution and capture the 564 
uncertainty in the modeled process. We approximate the probability of an observation given 565 
our model by sampling 10 parameter ensemble members from each of our 100 chains, 566 
providing us with 1000 ensemble members, and sample the likelihood as per (Kelley et al., 567 
2021). The example below, taken from Figure S32, shows how we summarise this for each 568 
observation (scatter plot left) and all observations in a time series for each cell (middle and 569 
right). If the model performed perfectly, the probability of the observations given the model will 570 
all be close to 1, as the scatter plot indicated for BA fractions above ~ 0.0003. The model won't 571 
always capture the uncertainty required to generate the observations. This generally happens 572 
at specific burned areas (like low ones in this example). Areas where this happens often are 573 
highlighted on the map  with the map in the middle showing the performance at the 5th 574 
percentile of the time series. 575 
 576 

https://paperpile.com/c/Kt4qp7/J4IMD
https://paperpile.com/c/Kt4qp7/J4IMD
https://paperpile.com/c/Kt4qp7/J4IMD
https://paperpile.com/c/Kt4qp7/NTz9x
https://paperpile.com/c/Kt4qp7/NTz9x
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 577 
 578 
 579 
We also determine the percentile of our observations within the model's posterior probability 580 
distribution. In an unbiased model, we expect the observation's position to be random. We can 581 
start by doing this visually, as shown in the example from Figure S30: Observational BA (top 582 
left) should generally fall between the two simulation maps (bottom) that span the 5-95 583 
percentile of the model distribution. Taking the cell highlighted in blue for example - the lower 584 
model estimate is close to zero and the upper is higher than the observations, indicating a 585 
good performance at capturing the observations. Evaluating include parameters representing 586 
noise or stochasticity in the system, that is not always included in the main analysis. Given the 587 
inherent randomness in fire in our study regions, this does result in very broad BA distributions 588 
in the model so a larger difference between the maps showing the BA in the model's tails 589 
(“simulation - 5%” and “simulation - 95%”) is to be expected. 590 

 591 
 592 
We compare the observations (x-axis) likely range (5-95 percentile) of the model's probability 593 
distribution. Similarly to the maps above, if the model captures the uncertainties, the 594 
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observations should fall within this range - i.e the 1:1 line should fall inside the span of the 595 
model, as seen in this example from Figure S36. We also calculate the mean position of the 596 
observations. This is simply the probability of BA greater than the observation, calculated by 597 
integrating equation 7 for BAs in the range [0, 𝐵𝐴]. For simulations used in attribution, we also 598 
build histograms (right, taken from Figure S39) of this bias across different percentiles of the 599 
observations. This shows us if there is any part of the distribution that has a substantially 600 
different bias. In an unbiased model, these observational positions in the framework's 601 
probability distribution should average (“Mean Y:” in the histogram)  to 0.5. Numbers close to 602 
1 indicate the observations on average tend towards the higher BA in the distribution, and the 603 
model generally underestimates BA. This alone does not show if the model performs poorly, 604 
and a consistent bias across all parts of the BA distribution indicates correct ranking, though 605 
the need for scaling for attribution analysis (see Supplement Section “Modelling 606 
Frameworks > Confire”). 607 
 608 

 609 
We also map out the mean position of the observations of the times series. Again, in an 610 
unbiased model, given enough timestep, this should average out to 0.5 for each gridcell. 611 
However, given the small number of timesteps, we map is the observational position in the 612 
frameworks posterior tends to be significantly different to 0.5 using a t-test to calculate a p-613 
value for if the mean of the posterior position of the monthly observations for a given grid cell 614 
is significantly different from 0.5. Low p-values indicate where the model is biased, which tends 615 
to suggest too low or high burning. 616 
 617 

 618 
 619 

 620 

 621 

S2.2.1 Drivers of Regional Burned Area Extremes 622 
 623 
The model has shown a consistent ability to capture observations within its uncertainty range 624 
across all regions, indicating a robust representation of uncertainty. It also demonstrates a 625 
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high likelihood of aligning with actual observations, indicating strong alignment between 626 
model outputs and real-world data. It effectively represents BA anomalies based on the 627 
driving variables, demonstrating strong explanatory power across different regions. 628 
 629 
However, the model consistently exhibits a low bias in estimating BA across regions, often 630 
underestimating the BA, particularly in specific high-burn regions such as deforestation 631 
areas in Western Amazonia and patches of high BAin northern Canada. This highlights the 632 
common need across regions for better integration of data on human influences and 633 
interactions with fire. It may also hint at the need for better representation of none-linearity 634 
between drivers and BA. 635 
 636 
 637 

Canada 638 
Our evaluation indicates that the model's assessment of uncertainty does a reasonable job 639 
of capturing the observational range, particularly for high BA. The top row of Figure S28 640 
demonstrates this - the observed (on the left) falls between the 5-95% range of the model. 641 
However, there are patches of high BA that are slightly farther north than in the 642 
observations. The model accurately identifies low burning in agricultural regions in southern 643 
Saskatchewan and Alberta, and it suggests lower burning in the north while still 644 
acknowledging the possibility of some burning.  645 
 646 
The probability of observations given the model is very high, especially for medium to high 647 
BA ranging from 0.03% to 3% (Figure S28 left middle row). This demonstrates that the 648 
modelling framework does a reasonable job of generating observations within this 649 
range..Except for a few locations, even the worst performances tend to show a likelihood of 650 
observations given a model of > 0.95.  For very high BA, the probability decreases but 651 
generally falls within the model's uncertainty range (bottom left), and ranked indicating that 652 
the model can effectively identify high burning anomalies. However, it tends to 653 
underestimate the increase in BA during such anomalies (i.e in Figure 10). Infact, the model 654 
tends to be biases towards slightly lower BA in many regions of Canada (bottom middle 655 
map), though only significantly so in the South and West of the country (bottom left map). 656 
Interestingly, the BA picked up by the driving variables alone also effectively reproduces 657 
spatial patterns of BA and regions of high anomalies in 2023, suggesting that the driving 658 
variables used are good at explaining the observed patterns in BA. 659 
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 660 
Figure S28: Evaluation plot for driver attribution configuration in Section 3 over Canada. (top 661 
row) observed and simulated BA fraction (%). (Middle row) the likelihood of the out-of-sample 662 
observations given the models probability distribution and (bottom row) observations position 663 
in the model distribution. See top of this section for interpretation guide. 664 
 665 
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 666 
Figure S29: BA % over Canada for May-September for driver attribution configuration in 667 
section 3 over (left) 2014-2023 (middle) 2023 and (right) for 2023 anomaly compared to 2014-668 
2023, expressed as a factor of increase (red) or fractional decrease (blue).  The top row is 669 
observations, the middle row in ConFire includes stochasticity (equation 7) and the bottom, 670 
just considers the influence of drivers (equation 8).  For ConFire, the size of the dot in each 671 
grid cell shows the likelihood (larger = higher likelihood) of a BA fraction (or BA change) being 672 
greater than a given threshold (where the threshold is represented as a coloured dot, see 673 
legend at the base). High BA overlap smaller. i.e on the left, a large pale orange dot indicates 674 
a high likelihood of annual average BA exceeding 0.1%, with a small dark red dot indicating a 675 
small but non-zero likelihood of exceeding 3% 676 

 677 

Greece 678 
The model effectively represents uncertainties surrounding observed BA and accurately 679 
captures the gradient between low burning in the northwest of Greece and high burning 680 
around the southeastern coast. The model's observations show extremely high likelihood 681 
across all BA, with only a slight dip to around 0.75 likelihood in a few months in coastal 682 
Thessaly. Additionally, there is a consistent pattern of underestimating BA across all areas of 683 
Greece, although this is only significant in a few places. 684 
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 685 
Figure S30: same as Figure S28 for Greece 686 
 687 
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 688 
 689 
Figure S31: same as Figure S29 but for Greece in August 690 

 691 

Western Amazonia 692 
The model captures observations within its uncertainty range, but it fails to differentiate 693 
between high burning in deforestation regions in the south and north of the country. This 694 
suggests that vital data on deforestation and its interaction with fire may have been missed. 695 
The model is able to generate observations out of its sample, indicated by a high likelihood 696 
given observations. However, it does not generate very low BA, particularly in places where 697 
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high BA are also commonly observed in regions of deforestation. This suggests that the 698 
model may fail to capture variations in BA in these human-dominated areas. Similar to the 699 
other two regions, the model demonstrated a low bias. However it can accurately capture BA 700 
anomalies based solely on the model drivers. 701 

 702 
Figure S32: same as Figure S28 for Western Amazonia 703 
 704 
 705 
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 706 
Figure S33:  same as Figure S29 but for Western Amazonia in September and October. 707 
 708 
 709 
S2.2.2 Change in Likelihood of High Burned Area in 2023 due to Total Climate Forcing 710 
and Socioeconomic factors 711 
 712 
The framework utilising ISIMIP3a reanalysis data has been found to outperform its near-real-713 
time counterpart in simulating BA. It effectively represents high BA and extremes across all 714 
regions. Furthermore, the probability of observations given the model is generally higher in 715 
areas with extreme fires or high BA, indicating the model's reliability  for attribution analysis. 716 
 717 
However, in regions of significant land use change, such as Western Amazonia, the model 718 
struggles with reproducing higher BA, indicating a common challenge across regions in 719 
capturing detailed land use interactions.   720 
 721 
While observations consistently fall within range of the model distribution,  the model 722 
demonstrates consistent low bias. This simple scaling is suggested to align the model with 723 
observations, highlighting a need for calibration to improve accuracy across regions. 724 
 725 
 726 

Canada 727 
The analysis using isimip reanalysis data shows that the framework performs much better 728 
than its near-real-time counterpart in assessing the drivers of BA (Figure S34). Although 729 
there are still large uncertainty ranges, the highest BA in the distribution closely match the 730 
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high BA observed. In Canada, the model generally performs slightly worse in generating 731 
observations, but it still tends towards a probability of observations given the model of 732 
greater than 0.75. However, the model shows that high BA are very likely, indicating that the 733 
model is useful in representing extremes - critical for attribution analysis. Overall, the model 734 
exhibits less bias than its near real-time version, with observations falling on average around 735 
0.6-0.9 throughout the model's distribution. This consistent pattern across the observed 736 
distribution suggests that a simple scaling is required for attribution application (Figure S35). 737 
 738 

 739 
Figure S34: same as Figure S28 for attribution and future projections configuration used in 740 
section 4 and section 5. 741 
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 742 
Figure S35: The position of the observed BA in the model's probability distribution over the 743 
evaluation period using attribution and future projections configuration from Section 4 and 744 
Section 5 over Canada. Histograms are for observed percentiles indicated in the top left 745 
corner.  See start of section for interpretation guide. 746 
 747 

Greece 748 
Over the longer evaluation periods, observations tend to be much noisier across Greece 749 
than in the near real-time driver analysis (Figure S36). However, there is still a noticeable 750 
trend towards more burning in the Southeast. This trend is well captured by the model, 751 
including the more noisy spatial distribution in the observations. The probability of observing 752 
a given model can be quite low, but it tends to be higher in areas where extreme fires were 753 
observed and in areas with high burn areas, making it useful for attribution applications. 754 
Additionally, while the model is biased low, similar to Canada, this bias is consistent across 755 
the observed BA distribution (Figure S37). 756 
 757 
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 758 
Figure S36: same as Figure S34 for Greece 759 
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 760 
Figure S37: same as Figure S35 for Greece 761 
 762 

Western Amazonia 763 
The framework outperforms its near real time counterpart in simulating higher BA around 764 
Manaus, although it still struggles to reproduce higher BA in regions of land use change 765 
(Figure S38). Observations fall within the model range and, like the other two regions, the 766 
observations indicate that the model tends to perform better at generating observed BA at 767 
higher levels of burning. Overall, this is the least biased region out of the three, although the 768 
model still tends to underestimate BA, with the observations falling at around 0.7-0.8 of the 769 
model distribution (Figure S39). This pattern is consistent across the distributions . 770 
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 771 
Figure S38: same as Figure S34 for Western Amazonia. 772 
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 773 
Figure S39:  same as Figure S35 for Western Amazonia 774 
 775 
 776 
S2.3 Fire Weather attribution 777 
 778 
We evaluated each of the component variables used in the FWI against ERA5 reanalysis for 779 
the historical period 1960-2013. In each case, HadGEM3 was slightly biased across the 780 
timeseries, generally simulating conditions that were too hot and dry in Greece (Figure S40). 781 
This led to an overall larger bias in the resultant FWI (Figure S43). We therefore applied a 782 
linear bias-correction to the HadGEM3 ensemble of FWI (see Data and Data Processing). 783 
Results before and after the bias-correction is applied are shown below for each region.  784 
 785 
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 786 
Figure S40: Individual component variables of the FWI compared to ERA5 reanalysis across 787 
the historical period (1960-2013), and resultant FWI. Here one member from the HadGEM3 788 
historical ensemble is shown (yellow) against ERA5 (black) for one region (Greece), for 789 
illustration 790 
 791 
 792 
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 793 
Figure S41: Bias correction for Canada. Historical ensemble of HadGEM3 (yellow) compared 794 
to ERA5 (grey) 95th percentile of FWI for the historical period (1960-2013), shown as 795 
probability density before correction (a) and after correction (b), and one member shown as a 796 
timeseries (c, where HadGEM3 is shown in red, ERA5 in blue and corrected HadGEM3 in 797 
purple). HadGEM3 ensemble for 2023 shown before bias-correction (d). ERA5 2023 event 798 
shown as black vertical line on all probability density plots.  799 
 800 
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 801 
Figure S42: As for Figure S41, but for Western Amazonia 802 
 803 

 804 
Figure S43: As for Figure S41, but for Greece at 90th percentile FWI 805 
 806 
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