
Earth Syst. Sci. Data, 16, 3517–3546, 2024
https://doi.org/10.5194/essd-16-3517-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

IAPv4 ocean temperature and ocean heat
content gridded dataset

Lijing Cheng1,11, Yuying Pan1,11, Zhetao Tan1,11, Huayi Zheng1,11, Yujing Zhu1,11, Wangxu Wei1,11,
Juan Du1, Huifeng Yuan2,11, Guancheng Li3, Hanlin Ye1, Viktor Gouretski1, Yuanlong Li4,11,

Kevin E. Trenberth5,6, John Abraham7, Yuchun Jin4,11, Franco Reseghetti8, Xiaopei Lin9, Bin Zhang4,
Gengxin Chen10,11, Michael E. Mann12, and Jiang Zhu1,11

1Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
2Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083, China

3Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and
Environment Administration, Ministry of Ecology and Environment, PRC, Guangzhou, 510611, China

4Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 266000, China
5National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA

6Department of Physics, University of Auckland, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
7University of St. Thomas, School of Engineering, 2115 Summit Ave, St Paul, MN 55105, USA

8Istituto Nazionale di Geofisica e Vulcanologia, 40127, Bologna, Italy
9Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography

Laboratory, Ocean University of China, Qingdao, 266100, China
10State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy

of Sciences, Guangzhou, 510301, China
11University of Chinese Academy of Sciences, Beijing, 101408, China

12Dept. of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, USA

Correspondence: Lijing Cheng (chenglij@mail.iap.ac.cn)

Received: 4 February 2024 – Discussion started: 14 February 2024
Revised: 29 May 2024 – Accepted: 5 June 2024 – Published: 2 August 2024

Abstract. Ocean observational gridded products are vital for climate monitoring, ocean and climate research,
model evaluation, and supporting climate mitigation and adaptation measures. This paper describes the 4th
version of the Institute of Atmospheric Physics (IAPv4) ocean temperature and ocean heat content (OHC)
objective analysis product. It accounts for recent developments in quality control (QC) procedures, climatol-
ogy, bias correction, vertical and horizontal interpolation, and mapping and is available for the upper 6000 m
(119 levels) since 1940 (more reliable after ∼ 1957) for monthly and 1°× 1° temporal and spatial resolutions.
IAPv4 is compared with the previous version, IAPv3, and with the other data products, sea surface tempera-
tures (SSTs), and satellite observations. It has a slightly stronger long-term upper 2000 m OHC increase than
IAPv3 for 1955–2023, mainly because of newly developed bias corrections. The IAPv4 0–2000 m OHC trend
is also higher during 2005–2023 than IAPv3, mainly because of the QC process update. The uppermost level
of IAPv4 is consistent with independent SST datasets. The month-to-month OHC variability for IAPv4 is de-
sirably less than IAPv3 and the other OHC products investigated in this study, the trend of ocean warming
rate (i.e., warming acceleration) is more consistent with the net energy imbalance at the top of the atmo-
sphere than IAPv3, and the sea level budget can be closed within uncertainty. The gridded product is freely
accessible at https://doi.org/10.12157/IOCAS.20240117.002 for temperature data (Cheng et al., 2024a) and at
https://doi.org/10.12157/IOCAS.20240117.001 for ocean heat content data (Cheng et al., 2024b).
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1 Introduction

Observational gridded products are essential for understand-
ing the ocean, the atmosphere, and climate change; they
support policy decisions and socioeconomic developments
(Abraham et al., 2022; Abraham and Cheng, 2022; Cheng
et al., 2022a). For instance, many of the climate indicators
used in the Working Group I report of the 6th Intergov-
ernmental Panel on Climate Change (IPCC-AR6-WG1) are
based on gridded products (Gulev et al., 2021; IPCC, 2021),
mainly because the raw oceanic data suffer from inhomoge-
neous data quality and irregular and incomplete data cover-
age (Abraham et al., 2013; Boyer et al., 2016; Cheng et al.,
2022a; Meyssignac et al., 2019).

As more than 90 % of Earth’s energy imbalance (EEI) in
the past half-century has accumulated in the ocean, increas-
ing ocean temperature (T ) and ocean heat content (OHC)
are essential climate variables for monitoring, understand-
ing, and projecting climate change (e.g., Rhein et al., 2013;
Hansen et al., 2011; Trenberth, 2022; Trenberth et al., 2009;
von Schuckmann et al., 2020; Cheng et al., 2022a). OHC
also impacts air–sea and ice–sea interactions and thus exerts
a considerable influence on the other components of the cli-
mate system. It provides critical feedback through the energy,
water, and carbon cycles (Cheng et al., 2022a; Trenberth,
2022; von Schuckmann et al., 2016). Substantial changes
in ocean temperatures also profoundly impact ocean biogeo-
chemical processes and ecosystems and are critical for ocean
health and human society (Bindoff et al., 2019; Cheng et al.,
2022a).

Many gridded T /OHC datasets have been produced by
independent groups, and most of them are updated annu-
ally or more frequently (Cheng et al., 2022a; Good et al.,
2013; Hosoda et al., 2008; Ishii et al., 2017; Levitus et al.,
2012; Li et al., 2017; Meyssignac et al., 2019; Roemmich
and Gilson, 2009). The most widely used products are at
1°× 1° horizontal resolution and monthly temporal resolu-
tion from near-surface to about 2000 m depths. Some prod-
ucts utilize all available in situ observations and span at
least half a century, prominent examples being the data prod-
ucts compiled by the Institute of Atmospheric Physics (IAP)
(Cheng and Zhu, 2016; Cheng et al., 2017) from 1940 to
the present, the Japan Meteorological Agency (JMA) (Ishii
et al., 2017) from 1955 to the present, the National Centers
for Environmental Information (NCEI), the National Oceanic
and Atmospheric Administration (NOAA) from 1950 to the
present (Levitus et al., 2012), and the University of Califor-
nia since 1949 (Bagnell and DeVries, 2021). As Argo data
have achieved near-global upper 2000 m open-ocean cover-
age since ∼ 2005, many Argo-based or Argo-only gridded
products are available. Examples include gridded products
from SCRIPPS after 2004 (Roemmich and Gilson, 2009),
the China Argo Real-time Data Center since 2005 (Li et al.,

2017), and Copernicus since 2005 (von Schuckmann and Le
Traon, 2011). These products usually span from ∼ 2005 to
the present for the upper∼ 2000 m. The data benefit from the
high quality of Argo data but do not fully resolve the polar
regions, shallow waters, and regions with complex topogra-
phy.

In 2016, the IAP group provided its first gridded product
for the upper 700 m of the ocean (Cheng and Zhu, 2016) by
merging all available observations since 1960. With a revised
mapping method and a thorough evaluation process with syn-
thetic observations, an update (IAP version 3, IAPv3) be-
came available in 2017 for the upper 2000 m of the ocean
with data since the 1950s (Cheng et al., 2017). IAPv3 has
supported scientific research, climate assessment reports, and
monitoring practices (Bindoff et al., 2019; Gulev et al., 2021;
WMO, 2022).

After the release of IAPv3, there was progress in obser-
vation data quality control and new or updated techniques
for temperature data processing and reconstruction. For ex-
ample, Gouretski et al. (2022) found that old Nansen cast
bottle data contained systematic biases that impacted the
T/OHC data before 1990. Revisions of the bias corrections
are also available for Mechanical BathyThermograph (MBT)
and eXpendable BathyThermograph (XBT) data (Cheng et
al., 2014; Gouretski and Cheng, 2020). Tan et al. (2023) de-
veloped a new quality control system that advances the detec-
tion of outliers after accounting for the non-Gaussian distri-
bution of local temperatures in determining the local clima-
tological range. The impact of the inhomogeneous vertical
resolution of temperature profiles was recognized previously
(Cheng and Zhu, 2014) and received more attention recently
(Li et al., 2020) with a new vertical interpolation approach
(Barker and McDougall, 2020). Upgrading the product with
new developments is important for better supporting ocean
or climate research and climate assessments.

This paper discusses the revisions to the IAP ocean objec-
tive analysis product (IAPv4) since the publication of IAPv3
(Cheng et al., 2017). The data and methods are introduced in
Sect. 2 and the results are presented in Sect. 3, with analyses
of the character of IAPv4 on regional and global scales and
on various timescales. The EEI and sea level budgets based
on the new data product are also investigated. A summary
and discussion are provided in Sect. 4, with some remaining
issues and outlooks being discussed.

2 Data and methods

2.1 Data source

The majority of the in situ measurements used to create the
data product come from the World Ocean Database (WOD),
downloaded in December 2023. Data from all instrument
types are used, including XBTs (Goni et al., 2019), Argo
(Argo, 2000), conductivity–temperature–depth (CTD) profil-
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ers, MBTs, bottles, moorings, gliders, animal-borne ocean
sensors (McMahon et al., 2021), and others (Boyer et al.,
2018) (Fig. 1). There is a total of 17 634 865 temperature pro-
files from January 1940 to September 2023 (Zhang et al.,
2024a, Fig. 1a). MBT, XBT, Nansen bottle, and CTD are
the major instruments before ∼ 2005 (Fig. 1a, b). The spa-
tial coverage of these data increased to > 30 % in 1960 and
> 70 % in the late 1960s for 1°×1°×1-year resolution. After
∼ 2005, there is a huge number of glider (GLD) and animal-
mounted pinniped-borne (APB) data, and as they are mainly
distributed in the polar regions (APB) and coastal regions
(GLD) (Fig. 1a), their spatial coverage is usually less than
5 % for 1°×1°×1-year resolution. By contrast, the Argo data
cover most of the global open ocean since ∼ 2005 (Fig. 1b).

Argo data are processed following the recommendations
of the Argo community. Adjusted data are used where ap-
plicable. Both delayed- and real-time Argo data have been
incorporated into IAPv4. As real-time Argo data have only
passed automated, simple quality control (QC) tests in real
time, these data may still contain temperature, pressure,
and salinity values affected by unknown errors. However,
through a sensitivity study, Cheng (2024) indicated that in-
cluding real-time Argo data does not bias the OHC calcula-
tion for the IAP analysis. Nevertheless, IAP data are updated
frequently (every 1–3 months): each time the updated Argo
data are used, the T/OHC fields are recalculated following
the recommendation by the Argo group (Wong et al., 2020).
The data from the Argo floats in the “grey list” have been re-
moved from the calculation (https://data-argo.ifremer.fr/, last
access: 1 December 2023).

To complement the WOD with relatively fewer data in the
Arctic and coastal regions of the northwestern Pacific, this
presented product also uses data from other sources. The ma-
jority of these data are from the Chinese Academy of Sci-
ences Ocean Science Data Center (Zhang et al., 2024a, b),
and some data have been rescued from old documents of ma-
rine surveys. All these data are publicly available. There are a
total of 85 990 additional temperature profiles, about 0.50 %
of the data, which is expected to improve the reconstruction
in these data-sparse regions (compared with IAPv3 and the
other products).

The in situ data have been processed as described in a
flowchart in Fig. 2. In the following sections, the key tech-
niques of the data processing are introduced.

2.2 Data quality control

The QC procedure aims to identify spurious measurements
(including outliers) and data with incorrect metadata through
a set of quality checks and ensures the quality of the in situ
dataset (Tan et al., 2022). There is growing evidence that QC
is critical for accurate temperature or OHC reconstruction, as
shown by Tan et al. (2023), where two different QC systems
produced a difference of approximately 15 % (∼ 7 %) in the
0–2000 m OHC trend from 1955–1990 (2005–2021). Unfor-

tunately, the impact of QC on OHC estimates has not been
evaluated in previous community assessments of T/OHC un-
certainty (Boyer et al., 2016; Lyman et al., 2010). In this
study, the QC procedure follows the CAS-Ocean Data Cen-
ter (CODC) Quality Control system, named CODC-QC (Tan
et al., 2023), where only the “good” data (flag= 0) are used
(this means the observations passed all distinct checks).

The CODC-QC system (Tan et al., 2023) has the follow-
ing strengths, which make it particularly suitable for T/OHC
reconstruction.

1. A new local climatological range is defined in this
CODC-QC system to identify outliers. Unlike many ex-
isting QC procedures, no assumption is made of a Gaus-
sian distribution law in the new approach, as the oceanic
variables (e.g., temperature and salinity) are typically
skewed. Instead, the 0.5 % and 99.5 % quantiles are
used as thresholds in CODC-QC to define the local cli-
matological parameter ranges.

2. Local climatological ranges change with time to ac-
count for the long-term trends of ocean temperature
accompanied by more frequent extreme events (e.g.,
Oliver et al., 2021; Sun et al., 2023). Previously, the use
of the static local ranges tended to remove too many
“extreme values” (at the tails of the temperature distri-
butions) associated with climate change in recent years
that were actually real, leading to a QC-procedure-
related bias in the gridded dataset and OHC estimate
(Tan et al., 2023).

3. In addition, local climatological ranges for the vertical
temperature gradient are constructed to account for the
variability of “vertical shape”, increasing the ability of
the scheme to identify spurious profiles.

4. The QC procedure is instrument-specific, accounting
for characteristics inherent to particular instrumentation
types. For example, XBT digital recording systems are
allowed to continue to record beyond the rated termi-
nal depth suggested by manufacturers (T7/DB probes
below 760 m; T4/T6 probes below 460 m; T5 probes be-
low 1830 m). Below the rated maximum depth, the XBT
wire often breaks, leading to a characteristic change in
recorded temperature values. The new QC procedure ef-
fectively identifies such profiles.

5. The thorough evaluation of the QC procedure perfor-
mance and the application of the QC procedure to the
manually quality-controlled datasets (Thresher et al.,
2008; Gouretski and Koltermann, 2004) demonstrated
the effectiveness of the proposed scheme in removing
spurious data and minimizing the percentage of mistak-
enly flagged good data.

Being applied to the entire temperature profile dataset, the
CODC-QC procedure identifies 6.22 % of all the tempera-
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Figure 1. (a) Yearly number of temperature casts for different instruments. (b) Percentage coverage (%) of ocean data for each instru-
ment, calculated as the ratio between the number of 1°× 1°× 1-year grid cells observed by each instrument and the total number of
ocean grids. (c) Number of subsurface temperature casts in 1° grid boxes from 1940 to 2023 collected by different instruments: CTD
(conductivity–temperature–depth), XBT (eXpendable BathyThermograph), MBT (Mechanical BathyThermograph), bottle, APB (animal-
mounted pinniped-borne), PFL (profiling floats, i.e., Argo), GLD (glider), MRB (moored buoy), and DRB (drifting buoy).

ture measurements as outliers. The rejection rates (the def-
inition follows Tan et al., 2023) vary among the instrumen-
tation types (3.73 % for CTD, 1.97 % for Argo, 12.06 % for
XBT, 4.93 % for MBT, 6.54 % for bottle, 5.92 % for APB,
4.54 % for DRB, and 2.55 % for MRB). The overall percent-
age of outliers decreases over time from ∼ 5 % in the 1940s
to ∼ 2.5 % in the 2020s, reflecting the progressive improve-

ment of the instrumentation (Fig. 3). A rejection rate maxi-
mum (∼ 12 %) during 2000∼ 2010 is linked to the XBT data,
which are especially abundant in the 800–1100 m layer and
are characterized by a higher rejection rate below the maxi-
mum depth (Tan et al., 2023). The generally higher rejection
rate below 4000 m is related to the gross errors (e.g., mea-
surements cooler than −2 °C, big spikes) and the occurrence
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Figure 2. Flowchart of the IAP data reconstruction processes from the raw in situ observations to gridded data (IAPv4) and OHC estimates.
The ellipses indicate the data (including the data for error estimates), and the rectangle boxes show the techniques used to process the data.

Figure 3. The rejection rate (%) of temperature observations after
CODC-QC as a function of calendar year and depth.

of the constant values (the recorded values do not change
with depth). For example, the higher rejection rate from 2008
to 2009 below 4000 m is because of the gross errors in the
CTD data.

2.3 Bias correction

It is well known that data from several instrument types can
exhibit biases in both temperature and depth. Temperature
profiles obtained using XBTs and MBTs provide an exam-
ple of biased data, especially because of uncertainties in the
depth of measurement. Gouretski and Koltermann (2007)
demonstrated their significant impact on the magnitude and
variability of the global OHC estimates. That study trig-
gered a series of publications where different bias correction
schemes were suggested for XBT (Gouretski and Reseghetti,
2010; Abraham et al., 2013; Cheng et al., 2016; Levitus et
al., 2009; Wijffels et al., 2008), MBT (Gouretski and Cheng,
2020; Levitus et al., 2009), APB (Gouretski et al., 2024),

and other instruments (Fig. 2). In the compilation of IAPv4,
newly developed bias correction schemes are applied.

The XBT temperature bias was found to be generally pos-
itive, as large as ∼ 0.1 °C before 1980 on the global 0–700 m
average, diminishing to less than 0.05 °C after 1990 (Gouret-
ski and Koltermann, 2007; Wijffels et al., 2008). Here, we
use an updated XBT bias correction scheme (Cheng et al.,
2014, CH14) to correct both depth and temperature biases
in XBT data, following the community’s recommendation
(Cheng et al., 2016; Goni et al., 2019). The depth and temper-
ature biases depend on ocean temperature, probe type, man-
ufacturer, and time. An intercomparison among several cor-
rection schemes rated the CH14 scheme the most successful
(Cheng et al., 2018). Using XBT and collocated CTD data,
we updated the CH14 scheme by recalculating bias correc-
tions between 1966 and 2016 and extending them for the
years 2017–2023.

Comparison with collocated reference CTD profiles re-
cently revealed significant biases in the old hydrographic
profiles obtained by means of Nansen bottle casts (Gouretski
et al., 2022). Both depth and temperature measurements of
bottle casts were found to be biased, and the proposed cor-
rection scheme was also implemented in IAPv4. The ther-
mal bias is related to the time needed to bring the mer-
cury thermometers into equilibrium with the ambient tem-
perature after the completion of the hydrographic cast. The
depth bias indicates an overestimation of the bottle depth
due to the wire’s deviation from the vertical position and
is mostly related to the hydrographic casts where the ther-
mometrical method of sample depth determination was not
used. The correction scheme includes a constant thermal bias
of −0.02 °C and a depth- and time-varying depth bias.

The MBT bias is as large as 0.28 °C before 1980 for
the global average and reduces to less than 0.18 °C after
1980 for the 0∼ 200 m average. IAPv3 used the Ishii and
Kimoto (2009) (IK09) scheme to correct MBT bias, while
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a new scheme proposed by Gouretski and Cheng (2020)
(GC20) is adopted in IAPv4. This shift is made because
our assessment indicates undercorrection of MBT bias by
the IK09 scheme within the upper 120 m and overcorrec-
tion in the deeper layer, whereas GC20 corrects both depth
and temperature biases. GC20 also found MBT bias to be
country-dependent, which is explained in terms of differ-
ent instrumentation characteristics and working procedures.
Therefore, the time-varying bias corrections are applied sep-
arately for the MBT profiles obtained by ships from the
United States, the Soviet Union/Russia, Japan, Canada, and
the United Kingdom. Data from all other countries are cor-
rected using a globally averaged correction.

Finally, thermal biases were recently reported for the data
obtained by different kinds of data loggers attached to ma-
rine mammals (APB). Gouretski et al. (2024) analyzed tem-
perature profiles obtained between 2004 and 2019 at the
high and moderate latitudes of both hemispheres. Compar-
ison with the collocated reference CTD and Argo float data
revealed a systematic negative thermal offset (average value
−0.027 °C) for mammal temperature profiles from SRDLs
(satellite-related data loggers). For the less accurate data
from TDRs (temperature–depth recorders), the comparison
revealed a small positive temperature bias of 0.02 °C and a
depth (pressure) bias indicating depth overestimation.

2.4 Climatology

For IAP and other data product generators, horizontal in-
terpolation (mapping) is applied to a temperature anomaly
field after removing a monthly climatology; thus, a prede-
fined climatology field with an annual cycle is mandatory
(Fig. 2). The accuracy of the climatology field is one of the
key sources of uncertainty in reconstruction because an error
in climatology will propagate to the anomaly field and im-
pact the spatial dynamical consistency and accuracy of the
reconstruction (Cheng and Zhu, 2015; Lyman and Johnson,
2014; Boyer et al., 2016).

In IAPv4, the adjusted mapping procedure (see below) has
been applied to reconstruct the climatology field (Table 1).
The merit of using IAP mapping for climatology is its ability
to better represent the spatial anisotropy of temperature vari-
ability (non-Gaussian distribution). Unlike IAPv3, where the
1990–2005 reference period was used, IAPv4 uses data be-
tween 2006 and 2020 to construct 12 monthly climatologies,
taking advantage of more reliable data combined with better
and more homogeneous spatial and temporal coverage in the
last 2 decades (Table 1). Following the recommendation in
Cheng and Zhu (2015), a relatively short period of 15 years is
used because a climatology constructed with a longer period
of data will result in different baselines at different locations
(i.e., the baseline shifted to earlier years at the middle lati-
tudes of the Northern Hemisphere and shifted to more recent
years in the Southern Hemisphere), and this inconsistency
will violate the spatial structure of the anomaly field (Cheng

and Zhu, 2015). Recent developments from other groups,
such as Li et al. (2022), include the choice of a short-period
climatology.

IAPv4 used an 800 km influencing radius in its climatol-
ogy reconstruction, smaller than the 20° for IAPv3, to more
properly account for the rapid change in temperatures with
distance. There is necessarily a tradeoff between data avail-
ability and the size of the influencing radius. Using radii
smaller than 500 km does not ensure global fractional cov-
erage (defined as the fraction of the total ocean area ob-
tained by the mapping method) because of data sparseness
(Cheng, 2024). As our tests suggest, using 500∼ 800 km re-
sults in very similar reconstructions of climatology. There-
fore, 800 km is adopted to have more robust and stable data
sampling.

2.5 Vertical interpolation

The vertical resolution of ocean temperature profiles changed
dramatically over time, which was associated with instru-
ment evolution and the increase in data storage capabil-
ity. For instance, the global mean vertical resolution at the
500 m level changed from ∼ 100 m in the 1960s to less than
10 m during the 2010s (Li et al., 2020). Vertical interpola-
tion of the raw profiles at standard levels is a critical pro-
cess (Fig. 2): Cheng and Zhu (2014) indicated that the use
of linear or spline vertical interpolation methods can bias the
temperature reconstruction and OHC estimation (Barker and
McDougall, 2020; Li et al., 2020; Li et al., 2022). IAPv3
used the Reiniger and Ross (1968) (RR) method. Recently,
Barker and McDougall (2020) proposed a new approach us-
ing multiple piecewise cubic Hermite interpolating polyno-
mials (PCHIPs) to minimize the formation of unrealistic wa-
ter masses by the interpolation procedure.

Because the largest difference between the interpolation
methods is found mostly for the low-resolution profiles
(e.g., old Nansen casts), in practice, extremely low-vertical-
resolution profiles had to be removed to reduce the uncer-
tainty in interpolation. In IAPv4, this procedure is optimized
compared to IAPv3, and only parts of profiles with a suffi-
cient vertical resolution are used. The thresholds for the ver-
tical resolution are set to 50 m in the upper 200 m, 200 m
between 200 and 1000 m, 500 m between 1000 and 2000 m,
and 600 m between 2000 and 6000 m. As no interpolation
method can adequately interpolate temperature for the ver-
tical resolution beyond these thresholds, interpolation is not
performed in such cases to avoid errors (these extremely low-
resolution data are not used in further processing). Under this
limitation for IAPv4, we still apply the RR method for tem-
perature profiles.

Finally, IAPv4 extends the set of standard vertical levels
with a total of 119 levels from 1 to 6500 m (79 levels within
the upper 2000 m) compared to 41 levels in IAPv3 between
1 and 2000 m (Table 1). The increase in vertical resolution is
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critical for accurately representing the mixed layer and other
high-gradient regions, as investigated below.

2.6 Grid average and mapping

The anomaly profiles are obtained by subtracting the monthly
mean climatology from the vertically interpolated profiles.
These anomalies are then averaged (arithmetic mean) into a
1°× 1° grid at each standard level (1°× 1° gridded average
field) (Fig. 2). Due to the general data sparsity, variable time
windows (longer than 1 month) are used for monthly recon-
structions to ensure a truly global analysis (Supplement Table
S1). This process takes advantage of the larger persistence of
anomalies (generally smaller monthly and interannual vari-
ability) in the deep ocean than in the upper ocean, and thus it
is physically grounded. Specifically, after 2005, data within
a 3-month window are merged to provide a monthly recon-
struction for each layer of the upper 1950 m. Before 2005,
a time-varying and depth-varying time window is used, and
it is generally smaller in the upper ocean and wider in the
deeper ocean (Table S1). Below 2000 m, a 5-year (60-month)
window is adopted. The use of a time window will reduce
the monthly variance compared to the other datasets, which
is likely too high compared with independent Earth energy
imbalance data at the top of the atmosphere (Trenberth et al.,
2016).

Mapping interpolates the gridded (e.g., box-averaged) ob-
servations horizontally into a spatially complete map (Fig. 2)
because not all 1°× 1° boxes are filled with data (Fig. 2).
IAPv4 adopted a similar mapping approach (ensemble op-
timal interpolation with a dynamic ensemble: EnOI-DE) to
IAPv3 introduced in Cheng and Zhu (2016) and Cheng et
al. (2017) but with the following modifications.

1. The largest influencing radius was changed from 20°
in the upper 700 m (25° at 700–2000 m) in IAPv3 to
2000 km in the upper 700 m (2500 km at 700–6000 m)
in IAPv4, to account for the reduced distance between
two longitudes from the tropical to polar regions. This
change mainly helps to improve the reconstruction in
the high-latitude regions.

2. The three iterative runs are taken to effectively bring
in different scales of variability with influencing radii
changing from 2000 km (2500 km at 700–6000 m)
to 800 and 300 km, respectively, based on the tests
presented in Cheng and Zhu (2016) and Cheng et
al. (2017).

3. For each month, IAPv3 used 40 model simulations (his-
torical runs) from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) to provide a flow-dependent
ensemble, which is then constrained by observations
to provide optimized spatial covariance. IAP mapping
uses model-based covariance because we argue that spa-
tial covariance can never be satisfactorily parameter-

ized by some simple basic functions (such as Gaussian
ones) given its complexity. With model-based, flow-
dependent, and dynamically consistent covariance, IAP
mapping provides a more realistic reconstruction than
other approaches based on Gaussian parameterized co-
variance, as evaluated by many studies (Cheng et al.,
2017, 2020; Dangendorf et al., 2021; Nerem et al.,
2018).

4. The observation error variance (R), which represents
the error of the observations, is updated in IAPv4 as fol-
lows. R consists of both the instrumental error (Re) due
to inaccuracy and the representativeness error (Rr) due
to the need to represent the spatial (at 1°× 1° and 1 m
standard grid depths) and temporal (1-month) averages
from a limited number of observations (Cheng and Zhu,
2016):

R = Re+Rr =
∑M

1
Ei/M + σ

2/M, (1)

where M observations exist for a given grid cell. Ei is
the instrument’s precision for each individual observa-
tion, assuming a random error (the basic assumption
is that, after bias correction, the systematic errors can
be eliminated). The Re in each grid cell is set to the
mean of the typical precision of the different instru-
ments contributing data in the cell, which is set ac-
cording to the IQuOD (International Quality-Controlled
Ocean Database) specification (Cowley et al., 2021). σ 2

represents the variance of the various temperature mea-
surements against the monthly mean value. The data
from 2005 to 2022 are used to calculate σ 2 in each
grid because of greater data abundance and quality com-
pared to earlier times.

As the representativeness error (Rr) is expected to be flow-
dependent (i.e., the error is expected to be higher in the re-
gions of higher variability), more observations are required
to represent the mean value. Figure 4 shows a larger variance
(σ 2) in the boundary current regions and near the Antarc-
tic Circumpolar Current (ACC) in the upper ocean (e.g., 10,
200, and 500 m). At 200 m, it shows a larger σ 2 in the west-
ern Pacific Ocean, corresponding to the large thermocline
variations at this layer. Below 1000 m, larger σ 2 values oc-
cur along the ACC frontal regions and in the North Atlantic
Ocean because of stronger mixing and convection in these
regions.

The uncertainty in the derived gridded reconstruction is
also based on the EnOI framework formulated by Cheng
and Zhu (2016). The uncertainty accounts for instrumental,
sampling, and mapping errors. Other error sources, includ-
ing the choice of climatology, vertical interpolation, bias cor-
rections, and QC, are not considered in this uncertainty esti-
mate. Therefore, a more thorough uncertainty quantification
method is needed, and this is under development in a separate
study.
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Figure 4. Variance (σ 2; °C2) of ocean temperature at several representative depths: (a) 10, (b) 200, (c) 500, and (d) 1000 m.

2.7 OHC calculation and volume correction

Based on the gridded temperature reconstruction (Table 1),
the OHC in each grid is calculated as OHC (x,y,z)=
cp
∫ ∫ ∫

V (x,y,z)ρT dV (x,y,z) following the Thermodynamic
Equation Of Seawater – 2010 (TEOS-10) standard, where cp
is a constant of ∼ 3991.9 J (kg K)−1 according to the new
TEOS-10 standard formulation as a conservative tempera-
ture and absolute salinity are used, ρ is the potential density
(kg m−3), and T is the conservative temperature calculated
from in situ temperature (°C; here it is the anomaly relative
to the 2006–2020 baseline) (Cheng et al., 2022a).

As OHC is an integrated metric over a specific ocean vol-
ume, properly identifying ocean volume is critical, especially
in shallow waters. Previous studies found a 10 %–20 % dif-
ference in the OHC trend in recent decades between different
land–ocean masks (von Schuckmann and Le Traon, 2011;
Meyssignac et al., 2019; Savita et al., 2022). Specifically, in
marginal sea areas with complex topography, 1°× 1°×1z
grid boxes (where1z is the depth range of the grid box) near
coasts and islands typically cover both ocean and land ar-
eas but are assigned to represent land or ocean only. Thus,
the gridded ocean temperature datasets are subjected to er-
rors from inaccurate land–sea attribution. Here, we offer a
volume correction (VC) for these grid boxes to improve the
OHC estimate as follows.

For each 1°× 1°×1z grid box, we introduce a VC
factor (denoted as FVC) to correct the OHC values:
OHCVC(x,y,z)= OHC(x,y,z)×FVC(x,y,z). First, we as-
sume the seawater volume distribution in 1 arcmin topo-
graphic data of ETOPO1 to be the “truth”. No correction is
needed if a box is assigned to ocean according to ETOPO1

data; thus, FVC = 1. If a fraction of a 1°× 1°×1z grid box
is land according to ETOPO1 and if IAP data include T/OHC
values, the FVC is represented by the fraction of the ocean
volume in this box (illustrated in Fig. 5), and the volume for
OHC calculations can be corrected with FVC(i). In a grid
box, if there are no IAP data (i.e., they are land according to
the IAP mask) but this box contains some ocean volume ac-
cording to ETOPO1 data, we define FVC(a) again as the frac-
tion of the ocean volume in this box, and then this FVC(a) is
added to the adjacent grid boxes where there are values in the
IAP data. If all the adjacent grid boxes contain no data, the
volume is equally redistributed to the diagonal boxes (Fig. 5).
The volume is discarded if there are no data in all the adja-
cent and diagonal boxes.

With this approach, the VC factor in each grid box is a sum
of two components, a local adjustment FVC(i) and a redistri-
bution FVC(a) from the adjacent grids:

FVC = FVC(i)+FVC(a). (2)

To avoid misidentification of sea ice, we performed VC
only on the global grid points within 60° S–60° N. Eventu-
ally, we obtained a three-dimensional FVC that fits the IAP
grids (119× 360× 180; depth coverage to 6000 m) and used
it to compute OHC. The VC was applied to ∼ 15 % of all
the 1°× 1°×1z grid boxes of the IAPv4 ocean grid boxes
(with FVC 6= 1) for all the 0–6000 m ocean and ∼ 10 % grid
boxes of the upper 2000 m. Since the open ocean accounts
for the vast majority of the global ocean volume, the influ-
ence of the VC method on the global OHC trend is small. For
example, the upper 2000 m OHC trend with VC is ∼ 0.15 %
(∼ 0.45 %) smaller than without VC from 1958–2023 (2005–
2023) for IAPv4. However, it can significantly affect regional
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Table 1. General information on IAPv4 and IAPv3 data products.

IAPv3 IAPv4

Horizonal resolution Global (1°× 1°) Global (1°× 1°)

Vertical levels 41 levels from 1 to 2000 m (1, 5, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350,
400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900,
1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800,
2000)

119 levels from 1 m to 6000 m (1, 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 425,
450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700,
750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200,
1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650,
1700, 1750, 1800, 1850, 1900, 1950, 2000, 2100, 2200,
2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100,
3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000,
4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900,
5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800,
5900, 6000)

Time period and resolu-
tion

1940–2022 (reliable data after 1955), monthly 1940–present (reliable data after 1955), monthly

Quality control WOD (Garcia et al., 2018) CODC-QC (Tan et al., 2023)

Vertical interpolation RR (Reiniger and Ross, 1968) interpolation RR interpolation (Reiniger and Ross, 1968)

Climatology IAP climatology: simple gridded average and then
spatial interpolation with a distance-weighted average

Improved IAP reconstruction with the EnOI approach
(Cheng and Zhu, 2016; Cheng et al., 2017)

XBT bias correction CH14 (updated in 2018) CH14 (revised and updated in 2023)

MBT bias correction IK09 (Ishii and Kimoto, 2009) GC20 (Gouretski and Cheng, 2020)

APB bias correction None GCR24 (Gouretski et al., 2024)

Bottle bias correction None GCT22 (Gouretski et al., 2022)

Mapping EnOI-DE with influencing radii of 20, 8, and 3°
iteratively

EnOI-DE with influencing radii of 2000, 800, and
300 km iteratively Representative error updated with
2005–2022 observations. The radius of influence does
not cross the land.

Uncertainty Given by the EnOI framework accounting for instru-
mental error and horizonal sampling or mapping error

Given by the EnOI framework accounting for instru-
mental error and horizonal sampling or mapping error

DOI / https://doi.org/10.12157/IOCAS.20240117.002
for temperature data (Cheng et al., 2024a)
and https://doi.org/10.12157/IOCAS.20240117.001
for ocean heat content data (Cheng et al., 2024b)

OHC estimates, especially in regions with complex topogra-
phy. For example, the Maritime Continent region’s 0–2000 m
OHC trend is reduced by 6.9 % (4.2 %) after applying VC
from 1958–2023 (2005–2023) (Jin et al., 2024).

2.8 Independent datasets for comparison and
evaluation

Four sea surface temperature (SST) datasets are used to eval-
uate the uppermost layer (1 m) of IAPv4, i.e., the Extended
Reconstructed SST version 5 (ERSST5) (Huang et al., 2017),
the Japan Meteorological Agency Centennial Observation-
Based Estimates of SSTs version 1 (COBE1) (Ishii et al.,
2005) and its version 2 (COBE2) (Hirahara et al., 2014),

and the Hadley Centre Sea Ice and Sea Surface Temperature
dataset (HadISST) (Rayner et al., 2003). The anomalies rel-
ative to a 2006–2020 average were computed by removing
the monthly climatology. Measurements of SST are made
in situ by means of thermometers or are retrieved remotely
from infrared and passive microwave radiometers on satel-
lites (Kennedy, 2014; O’Carroll et al., 2019). Satellite SST
observations began in the early 1980s. In situ SST observa-
tions go back to the 19th century and involve many differ-
ent measurement methods, including wooden and later insu-
lated metal buckets to collect water samples, engine room in-
let measurements, and sensors on moored and drifting buoys
(Kennedy, 2014). The subsurface temperatures are collected
as “profiles” which contain multiple measurements at dis-
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Figure 5. An example explaining the volume correction algorithm. (a) Bathymetry derived from ETOPO1. (b) Bathymetry in IAPv4 analysis.

crete vertical levels. Because of the differences in the ob-
servation systems, SSTs are fundamentally different in their
temporal and spatial coverage and their temporal extent com-
pared to the subsurface observations on which OHC esti-
mates rely. SST measurements also have different uncer-
tainty sources and error structures; thus, the two systems are
typically treated as independent data sources and have been
used for cross-validation (Gouretski et al., 2012).

An independent in situ observation dataset in the Labrador
Sea is used to evaluate IAPv4. This dataset, provided by the
Bedford Institute of Oceanography (BIO) (Yashayaev, 2007;
Yashayaev and Loder, 2017), includes independently vali-
dated and bias-corrected data from multi-section hydrologi-
cal surveys (i.e., AR7W) in the Labrador Sea, spanning from
1896 to 2020 (this study used 1960–2020 data). These data
have not been incorporated into the WOD.

The capability of the new product to close the sea level
budget and Earth’s energy budget also provides tools for val-
idation. A superior dataset should be capable of closing the
sea level and Earth energy budgets. The total sea level change
has been monitored using satellite altimetry since 1993 (from
the University of Colorado at https://sealevel.colorado.edu/,
last access: 10 May 2024). The ocean mass change has been
derived from Jet Propulsion Laboratory (JPL) RL06.1Mv3

Mascon Solution Gravity Recovery and Climate Experiment
(GRACE) and Gravity Recovery and Climate Experiment
Follow-On (GRACE-FO) data since 2002 (Watkins et al.,
2015). For long-term total sea level change since the 1950s,
we use a tide-gauge-based reconstruction (Frederikse et al.,
2020). During the same period, the estimates of the Green-
land ice sheet, Antarctic ice sheet, land water storage, and
glacier ice melt contributions from Frederikse et al. (2020)
are used to derive the ocean mass change. To derive the steric
sea level, IAP salinity data are used (Cheng et al., 2020).
The temperature and salinity data are converted to the steric
sea level based on the TEOS-10 standard (McDougall and
Barker, 2011).

For the energy budget, the ice, land, and atmosphere heat
content changes are from von Schuckmann et al. (2023) from
1960 to the present. Because of the less reliable data be-
fore the 1990s for land, sea ice, and ice sheets, the other set
of land–atmosphere–ice data from 2005 to 2019 is used as
in Trenberth (2022) to investigate the recent changes. The
net radiation change at the top of the atmosphere is based
on Clouds and Earth’s Radiant Energy Systems (CERES)
Energy Balanced and Filled (EBAF) data from Loeb et
al. (2021) and Loeb et al. (2018) and Deep-C data from the
University of Reading (Liu and Allan, 2022; Liu et al., 2017).
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Several gridded ocean T/OHC gridded products are used
here for intercomparison, including IAPv3 (Cheng et al.,
2017), the EN4 ocean objective analysis product from the
UK Met Office Hadley Centre (Good et al., 2013), the ocean
objective analysis product (Ishii et al., 2017) (termed “ISH”
hereafter) from the JMA, an Argo-only gridded product from
SCRIPPS (Roemmich and Gilson, 2009) (termed “RG” here-
after), and an OHC product based on random forest regres-
sions (termed “RFROM” hereafter) using in situ training data
from Argo and other sources on a 7 d× 1/4°× 1/4° grid with
latitude, longitude, time, SSH, and SST as predictors (Lyman
and Johnson, 2023). Several datasets available in IPCC-AR6
(Gulev et al., 2023) are used for comparison, including the
PMEL product from Lyman and Johnson (2014), machine-
learning-based reconstruction of OHC by Bagnell and De-
Vries (2021), the BOA product based on refined Barnes suc-
cessive corrections by the China Argo Real-time Data Cen-
ter (Li et al., 2017), the International Pacific Research Center
(IPRC) (2005–2020), von Schuckmann and Le Traon 2011
(KvS11), a machine-learning based reconstruction of OHC:
Ocean Projection and Extension neural Network (OPEN) (Su
et al., 2020), and a Green-function-based OHC estimate de-
rived from SST (Zanna et al., 2019).

2.9 Trend calculation and uncertainty estimates

The trends in this study have been estimated using the lo-
cally weighted scatterplot smoothing (LOWESS) approach
(Cheng et al., 2022b); i.e., we apply LOWESS to the time se-
ries (25-year window, equal to an effective 15-year smooth-
ing), and then the OHC difference between the first and last
years is used to calculate the trend. This approach provides
an effective method of quantifying the local trend by min-
imizing the impact of year-to-year variability and start and
end points.

Throughout this paper, a 90 % confidence interval is
shown. The uncertainty in the trend also follows the approach
in Cheng et al. (2022a) based on a Monte Carlo simula-
tion. First, a surrogate OHC series is formed by simulating a
new residual series (after removing the LOWESS smoothed
time series) based on the AR(1) process and adding it to
the LOWESS line. Then a LOWESS trendline is estimated
for each surrogate. This process is repeated 1000 times, and
1000 trendlines are available. The 90 % confidence interval
for the trendline is calculated based on± 1.65 times the stan-
dard deviation of all 1000 trendlines of the surrogates. Sec-
ondly, the uncertainty in the rate of the OHC is estimated
using the 1000 LOWESS trendlines: (1) calculating the rate
based on the difference between the first and last annual
mean values of the LOWESS trendline in a specific period
and (2) calculating± 1.65 times the standard deviation of the
1000 rate values.

3 Results

3.1 Climatological annual cycle

The annual cycle of the OHC above 2000 m of IAPv4 is com-
pared with IAPv3, ISH, EN4, RG, and RFROM (Figs. 6 and
7) for 2006–2020. There is a consistent annual cycle among
different datasets for the global and hemispheric oceans.
Globally, the ocean releases heat from boreal spring to fall
and accumulates heat from boreal fall to spring, which is
dominated by the Southern Hemisphere due to its larger
ocean surface area (Fig. 6). The two hemispheres show op-
posite annual variations in OHC, associated with the annual
change in solar radiation and different distributions of land
and sea. For the global OHC above 2000 m, IAPv4 shows a
positive peak in April and a dip in August, with a magnitude
of OHC variation of 60.4 ZJ for IAPv4 (66.9 ZJ for IAPv3),
consistent with the other datasets: 53.2 ZJ for ISH, 58.1 ZJ
for EN4, 69.2 ZJ for RG, and 56.6 ZJ for RFROM (where
1 ZJ= 1021 J).

There are some unphysical variations in the OHC annual
variations for IAPv3 (purple lines). For example, the global
OHC shows large spikes in January and December and a
big shift from September to October. By contrast, the other
three data products show much smoother changes (Fig. 6a).
The IAPv3 Arctic OHC (north of 69.5° N) shows a different
phase change compared with the other datasets together with
a big shift from September to December, and the magnitude
of variability is much larger in IAPv3 than the other datasets
(Fig. 6d). The improvement in IAPv4 is mainly because
of the methodology improvements: IAPv3 used 1990–2005
data to construct a climatology which suffered from errors
related to sparse data coverage, use of “degree distance” in-
stead of “kilometer distance”, and other error sources. There-
fore, the IAPv4 analysis presents a physically tenable OHC
seasonal variation.

IAPv4 OHC data show significant improvements in the
Arctic region, reflected in both the spatial distribution and
seasonal variation of OHC. In IAPv3, the maximum up-
per 2000 m OHC occurs in December, and the minimum
OHC occurs in August. However, for IAPv4, the maximum
amounts to 2.9 ZJ in October and decreases to a minimum of
−3.4 ZJ in April. This estimate of the Arctic annual cycle is
consistent with a constrained Arctic OHC estimate with at-
mospheric data by enforcing energy budget closure (Mayer
et al., 2019). Furthermore, the spread of the OHC annual cy-
cle in the Arctic region across different datasets is reduced
from 5.2 to 2.5 ZJ, indicating a smaller uncertainty. The spa-
tial OHC anomaly distribution in the Arctic region of IAPv4
is more spatially homogeneous than IAPv3, and IAPv3 ap-
pears as rays emerging from the pole which are not physical
(Fig. 7). IAPv4 displays a consistent seasonal variation north
of 69.5° N, mainly because of the changes in the influencing
radius from “degrees” to “kilometers”.
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Figure 6. Annual cycle of the OHC of the upper 2000 m for (a) the global oceans, (b) the Southern Hemisphere, (c) the Northern Hemisphere,
and (d) the oceans north of 69.5° N. Five different data products are presented, i.e., IAPv4 (red), IAPv3 (black), ISH (purple), EN4 (green),
RG (orange), and RFROM (pink).

Figure 7. Seasonal distribution of monthly mean upper 2000 m OHC anomalies and the root mean square error (RMSE) of 0–2000 m OHC
between gridded data and in situ observations. For OHC anomalies, 4 months are shown: March, June, September, and December. The OHC
anomalies are relative to the 2006–2020 annual mean. Panels (a) and (b) are for the IAPv3 and IAPv4 products, respectively. The panels in
the last column are for the annual RMSEs for IAPv3 (upper) and IAPv4 (lower), respectively.
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3.2 Mixed layer depth

Mixed layer depth (MLD) provides a crucial parameter of
upper-ocean dynamics relevant for upper–deeper ocean and
air–sea interactions. Spatial distributions of the MLD in
March and August are shown in Fig. 8 for IAPv4, based
on the criterion of 1T = 0.2 °C temperature for the 10 m
depth temperature. As expected, the seasonal variations of
the MLD are generally opposite in the Northern Hemisphere
and Southern Hemisphere. The MLD shows a much stronger
seasonal variation in the subtropics and at the midlatitudes
(e.g., 20°∼ 70° in both hemispheres) than in other regions
(including the tropics, e.g., 20° S∼ 20° N), which is man-
ifested as a shallower MLD (∼ 20 m) in summer due to
strong surface heating that increases stratification as well as
a deeper MLD in winter (>70 m) because of surface cooling
and increased surface wind creating stronger mixing.

In the Northern Hemisphere, the maximum MLD occurs
during the wintertime in the subpolar North Atlantic deep-
water formation regions (40° N∼ 65° N), with values over
500 m in the Iceland Basin. In comparison, at the midlati-
tudes, the maximum of the MLD is generally less than 125 m
in the wintertime. The MLD minimum in the Northern Hemi-
sphere is in the summertime, and the values are mostly within
20 m. In the Southern Hemisphere, the MLD maximum val-
ues (deeper than 300 m) occur between 45 and 60° S (north
of the Antarctic Circumpolar Current) in the boreal summer,
when the year-round intense westerly winds occur. The min-
imum MLD in this region in the boreal winter is less than
70 m. The seasonal variation of the MLD has been well es-
tablished by previous studies (Chu and Fan, 2023; de Boyer
Montégut et al., 2004; Holte et al., 2017), and this evalu-
ation confirms that IAPv4 temperature data are capable of
reasonably representing the MLD. However, as pointed out
by de Boyer Montégut (2004), the MLD estimated from the
average temperature profiles might lead to an underestima-
tion of the MLD by∼ 25 % compared to the MLD computed
from individual profiles based on the same 0.2 °C criterion
method. This potential issue needs further investigation.

3.3 Sea surface temperature

IAPv4 and IAPv3 temperature time series at 1 m depth
(Fig. 9) are compared with four independent SST data prod-
ucts (ERSST5, HadISST, COBE1, and COBE2). All data
products including IAPv4 show robust sea surface warm-
ing in the global ocean and the four main basins since 1955
(Fig. 9). Since the HadISST and COBE2 data did not include
the year 2023, we compare the long-term SST trend from
1955 to 2022 using these products (Fig. 9f). The global mean
IAPv4 SST rate between 1955 and 2022 is 1.01± 0.15 °C
per century (90 % confidence interval – CI), which is within
the range of the SST products (ranging from 0.78 to 1.05 °C
per century). The 1955–2022 trend of IAPv4 SST is slightly
weaker than IAPv3 for the global ocean (1.11± 0.16 °C per

century) and all the ocean basins. The largest difference be-
tween IAPv4 and other SST products comes mainly from the
Pacific Ocean and Southern Ocean before 1980 and is as-
sociated with sparser in situ observations for both SST and
subsurface temperature data.

The spatial distribution of long-term SST trends over the
1955–2022 period provides insights into the data consisten-
cies and differences. First, IAPv4 shows a pattern of SST
trends consistent with the other datasets (Fig. 10). More rapid
warming is found in the poleward western boundary current
regions, such as the East Australian Current and the Gulf
Stream. The stronger trends of ocean warming in the up-
welling areas, such as the tropical eastern Pacific and the
Gulf of Guinea, are identified by all the data products. The
surface warming in the southern Indian Ocean for IAPv4
data is weaker than for IAPv3, ERSST5, and COBE2 but
is more consistent with HadISST and COBE1. The surface
cooling south of 60° S can also be found in all the datasets but
with some discrepancies in magnitude and locations related
to data sparsity. The tropical Pacific SST trends are mostly
insignificant in the eastern and southeastern Pacific Ocean
because of the strong interannual and decadal fluctuations
(figure not shown).

3.4 Global OHC time series

Global OHC time series for the 0–700, 700–2000, 0–
2000, and 2000–6000 m layers of IAPv4 (Fig. 11) for
1955–2023 versus IAPv3 show robust ocean warming,
with linear warming rates of 4.4± 0.2 ZJ yr−1 (0–700 m),
2.0± 0.1 ZJ yr−1 (700–2000 m), and 6.4± 0.3 ZJ yr−1 (0–
2000 m). The long-term warming revealed by IAPv4
is greater than IAPv3 (4.1± 0.2 ZJ yr−1 for 0–700 m,
1.9± 0.1 ZJ yr−1 for 700–2000 m, and 6.0± 0.3 ZJ yr−1 for
0–2000 m). Before∼ 1980, bottle bias correction reduces the
time-varying systematic warm bias in Nansen bottle data and
leads to a stronger warming rate from 1955 to 1990. The up-
dated MBT and XBT corrections are mainly responsible for
the difference between 1980 and 2000 (Cheng et al., 2014;
Gouretski and Cheng, 2020). Data QC impacts the intrasea-
sonal and interannual variation of the OHC time series (Tan
et al., 2023). Also, because of the application of bottle, XBT,
or MBT corrections, IAPv4 shows a stronger upper 2000 m
ocean warming trend than most of the other available prod-
ucts assessed in Fig. 12.

From 2005 to 2023, the new IAPv4 product shows
stronger warming than IAPv3. The mean upper 2000 m
warming rates are 10.7± 1.0 ZJ yr−1 for IAPv4 and
9.6± 1.1 ZJ yr−1 for IAPv3 (Fig. 11), mainly because of the
replacement of the WOD-QC system with the new CODC-
QC system in IAPv4. Tan et al. (2023) indicated that the
WOD-QC system had removed more extreme higher temper-
ature values in the regions of warm eddies and marine heat
waves than CODC-QC. The IAPv3 700–2000 m OHC shows
a much bigger drop in 2018 than IAPv4 (Fig. 11b), while
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Figure 8. Spatial pattern of the climatological mean MLD (a, c) and zonal mean MLD (b, d) in March (a, b) and August (c, d) estimated
from IAPv4. Here, the MLD is calculated using the temperature difference criterion of 1T = 0.2° between the surface and 10 m depth.

IAPv4 indicates an approximately linear 700–2000 m warm-
ing since 2005, resulting in stronger 700–2000 m warming in
IAPv4 (3.6± 0.5 ZJ yr−1) than in IAPv3 (2.9± 0.5 ZJ yr−1).
Compared with the other available products shown in Fig. 12,
IAPv4 shows a similar 0–2000 m OHC trend to RFROM
from 2005 to 2023 but with stronger warming trends than the
two Argo-based products (BOA and SCRIPPS). From 1993
to 2023, IAPv4 showed a stronger 0–2000 m OHC trend than
NCEI, Ishii, OPEN, and Zanna data and a slightly weaker
trend than PMEL and RFROM (Fig. 12).

Since the 1990s, the World Ocean Circulation Experiment
(WOCE) has provided a global network of abyssal ocean
observations, sustained by repeated hydrological lines and
the Deep Argo program (Katsumata et al., 2022; Roem-
mich et al., 2019; Sloyan et al., 2019). These high-quality
data provide an opportunity to estimate deep OHC changes
below 2000 m in this study. IAPv4 provides a new OHC
estimate below 2000 m by collecting 5 years of data cen-
tered on each month. The result (Fig. 11d) indicates a robust
abyssal (2000–6000 m) ocean warming trend since ∼ 1993
of 2.0± 0.3 ZJ yr−1. This is higher (within the uncertainty
range) than the previous estimate of 1.17± 0.5 ZJ yr−1 in

Purkey and Johnson (2010) but is consistent with the recent
assessment showing the acceleration of deep-ocean warming
in the southwestern Pacific Ocean (Johnson et al., 2019).

Another feature of IAPv4 is the suppression of month-
to-month noise compared to many available data products.
Trenberth et al. (2016) noted that the month-to-month vari-
ation (quantified by the standard deviation of the monthly
dOHC / dt time series) in all the in situ OHC records is much
larger than implied by the CERES records, suggesting that
the OHC variation on this timescale is most likely spuri-
ous. Therefore, the magnitude of the month-to-month vari-
ation in the OHC record can be used as a benchmark of the
data quality. The standard deviation of the CERES record is
0.67 W m−2 from 2005 to 2023 (Loeb et al., 2018), while
IAPv4, IAPv3, ISH, EN4, BOA, NCEI, and SIO data show
standard deviations of dOHC / dt time series of 3.52, 3.52,
7.49, 8.79, 10.05, 11.29, and 10.00 W m−2, respectively, for
the upper 2000 m (Table 2). Note that differentiation to get
the rate of change amplifies noise, and applying a 12-month
running smoother significantly reduces the noise so that the
IAPv4 standard deviation becomes 0.75 W m−2, the small-
est among the datasets investigated in this study (Table 2)
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Figure 9. Global and basin time series of SST change for IAPv4, compared with ERSST/HadISST/COBE1/COBE2 and IAPv3 from 1955
to the present. (a) Global, (b) Pacific, (c) Atlantic, (d) Indian, and (e) Southern oceans (south of 30° S) (°C). Panel (f) shows the warming
rate from 1955 to 2022. The this pink line is the monthly time series of the IAPv4 SST, and the other time series are annual time series of the
different datasets. The vertical scales are different for the different panels. All the anomaly time series are relative to a 2006–2020 baseline.

and the most physically plausible time series from this noise
level perspective. In addition, the Lyman and Johnson (2013)
data suggest a yearly variance ratio of 1.3 between annual
RFROM and CERES data from 2008 to 2021. Using the
yearly mean OHC trend (OHCT) indicates a ratio of 1.4 in
the same period between IAPv4 and CERES, which is simi-
lar to that of RFROM.

3.5 Regional OHC trends

For 1960–2023 (Fig. 13), the IAPv4 trends are slightly lower
than IAPv3 in the Pacific Ocean but are slightly higher in
the Atlantic Ocean (Fig. 13), with more than 95 % of the
ocean area showing a warming trend. The polar regions also
show remarkable differences compared to IAPv3 (Sect. 3.1),
mainly because of the change in covariance, which im-
proves the spatial reconstruction in the polar regions. IAPv4
shows stronger warming near the boundary current regions,
mainly because of the improved QC that does not flag high-
temperature anomalies. Nevertheless, the pattern of trends
is very similar in the two versions of the data, indicating
the robustness of the ocean warming pattern. The Atlantic

Table 2. Characteristics of the month-to-month variation of the
OHCT compared with CERES. Comparisons of different ocean
gridded products: the monthly standard deviation (SD) of the
monthly rates of change in OHC (W m−2); the corresponding stan-
dard deviation of the 12-month running mean (13 points are used,
with start points and end points weighted by 0.5); and the linear
trend with 90 % confidence limits (W m−2) (global surface area).
The values are for 2005–2022. The OHCT for CERES is calculated
as the mean of the net TOA radiation flux from 2005 to 2022 multi-
plied by 0.9, assuming 90 % of the EEI to be stored in the ocean.

Source SD SD OHCT
(12-month) (2005–2022)

IAPv4 3.52 0.75 0.66± 0.04
IAPv3 3.52 0.79 0.56± 0.03
ISH 7.49 1.35 0.63± 0.05
EN4 8.79 1.03 0.67± 0.04
BOA 10.05 1.16 0.60± 0.07
NECI 11.29 1.11 0.61± 0.07
SIO 10.00 1.24 0.56± 0.08
CERES 0.67 0.33 0.77
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Figure 10. Spatial maps of the SST long-term trends during the 1955–2022 period. (a) IAPv4, (b) IAPv3, (c) ERSST5, (d) HadISST,
(e) COBE1, and (f) COBE2 (10−2 °C yr−1). The contour line interval is 0.5×10−2 °C yr−1. The stippling indicates the regions with signals
that are not statistically significant (90 % CI).

Ocean (within 50° S–50° N) and the Southern Ocean store
more heat than the other basins, which is probably associ-
ated with the deep convection and subduction processes ef-
fectively transporting heat into the deep layers (Cheng et al.,
2022a). The cold spots mainly include the northwestern Pa-
cific and subpolar North Atlantic Ocean. In particular, the so-
called “warming hole” in the subpolar North Atlantic Ocean
can extend to at least 800 m and is responsible for the de-
creased OHC in this region. Some studies have linked this
fingerprint to the slowdown of the Atlantic Meridional Over-
turning Circulation (AMOC) (Rahmstorf et al., 2015; Caesar
et al., 2018).

For 1991–2023 (Fig. 14), the IAPv4 and IAPv3 pattern is
also consistent. A trend pattern mimicking a negative Pacific
decadal variability (PDV) phase appears in the Pacific for
the 0–300, 0–700, and 0–2000 m OHCs. There is a contrast
between the warming trend of the tropical western Pacific
and the cooling trend of the tropical eastern Pacific. Some
studies have linked this pattern to the natural climate mode
(PDV) (England et al., 2014), but some suggest that it is a

forced change driven by greenhouse gas increases (Fasullo
and Nerem, 2018; Mann, 2021). Below 700 m, the 1960–
2023 and 1991–2023 trend patterns are similar because deep-
ocean warming mainly occurs after 1990. The subtropical
western Pacific and southern Indian oceans show cooling,
which is likely related to the subtropical gyre intensification
but a spin-down in the North Pacific Ocean (Zhang et al.,
2014).

Furthermore, the reconstruction of IAPv4 is compared
with completely independent observations in the central
Labrador Sea (see the Data and methods section for details;
Yashayaev, 2007; Yashayaev and Loder, 2017) for the 200–
2000 m mean temperature time series (Fig. 15). The direct
observations show a substantial decadal variation in the cen-
tral Labrador Sea, with negative anomalies for 1970–2003
and 2015–2020 and positive anomalies for 1963–1972 and
2004–2014. Reconstructed based on data from the WOD,
IAPv4 can represent this decadal variability well. The largest
difference occurs in 1989, where direct observations show
a nearly zero anomaly, while IAPv4 shows a big negative
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Figure 11. Global OHC time series for 0–700 (a), 700–2000 (b), 0–2000 (c), and 2000–6000 m (d). All time series are relative to a 1981–
2010 baseline. The shading indicates the 90 % confidence interval. The vertical scales are different for the different panels (ZJ).

Figure 12. A comparison of annual mean 0–2000 m OHC time se-
ries from different data products. Solid and dashed lines represent
direct and indirect estimates, respectively, and shading indicates the
IAPv4 90 % confidence interval (pink shading). OHC anomalies are
relative to a 2005–2019 baseline. The plot is updated from Cheng
et al. (2022a).

anomaly. This difference is likely caused by using a time
window in IAPv4, which has a smoothing effect on the time
series.

3.6 Ocean meridional heat transport

The ocean meridional heat transport (MHT) is fundamen-
tal to maintaining Earth’s energy balance. Thus, its change
and stability are key to the climate system and its variability.
Direct observations of the ocean MHT are conducted only
in several cross-basin sections such as RAPID. The ocean
MHT can be derived from the OHC and air–sea heat flux data
(Trenberth and Fasullo, 2017; Trenberth et al., 2019) as fol-
lows: we integrate the OHCT, air–sea heat flux, and heat gain
or loss by sea ice changes from the North Pole southward in
the Atlantic Ocean and solve the energy budget equation. The
residual at each latitude is the MHT, i.e.,

MHT(ϕ)=
∫ 90

ϕ

[
Fs+

dOHC
dt
+Qice

]
a dϕ, (3)

where a is Earth’s radius, ϕ is the latitude, Fs is the net sur-
face heat flux, and Qice is the heat inferred from the changes
in sea ice mass. Consistent with Trenberth et al. (2019),
this study uses the sea ice volume data from the Pan-
Arctic Ice Ocean Modeling and Assimilation System (PI-
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Figure 13. Spatial pattern of the OHC trends for 0–300, 0–700, 0–2000 m, and 700–2000 m from 1960 to 2023. The left panels show IAPv3,
the middle panels show IAPv4, and the right panels show the differences between IAPv4 and IAPv3.

OMAS; Schweiger et al., 2011) and assumes a constant la-
tent heat of fusion of 3.34× 105 J kg−1 and a density of ice
of 900 kg m−3. Both Fs and OHCT are important for the
MHT derivation: the integrated air–sea heat flux dominates
the magnitude of the MHT, while the OHCT dominates the
variability of the MHT (Liu et al., 2020).

The comparison between OHC-derived MHT and RAPID
data allows one to check the consistency among the vari-
ous observations. Here, we calculate the Atlantic MHT from
April 2004 to December 2022 using IAPv4 OHC and air–
sea net heat flux data (FS) derived from top-of-atmosphere
(TOA) net energy flux and atmospheric heat divergence
(Fig. 16). FS is an average of three available products, i.e.,
MAYER2021 (Mayer et al., 2021), TF2018 (Trenberth et
al., 2019), and Deep-C Version 5.0 from Reading Univer-
sity (Liu and Allan, 2022; Liu et al., 2020). The data are ad-
justed following the Trenberth et al. (2019) approach to en-
sure zero MHT on the Antarctic coast. The inferred time se-

ries of MHT at 26.5° N from the other OHC datasets (IAPv3,
Ishii, and EN4) are also shown in Fig. 16, compared with the
RAPID observations (Johns et al., 2023).

The inferred long-term mean (April 2004–
December 2022) MHT from the updated IAPv4 OHCT
(solid red line with a mean transport of 1.18 PW) is identical
to the RAPID observation of 1.18± 0.19 PW. Different
OHC datasets cause different interannual variability in the
MHT. It is shown that, from 2008 to 2020, the RAPID MHT
agrees best with the IAPv4 estimates, with a correlation of
0.52. By comparison, the correlation coefficients between
RAPID and IAPv3, EN4, and Ishii are 0.33, 0.51, and 0.49,
respectively. Over the entire period of 2005∼ 2022, IAPv4
lies mostly within the RAPID uncertainty envelope.
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Figure 14. Spatial pattern of the OHC trends for 0–300, 0–700, 0–2000, and 700–2000 m from 1991 to 2023. The left panels show IAPv3,
the middle panels show IAPv4, and the right panels show the differences between IAPv4 and IAPv3.

Figure 15. Comparison of IAPv4 temperature anomaly data with
independent observations in the central Labrador Sea (55–61° N,
304–310° E) from 1960 to 2020. The 200–2000 m averaged temper-
ature anomaly time series is shown, and the baseline is 1960–2020.
The inner box shows the locations of the independent observations
in black dots (showing a total of 49 849 profiles).

3.7 Interannual variability

The year-to-year variation of OHC is strongly influenced by
the El Niño–Southern Oscillation (ENSO) from global to re-
gional scales (Cheng et al., 2019; Roemmich and Gilson,
2011). To demonstrate the change in the OHC-associated
ENSO, Fig. 17 shows a Hovmöller diagram of the zonal up-
per 2000 m OHC and its change (time derivative of OHC:
dOHC / dt) in the tropical Pacific Ocean from 1985 to 2023,
compared with the Oceanic Niño Index (ONI). It is evident
that both OHC and OHCT are closely correlated with ENSO.

Before the onset of El Niño events, there is an accumu-
lation of heat (dOHC / dt>0) in the southern and equato-
rial tropical Pacific Ocean region (20° S–5° N). The positive
tropical Pacific dOHC / dt leads the ONI by ∼ 15 months
(with the peak correlation >0.5), making it a precursor of
El Niño (Cane and Zebiak 1985; McPhaden, 2012; Lian et
al., 2023). In contrast, heat is redistributed (dOHC / dt<0)
from the tropical Pacific (20° S–5° N) to the North Pacific
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Figure 16. Derived meridional heat transport at 26.5° N. The 12-
month running mean northward MHT across 26.5° N of the dif-
ferent datasets is compared with the results from the RAPID array
(PW). The error bars for RAPID in grey are 1.64σ .

(5–25° N) during and after El Niño (Cheng et al., 2019),
with a maximum correlation >0.8 at 5 months after the
El Niño peak. The magnitude of the prominent change can
reach up to 50 W m−2 during the 1997–1998 and 2015–2016
extreme El Niño events. For the other moderate El Niño
events, the regional Pacific OHC change varies around 10–
20 W m−2 (Mayer et al., 2018). This typical heat recharge–
discharge paradigm is crucial in ENSO evolution (Jin, 1997).
Correspondingly, the zonal OHC anomalies in the Pacific
Ocean show a warming state (OHC>0) between ∼ 20° N
and ∼ 5° S before the peak of El Niño events (with the peak
correlation >0.7 at 5 months before the El Niño peak), fol-
lowed by a period of cooling (OHC<0) after the peak of El
Niño (with the peak correlation >0.7 at 12 months after the
El Niño peak). These variations are all physically meaning-
ful and indicate that IAPv4 represents regional interannual
variability especially associated with ENSO.

3.8 Ocean and Earth energy budget

The EEI provides a critical quantifier of Earth’s energy flow
and climate change. It is also policy-relevant because it
clearly shows the need to stabilize the climate system. With
new T/OHC data, we reassess Earth’s energy inventory since
1960. The land, atmosphere, and ice contributions are from
the estimates obtained by von Schuckmann et al. (2023) for
1960–2023 and by Trenberth (2022) for 2015–2019.

It is evident that Earth has been accumulating heat since
1960. Earth’s heat inventory is 524.0± 95.6 ZJ from 1960 to
2023 and 260.3± 25.3 ZJ from 2005 to 2023 based on our
data. The upper 700 m ocean, 700–2000 m ocean, 2000 m
bottom, land, ice, and atmosphere contribute 59.3 %, 24.1 %,
7.4 %, 5.2 %, 2.9 %, and 1.1 %, respectively, of the total EEI
since 1960. The relative contribution has changed with time;
for instance, since 1993, the contributions are 53.7 % (0–
700 m ocean), 24.8 % (700–2000 m ocean), 12.8 % (2000 m–
ocean bottom), 4.1 % (land), 3.2 % (ice), and 1.4 % (atmo-
sphere). The land and ice contributions have increased in
the last two decades because of accelerated land and sea
ice melting (Comiso et al., 2017; Hugonnet et al., 2021;

Minière et al., 2024). From 2005 to 2019, more reliable land–
atmosphere–ice datasets in Trenberth (2022) suggest a non-
ocean contribution of 13.4 ZJ. Combined with the results for
OHC with IAPv4, the accumulated EEI is 182.5 ZJ with an
ocean heat uptake of 169.1± 19.7 for 2005–2019, consistent
with the value of 186.4± 23.1 ZJ using the non-ocean con-
tribution data from von Schuckmann et al. (2023).

The derived energy inventory has been compared with
satellite-based observations at the TOA. Two comparisons
are made: (1) integrate the TOA EEI to compare it with the
energy inventory (Fig. 18) and (2) take the time derivative of
the annual OHC to compare it with the TOA net radiation
flux (Fig. 19). Here we always assume that 90 % of the EEI
is stored in the ocean and leads to an increase in OHC (Tren-
berth et al., 2009; Hansen et al., 2011; von Schuckmann et
al., 2020; Hakuba et al., 2021).

The first approach avoids calculating the time deriva-
tive of OHC, which exacerbates noise in the time series.
The net CERES change has been adjusted to 0.71 W m−2

within 2005–2015. Here we adjust the trend of the integrated
CERES data to the IAPv4 OHC trend to make it consistent,
and then we compare the variability difference (Fig. 18).
The root mean square errors (RMSEs) between integrated
Deep-C and IAPv4 are 17.9 and 15.5 ZJ between integrated
CERES and IAPv4. The comparison also indicates that the
heat inventory has a stronger heat increase from 2000 to 2005
but too slow heat accumulation from 2005 to 2010 compared
with integrated Deep-C and CERES (Fig. 18). This might be
due to the data gaps before the Argo network was fully es-
tablished. Integrated Deep-C and CERES show stronger heat
accumulation since ∼ 2015 than the heat inventory, which
is probably associated with the accelerated abyssal ocean
warming found by the Deep Argo program (Johnson et al.,
2019). Furthermore, IAPv4 OHC shows a slightly higher
(but consistent within the uncertainty range) Earth heat up-
take compared to the von Schuckmann et al. (2023) results of
76.2 ZJ from 1960 to 2020, mainly because of the correction
of Nansen bottle biases and the updates of XBT and MBT
biases in IAPv4 data.

The second approach to compare OHC with satellite-based
EEI is to calculate the time derivative of OHC. To suppress
the month-to-month noises, we estimate annual OHC based
on 1-year data centered on June (Fig. 19a) and December
(Fig. 19b) separately, and then dOHC / dt is calculated with
a forward-derivative approach based on the annual time se-
ries. The annual mean of the EEI time series is also used
here for comparison (Fig. 19). The IAPv4 and CERES esti-
mates show interannual variability with a correlation of 0.44
(the correlation is statistically significant at the 90 % confi-
dence interval, where autocorrelation reduction is taken into
account). The higher correlation of IAPv4 versus CERES
than IAPv3 increases confidence in the new data (correla-
tion of only ∼ 0.15 for IAPv3). The trend of dOHC / dt is
0.36 W m−2 per decade from 2005 to 2023, within the uncer-
tainty range of the CERES record (0.50± 0.47 W m−2 per
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Figure 17. Hovmöller diagrams illustrating the zonal mean (a) upper 2000 m dOHC / dt (W m−2) and (b) OHC (ZJ) in each 1° latitude
band within 25° S ∼ 25° N in the tropical Pacific basin using IAPv4 data. The ONI is shown in green. Vertical dashed lines denote the peak
time of each Niño event.

decade in Loeb et al., 2021). However, it should be noted
that the calculation of dOHC / dt is sensitive to the choices
of methods, data products, and time periods because of the
noises and variability in the OHC time series. A careful anal-
ysis of the trend of dOHC / dt (and EEI) is a research priority.

3.9 Steric sea level and sea level budget

The updated IAPv4 data are used to assess the sea level bud-
get for 1960–2023 in combination with the other data, includ-
ing IAP salinity data, glaciers, and Greenland and Antarctic
ice sheet mass loss from Frederikse et al. (2020) and the al-
timetry sea level record (see the Data and methods section
for details). From 1960 to 2023, the observed global mean
sea level (GMSL) rise was 2.07± 0.55 mm yr−1 (Frederikse
et al., 2020), which was derived by combining tide gauge ob-
servations with estimates of local vertical land motion from
permanent Global Positioning System stations and the dif-
ference between tide gauge and satellite altimetry observa-
tions (Frederikse et al., 2018). During the same period, the
sum of the contributors (glaciers, Greenland and Antarctic
ice sheets, land water storage, and steric sea level) yields a
mean sea level rise of 1.87± 0.42 mm yr−1. Thus, the sea
level budget can be closed within a 90 % confidence inter-
val. This updated estimate indicates that the steric sea level,
Antarctic ice sheet, Greenland ice sheet, glaciers, and land
water storage contribute to the total sea level with 47.3 %,

8.6 %, 18.0 %, 29.1 %, and −3.1 %, respectively, for 1960–
2023.

To isolate the contribution of IAPv4 to the sea level bud-
get, we replace the steric sea level estimate in Frederikse et
al. (2020) with IAPv4 and reassess the sea level budget for
1960–2018, 1993–2018, and 2005–2018, and the other com-
ponents are identical to Frederikse et al. (2020). Two metrics
are used to quantify the performance of the sea level budget
closure: the mean residual error and the temporal RMSE be-
tween the observed GMSL and the sum of the contributions.
We find that the residual sea level budgets based on IAPv4
are 0.20± 0.53, 0.11± 0.34, and 0.47± 0.56 mm yr−1 for
1960–2018, 1993–2018, and 2005–2018, respectively. These
mean residual errors are all smaller than presented in
Frederikse et al. (2020), which showed residual errors of
0.29± 0.57, 0.20± 0.34, and 0.54± 0.58 mm yr−1 for 1960–
2018, 1993–2018, and 2005–2018, respectively. The RMSEs
using IAPv4 (or using the steric sea level in Frederikse et al.,
2020) are 5.59 (5.35), 4.89 (5.33), and 4.21 (4.51) mm, re-
spectively, for the three abovementioned periods. Therefore,
both metrics show that IAPv4 data improve the sea level bud-
get in three typical periods.

A similar test is done with the IPCC-AR6 sea level bud-
get estimate (Gulev et al., 2021): the thermosteric sea level
estimate in IPCC-AR6 is replaced with IAPv4, and the sea
level budget is reassessed for 1993–2018. IAPv4 suggests a
larger thermosteric sea level rise of 1.43± 0.16 for 1993–

https://doi.org/10.5194/essd-16-3517-2024 Earth Syst. Sci. Data, 16, 3517–3546, 2024



3538 L. Cheng et al.: IAPv4 ocean temperature and ocean heat content gridded dataset

Figure 18. The global energy inventory from 1960 to 2023. The at-
mosphere, land, and ice heat inventory is from von Schuckmann et
al. (2023). Integrated EEIs from the Deep-C (1985–2018) (Liu and
Allan, 2022) and CERES (2001–2023) (Loeb et al., 2021) datasets
are presented with dashed lines for comparison, with the trend ad-
justed to the IAP estimate to account for the arbitrary choice of
integration constant. The 95 % confidence interval is presented as-
suming the independency of different budget components.

Figure 19. Annual ocean heating rate (derived from IAPv4 data, in
red) compared with CERES data (grey line for monthly data, black
line for annual mean data). Both annual OHC and CERES EEI data
are centered on June. The long-term mean is removed for all the
time series.

2018 than the IPCC (1.31± 0.36 mm yr−1) from 1993 to
2018. Replacing the thermosteric sea level estimate with
IAPv4 reduces the mean residual error from 0.40± 0.57 to
0.28± 0.48 mm yr−1. This suggests that the stronger warm-
ing since 1993 revealed by IAPv4 than assessed in IPCC-
AR6 (Gulve et al., 2021) seems more realistic.

After 2002, the GRACE satellite supported the direct ob-
servation of the barystatic sea level, which is the sum of the
sea level change due to the land water storage, the Antarctic
ice sheet, the Greenland ice sheet, and glaciers. The sea level

budget can be obtained by comparing altimetry-based GMSL
with the barystatic sea level observed by GRACE and the
steric sea level. It is evident that the sea level budget can be
closed between 2002 and 2015 with ± 5 mm residual errors
(Fig. 20b). However, after ∼ 2015, the sum of the steric and
barystatic sea levels is smaller than the total sea level rise for
all ocean temperature products. Previous studies attributed
this misclosure to salinity data biases (Barnoud et al., 2021),
altimetry data errors (Barnoud et al., 2023), and GRACE data
errors (Wang et al., 2021). The steric sea level inferred from
IAPv4 showed a lower residual (∼ 5 mm) between 2005 and
2023 than ISH and EN4 data (10∼ 20 mm), indicating that
the temperature data might be partly responsible for lack of
closure of the sea level budget since ∼ 2015. This suggests
again that the stronger warming in recent years, as indicated
by IAPv4, is more realistic. As discussed in Sect. 3.4, the QC
is mainly responsible for the increased warming of IAPv4
compared with IAPv3 since ∼ 2015 (Fig. 11).

Many traditional QC procedures use a static climatologi-
cal range check to filter out outliers, which does not account
for the increase in extreme events with climate change and
removes too many extreme (positive) values during the re-
cent period. Thus, we strongly recommend that data product
generation groups revisit the QC procedure. Furthermore, as
the stronger long-term OHC trends since ∼ 1960 in IAPv4
than in IAPv3 are mainly attributed to the bias corrections for
Nansen bottle, MBT, and XBT data, it is also recommended
that international groups revisit the biases in ocean observa-
tions.

4 Code and data availability

The IAPv4 global ocean temperature product is available
at https://doi.org/10.12157/IOCAS.20240117.002 (Cheng et
al., 2024a) and http://www.ocean.iap.ac.cn/, last access:
1 May 2024.

The IAPv4 global ocean heat content product is available
at https://doi.org/10.12157/IOCAS.20240117.001 (Cheng et
al., 2024b) and http://www.ocean.iap.ac.cn/.

The code used in this paper includes data quality control
bias corrections, and the resultant dataset is available at http:
//www.ocean.iap.ac.cn/.

The data used in this study (but not generated by this
work) are listed below. The IAP data are available at
http://www.ocean.iap.ac.cn/. The NCEI/NOAA data are
available at https://www.ncei.noaa.gov/products/ (Levitus
et al., 2012, NOAA National Centers for Environmental
Information, last access: 15 May 2024). The ISH data
are available at https://www.data.jma.go.jp/gmd/kaiyou/
english/ohc/ohc_global_en.html (Ishii et al., 2017, last
access: 10 May 2024). The EN4 data are available at
https://www.metoffice.gov.uk/hadobs/en4/index.html (Good
et al., 2013; last access: 10 May 2024). For SSTs, there are
ERSSTv5 (https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/
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Figure 20. (a) The sea level budget from 1960 to 2023: observed
GMSL for 1960–2023 and the individual contributions from land
water storage, Antarctica, Greenland, and glaciers (Frederikse et
al., 2020). The budget is relative to a 1960 baseline. Here, the land
water storage and glacier data are through 2018, and a linear ex-
trapolation is made for 2019–2023. Antarctic ice sheet and Green-
land ice sheet changes are estimated by GRACE after 2018. Tide
gauges after 2018 are updated by altimetry. The altimetry sea level
is shown in red dashed line for comparison. (b) Sea level budget
residual time series since 2005: the residual of the GMSL minus
the barystatic and steric sea level. The seasonal cycle is reduced
based on the 2005–2015 climatology. Six-month running means are
shown here to reduce the noise.

v5/netcdf/, Huang et al., 2017, last access: 10 January 2024),
COBE2 (https://psl.noaa.gov/data/gridded/data.cobe2.html,
Hirahara et al., 2014, last access: 10 January 2014), and
HadISST (https://www.metoffice.gov.uk/hadobs/hadisst/,
Rayner et al., 2003, last access: 10 January 2024).
For sea level data, there are AVISO+GMSL
(https://www.aviso.altimetry.fr/en/data/, last access:
10 July 2023), JPL GRACE (https://grace.jpl.nasa.gov/
data/get-data/jpl_global_mascons/, Watkins et al., 2015,
last access: 3 August 2023), and Frederikse et al. (2020)
(https://zenodo.org/records/3862995, last access: 2 Febru-
ary 2023). The data in von Schuckmann et al. (2023)

are available at https://www.wdc-climate.de/ui/entry?
acronym=GCOS_EHI_1960-2020 (von Schuckmann et
al., 2022; last access: 2 February 2023). Argo data were
collected and made freely available by the International
Argo Program and the national programs that contribute to
it (https://argo.ucsd.edu, https://www.ocean-ops.org, Argo,
2000; last access: 1 December 2023). DEEP-C data are
available at https://doi.org/10.17864/1947.000347 (Liu and
Allan, 2022; last access: 20 April 2024). CERES data are
available at https://asdc.larc.nasa.gov/project/CERES (Loeb
et al., 2021; last access: 20 April 2024). GIOMAS ice
volume data are available at https://psc.apl.washington.edu/
zhang/Global_seaice/data.html (Zhang and Rothrock, 2003;
last access: 20 April 2024). SCRIPPS data are available at
http://sio-argo.ucsd.edu/RG_Climatology.html (Roemmich
and Gilson, 2009; last access: 10 May 2024). BOA data are
available at https://argo.ucsd.edu/data/argo-data-products/
(Li et al., 2017; last access: 10 May 2024).

5 Summary and discussion

This paper introduces a new version of the ocean tempera-
ture and ocean heat content gridded products and describes
the data source and data processing techniques in detail. The
key technical advances include the new QC, new or updated
XBT/MBT/bottle/APB bias corrections, a new ocean tem-
perature climatology, an improved mapping approach, and
grid cell ocean volume corrections. These data and techni-
cal advances allow a better estimate of long-term ocean tem-
perature and heat content changes since the mid-1950s from
the sea surface down to 2000 m. We show that the new data
product could better close the sea level and energy budgets
than IAPv3. For rates of change, compared with CERES,
IAPv4 also shows a better correlation from 2005 to 2023 than
IAPv3.

Despite several marked improvements, issues needing fur-
ther investigation remain. First, although interannual and
decadal-scale changes in satellite-based EEI and observa-
tional OHC are generally consistent, a mismatch remains be-
tween EEI and OHC for their month-to-month variation, as
the monthly variation of OHC is still much larger than im-
plied by EEI. There are several possibilities, in our opinion:
first, there is substantial monthly heat storage and release for
land and ice, which needs to be accurately quantified; sec-
ond, the accuracy of OHC estimates on a monthly basis still
needs to be improved for month-to-month variation because
of the limited data coverage; and third, the EEI observed by
CERES also suffers from sampling biases on a monthly ba-
sis (Loeb et al., 2009). Thus, a better understanding of the
monthly variation of OHC and EEI is still a research priority.
Besides, the failure to close the 2015–2023 sea level bud-
get indicates that the underlying data still have bias problems
that need to be explored and resolved.
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Second, the application of CODC-QC in IAPv4 leads to a
stronger ocean warming rate in the past decade than WOD-
QC in IAPv3 because WOD-QC removes more positive tem-
perature anomalies than CODC-QC. This could imply that
the rate of increase in OHC is still slightly underestimated
and deserves an in-depth investigation. Several fundamental
questions must be answered: first, are there still real tempera-
ture extremes being removed by CODC-QC, such as in small
warm or cold eddies? Are the extremes well sampled by the
current observation system? If not, what is the impact? More-
over, it is clear that the high latitudes where sea ice occurs are
not well sampled and need more attention.

Third, during the development of the data product, we dis-
covered that many metadata related to the profiles in the
WOD are missing and that many existing metadata are in-
correct, also giving rise to duplicate profiles and putting a
strain on the overall quality of a database of oceanic ob-
servations. More than ever, long-term concerted efforts are
needed to eliminate duplicate profiles and identify and cor-
rect missing metadata using statistical methods, expert con-
trol, or machine learning techniques. For example, the Inter-
national Quality-Controlled Ocean Database (IQuOD) group
is coordinating some activities related to data processing
techniques, uncertainty quantification, and improvement of
the overall quality of ocean data (Cowley et al., 2021).

Fourth, the deep-ocean changes below 2000 m are esti-
mated based on the currently available data, including data
from hydrological sections and Deep Argo. The IAP map-
ping technique is applied. Because of the lack of indepen-
dent observations with global ocean coverage, evaluating the
deep-ocean change estimate is still dicey. Thus, the below-
2000 m estimate should be used with caution, as also in-
dicated in previous estimates (Purkey and Johnson, 2010;
Desbruyères et al., 2017; Good et al., 2013). A community-
agreed evaluation approach for the deep-ocean changes is
critically needed. Other mapping techniques deserving fur-
ther investigation include interpolation on isopycnal surfaces
(Palmer and Haines, 2009).

Furthermore, the quantification of uncertainty for in situ
measurements, gridded T/OHC values, and the global OHC
estimates needs to be improved. IAPv4 only accounts for
the instrumental error and the sampling or mapping error. In
the future, comprehensive quantification of other uncertainty
sources will be made, including the choice of climatology,
vertical interpolation, or XBT/MBT/APB/bottle corrections.
It is also necessary to analyze the correlation between these
error sources. This also helps us to understand regions with
larger uncertainty for OHC estimates, which supports the de-
sign of the global ocean observing system.

Supplement. The supplement related to this article is available
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