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Abstract. Open biomass burning (OBB) significantly affects regional and global air quality, the climate, and
human health. The burning of forests, shrublands, grasslands, peatlands, and croplands influences OBB. A
global emissions inventory based on satellite fire detection enables an accurate estimation of OBB emissions.
In this study, we developed a global high-resolution (1km× 1km) daily OBB emission inventory using the
Chinese Fengyun-3D satellite’s global fire spot monitoring data, satellite-derived biomass data, vegetation-
index-derived spatiotemporally variable combustion efficiencies, and land-type-based emission factors. The
average annual estimated OBB emissions for 2020–2022 were 2586.88 Tg C, 8841.45 Tg CO2, 382.96 Tg
CO, 15.83 Tg CH4, 18.42 Tg NOx , 4.07 Tg SO2, 18.68 Tg particulate organic carbon (OC), 3.77 Tg particu-
late black carbon (BC), 5.24 Tg NH3, 15.85 Tg NO2, 42.46 Tg PM2.5 and 56.03 Tg PM10. Specifically, tak-
ing carbon emissions as an example, the average annual estimated OBBs for 2020–2022 were 72.71 (Bo-
real North America, BONA), 165.73 (Temperate North America, TENA), 34.11 (Central America, CEAM),
42.93 (Northern Hemisphere South America, NHSA), 520.55 (Southern Hemisphere South America, SHSA),
13.02 (Europe, EURO), 8.37 (Middle East, MIDE), 394.25 (Northern Hemisphere Africa, NHAF), 847.03
(Southern Hemisphere Africa, SHAF), 167.35 (Boreal Asia, BOAS), 27.93 (Central Asia, CEAS), 197.29
(Southeast Asia, SEAS), 13.20 (Equatorial Asia; EQAS), and 82.38 (Australia and New Zealand; AUST)
TgCyr−1. Overall, savanna grassland burning contributed the largest proportion of the annual total carbon
emissions (1209.12 TgCyr−1; 46.74 %), followed by woody savanna/shrubs (33.04 %) and tropical forests
(12.11 %). SHAF was found to produce the most carbon emissions globally (847.04 TgCyr−1), followed by
SHSA (525.56 TgCyr−1), NHAF (394.26 Tg Cyr−1), and SEAS (197.30 TgCyr−1). More specifically, savanna
grassland burning was predominant in SHAF (55.00 %, 465.86 TgCyr−1), SHSA (43.39 %, 225.86 TgCyr−1),
and NHAF (76.14 %, 300.21 TgCyr−1), while woody savanna/shrub fires were dominant in SEAS (51.48 %,
101.57 TgC yr−1). Furthermore, carbon emissions exhibited significant seasonal variability, peaking in Septem-
ber 2020 and August of 2021 and 2022, with an average of 441.32 TgCmonth−1, which is substantially higher
than the monthly average of 215.57 TgCmonth−1. Our comprehensive high-resolution inventory of OBB emis-
sions provides valuable insights for enhancing the accuracy of air quality modeling, atmospheric transport, and
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biogeochemical cycle studies. The GEIOBB dataset can be downloaded at http://figshare.com (last access: 30
July 2024) with the following DOI: https://doi.org/10.6084/m9.figshare.24793623.v2 (Liu et al., 2023).

1 Introduction

Open biomass burning (OBB) releases significant amounts
of trace gases (CO, NOx , NMVOC, SO2, and NH3), partic-
ulate matter (PM2.5, PM10), and greenhouse gases (CH4 and
CO2), which are major atmospheric pollutants (Mehmood
et al., 2022) and have profound impacts on the global car-
bon cycle, climate, and air quality, thus exerting a signifi-
cant influence on the global environment and human health
(Wu et al., 2022). The burning of forests, shrublands, grass-
lands, crop residues, and peatland constitutes the major types
of fires worldwide (van der Werf et al., 2017). These open-
burning activities severely affect air quality and ecosystems
(Chen et al., 2017), with high degrees of sporadicity and
spatiotemporal clustering (Liu et al., 2014; Murdiyarso and
Lebel, 2007; Senande-Rivera et al., 2022). In addition, some
regions worldwide are experiencing a notable increase in fire
incidents (Kolden et al., 2024; Richardson et al., 2022), such
as the Amazon rainforest (Pivello, 2011), Australian bush
(Jegasothy et al., 2023), and the United States (You and Xu,
2023), where large-scale fire incidents occur periodically and
frequently (Kolden et al., 2024). Therefore, accurately esti-
mating these emissions is crucial for devising effective envi-
ronmental policies and safeguarding human health and qual-
ity of life, thereby providing significant support for a sustain-
able future.

Previous studies have investigated numerous methods for
estimating biomass-burning emissions (Ito and Penner, 2004;
Wiedinmyer et al., 2006). The burned-area-based fire emis-
sion estimation method, which is based on the burned area,
available biomass fuels burned in the fields, fuel-related com-
bustion efficiency, and emission factors, has demonstrated
good accuracy in quantifying larger fire events. This method
has been widely used in databases such as the Global Fire
Emissions Database (GFED) (van der Werf et al., 2017)
and the Fire INventory from NCAR (FINN) (Wiedinmyer et
al., 2023). However, this method relies heavily on the fire-
detection precision, particularly for small fires. A method
based on fire radiative power (FRP) can enhance the detec-
tion and quantification of small-fire events by measuring the
energy released during combustion (Filizzola et al., 2023).
However, these approaches can overestimate emissions from
localized fire events, which are intense small-scale fires that
may not reflect wider fire activity (Nguyen et al., 2023). For
example, Fire Energetics and Emissions Research (FEER),
based on FRP, reported that the global total particulate mat-
ter emissions were approximately 55 % higher than those es-
timated by the GFED (Ichoku and Ellison, 2014). Similarly,
the Global Fire Assimilation System (GFAS) used estimated

global and regional combustion FRP values, exceeding those
of the GFED by approximately 126 TgCyr−1 during 2003–
2008 (Kaiser et al., 2012). However, all these methods rely
on MODIS active fire products.

Similar to the MERSI-2 instrument, the Fengyun-3D (FY-
3D) satellite has spatial resolutions of 250 m (0.47–0.86 µm
and 10.80–12.02 µm) and 1000 m (1.38–8.55 µm) at the nadir
(Yin et al., 2020), which is more advantageous in detect-
ing and monitoring various active fire events compared with
MODIS (Zheng et al., 2023). Furthermore, the global fire
monitoring (GFR) product of FY-3D employs optimized au-
tomatic identification algorithms for fire spots (Shan and
Zheng, 2022), leading to improved fire point detection ac-
curacy. Thus, it has an overall accuracy rate of 79.43 %
and exclusion omission error accuracy of 88.50 %, surpass-
ing the capabilities of MODIS satellite products (Chen et
al., 2022; Xian et al., 2021) based on field-collected refer-
ences from China throughout 2020. Cross-verification be-
tween MODIS and FY-3D showed the highest consistency
(over 80 %) in Africa and Asia, whereas the consistency in
America, Europe, and Oceania exceeded 70 % (Chen et al.,
2022). The number of fire spots in July, August, and Septem-
ber was higher, with a mean consistency of over 85 % be-
tween MODIS and FY-3D fire products (Chen et al., 2022).
Although the Landsat Fire and Thermal Anomaly (LFTA)
product has a finer spatial resolution, its lower temporal res-
olution limits its global coverage to only 16 d; thus, large
numbers of fires with short durations are missed. The shorter
revisit time of FY-3D allows for monitoring more fires last-
ing for 1 d, which are expected to yield reliable estimates of
OBB emissions.

Fuel loading (F ) represents the ground biomass of the
fire-affected pixels. Many studies have adopted a static ap-
proach to F (Chang and Song, 2010; Puliafito et al., 2020;
Shi et al., 2020; Zhou et al., 2017), assigning constant val-
ues based on regional land-cover types. This methodology
overlooks the inherent spatial and temporal variability in F

within each land type, which changes continuously and dy-
namically (Wiedinmyer et al., 2011). The combustion fac-
tor (CF), which denotes the ratio of consumed fuel to total
available fuels, is typically a linear variable within a specific
range when considering the fuel status and humidity condi-
tions (van der Werf et al., 2006; Wiedinmyer et al., 2011).
However, this approach to calculating CF leads to increased
uncertainty in biomass estimation and poor quantification of
the extent of combustion during fire events, thereby affect-
ing OBB emissions assessment (Shi et al., 2020). To address
these issues, this study employed observational and satellite-
based aboveground biomass (AGB) and CF based on time
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series vegetation index data derived from satellite products.
The CF considers moisture-related factors, enabling the cal-
culation of the spatiotemporal variance in combustion effi-
ciency across diverse land types.

This study aimed to develop a high-resolution daily OBB
emissions inventory – including carbon (C), carbon dioxide
(CO2), carbon monoxide (CO), methane (CH4), nitrogen ox-
ides (NOx), sulfur dioxide (SO2), particulate organic carbon
(OC), particulate black carbon (BC), ammonia (NH3), nitro-
gen dioxide (NO2), PM2.5, and PM10 – and analyze the var-
ious types of fire events along with their emission patterns
across 14 distinct regions. To estimate the OBB emissions
from forests, savannas/shrublands, grasslands, and peatlands,
we utilized the updated FY-3D GFR product based on the
continuous spatiotemporal dynamics of AGB, spatially and
temporally variable combustion efficiencies, and emission
factors specific to different land types. Our comprehensive
high-resolution inventory of OBB emissions represents a
valuable asset for applications in air quality modeling, atmo-
spheric transport simulations, and biogeochemical cycling
studies. This provides a robust framework for in-depth un-
derstanding and analysis of the environmental implications
of OBB on a global scale.

2 Materials and methods

The Global Emissions Inventory from Open Biomass Burn-
ing (GEIOBB) (1 km daily) was estimated using the burned
area method based on the framework described by Wiedin-
myer et al. (2006) and Shi et al. (2015). GEIOBB includes
OBB emissions based on burned areas retrieved from active
fire data from the FY-3D satellite, available biomass from
satellite and ground measurements, CF scaled by tree cover
(TC) and the normalized difference vegetation index (NDVI),
and land-cover-based (LC-based) emission factors. GEIOBB
is obtained by calculating the product of the above terms:

Ei(x)= B(x, t)×F (x)×CF(x)×EF(i), (1)

where Ei (g) represents emissions of pollutant type i at lo-
cation x, which is equal to the product of burning area, B

(m2), at time t and location x; biomass F (kgm−2) at loca-
tion x; CF (expressed as a fraction); and the emission factor,
EF (gkg−1), for pollutant type i.

2.1 FY-3D global fire-spot-monitoring-data-based
burned area (B)

The Fengyun-3 series of satellites is a second-generation
Chinese polar-orbiting meteorological satellite system. The
FY-3D satellite was the fourth in the FY-3 series. It was
launched on 15 November 2017 at an altitude of 836 km and
the data became accessible in May 2020 (Li et al., 2017).
FY-3D completes 14 orbital observations of the Earth’s sur-
face on a global scale twice daily. The MERSI-2 instrument

onboard FY-3D was a significant improvement compared
with the MERSI-1 instrument onboard FY-3C, with high on-
board accuracy and lunar calibration capabilities. Compared
with MODIS, FY-3D fire products have been optimized in
terms of auxiliary parameters, fire identification, and re-
identification. First, FY-3D introduces an adaptive thresh-
old using automatic identification algorithms for fire spot de-
tection, which calculates the background temperature as the
mean temperature of all the background pixels within each
3× 3 window. If fewer than 20 % of the pixels are identified
as cloudless, the window size is expanded to 5× 5, continu-
ing up to 51× 51 in order to accommodate more data (Chen
et al., 2022). This approach eliminates the limitations in the
MODIS and Visible Infrared Imaging Radiometer Suite (VI-
IRS) algorithms, which set T4 (4 µm brightness tempera-
tures) to a value greater than fixed 360 K (320 K at night) and
the variable moving window size to a maximum of 21× 21
(Giglio et al., 2016). Second, FY-3D uses a re-identification
index that reflects varying geographical latitudes and under-
lying surface types together with the effects of clouds, wa-
ter, and bare land (Zheng et al., 2020). Based on the initially
identified fire spots, FY-3D employed the re-identification
index to further remove false fire spots at cloud edges, wa-
terbody edges, and other high-reflection underlying surfaces
(Chen et al., 2022). The integration of multiple influencing
factors increases the fire detection accuracy. For example, the
influences of factory thermal anomalies and high reflectance
of photovoltaic power plants are removed. Finally, FY-3D
employs a far-infrared band with a high resolution of 250 m,
which has a higher resolution than MODIS (1 km) (Zheng
et al., 2023). The far-infrared band has a higher sensitivity
to large fires or high-brightness fire events and can distin-
guish between background brightness temperatures (Zheng
and Chen, 2020). These characteristics are essential for the
accurate identification of fire spots, thereby enhancing the
fire detection precision of satellites (Chen et al., 2022). Over-
all, the FY-3D GFR product has an accuracy of 94.01 % glob-
ally, as calculated using fire detection after eliminating er-
rors based on visual checks conducted using SMART (Satel-
lite Monitoring Analyzing and Remote sensing Tools, visual
check) in 2019. It achieves accuracies of 94.61 %, 94.12 %,
90.63 %, 91.76 %, and 92.69 % for southern central Africa,
eastern central South America, Siberia, Australia, and the In-
dochinese Peninsula, respectively (Chen et al., 2022). Specif-
ically, owing to the removal of the underlying surface in-
terference in China, FY-3D achieves 79.43 % and 88.50 %
accuracy (with fire omitted) and accuracy without omission
(misidentified fire) (Chen et al., 2022). These accuracies
were determined by comparing the results of a large-scale
field experiment conducted jointly by the State Grid Cor-
poration of China and China Meteorological Administration
with the GFR product, including both omitted and misidenti-
fied fire (Chen et al., 2022). This comprehensive assessment
took place throughout 2020 across five provinces in China –
Guangdong, Guangxi, Yunnan, Guizhou, and Hainan – uti-
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lizing a combination of real-time satellite data and ground
truth validation to evaluate the suitability of these fire detec-
tion products. These accuracies are significantly higher than
those achieved by MODIS, which are 74.23 % and 79.69 %,
respectively (Chen et al., 2022).

The location, timing, and burned area of the fire events
used in GEIOBB were determined globally using the FY-
3D GFR product (Chen et al., 2022). Processed fire event
detection data are from the Fengyun Satellite Remote Sens-
ing Data Service Network of National Satellite Meteorolog-
ical Centre (http://satellite.nsmc.org.cn/PortalSite/Default.
aspx, last access: 30 July 2024), which estimated the ac-
tual area of fire spots based on radiation in different infrared
channels. When the mid-infrared channel was not saturated,
it was used to estimate the sub-pixel fire spot area and tem-
perature. Otherwise, a far-infrared channel was employed for
the estimation (Zheng and Chen, 2020). These data offer
daily fire detection at a 1 km resolution, including the loca-
tion, time, burned area, and confidence level (Liu and Shi,
2023). Furthermore, multiple counts of the same fire may
have been recorded on a single day, leading to data dupli-
cation. To address this issue, we performed a global identifi-
cation and removed multiple daily detections of the same fire
pixels and data with confidence levels below 20 %. Specifi-
cally, we removed single daily fire detections within a 1 km
radius of another fire detection. Thus, only one fire per 1 km2

of a hotspot could be counted per day and was reset on the
next day (Wiedinmyer et al., 2023).

2.2 Fuel loading (F )

Previous studies based on burned areas have distinguished
F by categorizing it according to regions of different fire
types (Wiedinmyer et al., 2011). The data generated by this
method have some discontinuities, which may lead to large
deviations at the boundaries of different areas; this is unrea-
sonable and does not reflect the spatial distribution pattern
of F . Ground observation data are more accurate and reli-
able, but are limited by the sparse distribution of observation
stations, preventing comprehensive global coverage. In con-
trast, satellite data cover the entire globe and provide world-
wide surface parameters, thereby enabling biomass estima-
tion. However, their accuracy and usability are limited by fac-
tors such as their temporal and spatial resolutions and cloud
cover. Therefore, combining ground observations with satel-
lite data is an effective solution. This fusion method com-
bines the high accuracy of ground observation data with the
wide coverage of satellite data to generate global biomass
products. Using this method, it is possible to overcome the
limitations of using a single data source, thereby enhancing
the accuracy of biomass estimations.

This study used multi-source data, including NDVI, TC,
and AGB, to assess the terrestrial biomass. NDVI data were
obtained using the MODIS combined 16 d NDVI fusion
product, which is available on the Google Earth Engine plat-

form. AGB shows a strong linear correlation with TC and
NDVI (Yao et al., 2017). The TC data were derived from the
MOD44B product (DiMiceli et al., 2022), which is gener-
ated based on MODIS on board the Terra satellite (https://
lpdaac.usgs.gov/products/mod44bv061/, last access: 30 July
2024), which provides a continuous global vegetation field
at 250 m resolution for each year from 2000 to the present.
AGB data were obtained from the Global Aboveground and
Belowground Biomass Carbon Density Maps for the Year
2010 product (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_
id=1763, last access: 30 July 2024), which is provided by
Spawn and Gibbs (2020). This dataset uses thousands of
satellite data points and ground measurements to produce
a biomass map with a 1 km resolution (Spawn and Gibbs,
2020). A combination of 2118 other ground measurements
and lidar data was used to validate observations and showed
that the fused map had a root-mean-square error (RMSE) that
was 15 %–21 % lower than those reported by Saatchi et al.
(2011) and Baccini et al. (2012). We used the AGB for 2010,
annual TC, and NDVI data and linearly stretched the fuel
loading to other years.

F (x, t)=
(

NDVInow+TCnow

NDVI2010+TC2010

)
×AGB, (2)

where NDVInow is the mean value of the month before a
single fire event, NDVI2010 is the mean value of NDVI in
2010, TCnow is the tree cover in the year of the fire incident,
TC2010 is the tree cover in 2010, and AGB is the aboveground
biomass in 2010.

2.3 Combustion factor (CF)

The CF is mainly defined as the percentage of fuel con-
sumed during individual fire events, which primarily de-
pends on the type of fuel and humidity. Typically, the CF
is set as a linear variable within a specific range, which
may lead to biases in emission estimations and generate
significant uncertainties. Although some studies used TC
to quantify CF and explain its spatial and temporal varia-
tions (Bray et al., 2018; Qiu et al., 2016; Wiedinmyer et
al., 2006; Wu et al., 2018), previous research has mainly fo-
cused on areas with herbaceous vegetation cover, where the
TC ranges from 40 % to 60 %. They assumed that the CF
remained consistent across other land types, such as farm-
lands, forests, and grasslands. The fire type at the location
of the fire event has a major influence on OBB. We used
data categorized by the International Geosphere–Biosphere
Programme (IGBP) from the MODIS land-cover type (LCT)
information (Friedl and Sulla-Menashe, 2022) (MCD12Q1;
https://lpdaac.usgs.gov/products/mcd12q1v061/, last access:
30 July 2024). We reclassified the original 17 classifications
into seven categories to better differentiate fire types; grass-
lands and savannas (V1), woody savannas or shrubs (V2),
tropical forests (V3), temperate forests (V4), boreal forests
(V5), temperate evergreen forests (V6), and crops (V7); this
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was to allow for better matching in the calculation and sub-
sequent analysis processes. In GEIOBB, the CF of all fires in
each grid cell was allocated as a function of TC, fire type, and
NDVI (Ito and Penner, 2004). We segmented the reclassifi-
cation results into four categories to calculate the CF. Specif-
ically, we amalgamated the reclassification outcomes of V3,
V4, V5, and V6 into forest types, designated V1 as grassland,
classified V2 as woodland, and categorized V7 as cropland
(the specific classification method is detailed in Table S1 in
the Supplement).

For woodland fires, CF is highly correlated with TC (Ito
and Penner, 2004):

CFwoodland = exp(−0.013×TC). (3)

For grassland fires, a change in the NDVI is usually asso-
ciated with the occurrence of fires, especially in dry sea-
sons or in areas prone to wildfires. Generally, a decrease in
NDVI may indicate deteriorating vegetation health, which in-
creases the risk of fires because dry or withered vegetation is
more prone to burning. We introduced the vegetation condi-
tion index (VCI) to determine the fuel moisture conditions,
which were used to measure the vegetation drought condi-
tions by calculating contemporaneous changes in NDVI as a
metric for assessing the contemporaneous conditions of veg-
etation. We supplemented our research based on Ito and Pen-
ner (2004) by replacing the percentage of green grass from
the total grass with the VCI, which was computed using the
NDVI with a time interval of 16 d at a spatial resolution of
1 km for the period of 2020–2022. In addition, we introduced
a compensatory term to mitigate the impact of tree cover on
grassland fires:

VCI=
NDVInow−NDVImin

NDVImax−NDVImin
, (4)

CFgrassland = (0.9−TC)× (−2.13×VCI+ 1.38)+TC, (5)

where NDVInow is the mean value of the month before a sin-
gle fire event, NDVImax is the maximum value of NDVI for
the same period in the previous 3 years of the fire event, and
NDVImin is the minimum value of NDVI for the same period
in the previous 3 years of the fire event.

For forest fires, we used moisture category factors (MCFs)
to measure forest moisture and conducted an analysis based
on the partitioning of MCF values (0.33 as being very dry, 0.5
as dry, 1 as moderate, 2 as moist, 3 as wet, and 5 as very wet)
provided by Anderson et al. (2004). We used the VCI as a cri-
terion for assessing wetness and dryness and discovered that
it approximately conformed to the power function distribu-
tion characteristics of VCI. Subsequently, a power function
fitting was performed (R2

= 0.94) through which we deter-

mined the CF:

MCF= 0.1759× e3.5181×VCI, (6)

CFforest = (1− e−1)MCF. (7)

Most fires in croplands are artificially active, resulting in full
combustion processes that are not designed for woody fuels.
Therefore, we set the CF for crops to 0.98, which is the upper
limit proposed by Wiedinmyer et al. (2006).

2.4 Emission factor (EF)

EFs are used to convert dry matter burned into trace gas and
aerosol emissions, and this conversion denotes the number
of pollutants released per unit of fuel burned. The measure-
ments of EFs in different regions for grasslands and savan-
nas, woody savannas or shrubs, tropical forests, temperate
forests, temperate evergreen forests, and crops were reviewed
and tabulated by Akagi et al. (2011), whereas those for bo-
real forest fires were obtained from the averages reported by
Akagi et al. (2011) and Urbanski (2014). The EFs for maize,
sugar, and rice crop fires were taken from the averages re-
ported by Akagi et al. (2011), Fang et al. (2017), Liu et al.
(2016), Santiago-De La Rosa et al. (2018), and Stockwell et
al. (2015). The BC EFs of BC for crop fires were sourced
from Kanabkaew and Kim Oanh (2011) and those for wheat
fires were obtained from Cao et al. (2008). In addition, the
emission factors of NO2, PM2.5, and PM10 for the crop fire
were derived from Li et al. (2007) and the EF from the crop
was the average of maize, sugar, rice, and wheat. The EF val-
ues are presented in Table 1.

3 Results and discussions

3.1 Spatial map of OBB emission estimates

We estimated global OBB emissions using GEIOBB, and the
average annual values for 2020–2022 were 2586.88 Tg C,
3.77 Tg BC, 15.83 Tg CH4, 382.96 Tg CO, 8841.45 Tg CO2,
5.24 Tg NH3, 15.85 Tg NO2, 18.42 Tg NOx , 18.68 Tg OC,
56.03 Tg PM10, 42.46 Tg PM2.5, and 4.07 Tg SO2 (Table 2).
Taking carbon as an example, the annual carbon emissions
from the OBB were estimated for the period 2020–2022
(Fig. 1) and the total OBB emissions reached 7760.63 Tg C.
The average annual carbon emissions during this period were
2586.88 Tg. Overall, clear spatial variations in the OBB car-
bon emissions were observed across Africa and certain re-
gions of the Americas and Asia. In Central and South Amer-
ica, elevated emissions were observed in central and north-
eastern Brazil, northern Bolivia, northern Paraguay, eastern
Mexico, and Honduras. In Africa, substantial OBB emissions
originate from central Africa (excluding the Democratic Re-
public of the Congo), the northern regions of west Africa, and
the southern regions of east Africa, where most 1km× 1km
grid cells exhibit annual average carbon emissions exceed-
ing 50 gCm−2. Elevated carbon emissions were observed
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Table 1. Emission factor (in gkg−1) of different species.

Species Grasslands Woody Tropical Temperate Boreal Temperate Crop
and savannas forests forests forests evergreen

savannas or shrubs forests

Maize Sugar Rice Wheat

C 488.31 489.41 491.77 468.31 478.88 493.18 687.09 323.35 368.04 429.17
CO2 1686a 1681a 1643a 1510a 1565b 1623a 2327c 1130c 1177c 1470e

CO 63.00a 67.00a 93.00a 122.00a 111.00b 112.00a 114.70c 34.70c 93.00c 60.00e

CH4 2.00a 3.00a 5.10a 5.61a 6.00b 3.40a 4.40c 0.40c 9.59c 3.40e

NOx 3.90a 3.65a 2.60a 1.04a 0.95b 1.96a 4.30c 2.60c 2.28c 3.30e

SO2 0.90a 0.68a 0.40a 1.10a 1.00b 1.10a 0.44c 0.22c 0.18c 0.85e

OC 2.60a 3.70a 4.70a 7.60a 7.80b 7.60a 2.25c 3.30c 2.99c 3.90d

BC 0.37a 1.31a 0.52a 0.56a 0.20b 0.56a 0.78d 0.82d 0.52d 0.52d

NH3 0.56a 1.20a 1.30a 2.47a 1.80b 1.17a 0.68c 1.00c 4.10c 0.37e

NO2 3.22a 2.58a 3.60a 2.34a 0.63b 2.34a 2.99f

PM2.5 7.17a 7.10a 9.90a 15.00a 18.40b 17.90a 6.43f

PM10 7.20a 11.4a 18.50a 16.97a 18.40b 18.40a 7.02f

All values of C were calculated using CO2, CO, and CH4 values. a Denotes the average value from Akagi et al. (2011). b Denotes the average from Akagi et al. (2011)
and Urbanski (2014). c Denotes the average from Akagi et al. (2011), Fang et al. (2017), Liu et al. (2016), Santiago-De La Rosa et al. (2018), and Stockwell et al.
(2015). d From Kanabkaew and Kim Oanh (2011). e From Cao et al. (2008). f From Li et al. (2007).

in Southeast Asia (Indochinese Peninsula), with significant
emissions detected in western and eastern Myanmar, north-
ern Laos, eastern Cambodia, southern Nepal, and parts of
northern India. Notable carbon emissions were also observed
in Equatorial Asia, south Sumatra, south Kalimantan, and
southern Papua New Guinea.

We divided the world into 14 regions for analysis and dis-
cussion; the geographical regions were the same as those
used by van der Werf et al. (2017) (Fig. 2a). As delineated by
the reclassification in Fig. 2b, savanna grasslands emerged as
the predominant LCT worldwide, encompassing 53.30 % of
the total area. This type primarily occurs in South America,
Africa, and Asia. Following closely is the woody savanna,
accounting for 19.74 % of the global coverage. They are pre-
dominantly situated in Boreal Asia, Australia, selected areas
of southern Africa, and parts of North America. The third
most prevalent type was tropical forest, comprising 9.03 %
of the total area, which is mainly distributed in South Amer-
ica, particularly within the Amazon rainforest, regions adja-
cent to the African Equator, and Southeast Asia. Other LCTs,
such as temperate forest, boreal forest, temperate evergreen
forest, and crops, are less extensively spread and exhibit a
more dispersed distribution.

This study then quantified the estimated global average
annual OBB carbon emissions from different regions and
fire types during 2020–2022 (Table 3). Southern Hemisphere
Africa (SHAF) was found to be the primary source of global
OBB carbon emissions (847.04 Tg; 32.74 %); this trend also
held true for other pollutants. Southern Hemisphere South
America (SHSA) and Northern Hemisphere Africa (NHAF)
ranked second and third, accounting for 20.12 % (520.55 Tg)

and 15.24 % (394.26 Tg), respectively. The contributions of
each fire type to the global OBB carbon emissions were then
quantified. Savanna grasslands were the largest contributor
(1209.12 Tg; 46.74 %), followed by woody savanna/shrubs
(854.71 Tg; 33.04 %), tropical forest (313.32 Tg; 12.11 %),
temperate forest (92.65 Tg; 3.58 %), crop (58.06 Tg; 2.24 %),
temperate evergreen forest (41.65 Tg; 1.61 %), and boreal
forest (17.37 Tg; 0.67 %). According to GFED4.1s, the an-
nual average carbon emissions from wildfires in SHAF,
SHSA, and NHAF during 2020–2022 were 1271.63 Tgyr−1,
accounting for approximately 64.55 % of the global total
OBB carbon emissions. Their research findings are similar to
the results of this study, which recorded 1761.84 Tg, equiva-
lent to 68.10 % of the total.

Specifically, the contributions of the seven fire types to
OBB carbon emissions varied dramatically across continents
(van der Werf et al., 2010). In SHAF, the primary sources
of OBB were savanna grasslands and woody savanna or
shrubs, contributing 465.85 (54.99 %) and 324.08 Tgyr−1

(38.26 %), respectively, which is consistent with Nguyen et
al. (2023). Unlike in SHAF, OBB in SHSA primarily orig-
inated from savanna grasslands and tropical forests (Shi et
al., 2015), contributing 225.86 (43.38 %) and 177.17 Tgyr−1

(34.03 %) to the region’s carbon emissions, respectively. This
variation could be associated with the ecological and cli-
matic conditions unique to each region (Sahu and Sheel,
2014; Santana et al., 2016). South America hosts the world’s
largest rainforests and is known for its rich biodiversity
and biomass (Fagua and Ramsey, 2019). However, they are
severely threatened by human-induced deforestation and for-
est fires (Chen et al., 2013). Studies indicate that forest fires
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Table 2. Global OBB annual emissions and region-specific average annual emissions during 2020–2022 (in Tgspeciesyr−1).

C BC CH4 CO CO2 NH3 NO2 NOx OC PM10 PM2.5 SO2

2020 2861.05 4.09 17.39 423.12 9777.79 5.76 17.58 20.37 20.64 61.59 47.18 4.54
2021 2991.16 4.52 18.22 439.67 10 226.55 6.11 18.17 21.36 21.64 64.76 48.89 4.70
2022 1908.42 2.69 11.87 283.09 6520.04 3.87 11.82 13.53 13.74 41.76 31.31 2.97

Average 2586.88 3.77 15.83 381.96 8841.46 5.24 15.85 18.42 18.68 56.03 42.46 4.07

BONA 72.71 0.16 0.49 10.92 248.08 0.18 0.36 0.49 0.63 1.80 1.29 0.11
TENA 165.73 0.30 1.02 26.14 563.78 0.38 0.92 1.11 1.45 3.98 3.18 0.28
CEAM 34.11 0.06 0.23 5.21 116.26 0.08 0.20 0.23 0.27 0.81 0.56 0.05
NHSA 42.93 0.06 0.28 6.42 146.58 0.08 0.28 0.30 0.31 1.01 0.70 0.06
SHSA 520.55 0.61 3.74 83.09 1767.83 1.12 3.42 3.45 4.01 13.00 9.08 0.74
EURO 13.02 0.02 0.09 2.02 44.33 0.03 0.08 0.09 0.09 0.26 0.22 0.02
MIDE 8.37 0.01 0.06 1.28 28.54 0.02 0.05 0.06 0.05 0.15 0.13 0.01
NHAF 394.25 0.41 2.05 54.58 1354.19 0.62 2.56 2.99 2.39 7.01 6.01 0.66
SHAF 847.03 1.28 4.52 116.23 2910.72 1.52 5.17 6.40 5.55 16.48 12.82 1.38
BOAS 167.35 0.31 0.98 23.57 573.90 0.35 0.93 1.22 1.22 3.53 2.68 0.27
CEAS 27.93 0.04 0.21 4.55 94.68 0.08 0.17 0.19 0.20 0.56 0.47 0.04
SEAS 197.29 0.37 1.54 32.49 668.10 0.55 1.16 1.26 1.71 5.24 3.50 0.28
EQAS 13.20 0.03 0.10 2.04 44.94 0.03 0.08 0.09 0.11 0.36 0.22 0.02
AUST 82.38 0.11 0.52 13.41 279.54 0.19 0.48 0.54 0.70 1.83 1.59 0.15

Figure 1. Spatial distribution of annual average OBB carbon emissions (1km× 1km) during 2020–2022.

and human activities, such as deforestation and land-use
changes, are the main drivers of increased carbon emissions
from OBB in this region (Cochrane and Laurance, 2002;
Nepstad et al., 1999). In NHAF, the predominant source of
OBB were savanna grasslands (Roberts et al., 2009), con-
tributing 76.14 % to the region’s total biomass-burning car-
bon emissions, averaging 300.21 Tgyr−1. This may be re-
lated to the arid climate and low forest cover in the region
(De Sales et al., 2016; Ichoku et al., 2016). Previous research

has shown that climate change and human activities, such as
grazing and agricultural expansion, are major factors in this
region (Flannigan et al., 2009; Scholes and Andreae, 2000).

Fire events in savanna grasslands remain a major source
of most pollutants generated by global OBB, whereas crops
contribute relatively less (Fig. 3). However, with respect to
BC and NH3, fire events in woody savanna/shrubs have be-
come the primary contributors (59.40 % for BC; 39.33 %
for NH3). Furthermore, when considering the different re-
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Figure 2. (a) Global geographic regions and its abbreviations. BONA: Boreal North America; TENA: Temperate North America; CEAM:
Central America; NHSA: Northern Hemisphere South America; SHSA: Southern Hemisphere South America; EURO: Europe; MIDE:
Middle East; NHAF: Northern Hemisphere Africa; SHAF: Southern Hemisphere Africa; BOAS: Boreal Asia; CEAS: Central Asia; SEAS:
Southeast Asia; EQAS: Equatorial Asia; and AUST: Australia and New Zealand. (b) Global land-cover type reclassification.

Table 3. Annual carbon emissions from global OBB in different regions during 2020–2022 (in Tgyr−1).

Region Savanna Woody Tropical Temperate Boreal Temperate Crop Total
grasslands savanna/shrubs forest forest forest evergreen forest

BONA 4.43 57.55 0.00 0.36 7.58 2.15 0.63 72.70
TENA 41.20 83.89 0.00 5.71 0.00 30.85 4.07 165.72
CEAM 8.62 17.47 4.57 2.33 0.00 0.02 1.11 34.12
NHSA 19.12 11.08 12.23 0.28 0.00 0.00 0.22 42.93
SHSA 225.86 76.69 177.17 27.49 0.00 0.37 12.98 520.56
EURO 5.21 4.60 0.00 0.71 0.19 0.40 1.92 13.03
MIDE 4.95 1.17 0.00 0.15 0.00 0.33 1.78 8.38
NHAF 300.21 47.03 30.31 3.93 0.00 0.00 12.78 394.26
SHAF 465.86 324.09 41.17 12.70 0.00 0.00 3.22 847.04
BOAS 59.51 95.97 0.00 1.29 9.01 0.07 1.50 167.35
CEAS 10.31 7.71 0.68 1.86 0.59 0.33 6.45 27.93
SEAS 21.46 101.57 42.39 22.26 0.00 0.26 9.36 197.30
EQAS 1.43 7.23 4.45 0.02 0.00 0.00 0.08 13.21
AUST 40.95 18.66 0.35 13.57 0.00 6.86 1.97 82.36

gions, the primary sources of pollutants from OBB vary.
For instance, fire events in woody savanna/shrubs were
the primary sources in the BONA, SEAS, and EQAS re-
gions, whereas crop-related fire events mainly occurred in
the EURO, MIDE, CEAS, and SEAS regions.

3.2 Temporal variations in OBB carbon emissions

The monthly carbon emissions at both global and regional
levels are illustrated in Fig. 4. Overall, global OBB car-
bon emissions experienced notable shifts, with considerable
monthly variations from 2020 to 2022, and peak emissions
were observed in August 2021 (729.37 Tg). Global OBB
carbon emissions were 2861.05 Tg in 2020, rising slightly
to 2991.15 Tg in 2021 but showing a significant decline to
1908.41 Tg in 2022. Monthly and seasonal variations in the
OBB carbon emissions from each region exhibited substan-
tial differences. Of the 14 regions, the annual contribution of

SHAF, the largest global contributor of OBB carbon emis-
sions (32.74 %), increased by 2.70 % yr−1, with the peak
emissions of 283.59 Tg occurring in August 2021. SHAF
has emerged as a primary contributor to global OBB carbon
emissions owing to its substantial biomass and escalating hu-
man activities. Abundant biomass, including dense vegeta-
tion and rich forest resources, provides ample fuel for car-
bon emissions that are exacerbated by intensifying human
activities (Chen et al., 2017). In August, specific meteoro-
logical conditions, such as high temperatures and low hu-
midity facilitated the increased combustibility of biomass,
resulting in a peak in carbon emissions (Shea et al., 1996).
Although the SHAF region consistently remained the largest
contributor to global OBB carbon emissions during 2020–
2022, its annual emissions remained relatively stable, with
minor fluctuations. Conversely, emissions from SHSA de-
creased at a rate of 105.22 Tgyr−1 from 2020 to 2022, with
peak monthly emissions over the 3 years reaching 184.63,
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Figure 3. Cumulative percentage of annual OBB emissions for each land type in each region during 2020–2022.

222.12, and 123.98 Tg, respectively, where the size and status
of emissions are consistent with Griffin et al. (2023). Annual
C emissions in NHAF also declined, decreasing by 55.44 Tg
over the 3 years, with its emissions accounting for the lowest
percentage at 13.76 % in 2021.

Cumulatively, SHAF, SHSA, and NHAF represent almost
70 % of the global OBB carbon emissions, a testament to
the profound intertwining of their native ecosystems, land
utilization, and climatic influences on biomass combustion
(Roy et al., 2022). Deeper exploration revealed that the
SHAF, which is endowed with vast stretches of savannas
and grasslands, undergoes intermittent dry periods (Hoff-
mann and Jackson, 2000). This climatic pattern, combined
with entrenched agricultural customs like slash and burn, ren-
ders the region prone to wildfires (Lourenco et al., 2022). In
the SHSA, which covers significant portions of the Amazon
rainforest, rampant deforestation often involves controlled
burning (Kröger and Nygren, 2020). Unfortunately, these
sometimes escalate beyond the level of control, substantially
adding to emission figures (Eufemia et al., 2022). In contrast,
NHAF’s shifting land-use paradigms coupled with increas-
ingly recurrent droughts – potentially a byproduct of global
warming – intensify the frequency of fires in the area (Ma-
chete and Dintwe, 2023).

Examination of monthly emissions data revealed signifi-
cant regional disparities. For example, every January, NHAF,
influenced by its monsoon cycles (Martin and Thorncroft,
2014), consistently emerges as the primary contributor to
biomass carbon emissions, accounting for contributions of

50.74 %, 81.16 %, and 67.66 % across the 3 years, as reported
by Tsivlidou et al. (2023). By March, SEAS witnessed a
surge in emissions, largely due to shifts in forestry practices
(Shi et al., 2014), with contributions escalating to 50.82 %,
57.78 %, and 40.67 % in subsequent years (Pletcher et al.,
2022), respectively. The peak biomass carbon emissions in
2020 occurred in September, reaching 500.62 Tg. However,
the peaks in 2021 and 2022 appeared sooner in August, with
emissions of 729.37 and 357.57 Tg, respectively. The 2021
ascent of BONA emissions might be linked to altered land-
use guidelines or increased farming activities (Zerriffi et al.,
2023) and the many wildfires that occurred (Hoffman et al.,
2022), while California’s heightened investment in fire miti-
gation programs (Umunnakwe et al., 2022) and the US For-
est Service’s implementation of a decade-long strategy (Con-
fronting the Wildfire Crisis, 2023) in 2022 have effectively
curbed wildfire incidents in the TENA region. This shift in
the perception of forest fire management has been instru-
mental in mitigating wildfire risk in the area. Nevertheless,
it is important to acknowledge that the occurrence of wild-
fires varies over time (Bowman et al., 2017).

Figure 5 shows the notable temporal fluctuations in global
wildfire carbon emissions for different fire types throughout
the study period, from 2020 to 2022. Global combustion ex-
hibited the highest carbon emissions in August and Septem-
ber. In September 2020, single-month emissions peaked at
500.62 Tg C. However, in 2021 and 2022, the zenith of car-
bon emissions from fires occurred in August, registering at
729.37 and 357.57 Tg, respectively. The smaller peaks ob-
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Figure 4. Global OBB carbon emissions in different regions during 2020–2022.

served in March should not be overlooked. Interestingly, al-
though the timing of these emission peaks varied, their main
contributing factors remained similar. In September, the daily
carbon emission peaks from savanna grasslands, woody sa-
vanna/shrubs, and tropical forest regions were 7.54 (38 %),
7.12 (37 %), and 3.36 (31 %) TgCd−1, respectively. These
sources constituted the primary contributors to the global
biomass-combustion carbon emissions from July to October.

Spatial and temporal variations in global OBB emissions
are pronounced because of the differences in ecosystems,
climatic conditions, and human activities across different
regions (Moritz et al., 2012; Ward et al., 2018). For in-
stance, areas with expansive tropical grasslands, such as sub-
Saharan Africa and Australia, typically experience high lev-
els of OBB emissions because of the prevalence of both nat-
ural and anthropogenic fire activities (Williams et al., 2019;
B. Zheng et al., 2021). Moreover, many regions undergo
cyclical OBB emission patterns, which coincide with the on-
set of the dry and wet seasons (Dury et al., 2011; Gautam
et al., 2013). The dry season, characterized by an increase
in dry biomass and conducive weather conditions, often wit-
nesses a surge in fire activity, resulting in elevated emission
levels (Z. Zhang et al., 2023). These considerable spatial and
temporal fluctuations in global OBB emissions mirror the di-
versity of ecosystems and climatic conditions across various
geographic locations (Fagre et al., 2003), which are further
influenced by human endeavours and natural fire regimes
(Jones et al., 2022).

In 2020 and 2021, significant wildfire events, such as
the California wildfires and Australian forest fires, led to
an escalation in carbon emissions from fires (Collins et al.,
2021, 2022; Gallagher et al., 2021; Keeley and Syphard,
2021; Safford et al., 2022). However, a dual phenomenon
was observed in 2022. The implementation of robust wild-
fire control measures contributed to a reduction in emissions
(Wollstein et al., 2022); however, an overall augmentation
in annual precipitation led to a reduction in the degree of
drought (Thackeray et al., 2022; X. Zhang et al., 2023). Con-

sequently, the annual OBB carbon emissions in 2022 were
lower than those in the preceding years.

Specifically, carbon emissions resulting from fire events
were analysed in 14 global subregions from 2020 to 2022
(Fig. 6). This analysis revealed the primary sources of car-
bon emissions from fires worldwide and provided insights
into the main constituents of combustion in different re-
gions. Emission patterns across different global regions vary
both temporally and spatially. The top three most emit-
ting regions were SHAF, SHSA, and NHAF, which were
closely associated with global emission trends, represent-
ing the main source of the emission peak in August and the
emission during the winter months. During 2020 to 2022,
the OBB conditions in the SHAF, SHSA, and NHAF re-
gions have been relatively stable, with daily peak values of
12.04, 9.81, and 4.38 Tg, respectively. For SHAF and SHSA,
burning activities were predominantly observed from July
to September, which can be attributed to a combination of
dry weather, strong winds, and specific meteorological con-
ditions (Eames et al., 2023; Li et al., 2023). These factors
collectively enhanced the combustibility of the biomass dur-
ing this period, leading to an increased likelihood of burning.
In SHAF, emissions were primarily influenced by savanna
grasslands (49 %) and woody savanna/shrubs (47 %). Simi-
larly, in SHSA, emissions were mainly affected by savanna
grasslands (34 %) and tropical forests (38 %). While burning
in the NHAF region is concentrated between November and
January, primarily in January, this pattern is significantly in-
fluenced by the practice of slash-and-burn agriculture (Ser-
rani et al., 2022), with savanna grasslands accounting for
77 % of the contributing factors.

CEAM and SEAS exhibited similar wildfire patterns, pri-
marily occurring in March, and a noticeable decrease in burn-
ing activity emissions from 2020 to 2022. The predominant
fire type in the CEAM region was woody savanna/shrubs
(50 %), whereas in the SEAS region, it was mainly influenced
by woody savanna/shrubs (50 %) and tropical forest (25 %).
Overall, owing to similarities in factors, such as biomass fuel
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Figure 5. Variations in total global OBB carbon emissions and carbon emissions in different fire types across various regions from 2020 to
2022.

Figure 6. Global OBB emissions for different fire types in different regions (averaged over a 15 d window) from 2020 to 2022.
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load and climate, the wildfire types in CEAM and SEAS
were quite alike.

BONA, TENA, EURO, MIDE, BOAS, and AUST share a
common characteristic: OBB carbon emissions exhibit a high
degree of randomness, indicating their primary influence
on natural wildfire events. For instance, British Columbia,
Canada, experienced a series of wildfires in July 2021
(Copes-Gerbitz et al., 2022), leading to peak carbon emis-
sions for BONA in 2021 (4.46 Tg). TENA, affected by a se-
ries of wildfires in the western United States in 2020 (Saf-
ford et al., 2022) and the ongoing wildfires in California in
2021 (Varga et al., 2022), showed elevated emissions in both
years (6.12 Tg in 2020; 3.76 Tg in 2021), with woody savan-
na/shrubs being the main fire event type. For EURO, the apex
of wildfires in 2021 was distinctly shaped by wildfires in
southern and southeastern Europe (Tedim et al., 2022). The
emissions were predominantly associated with the savanna
grassland fire type (48 %). Moreover, in the BOAS region,
wildfires were influenced by forest fires in Siberia (Pono-
marev et al., 2022), where the principal fire type was woody
savanna/shrubs (31 %). Regarding AUST, in January 2020, a
significant forest fire event occurred (Storey et al., 2023), re-
sulting in peak emissions of 4.48 Tg. The primary fire types
were temperate forest (24 %) and savanna grassland (18 %).

The situation of OBB in CEAS is intricate. In March,
substantial OBB emissions resulted from agricultural prac-
tices, such as slash-and-burn cultivation and the burning of
crop residues (Liu and Shi, 2023), with crops being the pre-
dominant fire event type (30 %). In contrast, from August to
November, OBB was mainly attributed to scorching weather
and monsoon conditions (Shi et al., 2018), with savanna
grasslands being the dominant type (28 %). Recently, owing
to improvements in agricultural management practices, there
has been a noticeable decrease in OBB events of crop types.

3.3 Cross-verification in different database

In this study, we juxtaposed the global distribution of OBB
carbon emissions as estimated in GEIOBB with data pub-
lished in the GFAS, GFED, and FEER datasets for 2020–
2022 (Fig. 7). Overall, our assessments corresponded well
with GFAS, GFED, and FEER; although there was an over-
estimation in high-latitude regions, the overall differences
across large regions were minimal. For instance, we esti-
mated the total carbon emissions in the BONA region to be
72.71 Tg, while the values from GFAS, GFED, and FEER
were 61.21, 125.05, and 35.83 Tg, respectively. This variance
can be attributed to the different resolutions (1km× 1km,
0.1°×0.1°, 0.25°×0.25°, and 0.1°×0.1°) and different esti-
mation methodologies employed. Both our study and GFED
adopted an estimation approach based on the burned area,
whereas GFAS and FEER formulated their inventories based
on fire radiative energy. Consequently, our inventory yielded
accurate assessment results and captured the spatial varia-
tion and heterogeneity of minor OBB emissions effectively,

which could have been overlooked in coarse-scale analy-
ses. Additionally, GFED utilizes MODIS satellite data to
calculate the available biomass fuel, whereas we leverage
the higher precision and small-fire quantification capabil-
ity of FY-3D GFR data. Disparities between different satel-
lite data and variations in parameter definitions during in-
ventory formulation contribute to these differences. More-
over, we adopted published local-measurement-based emis-
sion factors and improved correlation coefficients for esti-
mating OBB carbon emissions, which are more reliable and
significantly enhance the local emission estimation accuracy.

Specifically, in high-emission regions (Fig. 8), such as
NHAF, NHSA, and CEAS, our estimation of OBB car-
bon emissions (multi-year average of 394.25, 42.93, and
27.93 Tg; monthly peak average of 102.52, 11.86, and
6.24 Tg) aligned closely with those of GFED (multi-year
average of 342.31, 29.10, and 38.16 Tg; monthly peak av-
erage of 97.58, 9.86, and 10.91 Tg) and GFAS (multi-year
average of 288.81, 35.80, and 43.51 Tg; monthly peak av-
erage of 70.65, 9.64, and 9.82 Tg). However, discrepancies
were observed between MIDE and EQAS, with FINN no-
tably overestimating carbon emissions from fires. This over-
estimation by FINN is attributed to its methodology (Wied-
inmyer et al., 2011), which relies on a combination of emis-
sion factors, conversion rates, and fire radiative energy val-
ues to estimate the emissions from agricultural residue burn-
ing. This contrasts with our approach, which bases estimates
on the burned area and can thus accurately quantify car-
bon emissions from large fires and reduce uncertainty in fire
data (Shi et al., 2020). Additionally, emission estimates dur-
ing the periods by FINN, GFED, and GFAS were generated
using data from the Terra and Aqua satellites, which cap-
tured data at 10:30 and 13:30 LT. However, the use of FY-
3D, which captures data at 14:00 LT, proved highly effective
in capturing such events. Furthermore, fire incidents tend to
peak in the afternoon (Mehmood et al., 2022), with agricul-
tural waste and crop residue burning more frequently occur-
ring during this period due to higher temperatures that en-
hance burning efficiency (Jurdao et al., 2012). While, the
average annual estimated OBB emissions exceed those re-
ported by GFED by 617.14 TgCyr−1. These discrepancies
are probably related to small-scale fire events. For instance,
the largest difference is observed in the SHAF region, ex-
ceeding those by GFED by 248.01 TgCyr−1, followed by
SHSA (190.28 TgCyr−1) and SEAS (103.92 TgCyr−1). In
the SHAF region, compared to MODIS active fire, FY-3D
GFR detects more small-fire points (Figs. S2 and S3a, b
in the Supplement), which are isolated within 5 km resolu-
tion pixels. However, in this area, the majority of fire events
are large-scale incidents, which means that although small
fires are more numerous, they contribute minimally to the
total emissions. Furthermore, fire events in SHSA (Fig. S3c
and d) and SEAS (Fig. S3e and f) are primarily triggered
by human activities consisting of small-scale incidents that
are significantly linked to the overall emissions. In con-
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Figure 7. Comparison between this study (a) and other emission inventories (b–d) during 2020–2022 for average emissions at 0.5° resolution.

trast, areas frequently affected by large-scale fire events,
such as TENA (99.05 TgCyr−1), NHAF (51.94 TgCyr−1),
and other regions including NHSA, AUST, CEAM, MIDE,
EURO, and EQAS, show relatively smaller discrepancies (all
under 15.00 TgCyr−1).

The AGB values used in this study were directly de-
rived from a dataset generated by combining field and satel-
lite observations (Avitabile et al., 2016). GFED calculates
this value through simulations using the biogeochemical
Carnegie–Ames–Stanford Approach (CASA) model. While
GFED has adjusted turnover rates for herbaceous leaves and
surface litter at the ecosystem level to match the observed
AGB used in this study, the significant differences in the
estimated AGB between biogeochemical model simulations
and field measurements are noteworthy (van der Werf et al.,
2017). Furthermore, a high-resolution emissions inventory of
1km× 1km was developed. This inventory allows for the
capture and description of spatial variations and heterogene-
ity of small-scale OBB emissions, providing detailed infor-
mation on spatial discrepancies that may be missed by large-
and-coarse-grid pixels (Shi et al., 2019).

We compared and validated the accuracy of monthly OBB
carbon emission estimates in 14 global subregions using
three global OBB fire products: GFAS, GFED, and FEER
(Fig. 9). The Taylor diagram illustrates a high degree of con-
sistency between these estimates and other inventories in
terms of the standard deviation, correlation coefficient, and
amplitude ratio. Overall, the results of this study were closer

to the GFED and GFAS inventories, with the best agree-
ment being observed with the GFAS inventory. Our results
show a correlation coefficient of > 0.70 (p < 0.01) in over
80 % of the regions with the other three inventories, indi-
cating a strong positive correlation and consistency in data
trends between our study and the other three lists in most re-
gions. Furthermore, in the top three emission source regions,
SHAF, SHSA, and NHAF, our correlation coefficients with
the other three emission inventories were all > 0.90, standard
deviation ratios were < 2.00, and normalized centered root-
mean-square errors were < 0.50. For example, compared
with the other three inventories in the NHAF region, the cor-
relation coefficients were all 0.97, with the standard devia-
tions of 0.93 (GFED), 0.66 (GFAS), and 1.24 (FEER). How-
ever, when compared with the FEER inventory, there were
still disparities in the estimated results between the FEER in-
ventory and this study. For instance, in low-emission regions,
such as EQAS, NHSA, CEAM, and MIDE, the correlation
coefficients ranged from 0.60 to 0.95, with standard devia-
tion exceeding 1.00. This was attributed to FEER’s use of
the FRP-based approach and overestimation in quantifying
small-fire points (Ye et al., 2023).

In summary, we demonstrated that GEIOBB was a dataset
with relatively high-quality estimates of global OBB emis-
sions and that it performed well across all time periods and
regions. Overall, a comparison with multiple inventories in-
dicated that our GEIOBB model could effectively capture the
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Figure 8. Comparison of monthly emissions in different regions of this and other emissions inventories.

Figure 9. Normalized Taylor diagram plot of the comparison be-
tween GFED, GFAS, FEER, and this study regarding monthly OBB
carbon emission values.

spatial and temporal distribution characteristics of OBB at
large scales.

3.4 Advantages

To create a more accurate and effective biomass combustion
carbon emission inventory, our research introduced three sig-
nificant improvements compared to other inventory products.
(1) The input global fire spot monitoring data from FY-3D
showed a higher accuracy than MODIS in monitoring active
fires (Xian et al., 2021). The OBB emissions exhibited signif-
icant consistency with the satellite fire detection results. Ex-
isting OBB emission estimation inventories differ mainly in
the optimization of relevant parameters and estimation meth-
ods; however, they all rely on MODIS fire detection results as
their primary data source. Our experiment utilized data from
FY-3D GFR, which provides higher precision and the capa-
bility to quantify small-scale fire points more accurately (Yin
et al., 2020). Consequently, the accuracy of the OBB car-
bon emissions assessment significantly improved. (2) Satel-
lite and observational AGB resulted in less uncertainty than
land-cover-based available biomass. Previous studies have
used fixed values for AGB with regional and land-cover-
based partitioning. Our research employed AGB inventory
data, which, in contrast to the traditional method of regional
sub-surface value assignment, better represent spatial varia-
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tion trends. Additionally, by incorporating dynamic adjust-
ment methods, we mitigated the temporal distribution short-
comings inherent in AGB data. This approach significantly
enhances the portrayal of global biomass distribution across
both time and space dimensions. (3) Spatially and tempo-
rally variable CF scaled by several vegetation indices can
reflect a more accurate fraction of burned biomass than the
allocated constants based on fire types. We optimized the
previous single fixed value or simple formula-based defini-
tions of CF by incorporating numerous parameters to better
represent vegetation combustion conditions. To address the
varying fire conditions, we performed a detailed subdivision
based on different fire types. This advancement over conven-
tional methods of fixed-value assignment or unified fixed-
value methods without substrate distinction enables a more
effective computation of burn factors for different types of
fires, which can significantly enhance the delineation and un-
derstanding of burn factors in the biomass combustion pro-
cess, paving the way for a more accurate carbon emission in-
ventory. Through these notable improvements, our biomass
combustion carbon emission inventory is a robust tool that
provides precise and insightful analyses instrumental in ad-
vancing in the field of biomass combustion carbon emissions
assessment.

3.5 Uncertainties

There were relatively high uncertainties in the estimation of
OBB emissions for the seven types; the uncertainties were
associated with the burned area, F , CF, and EF. Although
the FY-3D GFR dataset is reliable for most OBB events,
its resolution of 1 km results in poor detection performance
for small-fire points (Zheng et al., 2023). The detected ac-
tive fires were also underestimated due to cloud cover/thick
smoke and omitted between satellite overpass, with an omis-
sion error of approximately 10 %–30 % (Giglio et al., 2006;
Roberts et al., 2009; Schroeder et al., 2008). Furthermore,
the diurnal cycle cannot be sufficiently represented using ob-
servations from polar orbiting satellites as these satellites
have limited temporal coverage and may not capture the
full range of fire activity throughout the day (Huang et al.,
2024; Y. Zheng et al., 2021). Additionally, the uncertain-
ties in the AGB calculations developed by Spawn and Gibbs
(2020) ranged from 20 % to 80 %. More specifically, for ap-
proximately 80 % of the area, the AGB uncertainties were
< 30 %, whereas in regions such as Africa and South Amer-
ica, high uncertainties of 60 %–70 % were observed. The es-
timated CF shows uncertainties of approximately 20 %–30 %
based on empirical formulas (Zhang et al., 2008). The typi-
cal uncertainties for trace gas and aerosol emission factors
for each land type, as compiled by Shi et al. (2015), ranged
from 20 % to 50 %. Owing to the inherent uncertainties in
all input parameters, after estimating the OBB emission in-
ventories, we quantitatively assessed the estimation uncer-
tainties in all emission species using 20 000 Monte Carlo

simulations to calculate emission ranges with a 90 % con-
fidence interval. Based on this, the emission ranges for dif-
ferent species are as follows: 1168.02–4120.83 Tg C, 2.31–
5.48 Tg BC, 7.73–25.26 Tg CH4, 193.11–505.66 Tg CO,
2994.71–14 153.75 Tg CO2, 3.31–8.49 Tg of NH3, 7.92–
26.08 Tg NO2, 12.70–26.87 Tg NOx , 8.37–29.35 Tg OC,
37.66–84.17 Tg PM10, 19.85–61.62 Tg PM2.5, and 1.67–
6.69 Tg SO2.

4 Code and data availability

The GEIOBB dataset can be downloaded at http://figshare.
com (last access: 30 July 2024) with the following DOI:
https://doi.org/10.6084/m9.figshare.24793623.v2 (Liu et al.,
2023).

5 Conclusion

We developed a high-spatial-resolution (1km× 1km grid)
daily inventory of global OBB emissions. Our inven-
tory used the updated satellite-based burned area product
(FY-3D GFR), observational and satellite-based AGB, and
vegetation-index-based spatiotemporally variable combus-
tion efficiency data to estimate global OBB carbon emis-
sions. The average annual estimated OBB emissions for
2020–2022 were 2586.88 Tg C, 8841.45 Tg CO2, 382.96 Tg
CO, 15.83 Tg CH4, 18.42 Tg NOx , 4.07 Tg SO2, 18.68 Tg
OC, 3.77 Tg BC, 5.24 Tg NH3, 15.85 Tg NO2, 42.46 Tg
PM2.5, and 56.03 Tg PM10.

Taking carbon emission as an example, the average an-
nual estimated OBB emissions were 72.71 Tg for BONA,
165.72 Tg for TENA, 34.11 Tg for CEAM, 42.93 Tg for
NHSA, 520.54 Tg for SHSA, 13.02 Tg for EURO, 8.37 Tg
for MIDE, 394.32 Tg for NHAF, 847.03 Tg for SHAF,
167.35 Tg for BOAS, 27.93 Tg for CEAS, 197.29 Tg for
SEAS, 13.20 Tg for EQAS, and 82.37 Tg for AUST. NHAF,
as the primary contributor in January, accounted for 50.74 %,
81.16 %, and 67.66 % in the 3 respective years. During the
first peak of the years, March was mainly influenced by in-
creased SEAS emissions (50.82 % in 2020, 57.78 % in 2021,
and 40.67 % in 2022). In 2020, the annual peak occurred in
September at 500.62 Tg, while in 2021 and 2022, it shifted to
August, reaching 729.37 and 357.57 Tg, respectively. Peaks
from savanna grasslands, woody savanna/shrubs, and tropi-
cal forest regions were 7.54 (38.37 %), 7.12 (37.42 %), and
3.36 Tg (31.01 %), respectively.

We demonstrated that savanna grassland contributed
the largest portion (46.74 %) of total emissions, followed
by woody savanna/shrubs (33.04 %) and tropical forest
(12.11 %). Total OBB carbon emissions were the highest
from SHAF, followed by SHSA and NHAF. The fire types
where fires occurred were predominantly savanna grasslands,
woody savanna/shrubs, and tropical forest in SHAF, SHSA,
and NHAF and woody savanna/shrubs in SEAS. Further-
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more, our data indicate a pronounced seasonal trend in car-
bon emissions. Regions such as the SHAF, SHSA, and TENA
played pivotal roles, accounting for the surge in global car-
bon emissions observed in August.

Our high-spatial-resolution multi-species emissions inven-
tory and spatiotemporal characteristics analysis will pro-
vide scientific and reliable evidence for formulating carbon
emission policies and assessing temporal emission variation.
Effective control of the savanna grasslands fire in SHAF,
SHSA, and NHAF, as well as tropical forest fires in SHSA
and woody savanna/shrubs fires in SHAF can greatly reduce
carbon emissions. Moreover, this carbon emission inventory
can be used for identifying regional biogeochemical circu-
lation, atmospheric chemical simulations, and environmen-
tal health impacts. The accuracy and depth of our findings
further underscore the potential for combining our bottom-
up approach with top-down satellite observational methods,
paving the way for refinement in future studies.
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