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Abstract. Agricultural activities have been recognized as an important driver of land cover and land use change
(LCLUC) and have significantly impacted the ecosystem feedback to climate by altering land surface properties.
A reliable historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects
of agriculture-related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in
the conterminous US, there remains a dearth of a relatively high-resolution datasets with crop type details over a
long period. To address this gap, we reconstructed historical cropland density and crop type maps from 1850 to
2021 at a resolution of 1 km× 1 km by integrating county-level crop-specific inventory datasets, census data, and
gridded LCLUC products. Different from other databases, we tracked the planting area dynamics of all crops in
the US, excluding idle and fallow farm land and cropland pasture. The results showed that the crop acreages for
nine major crops derived from our map products are highly consistent with the county-level inventory data, with
a residual less than 0.2× 103 ha (0.2 kha) in most counties (> 75 %) during the entire study period. Temporally,
the US total crop acreage has increased by 118× 106 ha (118 Mha) from 1850 to 2021, primarily driven by corn
(30 Mha) and soybean (35 Mha). Spatially, the hot spots of cropland distribution shifted from the Eastern US to
the Midwest and the Great Plains, and the dominant crop types (corn and soybean) expanded northwestward.
Moreover, we found that the US cropping diversity experienced a significant increase from the 1850s to the
1960s, followed by a dramatic decline in the recent 6 decades under intensified agriculture. Generally, this newly
developed dataset could facilitate spatial data development, with respect to delineating crop-specific management
practices, and enable the quantification of cropland change impacts on the environment. Annual cropland density
and crop type maps are available at https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et al., 2023).

1 Introduction

Anthropogenic land cover and land use change (LCLUC)
has altered nearly 70 % of global ice-free land (Shukla et
al., 2019), exerting significant effects on ecosystem services
by changing biogeochemical and biophysical processes (Fo-
ley et al., 2005; Klein Goldewijk et al., 2017; Johnson,
2013; Betts et al., 2007; Lark, 2023). In particular, agricul-
tural activities have been identified as the dominant driver
of LCLUC (Cao et al., 2021), with approximately one-third
of the land surface altered for agricultural use to meet hu-
man demands of food, feed, fiber, and fuel (Zhang et al.,

2007). These changes have led to a range of environmen-
tal issues, including greenhouse gas emissions (De Noblet-
Ducoudré et al., 2012; Yu et al., 2018), agricultural water
pollution (Ouyang et al., 2014), and soil degradation (Van-
walleghem et al., 2017). In addition, the intensification of
agriculture causes a decline in crop diversity, which can re-
duce the resilience of crops to various environmental stresses
and threaten the crop yield (Burchfield et al., 2019; Gaudin
et al., 2015; Renard and Tilman, 2019; Aizen et al., 2019).
Therefore, gaining a better understanding of spatiotemporal
cropland extent and type changes is critical to quantifying
the environmental effects of cropland change and promoting
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sustainable agricultural practices (Tilman et al., 2011; Lam-
bin and Meyfroidt, 2011).

As a leading agricultural producer, the conterminous US
has experienced a substantial transformation in crop area,
distribution, and type over the last 2 centuries. From the
1850s to the 1980s, the crop area increased about 8-fold,
from around 20×106 to about 160×106 ha (Mha), primarily
through the conversion of forest, grassland, and other land
types (Li et al., 2023; Turner, 1988). Spatially, the develop-
ment of canals, waterways, and railroads contributed to the
cropland expansion to the west (Meinig, 1993). Especially,
the Homestead Acts in 1862 played a significant role in
stimulating agricultural reclamation. Moreover, in crop com-
modities, the dominant crop types have shifted. Before the
mid-20th century, corn and wheat were the dominant crops.
However, the cultivated area of soybean has gradually sur-
passed wheat, and the former has become the second most
widely produced crop type across the US in recent decades
(Lubowski et al., 2006). Although these changes have been
reported by the government and social scientists (Waisanen
and Bliss, 2002), there is still a lack of long-term cropland
datasets to depict the spatial patterns of crop type distribu-
tion in the US over a long time. Despite the fact that long-
term crop-specific management information has been avail-
able in the US for quite a long period, large uncertainties
remain in developing historical management maps and as-
sessing their environmental and economic consequences spa-
tially, because not knowing “what is planted where” is a big
hurdle before remote sensing data are available.

A wide variety of land use datasets have been used to
explore the spatiotemporal patterns of agricultural land in
the contiguous US. For instance, the History database of the
Global Environment (HYDE; Klein Goldewijk et al., 2017)
constructed a weighting algorithm involving dynamical so-
cial (historical population density and national or subnational
crop statistics, state-level crop inventory in US) and stable
environmental (soil suitability, temperature, and topography)
factors to reconstruct the historical crop distribution at a res-
olution of 5 arcmin. Similarly, Zumkehr and Cambell (2013)
adopted a land use model of Ramankutty and Foley (Ra-
mankutty and Foley, 1999) and a satellite-derived cropland
distribution map to calculate the historical crop area grid by
grid under the control of crop inventory records. Although
these datasets present the long-term land use change history,
their coarse resolutions offer limited spatial detail. Grow-
ing remote sensing technology and machine learning meth-
ods enhance the capability to monitor land surface change
with high-resolution LCLUC products (Tian et al., 2014;
Shi et al., 2020). For instance, Cropland Data Layer (CDL);
National Land Cover Database (NLCD); and Land Change
Monitoring, Assessment, and Projection (LCMAP) provide
the gridded cropland distribution maps at a 30 m× 30 m res-
olution (Homer et al., 2020; Xian et al., 2022; Lark et al.,
2017). However, these high-resolution datasets lack the ca-
pability to depict historical cropland change patterns before

the emergence of satellite images. Recently, Cao et al. (2021)
harmonized cropland demands from the HYDE and Land-
Use Harmonization 2 datasets with a combination of crop-
land suitability, kernel density, and other constraints to gen-
erate a cropland dataset from 10 000 BCE to 2100 CE. Li et
al. (2023) integrated an artificial neural-network-based prob-
ability of occurrence estimation tool and multiple inventories
to generate historical cropland maps at a 1 km× 1 km res-
olution. However, the crop type details are still missing in
these datasets, making it challenging to identify the specific
crop type change over space and time. On the other hand,
Monfreda et al. (2008) combined a global cropland dataset
and multi-level census statistics (national, state, and county)
to generate a map depicting the area and yield of 175 crops
circa the year 2000 around the world, and Tang et al. (2023)
further updated it to depict 173 crops circa the year 2020.
Their products also provide information that is only available
in the most recent 2 decades, limiting our understanding of
historical US crop type development. Overall, the currently
available datasets either have short periods, low spatial reso-
lution, or lack specific crop type information. This limits our
capability to assess how crop type changes and crop-specific
management before 2000 have affected the climate system
and environmental quality at a finer scale. Thus, the develop-
ment of a long-term spatially explicit cropland dataset with
crop type details is urgent in order to comprehend the US
agricultural land use history.

In this study, we aim to reconstruct the cropland density
and crop type maps in the conterminous US from 1850 to
2021 at a 1 km× 1 km resolution. The cropland density maps
present the distribution and percentage of crop planting area
in each 1 km× 1 km pixel. The crop type maps display the
distribution of nine major crop types (corn, soybean, win-
ter wheat, spring wheat, durum wheat, cotton, sorghum, bar-
ley, and rice) and one category labeled as “others” (including
all remaining crop types but excluding idle and fallow farm
land and cropland pasture). This study consists of three sec-
tions: Sect. 2 describes the materials and methods used to
reconstruct the dataset; Sect. 3 analyzes the spatiotemporal
changes in dominant crop types and cropping diversity based
on the reconstructed dataset; and Sect. 4 discusses the dif-
ferences between our dataset and other datasets, the drivers
of cropland change, the implications of US crop diversity
change, and the data uncertainty.

2 Materials and method

In this study, we combined three inventory datasets and four
gridded datasets to reconstruct the historical cropland density
and crop type maps. As illustrated in Fig. 1, the entire process
involves three parts: reconstructing annual inventory data for
each crop type at the county level (Sect. 2.2), rebuilding crop-
land density maps (Sect. 2.3), and generating crop type maps
(Sect. 2.4). In particular, we adopted the following assump-
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tions for reconstructing the cropland maps: (1) the USDA
inventory datasets provide the most reliable acreage informa-
tion for determining cropland area in each county; (2) Crop-
land Data Layer (CDL), History database of the Global Envi-
ronment 3.2 (HYDE; Klein Goldewijk et al., 2017), and Land
Change Monitoring, Assessment, and Projection (LCMAP)
provide the potential distribution of cropland, which were
used to allocate cropland grids under the control of the re-
built inventory data (Yu and Lu, 2018); (3) the rotation per-
centage between corn and soybean remained constant when
the rotation information was unavailable from 1940 to 2009.
Furthermore, based on the generated crop type maps, we ex-
plored the historical US crop diversity pattern through the
true diversity index (Jost, 2006).

2.1 Datasets

Three inventory datasets and four gridded LCLUC datasets
were used in this study (Table 1). Specifically, NASS-CPAS
(Crop Production Annual Summary data from the National
Agricultural Statistics Service of the USDA) and NASS-
COA (Census of Agriculture from the National Agricultural
Statistics Service of the USDA) provide the total cropland
area in each state and each county. USDA-NASS Quick Stats
was used to track the acreage of specific crop types. These
inventory datasets were adopted to reconstruct the histori-
cal crop-specific planting area for each county from 1850 to
2021, which served as a benchmark for adjusting the spa-
tial maps in terms of planting acreage. CDL is the most
detailed satellite-based cropland dataset for the period of
2010–2021, which has been intensively validated by ground
truths and other ancillary data with crop classification accu-
racies of up to 90 % for major crop commodities (Boryan
et al., 2011; Yu and Lu, 2018). Here, we extracted 10 crop
types (Table S1 in the Supplement) from CDL. We com-
pared the planting area between inventory data and CDL for
nine crop types across counties from 2010 to 2021 (Fig. S1
in the Supplement). For most counties (> 75 %), the resid-
uals (the inventory-based crop area minus the CDL-based
crop area) are less than 10× 103 ha (kha) for durum wheat,
whereas they are less than 5 kha for other crops. NLCD and
LCMAP, both derived from Landsat images with a resolution
of 30 m× 30 m, were integrated to provide spatial informa-
tion on the cropland distribution from 1985 to 2009. NLCD
crop area is highly consistent with CPAS and COA, except
that the crop area was significantly underestimated in NLCD
1992 (Fig. 4 in Yu and Lu, 2018), so it was excluded from the
reconstruction of historical crop maps (Johnson, 2013). Due
to its consistency with respect to cropland area, we utilized
NLCD to identify the spatial distribution of cropland (Homer
et al., 2020). However, NLCD provides around 5-year cycli-
cal land cover maps from 2001 to 2019 (Homer et al., 2020).
LCMAP offers annual land use data from 1985 to 2021.
LCMAP adopts an Anderson Level-I-based legend, grouping
cropland and pasture into one category (Xian et al., 2022). In

contrast, NLCD uses an Anderson Level-II-based legend in
which cropland and pasture are separately tracked (Table S4;
Xian et al., 2022). To generate a reliable cropland distribu-
tion, the long-term non-crop trajectory derived from NLCD
was used to exclude all grids identified as cropland from the
LCMAP map (more details are presented in “Supplementary
Methods: (1) Preprocesses for LCMAP” in the Supplement).
For the period of 1850–1984, although both ZCMAP (the
US cropland map from Zumkehr and Campbell, 2013) and
HYDE provide the cropland distribution, HYDE considers
the impacts of various environmental factors (soil suitability,
temperature, and topography) on crop distribution compared
with ZCMAP (Goldewijk, 2001; Goldewijk et al., 2011;
Klein Goldewijk et al., 2017; Zumkehr and Campbell, 2013).
Consequently, HYDE (available every 10 years) was initially
used to identify the cropland distribution by calculating the
fraction of cropland to the physical area for each grid. We
further linearly interpolated the fraction for the missing years
between 2 available years to provide a potentially continuous
cropland distribution (more details are presented in “Supple-
mentary Methods: (2) Linear interpolation in HYDE” in the
Supplement). Here, all gridded datasets were resampled to
1 km. We employed a 1 km× 1 km window to aggregate the
total cropland area from the 30 m× 30 m map and assigned
the area to the corresponding 1 km× 1 km grid. To resam-
ple the CDL crop type map from 30 m to 1 km, the crop
type in each 1 km× 1 km pixel was assigned to the domi-
nant crop type with the largest fraction of land area within
the 1 km× 1 km window. In addition, the cropland percent-
age in each 5 arcmin grid is interpolated to 1 km× 1 km grid
cells with an assumption that cropland percentage is evenly
distributed within the 5 arcmin× 5 arcmin window.

2.2 Reconstructing crop acreage history at the county
level

By integrating and gap-filling multiple inventory and grid-
ded datasets, we reconstructed the county-level time series
of planting area and the planting area for nine major crop
types and other crops from 1850 to 2021. Our reconstruction
process was initiated with the development of crop-specific
planting areas at the state level. NASS-CPAS reports the an-
nual total planting area of major crops for each state from
1909 to 2021. However, some minor crop types, such as
vegetables and fruits, are excluded. USDA-COA provides
the total areas of crop harvest, failure, and fallow for each
state from 1925 to 2017 at 4- to 5-year intervals. We com-
puted the difference between these two datasets for avail-
able years and linearly interpolated unavailable years during
1909–2021. The difference was assumed to be the planting
area of those minor crops. The interpolated difference was
then added back to NASS-CPAS to generate the annual state-
level total crop-planting area of all crops from 1909 to 2021.
We used the interannual variations in arable land of each state
extracted from HYDE to extrapolate the total planting area
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Figure 1. The methodology flow chart. The three boxes with red dashed lines correspond to Sect. 2.2, 2.3, and 2.4, respectively. The county-
level total and crop-specific cropland area generated in the box (1) are fed into box (2) and box (3) to reconstruct cropland density and crop
type maps, respectively. The following abbreviations/acronyms are used in the figure: NASS-CPAS – Crop Production Annual Summary
data from the National Agricultural Statistics Service of the USDA; NASS-COA – Census of Agriculture from the National Agricultural
Statistics Service of the USDA; CDL – Cropland Data Layer; NLCD – National Land Cover Database; LCMAP – Land Change Monitoring,
Assessment, and Projection; and HYDE – History database of the Global Environment 3.2 (Klein Goldewijk et al., 2017).
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Table 1. The gridded and inventory dataset sources.

Data variables
(period, resolution)

Properties Adjustment

CDL
(2010–2021, 30 m)

The most detailed crop type maps; pro-
vides information on crop type and dis-
tribution

Resampled to 1 km and reclassified
into 10 crop types (9 major crop types
and 1 others type)

LCMAP
(1985–2021, 30 m)

Anderson Level-I-based legend classi-
fication including eight primary land
types (Xian et al., 2022); includes crop-
land and pasture in cropland

Filtering pasture from cropland based
on NLCD crop trajectory

NLCD
(2001–2019, 3- to 5-
year intervals, 30 m)

Anderson Level-II-based legend, in-
cluding 20 land cover classes (Xian et
al., 2022)

Providing cropland distribution

HYDE 3.2
(1600–2017, 5 arcmin)

Includes cropland, grazing land, pas-
ture, irrigated rice, etc.; provides crop-
land distribution

Linear interpolation in missing years
(1850–1985) (Eq. S2).

NASS-CPAS
(1909–2021)

State-level total planting area of major
principal crops*

Gap-filling in missing years (Sect. 2.2)

NASS-COA
(1924–2017, 4- to 5-
year intervals)

State- and county-level total cropland
area of harvest, failure, and fallow crops

Gap-filling in missing years (Sect. 2.2)

USDA-NASS
Quick Stats
(1866–2021)

State- and county-level crop-specific
planting and harvesting area; includes
corn, soybean, winter wheat, spring
wheat, durum wheat, cotton, sorghum,
barley, rice, and all other crop types

Gap-filling in missing years (Sect. 2.2)

* Principal crops refer to grains, hay, oilseeds, cotton, tobacco, sugar crops, dry beans, peas, lentils, potatoes, and miscellaneous crops.

from 1908 to 1850 (Eq. 1). To identify the planting acreage
change for nine major crop types, we obtained the state-
level crop-specific harvesting and planting area from USDA-
NASS Quick Stats. The available harvesting and planting ar-
eas vary among crop types and states, for which the harvest-
ing areas usually have earlier-year reports than those of plant-
ing areas (Table S2). The harvesting area is highly correlated
to the planting area in terms of interannual variation. We cal-
culated the ratio of planting area to harvesting area for the
earliest available year of planting area. We then converted the
harvesting areas to planting areas by timing the ratio with the
harvesting areas to extend the planting areas to an earlier pe-
riod. For the period that the harvesting areas are unavailable,
we interpolated the planting area from 1850 to 2021 based on
the total planting area generated above as a referenced trend.
Equation (1) was used when only the beginning or the end-
ing year of the period was available, while Eq. (2) was used
when both beginning and ending years were available. The
planting area of “others” was obtained by calculating the dif-
ference between the total planting area and the summation of
planting area of nine major crops.

We adopted the same approach as for the state-level plant-
ing area generated above to obtain the county-level total

planting area and the planting area of nine major crop types
and 1 others type. USDA-COA reports the total county crop-
land area from 1925 to 2017 at 4- to 5-year intervals. We
gap-filled the total county planting area from 1850 to 2021
by using the state total planting area as a referenced trend
(using Eq. 1 for gap-filling in cases where only the begin-
ning or ending year was available or Eq. 2 in cases where
both beginning and ending years were known). Similar to the
state-level crop-specific planting area, we converted the har-
vesting areas to planting areas of nine major crops in each
county from USDA-NASS Quick Stats, with varied avail-
ability (Table S2). For the period when harvesting areas were
unavailable, we gap-filled the planting areas of each crop dur-
ing 1850–2021 based on the state-level crop-specific planting
area generated above as a referenced trend (Eqs. 1 and 2).
The planting area of all other crops (others) in each county
was estimated by calculating the difference between the total
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cropland area and the total area of nine major crops.

Raw datai+k =
Referenced trendi+k

Referenced trendi

×Raw datai (1)

Raw datai+k =
Referenced trendi+k ×Raw datai

Referenced trendi

×
k− i

j − i

+
Referenced trendi+k ×Raw dataj

Referenced trendj

×
j − k

j − i
(2)

Here, “Raw data” represents the raw data that contain miss-
ing values, “Reference trend” refers to the complete data
from which the interannual variations can be used to derivate
Raw data, i and j are the beginning and ending year of the
gap, and i+ k is the kth missing year.

2.3 Spatializing the county-level cropland density

By incorporating the county-level inventory (Sect. 2.2) and
gridded cropland products, we reconstructed annual crop-
land density maps with a 1 km× 1 km resolution to repre-
sent the area and distribution of cultivated land in the con-
terminous US from 1850 to 2021. This process was divided
into three periods: 2010–2021 (P2010), 1985–2009 (P1985),
and 1850–1984 (P1850). CDL, LCMAP, and HYDE were
used to provide the potential cropland distribution in P2010,
P1985, and P1850, respectively. For the initial density maps
in P2010 and P1985, we used a 1 km window to count the
cropland fraction in each grid resampled from the raw CDL
and LCMAP (30 m× 30 m), respectively, while initial annual
density maps in P1850 were resampled and linearly interpo-
lated from the HYDE maps. The pixel value in the resampled
density map, representing the proportion of the cultivated
land over the total pixel area, was further corrected based
on the reconstructed county-level inventory data (Eq. 3).

Specifically, when the total cropland area in a county from
the initial density map is larger than that of the inventory
area, the extra area from all grid cells in the initial map would
be deducted to maintain consistency with the magnitude of
the inventory data; on the contrary, if the cropland area was
less than the inventory data, the inadequate area would be
added to all pixels (Yu and Lu, 2018). If the fraction in a
grid is reduced below zero, the cropland fraction in that grid
is assigned to zero and the remaining difference area be-
tween the map and the inventory data is subtracted from other
grids. Conversely, if the fraction in a grid increases above 1
(100 %), then the value in that grid is assigned to 1, and the
remaining area will be added to other grids.

AdjPixelk = Pixelk +

(
inv−

n∑
1

Pixelk

)
n

(3)

Here, n is the total number of valid cropland pixels in a
county; k is the pixel ID in that county, which is from 1 to
n; inv is the inventory crop area in that county; Pixelk is the

initial cropland density in pixel k; and AdjPixelk is the ad-
justed cropland density in pixel k.

To eliminate the gap between CDL and LCMAP, we used
the adjusted CDL 2010 density map as a baseline map to
retrieve the cropland density maps during 1985–2009 by
adopting the year-to-year gridded changes from the resam-
pled LCMAP maps. Taking the year 2009 as an example, the
interannual difference in each grid between LCMAP 2009
and 2010 was applied to the adjusted CDL 2010 to generate
the potential crop density map in the year 2009. Then, the
potential density map was further corrected by the inventory
data through Eq. (3). Following the same rule, the difference
between the interpolated HYDE 1985 and 1984 was applied
to the adjusted LCMAP 1985 to retrieve the density maps in
P1850.

2.4 Spatializing the county-level crop type map

Based on the reconstructed county-level crop type inventory
data (Sect. 2.2), corrected cropland density maps (Sect. 2.3),
and CDL, the process of spatializing annual crop type maps
was divided into two periods: 2010–2021 (P1) and 1850–
2009 (P2). For P1, the raw 30 m resolution CDL crop type
maps were resampled to 1 km to provide the potential crop
type distribution. In this process, we assigned the resampled
grid to a type with the largest percentage in a 1 km window.
By integrating resampled crop type maps and reconstructed
cropland density maps, we counted the total area for each
type at the county level and identified the crop types whose
area was greater than the corresponding inventory record. We
further converted the surplus pixels from these types to other
types whose area was less than inventory data (Eqs. 4 and 5).
In particular, to avoid a grid planted by a fixed type for a long
time, the surplus pixels were randomly selected for the con-
version across different crop types. For P2, we assumed that
the crop type pattern in 2 consecutive years would not change
significantly and used the rebuilt crop type map in yeari+1 to
provide the potential crop type distribution in yeari . Then,
we followed the same rule in P1 to reconstruct the crop type
map in yeari .

AdjTypej = invj −

n∑
1

(
AdjPixeljk

)
(4)

Here, invj is the inventory area of type j in a specific county;
AdjTypej is the crop area to be converted among crop type
j and other crop types; AdjPixeljk is the adjusted cropland
percentage in pixel k of crop type j ; n is the number of total
valid pixels of crop type j ; and k is the pixel ID of crop type
j , ranging from 1 to n, identified from the initial crop type
map. For yeari between 2010 and 2021, the initial crop type
map is resampled from CDL. For yeari from 1850 to 2009,
the initial crop type map is the adjusted crop type map in
yeari+1.{

Converting the area of AdjTypej from type j to other types, if AdjTypej < 0;
Converting the area of AdjTypej from other types to type j, if AdjTypej > 0.

(5)
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Considering the dominant crop rotation type in the US,
soybean–corn rotation, we simulated the corn–soybean ro-
tation by randomly switching a certain area between corn
and soybean according to the rotation rate. The crop ro-
tation information from 1996 to 2010 at the state level
was documented by the “Tailored Reports: Crop Production
Practices” of USDA’s Agricultural Resource Management
Survey (ARMS) (https://data.ers.usda.gov/reports.aspx?ID=
17883, last access: 20 July 2024). The rotation rate was cal-
culated as the ratio of the sum of corn–soybean and soybean–
corn acreage to the total area of corn and soybean. We found
that the rotation rate in each state remained relatively stable
in the ARMS-available years and, thus, assumed that the ro-
tation rate in the missing years was the same as the mean
rate from available years (Table S3), which was further ap-
plied to corresponding counties. Because soybean was rarely
planted in the Corn Belt before 1940 (Yu et al., 2018), we
only considered the corn–soybean rotation during the period
1940–2009 in 17 states (Table S3; Padgitt et al., 1990).

2.5 Evaluation method

Here, we adopted multiple indexes to evaluate the crop area
discrepancy between the reconstructed maps and inventory
data at various scales. At the county level, we utilized the
residual (resdij ) and relative residual (relative_resdij ) to de-
scribe the crop area difference and the relative difference be-
tween the rebuilt maps and the inventory data (Eqs. 6 and 7).
In addition, at the national scale, the root-mean-square error
(RMSE) and R-squared (R2) are used to assess the crop area
consistency between the crop maps and the inventory data.

resdij = invij −mapij (6)
relative_resdij = (invij −mapij ) · 100/invij (7)

Here, invij and mapij are the crop area derived from the in-
ventory data and the rebuilt maps at year i in county j , re-
spectively, and resdij and relative_resdij are the residue and
relative residue at year i in county j , respectively.

2.6 Cropping diversity analysis

Cropping diversity has been identified as a potential factor af-
fecting crop yield (Renard and Tilman, 2019; Driscoll et al.,
2022). Here, we adopted a true diversity index proposed by
Jost (2006) to analyze the US crop diversity pattern. The true
diversity (D) quantifies the effective number of crop species
(Eq. 8), where a given D value is equivalent to the number
of crop species with an equal area in a certain space. D is
calculated as the exponent of Shannon diversity index (H ).

D = exp
(
−

∑n

j=1
(Pj · lnPj )

)
= exp(H ) (8)

Here, Pj is the proportion of the cropland area occupied by
the crop type j over the total cropland area and n is the num-

ber of crop species. In this study, the diversity calculated in-
volves 10 crop types, including 9 major crop types and an
others category.

3 Result

3.1 Validation of the data products

In this study, we adopted the inventory data to refine the
gridded map, recognizing that achieving exact alignment
for each crop type within each county might be chal-
lenging due to constraints related to the limited cropland
area available for allocation. Here, we examined the crop-
specific area alignment between the inventory data and our
map products at multiple scales. We compared the annual
crop-type-specific acreage extracted from our maps with
the raw inventory data at the county level in 1920, 1960,
2000, and 2020 (Fig. S2). The county-level acreages de-
rived from our products and inventory data are close to the
1 : 1 line, with an R2 value exceeding 0.95 and an RMSE
< 1 kha for all of the major crop types except for win-
ter wheat (R2

= 0.98, RMSE= 2.79 kha) and cotton (R2
=

0.95, RMSE= 3.97 kha). Although winter wheat and cotton
present a relatively greater RMSE, the counties with a crop
area bias greater than 10 % only account for 9.7 % and 6.1 %
of total winter wheat- and cotton-planting counties in the se-
lected 4 years, respectively. We further examined the time-
series residual between the inventory data and maps (Figs. 2
and S3). It is evident that the residuals (the inventory-based
crop area minus the rebuilt-map-based crop area; Eq. 6) are
generally smaller than 0.2 kha for the majority of counties
(> 75 %) across all years for nine crop types. Relatively
greater residuals are observed in spring wheat, durum wheat,
and rice before 1875 (Fig. 2d, g, and i), which might be at-
tributed to the marginal area of these three crops during the
early years. Similarly, the relative errors (the ratio of resid-
ual to the inventory crop area; Eq. 7) in most counties remain
within ±2 % for different crops, except for spring wheat, du-
rum wheat, and rice before 1875 (Fig. S3d, g, and i). We also
checked the consistency in national crop-specific acreage be-
tween our maps and the inventory data during 1850–2021
(Fig. S4). The results show that the map products match well
with the inventory data (R2 close to 1 and RMSE < 0.3 Mha
for all crop types), indicating that the developed maps are
highly consistent with the inventory data at a national scale.
The multiscale validations demonstrate that the developed
dataset has a strong capacity to capture the interannual crop-
specific area variation.

We examined the historical changes in cropland area
among various crop types in the US from 1850 to 2021
(Fig. 3). In general, the US cropland expanded rapidly
from 21.66 Mha in 1850 to 149.28 Mha in 1919, followed
by a wide fluctuation ranging from 134.78 to 161.80 Mha
until 1990, and then remained relatively stable at around
140.00 Mha until 2021. Corn was the dominant crop in the
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Figure 2. The distribution of residual (the inventory-based crop area minus the rebuilt-map-based crop area, defined by Eq. 6) between the
rebuilt inventory and maps from 1850 to 2021 (kha is a thousand hectares). In each year, “Min–Max”, “Median”, and “25 %–75 %” reflect
the extent of residual from all counties at levels of “minimum value to maximum value”, “50th percentile”, and “25th percentile to 75th
percentile”, respectively.

US, accounting for more than 20 % of the national total
cropland area throughout the study period. Temporally, it
rose sharply from 7.47 Mha in 1850 to 50.47 Mha in 1917,
followed by a continuous drop to 26.26 Mha until 1962,
and slowly increased to 37.75 Mha during 1962–2021. Soy-
bean soared significantly from 4.35 Mha in the 1940s to
35.25 Mha in 2021, becoming the second most extensive
crop type in the US. Winter wheat constantly increased from
3.25 Mha in 1850 to 26.43 Mha in 1981 and then dropped
to 12.88 Mha in 2021, while spring wheat fluctuated dra-
matically after it plateaued at 8.28 Mha in 1933. Barley and
sorghum climbed to peaks of around 8 Mha in the 1940s and
11 Mha in the 1950s and then dropped to about 1 and 3 Mha
by 2021, respectively. Furthermore, cotton and durum wheat

both reached their peaks before the 1930s and then fell to
a relatively stable level. Throughout the study period, the to-
tal US cropland increased by 118 Mha, predominantly driven
by corn (30 Mha), soybean (35 Mha), and others (31 Mha).
The remaining row crops shared about 18 % of this increase,
including winter wheat (9.6 Mha), spring wheat (4.5 Mha),
sorghum (2.8 Mha), cotton (2.7 Mha), and rice (1 Mha).

3.2 Dynamics of cropland distribution

The spatial patterns of cropland density and crop type are
presented in Fig. 4. Generally, the hot spots of cropland are
concentrated in the Midwest and Great Plains regions (the
spatial pattern of US subregions shown in Fig. 5.2-a), starting
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Figure 3. Annual area of major crop types and total US cropland area from 1850 to 2021.

from 1950, where large crop field sizes were likely to occur
(Yan and Roy, 2016). The results show that the cropland was
mainly distributed in the eastern region of the US in 1850
with a low distribution percentage (< 40 %) (Fig. 4a). Then,
the cropland density enhanced substantially (40 %–80 %) in
1900 (Fig. 4b). Meanwhile, a large area of the Great Plains
was cultivated to plant corn and spring wheat in the Northern
Great Plains and winter wheat in the Southern Great Plains
during 1850–1900 (Fig. 4f). From 1900 to 1950, the crop-
land fraction was continuously elevated (> 60 %) (Fig. 4c),
especially in the Midwest and the Great Plains. During 1950–
2021, the cropland fraction further increased in the US Mid-
west but decreased in the Southeast. Moreover, the others cat-
egory substantially substituted corn, winter wheat, and cot-
ton in the US Southeast and, therefore, lowered the cropland
density in this region (Fig. 4d). It was noted that soybean
has increased tremendously in the US Midwest, the Dakotas,
and the Rice Belt since 1950, replacing parts of spring wheat,
winter wheat, barley, and rice in these regions. Overall, the
hot spots of US cropland have shifted from the Eastern US to
the Midwest and the Great Plains with the increasing crop-
land percentage over the past 170 years.

Furthermore, the spatiotemporal patterns of each major
crop type were examined in this study to present a systematic
understanding of the US cropland extent and type changes
(Figs. 5, S5, and S6). Specifically, corn was mainly planted
in the east in 1850, with a low cropland fraction (< 40 %)
(Fig. 5.1-a). Then, it gradually expanded to the Great Plains,
and the total area increased by 43 Mha from 1850 to 1917.
Meanwhile, the hot spots of corn-planting areas shifted to the
US Midwest, the southeast of the Northern Great Plains, and
the northeast of the Southern Great Plains (Fig. 5.1-b). From
1917 to 1962, the spatial extent of corn had shrunk in South
Dakota, Nebraska, Kansas, and the US Southeast, with a to-
tal area decrease of 24.21 Mha (Fig. 5.1-c). Although the US

Southeast experienced a large decline in corn acreage dur-
ing 1962–2021, the planting density of corn significantly in-
creased in the US Midwest and the southeast of the Northern
Great Plains, resulting in the corn area peaking at 37.75 Mha
in 2021 (Fig. 5.1-d).

Temporally, soybean was rarely cultivated in the US from
1850 to 1900, with a total area less than 1 Mha (Fig. 5.2-a and
2-b). During 1900–1940, the planting area of soybean had a
small expansion in the US Midwest, with a total area rising
to 4.35 Mha (Fig. 5.2-c). However, it then had a dramatic ex-
pansion from 1940 to 2021 to the US Midwest, Southeast,
and the east of Northern Great Plains, with the total soybean
area increasing to 35.25 Mha (Fig. 5.2-d).

Winter wheat was mainly located in the US Midwest in
1850 with a total area of 3.25 Mha (Fig. 5.3-a). In the fol-
lowing 5 decades, it spread to the Great Plains, California,
Washington, and Oregon, with the total area increasing to
14.45 Mha in 1900 (Fig. 5.3-b). From 1900 to 1981, although
its spatial extent had shrunk in the US Midwest, it expanded
significantly in the Southern Great Plains, the US Southeast,
and Montana (Fig. 5.3-c). Meanwhile, the cropland density
also enhanced in this period. These changes led to the plant-
ing area of winter wheat reaching a peak of 26.43 Mha in
1981. However, during 1981–2021, a large area of winter
wheat was replaced by other crop types or other land use
types in the US Midwest, Southeast, Montana, Washington,
and California (Fig. 5.3-d), which reduced the total area of
winter wheat to 12.88 Mha in 2021.

Cotton was mainly distributed in the US Southeast in 1850
with a low density (Fig. S5.1-a). It sharply expanded to the
Southern Great Plains and California with an increased den-
sity during 1850–1925 (Fig. S5.1-b), and the total area of
cotton increased by 16.53 Mha in this period. However, the
period of 1925–2021 was characterized by a huge contrac-
tion of cotton area in the US Southeast and Southern Great

https://doi.org/10.5194/essd-16-3453-2024 Earth Syst. Sci. Data, 16, 3453–3470, 2024



3462 S. Ye et al.: Annual time-series 1 km maps of crop area and types in the conterminous US

Figure 4. The spatial patterns of cropland percentage (a–d) and
dominant crop type (e–h) at a 1 km× 1km resolution in 1850, 1900,
1950, and 2021. The color bar of “Percentage” indicates the per-
centage of planting area to the grid area. “Others” represents the
remaining crop types.

Plains, with a total area declining to 4.50 Mha (Fig. S5.1-c
and 1-d).

For spring wheat, there was a significant expansion from
Montana and Wisconsin to the US Midwest and North-
west during 1850–1933, resulting in a total area increase to
8.28 Mha (Fig. S5.2-a and 2-b). However, the distribution of
spring wheat largely shrunk in the US Midwest and North-
west from 1933 to 1969 (Fig. S5.2-b and 2-c), resulting in
the area decreasing to 3.11 Mha. In recent decades, it has
mainly been centered in the northern part of the Northern
Great Plains with the enhanced density in each grid, and its
total area increased to 4.67 Mha in 2021 (Fig. S5.2-d).

Sorghum consistently expanded in the Southern Great
Plains from 1850 to 1957, with its total area increasing by
10.70 Mha (Fig. S6.1-a to 1-c). However, there was a sub-

sequent area decline thereafter, leaving the total at 3.03 Mha
in 2021 (Fig. S6.1-d). Similarly, barley experienced a con-
tinuous expansion in the US Midwest, Great Plains, North-
east, California, and Colorado, with the total area rising from
0.06 Mha in 1850 to 7.94 Mha in 1942 (Fig. S6.2-b to 2-c).
However, between 1942 and 2021, the distribution of barley
underwent a dramatic contraction across the entire US and
shrank to 1.02 Mha in 2021, with a small extent in the North-
ern Great Plains (Fig. S6.2-d).

Compared with other major crop types, both the distribu-
tion of durum wheat and rice only occupied a small area
of the US over the entire study period (< 3 Mha). Specifi-
cally, durum wheat underwent significant expansion in North
Dakota and South Dakota from 1850 to 1928 (Fig. S5.3-a
and 3-b), reaching a peak area of 2.86 Mha in 1928. Sub-
sequently, it contracted to the eastern part of North Dakota
during 1928–1958, with the total area declining to 0.42 Mha
(Fig. S5.3-c). From 1958 to 2021, its planting area shifted
to the junction of North Dakota and Montana (Fig. S5.3-d).
Rice consistently expanded in Arkansas, Louisiana, Missis-
sippi, and Texas from 1850 to 1981, resulting in a total area
increase of 1.55 Mha (Fig. S6.3-a to 3-c). This expansion
gradually formed the current Rice Belt pattern, followed by
a small shrinkage (0.52 Mha) in these regions between 1981
and 2021 (Fig. S6.3-d). The others category includes vari-
ous minor crop types, such as peanuts, oats, and alfalfa, col-
lectively accounting for 27 %–43 % of the total US cropland
area and being distributed across the entire US (Fig. S7).

3.3 Changes in cropping diversity over time

Here, the value of true diversity (D) is interpreted as the
number of crop species with an equal area in a certain space
(Jost, 2006; Hijmans et al., 2016); thus, a higher D value
means more crop types, a more even distribution, or both. As
shown in Fig. 6, the US cropping system diversity has un-
dergone dramatic change over time, with a sharp increase
from 1850 to 1963 and a significant decline in the recent
60 years. Among different regions, the US Southwest, North-
ern Great Plains, Southern Great Plains, and Southeast had
a higher cropping diversity system than the remaining re-
gions. Specifically, the diversity in the US Southwest, South-
ern Great Plains, and Northern Great Plains presented a sim-
ilar change during the 1850s–1940s, with a drop from the
1850s to the 1880s followed by an obvious increase to the
1940s (Fig. 6b). Starting from the 1940s, the diversity in the
Northern Great Plains peaked around the 1990s and then con-
stantly decreased to 2021, while the Southern Great Plain’s
diversity presented an opposite trend in this period. Mean-
while, the US Southwest witnessed a continuous decline in
crop diversity from the 1940s to the present. The US South-
east retained stable diversity during the 1850s–1930s and
then experienced a significant increase from the 1940s to the
2000s. However, in the recent 20 years, the diversity in the
US Southeast has dropped sharply. The diversity in the US
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Figure 5. The spatial density pattern of corn, soybean, and winter wheat at a 1 km× 1 km resolution in the turning point years with abrupt
area changes. The first, second, and third columns are the density patterns of corn, soybean, and winter wheat, respectively. The total planting
area for each crop type is presented in the bottom left of each panel. The color bar at the bottom indicates the percentage of planting area to
the total grid area.

Northeast has shown an increasing trend across the entire
study period. The crop diversity in the US Northwest fluctu-
ated between 2.5 and 3 from the 1850s to the 1970s and then
had a continuous increase to the present. The US Midwest’s
crop diversity remained relatively stable during the 1850s–
1920s. After increasing to its peak between the 1920s and
the 1930s, it remained stable from the 1930s to the 1980s,
followed by a dramatic decrease to 2021.

4 Discussion

4.1 Comparison with other datasets

We systematically compared our product with previous
datasets regarding the historical total cropland areas (Fig. 7)

and their spatial patterns (Fig. 8) to provide a complete refer-
ence for potential applications. By combining NASS-CPAS
and NASS-COA to reconstruct state- and county-level inven-
tory data, the US total cropland area derived from our den-
sity maps matches well with that from NASS-CPAS from
1850 to 1940 and consistently aligns with the magnitude of
NASS-COA and the interannual variations in NASS-CPAS
between 1940 and 2021 (Fig. 7). We extracted the US to-
tal cropland area from two widely used geospatial satellite
products (USDA-CDL and USGS-NLCD) in the most re-
cent 2 decades. These two datasets demonstrate a smaller
area than that of NASS-COA before 2017, but their estima-
tion of crop area magnitude and interannual variation have
presented greater consistency with this study over the most
recent 5 years. Meanwhile, Yu and Lu (2018) and Li et
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Figure 6. The temporal trend in the diversity value in the US (a) and seven regions (b). NW, SW, NGP, SGP, MW, SE, and NE represent
Northwest, Southwest, Northern Great Plains, Southern Great Plains, Midwest, Southeast, and Northeast, respectively. The spatial map of
the seven regions is presented in Fig. 5.2-b. To get a better visual pattern, the trends of the seven regions in panel (b) were smoothed by the
Gaussian function. The diversity value is calculated based on the reconstructed inventory data.

al. (2023) all used NASS-CPAS to develop YLMAP and
CONUS, respectively, resulting in a lower US total cropland
area after 1940 than this study. This is because NASS-CPAS
only includes the cropland area of principal crops in each
state, which is lower than the total cropland area reported
by NASS-COA, especially after 1940. Among the existing
databases, LCMAP, HYDE, GBC, and ZCMAP represented
an upper bound of the US total cropland area. Especially for
GBC, it reported a national total crop acreage about 50 %
higher than the upper range of all other data products (∼ 300
vs. ∼ 200 Mha around the 1980s in Fig. 7).

The divergence among these data products is mostly
caused by different cropland definitions and cropland map
generation processes. Spatially, we observed that HYDE ex-
hibits broader cropland extent and a higher fraction of crop-
land per grid than our products, particularly in regions with
low-density cropland distribution, such as the US North-
west, Southeast, and Southwest (Figs. 8 and 9). This dis-
parity might be attributed to the definition of cropland in
HYDE that includes both arable land and permeant crop-
land (Goldewijk, 2001), whereas our map exclusively ac-
counts for the crop-planting area of crops. More importantly,
the crop-planting area of our map was constrained based on
county-level inventory data. Meanwhile, HYDE spatialized
the subnational-level inventory data to allocate cropland area
to each grid in accordance with “cropland suitability maps”
informed by dynamical social (historical population density)
and stable environmental (soil suitability, temperature, and
topography) information (Goldewijk et al., 2011; Yu and Lu,
2018). As a result, greater acreage and a wider extent of crop-
land were estimated by HYDE and were allocated to each
grid (Figs. 7, S8, and S9). Similarly, the category of cropland
in LCMAP and ZCMAP contains crop and pasture (Zumkehr

and Campbell, 2013; Xian et al., 2022), while GBC cropland
refers to arable land (Klein Goldewijk et al., 2017; Cao et
al., 2021), leading to their higher cropland area than our re-
sult (Fig. 7). Also, the grid density of ZCMAP was higher
than this study in low-density regions (the first row in Fig. 9),
as ZCMAP adopted an assumption that the historical spatial
crop pattern remained roughly similar to the base map 2000,
in which the fraction in each grid is higher in these regions
(Ramankutty et al., 2008; Zumkehr and Campbell, 2013).
Moreover, CONUS showed a more extensive cropland dis-
tribution than our maps (especially in the Great Plains and
US Southeast; Fig. 8 and the third row in Fig. 9). This is
likely because they produced more potential cropland grids
than the county records through an artificial neural-network-
based land cover probability occurrence model (Li et al.,
2023). GBC feeds population density and eight biophysical
variables (including elevation, temperature, and soil water)
into a random forest model to generate the cropland distribu-
tion (Cao et al., 2021). As a result, the spatial pattern between
GBC and our maps shows a high agreement at the national
scale (Fig. 8). However, the cropland percentage in each grid
cell of GBC is significantly higher than other maps (Fig. 8
and the second row in Fig. 9), which might be related to
the base map used in their study and the lack of inventory
records for limiting the total cropland area in the US (Cao et
al., 2021).

In terms of spatial details among these datasets, our prod-
ucts, YLMAP, CONUS, and GBC (1 km× 1 km) can provide
more detailed spatial information than HYDE and ZCMAP
(5 arcmin) (Fig. 9). Furthermore, compared with YLMAP,
CONUS, and HYDE, which incorporate state-level census,
our products are likely to demonstrate more reliable crop-
land density heterogeneity within a state (the third row in
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Fig. 9), as we adopted county-level census to control the to-
tal cropland area in each county. Thus, the rebuilt map is
capable of capturing spatial shifts between counties within
the same state, such as cropland abandonment in some coun-
ties but expansion in others (Fig. 9). This indicates that the
county inventory-derived datasets are more appropriate for
subregion applications (Yang et al., 2020).

Overall, our product remains highly consistent with the
county-level inventory data and presents a similar cropland
distribution to YLMAP and GBC that involves both biophys-
ical and socioeconomic drivers to generate crop pixels. In
addition, unlike cropland involving arable land in HYDE or
harvesting land in CONUS mentioned above, the definition
of cropland in our product refers to the crop-planting areas
and excludes idle and fallow farm land and cropland pas-
ture, providing real surface information disturbed by agricul-
ture. This improvement enhances the estimation of the effect
of cropland change on the environment. Therefore, the de-
veloped maps can provide a more comprehensive cropland
tracking for ecological and environmental assessment, cov-
ering both cropland distribution and crop types at national
and regional scales.

4.2 The drivers for US cropland change

Between 1850 and 1900, there was a notable cropland expan-
sion toward the west (Fig. 4). This was mainly driven by the
Homestead Act of 1862, which provided 160 acres of land to
the public for farming purposes (Anderson, 2011). Addition-
ally, the end of the Civil War, the disbanding of armies, and
the building of canals and railroads toward the west further
contributed to the agricultural market and export, accelerat-
ing agricultural reclamation (Ramankutty and Foley, 1999).
At the same time, corn, cotton, and wheat were the domi-
nant crop types and expanded rapidly to the west (Figs. 5
and S5). From 1900 to 1950, advanced irrigation systems,
industrial technology, and mechanization further promoted
agricultural development. For instance, the areas of winter
wheat, sorghum, and barley increased substantially in this
period (Figs. 5, S5, and S6). Subsequently, the fluctuation in
the market, policy structure, and weather conditions played a
dominant role in affecting the interannual variations in agri-
cultural areas (Spangler et al., 2020). For example, the farm
crisis in the 1980s resulted in a significant cropland drop.
Moreover, a series of historical cropland acreage-reduction
programs, such as the Conservation Adjustment Act Pro-
gram and Conservation Reserve Program, resulted in a to-
tal cropland reduction (Lubowski et al., 2006). In the most
recent 3 decades, the total US cropland has remained rela-
tively constant, but the crop commodities have changed sig-
nificantly. Corn and soybean have gradually become the pre-
dominant crop types due to the rising demand for corn as
biofuel and the higher market price for soybean, which has
pushed framers to convert other types to corn and soybean
(Bigelow and Borchers, 2017; Aguilar et al., 2015). Over-

all, US cropland experienced significant growth between the
1850s and the 1920s, driven by population growth, industri-
alization, mechanization, and market change. It subsequently
underwent a process of stabilization after experiencing fluc-
tuations in crop types and area.

4.3 The implications for cropping diversity change

In general, the US cropping diversity experienced a dramatic
change throughout the entire period. From 1850 to 1963, it
constantly increased (Fig. 6a), primarily attributed to the ris-
ing areas of all major crop types during this stage (Fig. 3).
Spatially, the diversity increases in the US Southwest, South-
east, and Great Plains contributed to the overall increase in
the country’s cropping diversity (Figs. 6b and 10). From the
1960s to 2021, the cropping diversity had a significant de-
crease, mainly due to the increased planting area of corn and
soybean and the decreased cultivated area of winter wheat,
spring wheat, sorghum, and barley. Meanwhile, the diversity
drop in the US Northern Great Plains, Southwest, Southeast,
and Midwest might contribute to the country’s crop diversity
decline (Figs. 6b and 10). This finding shows a strong agree-
ment with the results of Aguilar et al. (2015), who found
that the crop species diversity declined from the 1980s to the
2010s in the Midwest.

On the other hand, crop species diversity is an important
component of biodiversity within a cropping system, and a
decrease in crop species diversity is often associated with
a decline in overall biodiversity (Altieri, 1999). Some re-
searchers have pointed out that biodiversity plays an essen-
tial role in the functioning of the real-world ecosystem. High
biodiversity would increase soil fertility, mitigate the impact
of pests and diseases, improve resilience to climate change,
and promote food production and nutrition security (Altieri,
1999; Duffy, 2009; Frison et al., 2011). For example, Renard
and Tilman’s research indicated that crop species diversity
could stabilize food production (Renard and Tilman, 2019),
and Burchfield et al. (2019) found that agricultural diversi-
fication can increase crop production. Thus, one could pose
the following question: has the significant drop in the US
cropping diversity over the past 6 decades affected yield and
ecosystem productivity? Moreover, under more frequent cli-
mate extremes anticipated in the future, will decreasing crop-
ping diversity affect the sustainability and resilience of the
US agricultural system?

4.4 Uncertainty

In this study, we integrated the inventory data and the gridded
LCLUC products to generate annual cropland density and
crop type maps at a resolution of 1 km× 1 km from 1850 to
2021. Although our data are highly consistent with inventory
data, some uncertainties remain:

1. In the upscaling process of CDL from 30 m to 1 km, we
assigned each pixel to a dominant crop type with the
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Figure 7. Comparison of the US total cropland area from different sources. The following abbreviations/acronyms are used in the figure:
CDL – Cropland Data Layer; NLCD – National Land Cover Database; LCMAP – Land Change Monitoring, Assessment, and Projection;
YLMAP – the US cropland map from Yu and Lu (2018); ZCMAP – the US cropland map from Zumkehr and Campbell (2013); CONUS – the
cropland map from Li et al. (2023); GBC – the US cropland extracted from the global cropland dataset developed by Cao et al. (2021); HYDE
– History database of the Global Environment 3.2 (Klein Goldewijk et al., 2017); NASS-CPAS – the Crop Production Annual Summary data
from the National Agricultural Statistics Service of the USDA; and NASS-COA – the Census of Agriculture from the National Agricultural
Statistics Service of the USDA. In particular, YLMAP, ZCMAP, CONUS, and GBC are not used in this study to reconstruct crop maps.

Figure 8. The spatial patterns of cropland from different datasets in the selected years of 1850, 1900, 1950, and 2000. The following
abbreviations/acronyms are used in the figure: YLMAP (1 km) – the US cropland map from Yu and Lu (2018); ZCMAP (5 arcmin) – the
US cropland map from Zumkehr and Campbell (2013); CONUS (1 km) – the cropland map from Li et al. (2023); GBC (1 km) – the US
cropland extracted from the global cropland dataset developed by Cao et al. (2021); and HYDE (5 arcmin) – History database of the Global
Environment 3.2 (Klein Goldewijk et al., 2017).

biggest fraction of land area within the pixel. Although
the area of each crop was constrained by the inventory
data at the county level, this resampling process may

overlook certain crop type distributions with a minor
fraction within a pixel.

2. The inventory is crucial for reconstructing historical
cropland maps. Here, the rebuilt inventory data in miss-
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Figure 9. The detailed spatial pattern from different datasets in the year 2000. The following abbreviations/acronyms are used in the figure:
YLMAP (1 km) – the US cropland map from Yu and Lu (2018); ZCMAP (5 arcmin) – the US cropland map from Zumkehr and Campbell
(2013); CONUS (1 km) – the cropland map from Li et al. (2023); GBC (1 km) – the US cropland extracted from the global cropland dataset
developed by Cao et al. (2021); and HYDE (5 arcmin) – History database of the Global Environment 3.2 (Klein Goldewijk et al., 2017). The
spatial extent in each row for panels (a), (b), and (c) is for the US Southwest, Iowa, and Texas, respectively.

Figure 10. The spatial pattern of crop diversity in 1900, 1963, 1990,
and 2021 at the county level. The diversity value is calculated based
on the gap-filled and multisource harmonized inventory data in each
county.

ing years are interpolated. Although this study is based
on our best knowledge, this method may not reflect the
real interannual cropland area fluctuations in the miss-
ing years.

3. In the process of spatializing crop types, we randomly
convert the cropland grids from specific types with
higher map area than inventory data to other crop types
within each county. In addition, grids identified with

corn–soybean rotation were randomly selected within
a county based on the corn–soybean rotation ratio, aim-
ing to prevent a grid cell from being consistently occu-
pied by a single crop type over time. While the extent
of the random processes varied among counties based
on the difference between intermediate map data and
inventory data, it is important to note that they may in-
fluence the temporal trajectory of grid-based crop type
changes. Thus, users should proceed with caution when
employing this data product for time-sequencing analy-
ses, such as crop rotation patterns (e.g., continuous corn
or corn–soybean–corn) at the pixel level.

4. The diversity in this study mainly reflects the change
in diversity among 10 crop types (9 major types and 1
others category). It is important to note that the others
category in the study is not a single crop type, rather a
combined category including various minor crop types
(peanuts, oats, etc.). Thus, the diversity changes quan-
tified in this study capture the diversity of major row
crops (accounting for 70 % of the national total crop-
land area in the 2010s) and the “others-as-one-category”
in the US over time. A more comprehensive diversity
analysis involving all crop types would require a more
detailed time-series crop type record, which is currently
lacking.

5 Data availability

The developed dataset is available at
https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et
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al., 2023). This dataset includes an annual cropland density
map and crop type map in GeoTIFF format at a 1 km× 1 km
spatial resolution.

6 Conclusion

In this study, annual cropland density and crop type maps
from 1850 to 2021 in the conterminous US were developed
by integrating a multisource cross-scale inventory and grid-
ded datasets. In general, our maps have a high consistency
with inventory data, both at the national level (R2 > 0.99,
RMSE < 0.3 Mha) and county level (a residual less than
0.2 kha for most counties, > 75 %). Compared with other
datasets, the spatial pattern of the developed maps matches
well with YLMAP and GBC. Throughout the study period,
the total US cropland increased by 118 Mha, mainly driven
by corn (30 Mha), soybean (35 Mha), and others (31 Mha).
The hot spots have shifted from the Eastern US to the Mid-
west and the Great Plains. Specifically, the Homestead Act
of 1862 significantly contributed to the cropland expansion
toward the west, and the rising demand for biofuel and the
elevated market price resulted in a dramatic increase in corn-
and soybean-planting areas. Meanwhile, the intensified corn
and soybean substituted other crops, leading to a decrease in
the cropping diversity in the US Midwest, which may further
influence the crop yield and co-benefit of agroecosystem ser-
vices. Additionally, there were random processes involved in
generating crop type maps. This might introduce uncertainty
in pixel-based crop type sequence detection, but the area for
each crop type was well constrained by gap-filled long-term
inventory data at the county level. The county-level area con-
trol also enables the developed maps to depict regional spa-
tial shifts within a state. Different from previous datasets, the
cropland in our products refers to the planting area of all the
crops, excluding idle and fallow farm land and cropland pas-
ture. Hence, the cropland map provides reliable cultivation
information and reveals the surface disturbance conducted
by agricultural activities, which can improve the estimation
of the impact of cropland change on the environment and cli-
mate system. Overall, the developed datasets provide a his-
torical cropland distribution pattern, filling the data gap by
providing long-term crop extent and type maps. We envi-
sion that this database could better support US agricultural
management data development with crop-specific informa-
tion and improve the environmental assessment and socioe-
conomic analysis related to agricultural activities.
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