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Abstract. A nutrient distribution, such as that of phosphate (PO3−
4 ), ammonium (NH+4 ), nitrate (NO−3 ), dis-

solved silica (Si), total dissolved nitrogen (TN), and dissolved organic nitrogen (DON), together with dissolved
organic carbon (DOC) and inorganic carbon (DIC), was investigated during a high-melting season in 2021 in
the western Spitsbergen fjords (Hornsund, Isfjorden, Kongsfjorden, and Krossfjorden). Both the water column
and the pore water were investigated for nutrients and dissolved carbon distribution and gradients. The water
column concentrations of most measured parameters, such as PO3−

4 , NH+4 , NO−3 , Si, and DIC, showed signifi-
cant changes among fjords and water masses. In addition, pore water gradients of PO3−

4 , NH+4 , NO−3 , Si, DIC,
and DOC revealed significant variability between fjords and are likely substantial sources of the investigated
elements for the water column. The reported dataset reflects differences in hydrography and biogeochemical
ecosystem functions of the investigated western Spitsbergen fjords and may form the base for further modeling
of physical oceanographic and biogeochemical processes within these fjords. All data discussed in this commu-
nication are stored in the Zenodo online repository at https://doi.org/10.5281/zenodo.11237340 (Szymczycha et
al., 2024).
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1 Introduction

The Arctic is facing significant and rapid transformations due
to Arctic amplification accelerating climate change in the re-
gion (Dunse et al., 2022). The warming of the climate causes
a change in oceanic and atmospheric circulation patterns,
permafrost degradation, and decrease in the thickness and ex-
tent of sea ice, as well as shrinkage of glaciers (IPCC, 2022;
Dunse et al., 2022). Freshwater released from glacial melt-
water runoff or frontal ablation and accompanying fluxes of
solutes is a significant factor that changes the hydrographic
pattern and biogeochemistry of water masses, which in turn
affects the biological productivity in the ocean and fjords
(Hopwood et al., 2016, 2020).

Many studies have investigated the biogeochemistry of nu-
trients in the Barents Sea and Arctic region (Henley et al.,
2020; Gundersen et al., 2022; Tuerena et al., 2022). Sub-
stantial efforts have been made in existing Arctic monitor-
ing programs, research initiatives, and scientific projects to
describe, explain, and predict environmental changes due to
diverse pressures on the Arctic ecosystem (Townhill et al.,
2022). Studies indicate that net primary production in open
Arctic waters is mainly sustained by the upwelling of nu-
trients and light availability (Henley et al., 2020; Stroeve et
al., 2021), while nitrogen is considered to be the key limit-
ing nutrient in the Arctic Ocean (Mills et al., 2018; Ko et al.,
2020). In addition, Henley et al. (2020) indicated that, with
ongoing sea ice losses due to Atlantification, the expected
shift from more Arctic-like ice-impacted conditions to more
Atlantic-like ice-free conditions is projected to increase nu-
trient availability and the duration of the vegetation period in
the Arctic shelf region.

Arctic fjords have not gained similar attention, and inves-
tigations were usually focused on individual fjord systems
(Codispoti et al., 2013; Henley et al., 2020; Kim et al., 2022;
Pogojeva et al., 2022). Spatially wide studies of fjords and
investigations focusing on the hydrography and biogeochem-
ical functioning of the Arctic shelf seafloor are still lacking.
To address the existing knowledge gaps, we studied the wa-
ter masses and pore waters together with their biogeochem-
ical composition in the western Spitsbergen fjords. The se-
lected area is an excellent research site for investigating the
effects of both rapidly occurring climate change and varied
levels of Atlantification, as different fjords are under the di-
verse impact of the East Spitsbergen Current, bringing cold
Arctic water (ArW), and the West Spitsbergen Current, carry-
ing warmer and more saline Atlantic water (AtW). This was
also our motivation for releasing this macronutrient dataset,
which we believe may constitute a biogeochemical reference
for other experimental and modeling research in the region.

2 Materials and methods

2.1 Study area description

The west coast of the Svalbard archipelago (76–80° N) con-
sists of different fjords and sub-fjords (Fig. 1). All investi-
gated fjords (Hornsund, Isfjorden, Kongsfjorden, and Kross-
fjorden) are influenced by the East Spitsbergen Current, car-
rying cold ArW from the Barents Sea, and the West Spits-
bergen Current, with warmer and more saline AtW from the
Norwegian Sea (Promińska et al., 2018) (Fig. 1, Table 1).
When AtW mixes with ArW, the warmer transformed At-
lantic water (TAW) forms (Table 1, Cottier et al., 2005). Sur-
face water (SW) (Table 1) is formed locally from glacial melt
and river runoff and occupies the surface layer of the fjord.
Intermediate water (IW) forms as a result of mixing AtW
or TAW with overlying fresher SW. Local water (LW) and
winter-cooled water (WCW) usually form during autumn and
winter (Cottier et al., 2005; Hop et al., 2006; Cantoni et al.,
2020) in depressions within the inner fjords.

Hornsund is located on the southern end of Spitsbergen
and is about 30 km long and 15 km wide (Fig. 1). The fjord is
divided into the main basin and inner basin (Brepollen) by a
shallow sill located in the center of the fjord (Błaszczyk et al.,
2019). The average depth is approximately 90 m, while the
deepest section reaches 250 m (Moskalik et al., 2014). Sedi-
ments consist of mud and sandy mud, laminated mud, homo-
geneous to bioturbated mud, and sandy gravel (Drewnik et
al., 2016). Freshwater discharge to the fjord was estimated to
be approximately 1.8 km3 annually (Węsławski et al., 1991),
mainly due to glacier melting (64 %), with the fastest retreat-
ing rate being in Svalbard (with an average rate of between
100 and > 200 m yr−1; Grabiec et al., 2018). Other freshwa-
ter sources, such as frontal ablation and river runoff, primar-
ily influence the upper water column (Zaborska et al., 2020).
Hornsund exhibits high nutrient enrichment and experiences
a strong influence from the ArW and colder coastal water
(Włodarska-Kowalczuk et al., 1998). These conditions con-
tribute to greater productivity in Hornsund compared to the
warmer and saline fjords (Santos-Garcia et al., 2022).

Isfjorden stands as the largest fjord system on Spitsber-
gen, with about 100 km in length from the mouth to the head
and up to 425 m in depth (Table 1). Isfjorden has several
sub-fjords and bays. Studies conducted in Isfjorden have pro-
vided evidence of the significant impact of freshwater on the
water column (McGovern et al., 2020; Finne et al., 2022).
Seasonal stratification has been responsible for the retention
of terrestrial carbon and nutrients within the euphotic zone
and a decrease in vertical mixing during the most produc-
tive season (McGovern et al., 2020; Finne et al., 2022). The
enhanced freshwater input contributes to the overall nutri-
ent loading in the system, affecting the biogeochemical pro-
cesses and ecosystem functioning.

Kongsfjorden is about 20 km long and up to 10 km wide,
with an orientation from the southeast to the northwest
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Figure 1. (a) The study area, including the general map of Spitsbergen, highlighting the depths of the fjords and the surrounding Svalbard
shelf (a). The warm West Spitsbergen Current and cold East Spitsbergen Current are indicated by red and blue arrows, respectively (Vihtakari,
2024, 2019). Study sites located in (b) Hornsund, (c) Isfjorden, and (d) Kongsfjorden and Krossfjorden are presented as black triangles.

(Promińska et al., 2017, Table 1). The depth at the mouth
of the fjord is about 360 m and decreases towards the in-
ner part, where it does not exceed 100 m (Svendsen et al.,
2002). Kongsfjorden has remained sea-ice-free since 2011,
invoking profound biogeochemical transformations (Hop
and Wiencke, 2019; Pavlova et al., 2019). Unlike other Arc-
tic fjords, it experiences a distinct influence of the intrusion
of warm and saline waters (Hodal et al., 2012). The inflow of
AtW and ArW from one side and glacier meltwater from an-
other (Halbach et al., 2019) leads to amplified nutrients and
carbon cycling, enhanced net primary productivity, and oxy-
gen depletion in deeper waters (Santos-Garcia et al., 2022).

Krossfjorden exhibits a northeast-to-southwest orienta-
tion, stretching approximately 30 km in length and reaching
widths from 3 to 6 km (Table 1). The total volume of Kross-
fjorden is 25 km3, and its maximum depth is 373 m (Svend-

sen et al., 1992). Krossfjorden, characterized by a colder
spring and less intrusion of AtW, shares similar conditions
with the inner part of Kongsfjorden. However, it experiences
a shorter period of glacier retreat compared to Kongsfjorden
(Gamboa-Sojo et al., 2022). Studies on chlorophyll and other
pigment distribution in surface sediments suggest that Kross-
fjorden is more productive than Kongsfjorden (Singh and Kr-
ishnan, 2019).

2.2 Sampling and analyses

Sampling was carried out from 25 July to 20 August 2021
on board the R/V Oceania, belonging to the Institute of
Oceanology, Polish Academy of Sciences (IOPAN). A towed
CTD profiling system (rosette) equipped with 10 L Niskin
bottles was used to collect water samples from three to five
depths at each location (selected based on salinity and oxy-
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Figure 2. The water mass distribution, including surface water (SW), Arctic water (ArW), winter-cooled water (WCW), intermediate water
(IW), local water (LW), transformed Atlantic water (TAW), and Atlantic water (AtW) in (a) Hornsund, (b) Isfjorden, (c) Kongsfjorden, and
(d) Krossfjorden.

gen profiles). Temperature (T ), salinity (S), and oxygen (O2)
concentration were measured in situ using a Sea-Bird Scien-
tific SBE 911plus CTD profiler equipped with oxygen mod-
ule SBE 43 (calibrated prior to the cruise). The accuracy of
T , S, and O2 is equal to ±0.002 °C, ±1 %, and ±0.015 %,
respectively. The results of averaged data for 0.5 m intervals
are presented in the database. Temperature and salinity from

layers where discrete samples were collected were used for
an oceanographic classification of water masses.

2.2.1 Seawater sampling

Exactly 10 mL of seawater was filtered (cellulose acetate fil-
ters with a pore size of 0.45 µm), frozen in a pre-cleaned
high-density polyethylene (PE) bottle, and stored at −20 °C
for further nutrient analysis. The seawater for DIC analysis
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was transferred into the pre-cleaned 250 mL glass bottle and
poisoned with 100 µL saturated HgCl2. Furthermore, 20 mL
of seawater for DOC and TN analysis was filtered through
pre-combusted 0.45 µm MN GF-5 filters, transferred into the
pre-combusted glass bottle, and acidified to pH ∼ 2 with
HClconc. to stop mineralization and remove carbonates.

2.2.2 Pore water sampling

GEMAX and Nemisto gravity corers were used to collect
up to approximately 40 cm long sediment cores. However,
the retrieval of the cores in some locations was not possible
due to the consolidated seafloor. Additionally, the pore water
extracted from some sediment cores was insufficient to per-
form all analyses. Pore water was extracted from sediments
through pre-drilled holes in the core liners via Rhizon®

samplers (Rhizosphere; diameter of 2.5 mm and mean pore
size of 0.15 µm) directly after extracting the cores. Up to
5 mL of pore water was frozen in a pre-cleaned high-density
polyethylene bottle and stored at −20 °C for further nutri-
ent analysis, and approximately 2 mL of pore water was kept
in PE vials for further Cl− analysis. For further DIC, DOC,
and TN analysis, 12 mL of pore water was transferred into
the pre-combusted glass bottle and poisoned with 50 µL satu-
rated HgCl2. Seawater pH was measured with a WTW 3400i
multi-parameter field meter that yielded an accuracy of±0.1.
The pH results are given for a reference temperature of 25 °C.

2.2.3 Chemical analyses

Nutrient concentrations were determined using a SEAL
AA500 AutoAnalyzer (Seal Analytical) and applying stan-
dard photometric methods (Grasshoff et al., 2009). Quality
control consists of repeated measurements of two different
CRMs (QC3179 by Sigma Aldrich and HAMIL by Envi-
ronment Canada). Method detection limits are 0.33 µmolL−1

for nitrate (NO−3 ), 0.27 µmolL−1 for NH+4 , 0.1 µmol L−1 for
phosphate (PO3−

4 ), and 0.3 µmolL−1 for dissolved silicates
(Si). The accuracy of NO−3 , NH+4 , PO3−

4 , and Si measure-
ments was 98.8 %, 98.8 %, 99.0 %, and 100.1 %, respectively,
while the precision was 0.01, 0.02, 0.01, and 0.03 µmolL−1,
respectively. Chloride (Cl−) was determined by titration
(Mohr’s method), with a precision of 0.1 mmol L−1. The
DIC analyses were carried out based on sample acidifica-
tion with Apollo SciTech’s AS-C6L DIC analyzer, equipped
with the laser-based CO2 detector (LI-7815; Li-Cor, USA).
The accuracy of DIC measurements was ensured using cer-
tified reference materials (CRMs; batch nos. 190 and 195)
by Andrew Dickson (Scripps Institution of Oceanography,
USA), and the precision was obtained from triplicate mea-
surements of individual samples and was not worse than
±3 µmolL−1, with an average recovery of 99.0 %. The DOC
and TN analyses were done in a TOC-L analyzer (Shimadzu)
using a high-temperature (680 °C) oxidation method with Pt
as the catalyst. The precision of the DOC measurements was

±4 µmolL−1; the accuracy was determined by repeated mea-
surements of the certified reference materials (CRMs) pro-
vided by the laboratory of Dennis A. Hansell (University of
Miami, USA), and the recovery was 99 %. The accuracy of
the TN measurements was guaranteed using the same CRMs
used to determine DOC, ad average recovery was 97 %. DON
was determined by subtracting the sum of NO−3 and NH+4
from TN results.

2.3 Statistics and data analysis

All statistical analyses were carried out using Statistica (ver-
sion 13), while the evaluation of the statistical significance
was made using the Kruskal–Wallis test. Figure 1 was pre-
pared using the map of Svalbard. Temperature–salinity (TS)
diagrams were made using the Python programming lan-
guage, while box plots were made by means of Statistica.

3 Data description

3.1 Water mass distribution

Different water masses were distinguished within the inves-
tigated fjords (Fig. 2; Szymczycha et al., 2024). The classi-
fication was done based on Cottier et al. (2005), Nilsen et
al. (2008), and Promińska et al. (2018) separately for each
fjord (Table 1). All the identified water masses align with
those previously recognized in Arctic regions (Rudels et al.,
2000), with some interesting differences found between the
fjords. In Hornsund, SW, ArW, WCW, and IW were found. In
Isfjorden, SW, ArW, IW, LW, and TAW occurred. In Kongs-
fjorden and Krossfjorden, IW, TAW, and AT were observed.
It is worth noticing that Hornsund did not show any impact
of TAW and AtW.

3.2 Water column data

The distribution of T , S, pH, O2, NO−3 , NH+4 , PO3−
4 , Si, DIC,

DOC, TN, and DON in summer 2021 in western Spitsber-
gen fjords was investigated. The obtained results were di-
vided into fjords such as Hornsund (marked blue), Isfjorden
(marked grey), Kongsfjorden (marked red), and Krossfjor-
den (marked yellow) (Fig. 3; Szymczycha et al., 2024). In
all studied fjords, similar trends were observed, such as a
decrease in T and pH and an increase in S, NO−3 , NH+4 ,
PO3−

4 , Si, DIC, and TN with depth, while O2, DOC, and
DON were variable with depth and did not show any pat-
terns. To show the variability in measured parameters be-
tween fjords and separate the most freshened surface wa-
ters, the results were divided into the surface water layer
(the uppermost layer up to 5 m based on salinity and tem-
perature) and the bottom water (the lowermost layer in the
water column) in each fjord (Fig. 4). Generally, the tempera-
ture of the surface water was warmer than that of the bot-
tom water and shows a significant difference between the
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Table 1. Salinity and temperature of various water masses in fjords. The classification was done based on Cottier et al. (2005), Nilsen et
al. (2008), and Promińska et al. (2018) separately for each fjord.

Hornsund Isfjorden Kongsfjorden–Krossfjorden
(Nilsen et al., 2008) (Nilsen et al., 2008) (Cottier et al., 2005)

Temperature [°C] Salinity Temperature [°C] Salinity Temperature [°C] Salinity

Arctic water (ArW) −1.5 > T > 2 34 < S < 34.5* −1.5 > T > 1 34.4 < S < 34.8 −1.5 > T > 1 34.30 < S < 34.80
Atlantic water (AW) T > 3 S > 34.9 T > 3 S > 34.9 T > 3 S > 34.65
Intermediate water (IW) T > 1 34 < S < 34.7 T > 1 34 < S < 34.7 T > 1 34.00 < S < 34.65
Local water (LW) T < 1 T < 1 −1.5 > T > 1 34.30 < S < 34.85
Surface water (SW) T > 1 34 < S T > 1 34 < S T > 1 S < 34
Transformed Atlantic water (TAW) T > 1 34.7 < S < 34.9 T > 1 S > 34.7 1 > T > 3 S > 34.65
Winter-cooled water (WCW) T <−0.5 S > 34.4 T <−0.5 S > 34.74 T <−0.5 34.40 < S < 35

* Promińska et al. (2018).

Figure 3. The distribution of (a) temperature (T ), (b) salinity (S), (c) pH, (d) oxygen (O2), (e) nitrate (NO−3 ), (f) ammonium (NH+4 ),

(g) phosphate (PO3−
4 ), (h) dissolved silica (Si), (i) dissolved inorganic carbon (DIC), (j) dissolved organic carbon (DOC), (k) total dissolved

nitrogen (TN), and (l) dissolved organic nitrogen (DON) in Hornsund (marked blue), Isfjorden (marked grey), Kongsfjorden (marked red),
and Krossfjorden (marked yellow).

fjords (p = 0.00005), with the highest being in Isfjorden and
the coldest in Kongsfjorden. The bottom water temperature
was similar in all fjords (p = 0.1732), however, only reach-
ing negative values in Hornsund. Salinity was much higher
in bottom water (median > 34) than in surface water (me-
dian < 33.5) and did not show significant differences be-
tween fjords (p < 0.05) in both surface and bottom water.
The pH of the surface water was high (median > 7.8) and did
not vary significantly between the fjords, while the pH of the
bottom water was lower than the pH of the surface water and
differed significantly between the fjords (p = 0.0109). The
median concentration of O2 in both surface and bottom water
was comparable and ranged from 308.8 to 333.8 µmolL−1.

NO−3 , NH+4 , PO3−
4 , and DIC showed a significant difference

in the median concentration between surface and bottom wa-
ter and significantly varied between fjords in both water types
(p < 0.05). Si showed a pattern similar to that of the other
nutrients; however, in Isfjorden, no significant change was
observed between the surface and bottom water. DOC did
not change substantially between fjords and between water
types. Interestingly, DOC, TN, and DON showed similar be-
havior in all fjords.
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Figure 4. Box plots of (a) temperature (T ), (b) salinity (S), (c) pH, (d) oxygen (O2), (e) nitrate (NO−3 ), (f) ammonium (NH+4 ), (g) phosphate

(PO3−
4 ), (h) dissolved silica (Si), (i) dissolved inorganic carbon (DIC), (j) dissolved organic carbon (DOC), (k) total dissolved nitrogen

(TN), and (l) dissolved organic nitrogen (DON) in surface water (marked blue) and bottom water (marked orange) in Hornsund, Isfjorden,
Kongsfjorden, and Krossfjorden. The p values indicate significant differences in the median concentration of the parameter between the
investigated fjords.

3.3 Biogeochemistry of the water masses

In general, all fjord systems are transition zones between
land and sea, resulting in complex and dynamic environ-
ments (Schlegel et al., 2023). The west Spitsbergen fjords
are highly stratified (Fig. 3) and provide a pathway for the ex-
change of heat, salt, nutrients, and dissolved carbon between

near-glacier waters and adjacent coastal regions (Hopwood et
al., 2020). These coastal regions are additionally under vary-
ing influence of the East Spitsbergen Current and the West
Spitsbergen Current, which bring cold ArW and warmer and
more saline AtW, respectively. It is worth mentioning that
the West Spitsbergen Current, in addition to transporting the
majority of heat, also transports carbon that supplies plan
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Figure 5. (a) Oxygen (O2), (b) pH, (c) nitrate (NO−3 ), (d) ammonium (NH+4 ), (e) total dissolved nitrogen (TN), (f) dissolved inorganic

carbon (DIC), (g) dissolved organic carbon (DOC), (h) dissolved organic nitrogen (DON), (i) dissolved silica (Si), and (j) phosphate (PO3−
4 )

in surface water (marked as blue), Arctic water (marked orange), winter-cooled water (marked green), intermediate water (marked pink),
local water (marked dark grey), transformed Atlantic water (marked light grey), and Atlantic water (marked red) in Hornsund, Isfjorden,
Kongsfjorden, and Krossfjorden. The p values indicate significant differences in the median concentration of the parameter between the
investigated fjords, presented only if statistically significant.

(Menze et al., 2020). However, the West Spitsbergen Cur-
rent along its way up to Kongsfjorden depletes in nutrients
(Smoła et al., 2017), and, therefore, its influence on Kongs-
fjorden will be different from that on the Isfjorden. Thus,
understanding the biogeochemical processes in the fjords
and characterizing the differences among them is not pos-

sible without a detailed understanding of the water circula-
tion. To characterize the distribution of T , S, pH, O2, NO−3 ,
NH+4 , PO3−

4 , Si, DIC, DOC, TN, and DON in the investi-
gated fjords, we used the Kruskal–Wallis test to character-
ize the differences in the concentrations of these constituents
between different water masses within and between investi-
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Figure 6. Distribution of (a) chloride (Cl−), (b) nitrate (NO−3 ), (c) ammonium (NH+4 ), (d) phosphate (PO3−
4 ), (f) dissolved silica (Si),

(g) dissolved inorganic carbon (DIC), and (h) dissolved organic carbon (DOC) in pore water in Hornsund (marked blue), Isfjorden (marked
grey), Kongsfjorden (marked red), and Krossfjorden (marked yellow).

gated fjords (Fig. 5). The p value is presented only if there
was a significant difference in the median concentration of
the parameter considered between the investigated fjords.
SW, ArW, and IW were characterized by different compo-
sitions of most of the measured parameters, such as NO−3 ,
NH+4 , PO3−

4 , Si, and DIC between fjords. Besides NH+4 , Arc-
tic water is richer in nutrients and DIC in Hornsund in com-
parison to Isfjorden. However, LW, which was only observed

in Isfjorden, was characterized by the highest concentration
of NO−3 , PO3−

4 , Si, and DIC between all water masses.

3.4 Pore water data

The distribution and gradients of Cl−, NO−3 , NH+4 , PO3−
4 ,

Si, DIC, and DOC in pore waters in the investigated fjords
are presented in Fig. 6 (Szymczycha et al., 2024). Gener-
ally, Cl−, NH+4 , PO3−

4 , Si, and DIC increased with depth and
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Figure 7. Box plots of (a) chloride (Cl−), (b) nitrate (NO−3 ), (c) ammonium (NH+4 ), (d) phosphate (PO3−
4 ), (e) dissolved silica (Si),

(f) dissolved inorganic carbon (DIC), and (g) dissolved organic carbon (DOC) in pore water (marked grey) and bottom water (marked
orange) in Hornsund, Isfjorden, Kongsfjorden, and Krossfjorden. The p values indicate significant differences in the median concentration
of the parameter between the investigated fjords.

NO−3 and DOC decreased with depth. PO3−
4 decreased in ev-

ery fjord except Isfjorden. To highlight the potential of the
pore waters dataset for further assessment and interpretation
by data users, the concentrations of investigated parameters

in pore water up to 5 cm depth and the concentrations in bot-
tom water are compared in Fig. 7.

The median concentrations of Cl− in pore water did not
differ significantly among fjords and were comparable to
those of bottom water, apart from at Isfjorden, where the
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median concentrations of Cl− in pore water were smaller
than those of bottom water. In all fjords, NO−3 was higher
in bottom water compared to pore water, while NH+4 , PO3−

4 ,
Si, and DIC were significantly higher in pore water in com-
parison to bottom water. The median concentration of NO−3 ,
NH+4 , PO3−

4 , Si, and DIC was significantly different in both
water types (p < 0.05). The median concentration of DOC
was slightly higher in pore water than in bottom water. How-
ever, it is worth noticing that the concentration ranges for all
of the measured parameters differ between and within the in-
vestigated fjords.

4 Data availability

All data described in this paper are stored in the Zenodo
online repository (https://doi.org/10.5281/zenodo.11237340,
Szymczycha et al., 2024).

5 Applications of the dataset

This dataset is beneficial for the broad scientific community
that is interested in Arctic physical oceanography and marine
biogeochemistry. In addition, the presented dataset provides
evidence for the spatial distribution of nutrients and the dis-
solved carbon species in the investigated Arctic fjords. The
data are made accessible as a basis for a wider dissemina-
tion that will lead to an enhanced understanding and new sci-
entific insights into the nutrient cycles in the Arctic fjords.
Possible applications may include (1) being a reference and
allowing for comparison of the current measurements of the
nutrients and dissolved carbon distribution in both the water
column and sediments in the same region with future stud-
ies; (2) the determination of C : N : P : Si ratios in different
water masses and their comparison between fjords as an as-
sessment of the environmental controls and limiting factors
for the primary production; and (3) parameterization, valida-
tion, and improvement of existing and future biogeochemical
models.
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Promińska, A., Cisek, M., and Walczowski, W.: Kongsfjorden and
Hornsund hydrography – comparative study based on a multiyear
survey in fjords of west Spitsbergen, Oceanologia, 59, 397–412,
https://doi.org/10.1016/j.oceano.2017.07.003, 2017.
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