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Abstract. Methane (CH4) is a significant greenhouse gas in exacerbating climate change. Approximately 25 %
of CH4 is emitted from storage tanks. It is crucial to spatially explore the CH4 emission patterns from storage
tanks for efficient strategy proposals to mitigate climate change. However, due to the lack of publicly accessi-
ble storage tank locations and distributions, it is difficult to ascertain the CH4 emission spatial pattern over a
large-scale area. To address this problem, we generated a storage tank dataset (STD) by implementing a deep
learning model with manual refinement based on 4403 high-spatial-resolution images (1–2 m) from the Gaofen-
1, Gaofen-2, Gaofen-6, and Ziyuan-3 satellites over city regions in China with officially reported numerous
storage tanks in 2021. STD is the first storage tank dataset for over 92 typical city regions in China. The dataset
can be accessed at https://doi.org/10.5281/zenodo.10514151 (Chen et al., 2024). It provides a detailed georef-
erenced inventory of 14 461 storage tanks wherein each storage tank is validated and assigned the construction
year (2000–2021) by visual interpretation of the collected high-spatial-resolution images, historical high-spatial-
resolution images of Google Earth, and field survey. The inventory comprises storage tanks with various distri-
bution patterns in different city regions. Spatial consistency analysis with the CH4 emission product shows good
agreement with storage tank distributions. The intensive construction of storage tanks significantly induces CH4
emissions from 2005 to 2020, underscoring the need for more robust measures to curb CH4 release and aid in
climate change mitigation efforts. Our proposed dataset, STD, will foster the accurate estimation of CH4 released
from storage tanks for CH4 control and reduction and ensure more efficient treatment strategies are proposed to
better understand the impact of storage tanks on the environment, ecology, and human settlements.
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1 Introduction

The Industrial Revolution witnessed a continuous increase
in greenhouse gases, resulting in global climate warming
(Zhang et al., 2021). Methane (CH4) is the second-most-
dominant anthropogenic greenhouse gas affecting global cli-
mate warming, with a contribution of 20 % (Kirschke et al.,
2013), after carbon dioxide (CO2). Meanwhile, CH4 is more
effective in trapping heat, with 85 times more climate warm-
ing potency than CO2 for the past decade or two (Stocker,
2014). The atmospheric lifetime of CH4 is approximately
10 years, which is shorter than most other greenhouse gases;
thus, reducing CH4 emissions is more cost-effective for low-
ering the climate warming potential impact (Lin et al., 2021;
Montzka et al., 2011). CH4 is emitted mainly from energy-
related activities and petrochemical processes (Ding et al.,
2017; Fan et al., 2023). Storage tanks, defined as large con-
tainers of crude oil or other petroleum, and industrial mate-
rials, such as alcohols, gases, or liquids, are among the most
significant sources of CH4 emitted (Im et al., 2022; John-
son et al., 2022). Without an adequate control or manage-
ment strategy, large amounts of CH4 will escape into the at-
mosphere (Im et al., 2022). From a greenhouse gas control
standpoint, it is of great interest to examine the distribution
patterns of the storage tanks. With a detailed and compre-
hensive storage tank inventory, we can effectively estimate
the spatial pattern of CH4 emissions and reduce the risk of
CH4 emission by installing recovery units (Johnson et al.,
2022) to promote sustainable development goals. However,
it is challenging to access detailed distribution records for
storage tanks from the public records in China.

Given the advances in remotely sensed technology (Chen
et al., 2023; Yu et al., 2023a, b), the ready availability of high-
spatial-resolution remote sensing images via the Gaofen se-
ries satellites and the Ziyuan-3 satellite provides means to
extract remote sensing data for large-scale storage tanks.
Numerous studies on the use of automatic methods to ex-
tract storage tanks from high-spatial-resolution remote sens-
ing images have been performed (Fan et al., 2023; Wu et al.,
2022; Yu et al., 2021), including the Hough transform (Yuen
et al., 1990), image saliency enhancement (Zhang and Liu,
2019), support vector machines (Xia et al., 2018), and Res2-
Unet+ deep convolutional networks (Yu et al., 2021). The
focus of the works above is primarily spatially limited, and
the images collected for extraction are mostly pre-subtracted
from regions known to contain storage tanks. The transfer-
ability and the practical applicability of the proposed meth-
ods remain to be clarified. To our knowledge, there are lim-
ited publicly available datasets on storage tanks. Northeast
Petroleum University–Oil Well Object Detection Version 1.0
(NEPU–OWOD V1.0) covers 1192 oil storage tanks within
Daqing (Wang et al., 2021). This dataset covers the boundary
boxes for each storage tank but lacks details on the storage
tank inventory. Another two datasets, the Oil and Gas Tank
Dataset (Rabbi et al., 2020) and the Oil Storage Tank Dataset

(Airbusgeo, 2019), acquired via the Kaggle platform, have
been released without georeferenced information and lack
detail regarding the contour shapes. The datasets are gen-
erally proposed to improve the performance of algorithms
in storage tank extraction. Currently, most studies are con-
centrated on algorithm development for storage tank extrac-
tion rather than exploring the spatial distribution of storage
tanks in large-scale areas and the impact of storage tank con-
struction on CH4 emission in different areas over the years.
The spatial distributions of storage tanks in China have not
yet been investigated and recorded. The lack of storage tank
datasets makes it impossible to estimate the impact of an-
thropogenic energy-related activities on CH4 emission and
air pollution.

To foster the control and reduction in CH4 emissions to
mitigate climate change and provide researchers with free
access to detailed and georeferenced storage tank inventory
to monitor the corresponding potential impact on the atmo-
sphere and residential environment over typical city regions
in China, we compiled a storage tank inventory based on
high-spatial-resolution images of the Gaofen-1, Gaofen-2,
Gaofen-6, and Ziyuan-3 satellites for city regions with inten-
sive storage tanks over China. The city regions are listed by
the Ministry of Ecology and Environment of China, with in-
tensive storage tanks and prominent fugitive emissions and
inadequate monitoring and control of treatment measures
(Wang et al., 2022). There are 92 city regions in total, mainly
located in mid-eastern China. Given that large storage tanks
may emit significant levels of CH4, storage tanks with a foot-
print of≥ 500 m2 were selected as the main target to control
the reduction in CH4 in the proposed inventory. To this end,
we generated a complete inventory of storage tanks with a
footprint of ≥ 500 m2 for the 92 city regions in China with
intensive storage tanks, which were subject to the implemen-
tation of CH4 reduction measures.

In this study, firstly, we collected high-spatial-resolution
images to cover the entire study area. We pre-processed them
to synchronize the pixel intensities of ground objects in dif-
ferent images from different imaging sensors and study areas.
Secondly, we proposed a semantic segmentation framework
to construct the storage tank extraction model based on the
training samples of Ningbo, Tangshan, and Dongying city
regions. Thirdly, the constructed model is applied to extract
storage tanks in all the other city regions to generate extrac-
tion results. Fourthly, the extracted storage tank result im-
ages are converted to vectors, revised, and assigned the corre-
sponding construction year by visual interpretation with ref-
erence to the historical high-spatial-resolution images from
Google Earth, high-spatial-resolution images collected, and
field survey. Fifthly, we explored the spatial distribution pat-
tern of storage tanks in typical city regions in China. Sixthly,
we further explored the consistency of storage tank spatial
patterns and CH4 emission in the atmosphere and the impact
of storage tank construction on time series CH4 emission
change from 2005 to 2020. Finally, the uncertainties, limi-
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tations, and implications of our proposed dataset, STD, are
discussed for studying climate change and air pollution. This
new database represents the first inventory to provide a de-
tailed distribution of the locations, the boundaries of the stor-
age tanks, and the corresponding construction year of each
storage tank. The inventory documents the spatial and tem-
poral distribution of storage tanks with different footprints,
and, hopefully, this work will facilitate the development of
environment-friendly regulatory proposals for more effective
CH4 emission control and energy resource management.

2 Related works in mapping storage tanks

Storage tank extraction from high-spatial-resolution images
has been of interest for many years for its significant role in
storage and greenhouse gas emission. Generally, the methods
for extracting storage tanks are grouped into three categories.
Circle detection by Hough transformation (O’Duda, 1972)
and template matching (Hou et al., 2019); machine learn-
ing model construction by morphological, spectral, and tex-
tual feature engineering (Xia et al., 2018); and deep learning
model construction by continuous convolutional operations
(Fan et al., 2023). Deep learning methods have been exten-
sively used to map storage tanks due to their strong feature
learning capability and higher model transferability.

Semantic segmentation is a widely employed deep learn-
ing framework in object extraction by assigning each pixel
in the image a semantic label (Chen et al., 2022; Yu et al.,
2022b). Fully convolutional network (FCN) (Long et al.,
2015) is a basic framework of semantic segmentation with
three components: the backbone feature learning, the convo-
lutional feature learning with skip architecture, and an up-
sampling layer to resample the learned feature map to the
size of the input image. Based on FCN, numerous frame-
works have been inspired, such as SegNet (Badrinarayanan et
al., 2017), PSPNet (Zhao et al., 2017), Unet (Ronneberger et
al., 2015), DeepLabv2 (Chen et al., 2017b), and DeepLabv3
(Chen et al., 2017a). Unet has a widespread use for its easy
implementation and high efficiency. The proposal of Res2-
Unet+ framework for storage tank extraction (Yu et al.,
2021; Zalpour et al., 2020) integrates the Res2Net module
(Gao et al., 2019) to Unet. The Res2Net module is proposed
to learn multi-scale features by learning at a more granular
level. It has shown strong applicability in extracting storage
tanks from images of different imaging sensors (Yu et al.,
2022a). However, many storage tank pixels are still omitted
due to their similar spectral characteristics with neighbor-
ing ground objects. To resist the shortage, we have proposed
a new semantic segmentation framework based on Res2-
Unet+ and enlarged the variability in storage tank train-
ing samples to build a more robust and accurate extraction
model.

Figure 1. Study area demonstration with digital elevation (in m)
from the Shuttle Radar Topography Mission (SRTM) product.

3 Data sources

3.1 Study area

The study area covers 92 typical city regions (as shown in
Fig. 1) with intensive storage tanks over China, assigned by
the Ministry of Ecology and Environment of China (Wang
et al., 2022). The typical city regions lack detailed moni-
toring and control of prominent fugitive emissions, whose
effective measurements in CH4 reduction emission are ur-
gently demanded and required. The 92 city regions tend to
be located in mid-eastern China. Many of the city regions
are coastal cities. Synthesized with a digital elevation model
(DEM) from the product of the Shuttle Radar Topography
Mission (SRTM) (Yang et al., 2011), we can recognize that
most city regions are plains. As is acknowledged, plains are
densely populated. The large population numbers will bring
more frequent human activities, triggering more pollutant
and greenhouse gas emissions. The lack of efficient measure-
ments in CH4 emissions will result in a more direct impact
on the populations in the residential area. Therefore, explor-
ing the spatial distribution pattern of storage tanks relative to
CH4 emission is significant in order to seek more effective
solutions for CH4 reduction.

3.2 High-spatial-resolution images

The high-spatial-resolution images used for extracting stor-
age tanks in the 92 city regions were collected from four
satellites: the Gaofen-1, Gaofen-2, Gaofen-6, and Ziyuan-
3 satellites in 2021. The images collected are of between
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June and August with the least cloud coverage (< 10 %)
from the four satellites, when different ground objects have
more pronounced spectral differences, which makes it eas-
ier to distinguish storage tanks from background objects. As
listed in Table 1, the images for the Gaofen-1, Gaofen-6,
and Ziyuan-3 satellites have a spatial resolution of 2 m, and
those for the Gaofen-2 have a spatial resolution of 1 m af-
ter fusion of the multispectral image and the panchromatic
image. Referring to Table 1, we can recognize that 4403 im-
ages were collected. The places covered with multiple im-
ages are manually screened to choose one image with the
best imaging quality and least cloud proportion. Based on the
screened high-spatial-resolution images, multiple image pre-
processing steps are performed to synchronize the ground
objects in different images of different sensors for differ-
ent study areas, comprising atmospheric correction, radia-
tion correction, geometric precision correction, image fusion,
image projection, uniform color processing, and image mo-
saicking.

3.3 Land use land cover product

Given that storage tanks are constructed mainly in urban area
due to the high expense of transportation of pipelines, a 10 m
land use land cover (LULC) product of ESRI Land Cover
for 2021 (Karra et al., 2021) is used for subtracting the study
area to minimize the impact of complex background objects
in the high-spatial-resolution images following the workflow
as shown in Fig. 2. The land use product of the ESRI Land
Cover is generated based on the Sentinel-2 images from the
European Space Agency (ESA), with an overall accuracy
of 75 % (Venter et al., 2022), which has been updated ev-
ery year since 2017. It comprises nine ground object cate-
gories: water, trees, flooded vegetation, bare ground, crops,
snow/ice, clouds, rangeland, and built area. Since storage
tanks are mostly constructed in urban areas, the categories
of built area and bare ground are recognized as potential ar-
eas for constructing storage tanks. Consequently, the corre-
sponding ground object category products of built area and
bare ground are subtracted from the LULC 2021 product and
used to mask the high-spatial-resolution images of the 92 city
regions, as demonstrated in Fig. 2. The masked high-spatial-
resolution images of the 92 city regions are further used for
storage tank extraction.

3.4 CH4 product image

As storage tanks are a dominant source of CH4 emission, we
have collected CH4 emission products to explore the spatial
consistency of CH4 with the density of storage tanks and the
impact of storage tank construction over time on CH4 emis-
sion. There have been many CH4 emission product images
proposed, including the Community Emissions Data System
(CEDS) (Hoesly et al., 2018), the product from Peking Uni-
versity (Peng et al., 2016), the Emissions Database for Global

Atmospheric Research (EDGAR) (Crippa et al., 2019), the
Regional Emission Inventory in Asia (REAS) (Kurokawa et
al., 2013), and the Greenhouse Gas and Air Pollution Inter-
actions and Synergies (GAINS) (Amann et al., 2011). Since
our collected high-spatial-resolution remote sensing images
were taken in the year 2021, the spatial consistency and the
impact of storage tank construction on CH4 emission are ex-
plored using the CH4 emission product of GAINS, which of-
fers a comprehensive series of data accessible to the public
(Lin et al., 2021). The dataset of GAINS was selected over
the other four products because the four products lacked con-
tinuous updates with limited temporal coverage until 2015.

We adopted the estimated CH4 emission from energetic
activities product of the ECLIPSE V6b Baseline scenario
from GAINS. It is a global annual product with a spatial
resolution of 0.5° and a temporal coverage of 1990–2050 at
an interval of 5 years. For the estimated CH4 emission from
GAINS in the years 1990–2018, the product is generated
from statistics of the International Energy Agency (IEA), and
the years 2019–2050 are from the outlook of the IEA World
Energy Outlook (IEA, 2018). To synchronize with the tem-
poral scope of storage tank construction from 2000 to 2021,
the CH4 emission products of 2005, 2010, 2015, and 2020
are collected.

As demonstrated in Fig. 3, the emission of CH4 in 2020
varies remarkably in different areas. There are many clusters
of CH4 emission in the study area, with the highest being
5160.62 Tg CH4 yr−1. CH4 in the atmosphere of city regions
located in southeastern China is generally higher than that of
city regions in northwestern China in 2020.

4 Methodology

As depicted in Fig. 4, the workflow of generating a storage
tank dataset consists of three sections: harmonizing the pixel
intensities of different ground objects across high-spatial-
resolution images captured by different sensors in different
study areas; producing a storage tank dataset by construct-
ing a storage tank extraction model based on the harmonized
high-spatial-resolution images; and assigning the construc-
tion year of each storage tank by multiple experts through
visual interpretation of the historical high-spatial-resolution
images from Google Earth, high-spatial-resolution images
collected, and filed survey.

4.1 Image harmonizing

Pixel intensities for ground objects are standardized to en-
sure consistency across the high-spatial-resolution images
collected. This harmonization process mitigates the effects
of atmospheric variations and discrepancies between imag-
ing sensors captured at different times. The standardization
includes atmospheric correction, radiometric calibration, ge-
ometric alignment, image fusion, reprojection, and color nor-
malization. In terms of atmospheric correction, the widely
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Table 1. Imaging characteristics of each high-spatial-resolution satellite and the number of collected images of different satellites covering
92 typical city regions in China between June and August 2021. The notation pan is short for panchromatic band and multi represents
multispectral band.

Gaofen-1 Gaofen-2 Gaofen-6 Ziyuan-3 Total

Spatial resolution 2 m (pan); 8 m (multi) 1 m (pan); 4 m (multi) 2 m (pan); 8 m (multi) 2 m (pan); 6 m (multi)

Multispectral band Red, green, blue, near-
infrared

Red, green, blue, near-
infrared

Red, green, blue, near-
infrared

Red, green, blue, near-
infrared

Number 1289 1330 139 1645 4403

Figure 2. Subtraction of potential area with storage tanks from high-spatial-resolution images. The LULC data are from the ESRI Land
Cover product in 2021, while the Gaofen-1 data are provided by the China Remote Sensing Satellite Ground Station.

used radiation transfer model of the second simulation of
the satellite signal in the solar spectrum (6S) (Vermote et
al., 1997) is adopted to determine the atmospheric correc-
tion coefficient and eliminate the absorption and scattering
impact of atmospheric molecules and aerosols for all the col-
lected high-spatial-resolution images. The strategy of local
histogram matching (Shen, 2007) is used to correct radia-
tion differences in the same ground object category in differ-
ent high-spatial-resolution images. To improve the geomet-
ric precision of the high-spatial-resolution images collected,
we automatically generated 1000 ground control points by
a widely used key point detector of scale-invariant feature
transform (SIFT) for each city. We calculated the param-
eters for affine transformation with reference to the world
imagery of the Environmental Systems Research Institute
(ESRI) (Hou et al., 2021). Pixel-wise image fusion is con-
ducted on images collected from each high-spatial-resolution
satellite since they consist of multispectral images with a
coarser spatial resolution than the panchromatic image, as

demonstrated in Table 1. To optimize the utilization of the
gathered images, we leveraged the wavelet transform (Sahu
and Sahu, 2014) for the automatic fusion of multispectral and
panchromatic images. To address discrepancies in the pro-
jections of the varied high-resolution images we collected,
we standardized all the images to the Universal Transverse
Mercator (UTM) projection using bilinear interpolation for
consistency. To maintain visual consistency across images
from different sensors or regions, it is crucial to standard-
ize the color representation of identical ground objects. In
this study, we implemented a nonlinear stretching technique
to modify pixel intensity distribution. This was accomplished
by constructing a color lookup table (Majumder et al., 2010)
to ensure uniformity in spectral intensities across the various
images.

The harmonized high-spatial-resolution images were fur-
ther mosaicked to large image patches to integrate overlap-
ping areas from adjacent high-resolution images, ensuring
comprehensive coverage and continuity of the observed re-
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Figure 3. Demonstration of CH4 distribution from energetic activ-
ities over the study area in the year 2020.

Figure 4. Flowchart for storage tank inventory production.

gions. Referring to the LULC product of the ESRI Land
Cover product in 2021, the mosaicked image patches were
subtracted with the ground object category of built area and
bare ground, both identified as potential areas with storage
tank constructions. Finally, for storage tank extraction, the

subtracted images were cropped to a size of 512× 512 pix-
els, a size compatible with the computational limits of our
GPU hardware.

4.2 Production of storage tank dataset

4.2.1 Proposed framework for storage tank extraction

Stemming from the recently developed semantic segmen-
tation framework for storage tank extraction, Res2-Unet+
(Yu et al., 2021), we proposed a new network structure,
Res2-UnetA, to build a storage tank extraction model. As
shown in Fig. 5a, our proposed framework integrates the
Res2Net module (Fig. 5b) and channel–spatial attention
module (Fig. 5c) to enhance the features significant for multi-
scale storage tank extraction. During the process of feature
map down-scaling, the Res2Net module can learn the multi-
scale features from multiple sub-networks and concatenate
the multi-scale features to enlarge the visual perception capa-
bility. In the stage of feature map upsampling, our proposed
channel–spatial attention module adopted after each feature
map concatenation operation can increase the feature learn-
ing efficiency and enlarge the feature learning scale by syn-
thesizing channel-wise and spatial attention feature learning
modules. Detailed calculations of channel-wise and spatial
attention modules can be found in Eqs. (1)–(7).

saf =

m∑
i=0

n∑
j=0

fi,j

m× n
(1)

smf =max(fi=0,···,m,j=0,···,n) (2)

caf =

h∑
c=0

fc=k

h
(3)

cmf =max(fc=0,···,h) (4)
SA(f )= conv(conv

(
saf

)
+ conv

(
smf

)
) (5)

CA(f )= conv(concatenate
(
caf ,cmf

)
) (6)

CSA(f )= f ×CA(f )×SA(f ) (7)

Spatial average pooling (sa) and spatial maximum pooling
(sm) operations are calculated as the average value and max-
imum value of input feature map f with a size of m× n, as
described in Eqs. (1) and (2). Correspondingly, the channel-
wise average (ca) and maximum pooling (cm) operations are
the average feature values of all the h channels and the max-
imum feature values of all the channels in Eqs. (3) and (4).
The output feature maps of the spatial attention module (SA)
and channel attention module (CA) are calculated accord-
ing to Eqs. (5) and (6), respectively, and the synthesis of
the feature maps from the channel and spatial attention mod-
ules is realized by multiplication, as illustrated in Eq. (7).
Through multi-scale feature enhancement by our proposed
Res2-UnetA framework, it can learn the multi-scale storage
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tank features hierarchically and comprehensively from the
high-spatial-resolution images of the different imaging sen-
sors.

4.2.2 Storage tank model construction and dataset
generation

Based on our proposed framework Res2-UnetA, the pre-
processed high-spatial-resolution images for the city re-
gions of Ningbo, Tangshan, and Dongying are used to train
the storage tank extraction model. Ningbo, Tangshan, and
Dongying are three typical city regions in China, with large
densities of storage tanks, so they can provide large quanti-
ties of training samples with high spectral and textual fea-
ture variety in different sizes. The storage tanks in the col-
lected high-spatial-resolution images for the training dataset
are interpreted visually by three experts in a related field.
The model is fine-tuned based on the optimized model from
Res2-Unet+ (Yu et al., 2021), with a learning rate of 0.01. It
converges to the optimum at iteration 69.

With the optimized model, the storage tanks for the re-
maining city regions are extracted accordingly and vector-
ized to the shapefile. While the enhanced model for extract-
ing storage tanks generally performs well, it’s not infallible.
Some tanks are inadvertently missed, and other objects with
similar spectral or textural characteristics are occasionally
mistakenly identified as tanks. Therefore, each vectorized
shapefile is further refined manually by visual interpretation
of the high-spatial-resolution images. Due to the inconsis-
tent spectral intensities for the storage tanks in the images,
triggered by shadows and different viewing angles, the vec-
torized storage tanks in the inventory take different shapes.
To synchronize the storage tanks in the inventory taking on a
round shape, we re-construct a circle for each extracted stor-
age tank according to the radius calculated in the inventory,
and the inventory is updated with the re-constructed circle.
To facilitate the dating of each storage tank’s construction
year, the reconstructed circle for each extracted storage tank
has been manually validated and refined by six experienced
experts through visual interpretation based on our collected
high-spatial-resolution images and field survey.

4.3 Construction year assignment

In the STD we developed, a team of six experts determined
the construction year for each storage tank by conducting
visual assessments using high-resolution historical images
available on Google Earth, with the cutoff date for this pro-
cess being 1 January 2024. The intermittent availability of
historical high-resolution images on Google Earth poses a
challenge in determining the precise construction years for
many storage tanks, especially when images from succes-
sive years are missing. We documented the most recent year
when a storage tank was absent (last-year image, without the
storage tank) and the earliest year when it was first observed

(first-year image, with the storage tank) in the historical im-
agery, as illustrated in Fig. 4. The actual construction year
lies within this time frame. For analysis simplicity, we have
designated each tank’s initial observed year to be the con-
struction year.

Since the high-resolution images used to compile the stor-
age tank dataset were captured in 2021, it is presumed that
all tanks were constructed no later than this year. However,
due to the absence of updated high-resolution imagery on
Google Earth, 488 tanks remain undetected in the histori-
cal records. For these, the year of construction has been in-
ferred as 2021 following thorough visual confirmation using
the high-resolution images we have acquired. The consider-
able lapses in historical high-resolution imagery on Google
Earth necessitate assigning a provisional construction year,
2021, to 630 storage tanks. The year 2021 marks the earliest
documented evidence of these tanks’ existence in the high-
resolution images we collected, beyond which no prior im-
ages are available. For the storage tanks built before 2000,
they are recorded with the first-year image, with a storage
tank, in the shapefile, but lacking the last-year image, with-
out a storage tank, in our proposed dataset, STD, due to the
limited accessibility of high-spatial-resolution images before
2000 from Google Earth.

5 Results

5.1 Spatial distribution of storage tanks

Following the workflow in Fig. 4, the storage tanks in the 92
typical city regions of China are extracted based on the high-
spatial-resolution images using the trained semantic segmen-
tation model. Given that large-capacity storage tanks are
known to release significant levels of CH4, resulting in cli-
mate warming, the proposed inventory focuses on storage
tanks with an area of no less than 500 m2. 14 461 storage
tanks are extracted from the 92 city regions with areas rang-
ing from 500 m2 to 18 583.15 m2. As shown in Fig. 6, the
storage tanks are distributed unevenly in different city re-
gions and reflect different footprints and spatial distribution
patterns. To explore the different distribution patterns, the
storage tanks are categorized into three groups according to
the area: 500–1000, 1000–10 000, and ≥ 10 000 m2. The ac-
cumulated number of storage tanks of different footprints for
all the city regions is compiled as shown in Fig. 7. It may
be seen that there are more storage tanks of 500–1000 m2

than those with larger footprints. The relatively smaller stor-
age tanks are more widely used in industry. Due to the high
cost of construction, considering all the city regions, the
maximum number of large storage tanks with a footprint
of ≥ 10 000 m2 is found to be seven, for the city of Tang-
shan. Notably, there are few city regions with storage tanks
of 10 000 m2 in footprint.

About the 92 city regions examined, 38 city regions have
storage tanks with an accumulated number of ≥ 100, as
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Figure 5. Network structure of our proposed Res2-UnetA: (a) general network demonstration, (b) structure of Res2Net module, and (c) struc-
ture of channel–spatial attention module.

Figure 6. Inventory for storage tanks of the 92 typical city regions.

shown in Fig. 8a. Dongying has the largest accumulated
number, 1719, about twice that of Ningbo, the second-
highest-ranked city with 981 storage tanks. Weifang and Pan-
jin are next in rank, with more than 500 storage tanks. The
number of storage tanks with a footprint of 500–1000 m2 is

Figure 7. Box plot of storage tank distribution for the different foot-
print categories (in m2) for the 92 city regions.

greater than that for tanks with a footprint of 1000–10 000
and ≥ 10 000 m2 for most city regions. This finding indicates
the widespread use of smaller storage tanks in different in-
dustries. Furthermore, there are 36 city regions with an ac-
cumulated number of tanks of < 50 (Fig. 8b). Among the
36 city regions, Hebi is the only city with four storage tanks
of ≥ 10 000 m2 in footprint. The other city regions, except
Tangshan, do not have storage tanks that large. No storage
tanks with a footprint of ≥ 500 m2 are observed for the city
regions of Tai’an, Weihai, and Zigong.
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Figure 8. Number of storage tanks in different footprint categories (in m2) in the various city regions: (a) city regions with an accumulated
storage tank number of ≥ 100 and (b) city regions with an accumulated storage tank number of < 50.

5.2 Spatial consistency with CH4 emission

To explore whether the distribution patterns of storage tanks
significantly influence CH4 emissions, we explored the spa-
tial consistency between estimated CH4 from energy emis-
sion products in the year 2020 and the density of storage
tanks in our proposed dataset, STD, over the study area.
Given the coarser spatial resolution of the CH4 emission
product at 0.5°, which is less detailed than that of the high-
spatial-resolution images used for generating our storage
tank dataset, we have calculated storage tank density to align
with each pixel grid of the CH4 data. The density is defined
by the total storage tank area ratio within each corresponding
3025 km2 pixel grid area (55 km× 55 km), where 55 km is an
approximation of 0.5° latitude or longitude at the Equator.

The storage tank density is calculated for each grid pixel of
the CH4 emission product and is demonstrated in Fig. 9. We
can recognize that large-scale areas with high CH4 emissions
in the atmosphere generally cluster large densities of stor-
age tanks (clustered cases of A, B, C, and D). The sparsely
distributed storage tanks with a high density are mostly ac-
companied by a higher CH4 emission than that of the neigh-
borhood (as shown in cases of E). There are also some city
regions, especially coastal cities, with a high density of stor-
age tanks and low CH4 emission estimation, as in the cases of
F. This could be attributed to the coastal air currents, which
likely disperse CH4 emissions more effectively. It also needs
to be pointed out that for the city regions marked as G in
Fig. 9, the estimated CH4 emission is relatively high but the
density of storage tanks is low. One possible reason is the
unrestrained leakage of CH4 from the storage tanks, high-
lighting the urgent need for effective control measures. Al-
ternatively, other high-energy activities within these regions
might be significant CH4 contributors, suggesting a need for

Figure 9. Spatial distribution pattern of different densities of stor-
age tank areas with different CH4 emissions in the atmosphere.

comprehensive investigation into broader mitigation strate-
gies.

To objectively explore the spatial consistency of storage
tank distribution and CH4 emission from energetic activ-
ities, we randomly selected 4000 storage tank pixels and
4000 background object pixels to evaluate the significance
of the impact of storage tanks on CH4 emission. Referring
to Fig. 3, the value of CH4 emission varies by a large mar-
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Figure 10. Distribution pattern of storage tank pixels with differ-
ent CH4 emission estimations. (a) Proportion of pixels with dif-
ferent CH4 emission estimations. (b) Box plot of CH4 emissions
(Tg CH4 yr−1) of storage tank points and background object points.

gin between 0.000055 and 5160.32 Tg CH4 yr−1. The large
value gap of CH4 emission causes bias in the differential
significance test. We generated the quantity distribution of
pixels with different CH4 emission value gaps (as shown in
Fig. 10a) and found that 99.83 % of pixels have a CH4 emis-
sion value of < 100 Tg CH4 yr−1. Therefore, the 4000 stor-
age tank pixels and 4000 background object pixels are ran-
domly selected from pixels with a CH4 emission value of
< 100 Tg CH4 yr−1. As shown in Fig. 10b, the CH4 emission
values of storage tank pixels are statistically significantly
larger than that of background object pixels at a confidence
level of p = 0.05. It indicates storage tanks are significant en-
ergetic sources of CH4 emission. With our proposed dataset,
STD, it is possible to monitor the greenhouse gas emissions
from storage tanks to take effective measurements for poten-
tial climate warming reduction in time.

5.3 Temporal impact on CH4 emission

Given the constraints of historical high-resolution imagery
on Google Earth, the earliest ascertainable construction year
for storage tanks is set to 2000, with the latest capped at
2021, as depicted in Fig. 11. Therefore, our dataset, STD,
includes storage tanks constructed in years of 2000–2021. It
is noted that storage tanks were largely constructed in 2009,
2010, 2012, 2013, and 2014, while fewer were constructed in
2000 and 2001, with the quantity being approximately 20. To
align with the construction temporal range of storage tanks
in the dataset, CH4 emission products of 2005, 2010, 2015,
and 2020 are utilized, as these emission products are updated
every 5 years. To explore the impact of storage tank con-
struction on CH4 emission, the storage tanks are grouped by
the product year of CH4, as listed in Table 2. Storage tanks
built in the years 2000 and 2021 are excluded from the im-

Table 2. Correspondence between the year of CH4 emission prod-
uct and group of construction years of storage tanks.

Year of CH4 Year group of storage
emission product tanks constructed

2005 2001–2005
2010 2006–2010
2015 2011–2015
2020 2016–2020

Figure 11. Number of storage tanks constructed in different years.

pact analysis due to the extent of the corresponding temporal
impact range of CH4 emission.

It is noted that the spatial resolution of the CH4 emission
product is coarser than the images we used to generate our
proposed dataset, STD; similarly to the works in spatial con-
sistency exploration, the storage tanks constructed in differ-
ent groups of years are gridded by the CH4 emission product,
and the density of storage tanks is calculated for each grid.
We conducted a correlation analysis to explore the statisti-
cal significance of the impact of storage tank construction
on CH4 emission over 2005–2020 at levels of p = 0.05 and
p = 0.1, respectively. Moreover, the rate of CH4 emission
change and newly constructed storage tank density for every
5 years are calculated according to Eq. (8) and demonstrated
accordingly in Fig. 12.

R = (I2020− I2005)/4 (8)

Both CH4 emission and newly constructed storage tank
density increased from 2005 to 2020, with positive rates in
Fig. 12. In the 92 city regions in this study, storage tanks
are constantly being constructed to meet the industrial de-
mand, but CH4 emission is on a continuous increase too.
The storage tanks in city regions such as Yingkou, Pan-
jin, Dongying, Binzhou, Yantai, Weifang, Tangshan, Linyi,
Rizhao, Puyang, Xi’an, Pingdingshan, Huainan, Nanjing,
Maanshan, Changzhou, Wuxi, Chengdu, Foshan, Dongguan,
and Guangzhou are constructed with a higher rate than in
other city regions. CH4 from energetic activities is emitted at
a highly increasing rate in multiple city regions, such as Bei-
jing, Yingkou, Zhenjiang, Nanjing, Maanshan, Changzhou,
Wuxi, Shijiazhuang, Huainan, and Dongguan. Grids show-
ing a statistically significant correlation (p < 0.1) between
storage tank density and CH4 emissions typically display a
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Figure 12. Significance of correlation between change rate of stor-
age tank density and CH4 emission change.

notable rise in the rate of storage tank density, particularly in
grids with a confidence level of p = 0.05. This trend sug-
gests that areas with active storage tank construction may
contribute significantly to increased CH4 emissions. Some
grids exhibit high increasing rates of CH4 emission but low
increasing rates of storage tank density. This pattern suggests
that while storage tank construction significantly contributes
to CH4 emissions, other sources related to energy production,
such as the extraction and transport of coal, oil, and natural
gas, are also major contributors to CH4 release. However, re-
garding the 92 typical city regions with intensive storage tank
distribution and construction, the impact of storage tank con-
struction on CH4 emission from energetic activities is largely
statistically significant, especially in areas with a high rate of
new storage tank construction. Therefore, it is necessary to
propose effective measurements to mitigate CH4 emissions
from the continuously constructed storage tanks.

6 Discussion

6.1 Comparison with published datasets

To the best of our knowledge, limited research has been pub-
lished concerning remote sensing datasets on storage tanks.
The dataset NEPU–OWOD V1.0 is a recently proposed oil
storage tank dataset featuring 1192 oil storage tanks from
432 images of Google Earth. It covers the city of Daqing on
a limited scale. However, the dataset lacks georeferenced in-
formation and hence has had difficulty in finding support by
governmental agencies and academic groups for further re-

search on various subjects, such as air pollution control and
energy consumption balance studies (Wang et al., 2021).

The Oil and Gas Tank Dataset, which is similar to
the NEPU–OWOD V1.0 dataset and comprises 760 image
patches with a size of 512× 512 pixels, has also been pro-
posed (Rabbi et al., 2020). The images are taken at a spatial
resolution of 30 cm, and the annotations are boundary boxes
rather than details on the exact shape. To assess the national
energy demand, an oil storage tank dataset is released on the
platform Kaggle (Airbusgeo, 2019). However, the images are
collected from Google Earth without georeferenced informa-
tion. Only 100 image patches with a size of 512×512 pixels
are included in the dataset.

Publication of datasets on oil storage tanks is generally
developed to improve automatic methods for the detection
of storage tanks rather than further environmental analysis
based on the combination and synthesis with datasets of other
domains, such as air pollution products. Therefore, the pro-
posed dataset, STD, is the first storage tank inventory that
provides a detailed distribution of storage tanks of diverse
footprints in 92 city regions in China. Each storage tank in
the dataset has undergone rigorous verification by six ex-
perts. Additionally, the dataset meticulously logs the con-
struction year for each tank. This allows for an analysis of
the temporal evolution of storage tank distribution and its
combined effects with CH4 emissions on the climate. Such
insights pave the way for developing more effective energy
management and climate change mitigation strategies, serv-
ing as a valuable resource for research in atmospheric sci-
ence, environmental studies, and sustainable development.

6.2 Uncertainties, limitations, and implications

The Storage Tank Dataset (STD) we have compiled for 92
city regions in China serves as a valuable tool for climate
change research despite certain limitations. The extraction
process from high-resolution images is subject to inaccura-
cies due to shadows and the inherent limitations of repre-
senting three-dimensional tanks as two-dimensional circles,
potentially leading to slight positional errors (Fig. 13a). Ad-
ditionally, the variance in perspective between our collected
high-spatial-resolution images and Google Earth historical
images can cause deviations in visual refinement in the tanks’
vectorized outlines (as shown in Fig. 13b). To mitigate these
issues, expert analysis is employed to ensure tank identifica-
tion and location precision, referring to the collected high-
spatial-resolution images.

The pioneering dataset, STD, encompasses georeferenced
storage tank shapes for 92 key Chinese city regions crafted
from high-resolution images. For each storage tank, the cor-
responding construction year is assigned, referring to the
high-resolution historical images of Google Earth. It’s a ver-
satile resource, with spatial and temporal distribution pat-
terns for not only mapping CH4 and other emissions but
also for aiding the development of infrastructural strate-
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Figure 13. Example cases of our proposed STD: (a) cases with
shifted circles due to cast by shadow and (b) cases with largely de-
viated circles in different images due to different viewing angles.

gies across various industries. However, the dataset currently
lacks volumetric data due to the absence of height measure-
ments for the tanks. Future enhancements aim to incorpo-
rate height data through advanced remote sensing technolo-
gies like synthetic-aperture radar (SAR) imagery, enriching
the dataset with three-dimensional accuracy and providing a
more comprehensive understanding of storage tank capaci-
ties.

7 Data availability

The dataset, STD, is publicly available as a repository
at https://doi.org/10.5281/zenodo.10514151 (Chen et al.,
2024). The dataset is provided in a shapefile, wherein a poly-
gon with an area attribute in units of square meters repre-
sents each storage tank and two attributes of years, year_1
and year_2, indicating the most recent year when a storage
tank was absent (last-year image, without the storage tank)
and the earliest year when it was first observed (first-year im-
age, with the storage tank), respectively. The inventory is in-
tended to be used to further analyze the impact on CH4 emis-
sions, devise and implement more efficient energy manage-
ment strategies. Moreover, our approach represents a pow-
erful new source to improve automatic methods for storage
tank extraction from high-spatial-resolution images, given
that it represents a comprehensive and state-of-the-art inven-
tory with tens of thousands of storage tanks georeferenced in
92 typical city regions over China.

8 Conclusions

In support of CH4 emission control to mitigate climate warm-
ing, the STD is proposed by providing a meticulously geo-
referenced inventory of storage tanks larger than 500 m2

across 92 key city regions of China in the years 2000–2021.
Leveraging a novel semantic segmentation framework, Res2-
UnetA, and rigorous visual interpretation based on the col-
lected high-spatial-resolution images, historical high-spatial-
resolution images from Google Earth, and field survey, the
dataset not only details the spatial distribution of large stor-
age tanks but also includes their construction years. Based on
the STD dataset, the spatial distribution pattern of the storage
tanks of different footprints was analyzed in 92 city regions.
We also explored the impact of storage tank construction on
CH4 emission from energetic activities during 2005–2020.
Compared with the published datasets for storage tanks, the
STD is the first inventory that compiles georeferenced stor-
age tanks in 92 city regions with detailed shape boundaries
and construction years. In general, publicly available datasets
on storage tanks typically cover only part of a city, without
georeferenced information and detailed shape boundaries. It
is, therefore, difficult to objectively explore the extent and
patterns of environmental impact and the energy manage-
ment of the storage tanks on a large scale. The STD en-
ables a large-scale environmental impact analysis of storage
tanks and their correlation with CH4 emissions. It demon-
strates strong spatial consistency with CH4 emissions in 92
typical Chinese city regions, highlighting the substantial in-
crease in CH4 emissions due to storage tank construction.
The storage tank dataset, STD, can contribute significantly to
supporting energy management strategies and sustainability
development studies while giving direct support to academic
research and government agencies.
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