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Abstract. Long-term and high spatial resolution aerosol optical depth (AOD) data are essential for climate
change detection and attribution. Global ground-based AOD observations are sparsely distributed, and satellite
AOD retrievals have a low temporal frequency as well low accuracy before 2000 over land. In this study, AOD
at 550 nm is derived from visibility observations collected at more than 5000 meteorological stations over global
land regions from 1959 to 2021. The AOD retrievals (550 nm) of the Moderate Resolution Imaging Spectrora-
diometer (MODIS) on board the Aqua Earth observation satellite are used to train the machine learning model,
and the ERA5 reanalysis boundary layer height is used to convert the surface visibility to AOD. Comparisons
with an independent dataset (AERONET ground-based observations) show that the predicted AOD has a corre-
lation coefficient of 0.55 at the daily scale. The correlation coefficients are higher at monthly and annual scales,
which are 0.61 and 0.65, respectively. The evaluation shows consistent predictive ability prior to 2000, with
correlation coefficients of 0.54, 0.66, and 0.66 at the daily, monthly, and annual scales, respectively. Due to the
small number and sparse visibility stations prior to 1980, the global and regional analysis in this study is from
1980 to 2021. From 1980 to 2021, the mean visibility-derived AOD values over global land areas, the Northern
Hemisphere, and the Southern Hemisphere are 0.177, 0.178, and 0.175, with a trend of −0.0029 per 10 years,
−0.0030 per 10 years, and −0.0021 per 10 years from 1980 to 2021. The regional means (trends) of AOD are
0.181 (−0.0096 per 10 years), 0.163 (−0.0026 per 10 years), 0.146 (−0.0017 per 10 years), 0.165 (−0.0027 per
10 years), 0.198 (−0.0075 per 10 years), 0.281 (−0.0062 per 10 years), 0.182 (−0.0016 per 10 years), 0.133
(−0.0028 per 10 years), 0.222 (0.0007 per 10 years), 0.244 (−0.0009 per 10 years), 0.241 (0.0130 per 10 years),
and 0.254 (0.0119 per 10 years) in Eastern Europe, Western Europe, Western North America, Eastern North
America, Central South America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia,
Eastern China, and India, respectively. However, the trends decrease significantly in Eastern China (−0.0572
per 10 years) and Northeast Asia (−0.0213 per 10 years) after 2014, with the larger increasing trend found af-
ter 2005 in India (0.0446 per 10 years). The visibility-derived daily AOD dataset at 5032 stations over global
land from 1959 to 2021 is available from the National Tibetan Plateau/Third Pole Environment Data Center
(https://doi.org/10.11888/Atmos.tpdc.300822) (Hao et al., 2023).
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1 Introduction

Atmospheric aerosols are composed of solid and liquid par-
ticles suspended in the atmosphere. Aerosol particles are di-
rectly emitted into the atmosphere or formed through gas–
particle transformation (Calvo et al., 2013) with diverse
shapes and sizes (Fan et al., 2021), optical properties, and
components (Liao et al., 2015; Zhang et al., 2020; Li et al.,
2022). Most atmospheric aerosols are concentrated in the
troposphere, especially in the boundary layer (Liu et al.,
2022), with a high concentration near emission sources (Kul-
mala et al., 2004), and a small portion are distributed in the
stratosphere. Atmospheric aerosols severely impact the at-
mospheric environment and human health. They deteriorate
air quality, reduce visibility, and cause other environmental
issues (Wang et al., 2012; Boers et al., 2015). They also im-
pair human health or the conditions of organisms by increas-
ing the incidence of cardiovascular and respiratory disease
and mortality rates (Chafe et al., 2014; Yang et al., 2022).
The Global Burden of Disease study shows that global ex-
posure to ambient PM2.5 (particulate matter suspended in air
with an aerodynamic diameter of less than 2.5 µm) resulted
in 0.37 million deaths and 9.9 million disability-adjusted life
years (Chafe et al., 2014).

Aerosols are inextricably linked to climate change. Atmo-
spheric aerosols alter the Earth’s energy budget and affect
the climate (Li et al., 2022). They cool the surface and heat
the atmosphere by scattering and absorbing solar radiation
(Forster et al., 2007; Chen et al., 2022). Aerosols, such as
black carbon and brown carbon, also absorb solar radiation
(Bergstrom et al., 2007), heat the local atmosphere, and sup-
press or stimulate convective activities (Ramanathan et al.,
2001; Sun and Zhao, 2020). Furthermore, aerosols alter the
optical properties and life span of clouds (Albrecht, 1989).
Atmospheric aerosols strongly affect regional and global
short-term and long-term climates through direct and indi-
rect effects (Mcneill, 2017).

Tropospheric aerosols are considered the second-largest
forcing factor for global climate change (Li et al., 2022), and
they reduce the warming attributable to greenhouse gases by
−0.5 °C (IPCC, 2021). However, aerosols are also regarded
as the largest contributor to the uncertainty of present-day cli-
mate change attribution (IPCC, 2021). The uncertainties are
caused by deficiencies in the descriptions of global aerosol
optical properties (such as scattering and absorption) and of
microphysical properties (such as size and component) as
well as by their impact on cloud and precipitation, further af-
fecting the estimation of aerosol radiative forcing (Lee et al.,
2016; IPCC, 2021). Therefore, it is crucial to have sufficient
aerosol observations. In aerosol measurements, aerosol opti-
cal depth (AOD) is often used to describe its column proper-
ties, which represents the vertical integration of aerosol ex-
tinction coefficients. AOD is an important physical quantity
for estimating the content, atmospheric pollution, and clima-
tology of aerosols (Zhang et al., 2020).

AOD data usually come from ground-based and satellite-
borne remote sensing observations. Both methods have ad-
vantages and disadvantages. Ground-based lidar observation
is an active remote sensing technology. Lidar generally emits
laser and receives backscattered signals to invert the extinc-
tion coefficient of aerosols at different heights (Klett, 1985).
By using the depolarization ratio, the type of aerosol, such
as fine particles or dust, can be distinguished (Bescond et al.,
2013). The AOD within a certain height can be calculated
by integrating the extinction coefficients; however, scatter-
ing signals are usually not received near the ground, lead-
ing to blind spots (Singh et al., 2019). At present, there
are many global and regional ground-based lidar networks
which provide important support regarding vertical changes
in aerosols, such as the NASA Micro-Pulse Lidar Network
(MPLNET) in the early 1990s (Welton et al., 2002), the Eu-
ropean Aerosol Research Lidar Network (EARLINET) since
2000 (Bösenberg et al., 2003), and the Latin American Lidar
Network (LALINET) since 2013 (Guerrero-Rascado et al.,
2016).

Ground-based remote sensing observations supply aerosol
loading data (such as AOD) by measuring the attenuation
of radiation from the top of the atmosphere to the surface
(Holben et al., 1998). This type of observation mainly uses
weather-resistant automatic sun- and sky-scanning spectral
radiometers to retrieve optical and microphysical aerosol
properties (Che et al., 2014). The Aerosol Robotic Net-
work (AERONET) is a popular global network established
by NASA and multiple international partners that provides
high-quality and high-frequency aerosol optical and micro-
physical properties under various geographical and environ-
mental conditions (Holben et al., 1998; Dubovik et al., 2000).
The AERONET observations are extensively used to vali-
date satellite remote sensing observations and model sim-
ulations as well as for climatology studies (Dubovik et al.,
2002b). There are many regional networks of sun photome-
ters, such as the Maritime Aerosol Network (MAN), which
uses a handheld sun photometer to collect data over the ocean
and is merged into AERONET (Smirnov et al., 2009); the
China Aerosol Robot Sun Photometer Network (CARSNET)
(Che et al., 2009); the Canadian subnetwork of AERONET
(AEROCAN) (Bokoye et al., 2001); Aerosol characteriza-
tion via Sun photometry: Australian Network (AeroSpan)
(Mukkavilli et al., 2019); and the sky radiometer network
(SKYNET) in Asia and Europe (Kim et al., 2004; Naka-
jima et al., 2020). Another very valuable global network is
the NOAA/ESRL Federated Aerosol Network (FAN), which
uses integrated nephelometers distinct from sun photome-
ters, mainly located in remote areas, providing background
aerosol properties over 30 sites (Andrews et al., 2019).

Satellite remote sensing is a space-based method that can
provide aerosol properties worldwide. With the develop-
ment of satellite remote sensing technology since the 1970s,
aerosol distributions can be extracted with the advantage
of sufficient real-time and global coverage from multiple
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satellite sensors (Kaufman and Boucher, 2002; Anderson
et al., 2005). The Advanced Very High Resolution Radiome-
ter (AVHRR) is the earliest sensor used for retrieving AOD
over ocean (Nagaraja Rao et al., 1989). The Moderate Res-
olution Imaging Spectroradiometer (MODIS), on board the
Terra (launched in 1999) and Aqua (launched in 2002) satel-
lites, is a popular sensor with 36 channels, which has been
used for AOD retrieval over both ocean and land based on
the dark target and deep blue algorithms (Remer et al., 2005;
Levy et al., 2013). The latest MODIS AOD data version is
Collection 6.1, which provides global AOD over 20 years
(Wei et al., 2019). There are also many other satellite sensors
that can be used to retrieve AOD, such as the Polarization and
Directionality of the Earth’s Reflectances (POLDER) during
1996–1997, 2003, and 2004–2013 (Deuzé et al., 2000); the
Sea-viewing Wide Field-of-view Sensor (SeaWIFS) during
1997–2007 (O’Reilly et al., 1998); and the Multi-angle Imag-
ing Spectroradiometer (MISR) on Terra since 1999 (Diner
et al., 1998). The Cloud-Aerosol Lidar with Orthogonal Po-
larization (CALIOP) has also derived aerosols in the vertical
direction since 2006 (Winker et al., 2009).

These measurements provide important data for studying
the global and regional spatiotemporal variabilities and cli-
mate effect of aerosols. However, ground-based remote sens-
ing observations only provide aerosol properties with low
spatial coverage. There were only about 150 ground sta-
tions worldwide in 2002, and even fewer sites were available
for climate analysis (Holben et al., 1998; Chu et al., 2002),
which limited aerosol climate research by spatial coverage
(Bright and Gueymard, 2019). Satellite remote sensing over-
comes the limitations of spatial coverage. The AVHRR has
been used to retrieve AOD since 1980, but it is limited by
a low number of channels, low spatial resolution, and insuf-
ficient validation through ground-based observations before
2000 (Hsu et al., 2017). Many studies have only investigated
the trends and distributions of aerosols after 2000 (Bösen-
berg and Matthias, 2003; Winker et al., 2013; Xia et al., 2016;
Tian et al., 2023) because of the lack of long-term and global-
cover AOD products, which is a bottleneck for aerosol cli-
mate change detection and attribution.

To overcome these limitations and enrich aerosol data, al-
ternative observation data could be utilized to derive AOD.
Atmospheric horizontal visibility is a suitable alternative
(Wang et al., 2009; Zhang et al., 2020) because it has the
advantages of long-term records with a large number of sta-
tions worldwide.

Atmospheric visibility is a physical quantity that describes
the transparency of the atmosphere through manual and auto-
matic observations; automatic observations of visibility usu-
ally measure atmospheric extinction (scattering coefficient
and transmissivity). Koschmieder (1924) first proposed the
relationship between the meteorological optical range and
the total optical depth. Elterman (1970) further established
a formula between AOD and visibility by assuming an expo-
nential decrease in aerosol concentration with altitude, con-

sidering the extinction of molecules and ozone to analyze
air pollution, which was called “the Elterman model”. Qiu
and Lin (2001) corrected the Elterman model by considering
the influence of water vapor and used two water vapor pres-
sure correction coefficients to retrieve the AOD of 16 stations
in China in 1990. Wang et al. (2009) analyzed the trend in
AOD using visibility-based retrievals from 1973 to 2007 over
land. Lin et al. (2014) retrieved the AOD in Eastern China in
2006 using visibility and aerosol vertical profiles provided
by GEOS-Chem. Wu et al. (2014) and Zhang et al. (2017)
parameterized the constants in the Elterman model and used
satellite-retrieved AOD to solve the parameters in the models
at different stations in order to retrieve the long-term AOD in
China.

Zhang et al. (2020) reviewed the methods of visibility re-
trieval of AOD, indicating that visibility-based retrieval of
AOD can compensate for the shortcomings of long-term
aerosol observation data. Simultaneously, various parame-
ters, such as station altitude, consistency in visibility data,
and water vapor and aerosol vertical profiles (scale height),
were discussed, with modified suggestions being proposed.
These studies have enriched AOD data regionally and have
also enriched aerosol data to some extent. At present, there
are very few studies on global visibility-retrieved AOD for
analyzing the climatology of aerosols.

The two physical quantities of visibility and AOD have
similarities and differences that make it challenging to re-
trieve AOD from visibility. Visibility represents the maxi-
mum horizontal visible distance near the surface which is
impaired by surface aerosols, while AOD represents the to-
tal column attenuation of solar radiation by aerosols from
the surface to the top of the atmosphere. The visibility of
automatic observations is dependent on the local horizon-
tal atmospheric extinction. Visibility does not have a sim-
ple linear relationship with meteorological factors. Obtain-
ing the vertical structure of aerosols is the greatest chal-
lenge, as it is not a simple hypothetical curve in complex
terrain and circulation conditions (Zhang et al., 2020). These
limitations make it more complex to derive AOD. Machine
learning methods can effectively address complex nonlinear
relationships between variables and have been widely ap-
plied in remote sensing and climate research fields. Li et al.
(2021) used the random forest method to predict PM2.5 in
Iraq and Kuwait based on satellite AOD during 2001–2018.
Kang et al. (2022) applied LightGBM and random forest to
estimate AOD over East Asia, and the results showed consis-
tency with AERONET. Dong et al. (2023) derived aerosol
single-scattering albedo from visibility and satellite AOD
over 1000 global stations. Hu et al. (2019) used a deep learn-
ing method to retrieve horizontal visibility from MODIS
AOD. These studies have confirmed the ability of machine
learning to effectively solve complex relationships among
variables. Previous studies were mostly conducted at the re-
gional or national scale, with few studies carried out at the
global scale. Thus, it is feasible to derive AOD from at-
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mospheric visibility over global land by using the machine
learning method.

In this study, we propose a machine learning method to de-
rive AOD, where satellite AOD is the target value and visibil-
ity and other related meteorological variables are the predic-
tors. We explain the model’s robustness, evaluate the model’s
predictive ability, and validate the model’s predictions using
independent ground-based AOD, satellite retrievals, and re-
analysis AOD. Furthermore, we analyze the mean AOD and
the AOD trend across global land and regions. A station-
scale dataset of long-term AOD is generated. Section 2 in-
troduces the data and method. Section 3 presents the evalu-
ation and validation of the visibility-derived AOD as well as
a discussion of the distribution and trends at global and re-
gional scales. Finally, Sect. 5 presents the conclusions. This
study is aimed at supporting the research of aerosols in cli-
mate change detection and attribution.

2 Data and method

2.1 Study area

The study area is global land. A total of 5032 meteorological
stations and 395 AERONET sites are selected in this study, as
shown in Fig. 1. For the regional analysis, 12 regions are se-
lected, i.e., Eastern Europe, Western Europe, Western North
America, Eastern North America, Central South America,
Western Africa, Southern Africa, Australia, Southeast Asia,
Northeast Asia, Eastern China, and India, and the number
of stations in each region is 187, 494, 390, 1759, 132, 72,
78, 86, 76, 140, 26, and 51, respectively. The meteorolog-
ical observation data including visibility are available from
1959. The time period for the global and regional analysis is
from 1980 to 2021, during which the visibility observations
are sufficient with a uniform spatial distribution. As shown
in Fig. 1, the number of active stations exceeded 2000 during
the period 1980–1990, and the number of active stations has
exceeded 3000 since the year 2000.

2.2 Meteorological data

The ground-based hourly meteorological data from 1959
to 2021 are collected from 5032 meteorological sta-
tions at airports over land, which can be downloaded
at https://mesonet.agron.iastate.edu/ASOS (last access:
9 July 2024). Over 1000 stations belong to the Automated
Surface Observing System (ASOS), and others are sourced
from airport reports around the world. The visibility mea-
surements can be divided into automatic observations and
manual observations. Automatic visibility observations
reduce errors associated with human involvement in data
collection, processing, and transmission. The visibility and
other meteorological data are extracted from the Meteorolog-
ical Terminal Aviation Routine Weather Report (METAR).
The World Meteorological Organization (WMO) sets guide-

lines for METAR reports, including report format, encoding,
observation instruments and methods, data accuracy, and
consistency, which ensures the consistency and compara-
bility of METAR reports globally. Some international regu-
lations can be referenced at https://community.wmo.int/en/
implementation-areas-aeronautical-meteorology-programme
(last access: 9 July 2024).

The daily average visibility is calculated using the har-
monic mean in Eq. (1). The reciprocal of visibility is propor-
tional to the extinction coefficient (Wang et al., 2009). Ex-
periments have shown that harmonic average visibility can
better detect the weather phenomena than arithmetic average
visibility when visibility declines quickly. Therefore, daily
visibility will have greater representativeness:

V = n

/(
1
V1
+

1
V2
+ . . .+

1
Vn

)
, (1)

where V is the harmonic mean visibility; n is the daily record
number; and V1, V2, . . .Vn are the individual hourly visibility.

In addition to hourly visibility (VIS), other variables
closely related to aerosol properties are selected, including
relative humidity (RH), dew point temperature (DT), tem-
perature (TMP), wind speed (WS), and sea-level pressure
(SLP). These variables are chosen because air temperature
affects atmospheric stability and the rate of secondary parti-
cle formation, humidity influences the size and hygroscopic
growth, and wind speed and pressure significantly impact the
transport and deposition of aerosols. Sky conditions (cloud
amount) and hourly precipitation are also selected to remove
the records of extensive cloud cover and precipitation.

We processed the meteorological data as follows. Records
with a high missing value ratio are eliminated (Husar et al.,
2000). When of sky conditions have over 80 % overcast or
fog, the records are eliminated, although such situations oc-
cur less than 1 % of the time over land (Remer et al., 2008).
Records with 1 h precipitation greater than 0.1 mm are elim-
inated. We calculate the temperature dew point difference
(dT ). Low-visibility records under “blowing snow” weather
are eliminated at high latitudes (> 65° N) when wind speed
is greater than 4.5 ms−1 (Husar et al., 2000). When the RH is
greater than 90 %, it is impossible to distinguish whether it is
fog, haze, or both and even whether it is precipitation. There-
fore, records with RH greater than or equal to 90 % are elimi-
nated. When the RH is less than 30 %, the hygroscopic effect
of aerosols is very low or even negligible. When the RH is
between 30 % and 90 %, the hygroscopic effect of aerosols
is high, and visibility is converted to dry visibility (Y. Yang
et al., 2021), as shown in Eq. (2). At least 3 hourly records
of meteorological variables are required when calculating the
daily average (n≥ 3):

VISD= VIS/(0.26+ 0.4285 · log(100−RH)), (2)

where VISD is the dry visibility.
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Figure 1. Study area (a) and meteorological stations (b) at the daily, monthly, and annual scales. The number of meteorological stations
(purple circles) is 5032. The number of AERONET sites (cyan circles) is 395. The boxed regions labeled with numbers 1–12 are Western Eu-
rope, Eastern Europe, Western North America, Eastern North America, Central South America, Western Africa, Southern Africa, Australia,
Southeast Asia, Northeast Asia, Eastern China, and India, respectively.

2.3 Boundary layer height

The hourly boundary layer height (BLH) data from 1980
to 2021 are available from the Fifth Generation Reanaly-
sis of the European Medium-Range Weather Forecast Cen-
ter (ERA5) with a resolution of 0.25°× 0.25° (https://cds.
climate.copernicus.eu, last access: 9 July 2024), which is the
successor of ERA-Interim and has undergone various im-
provements (Hersbach et al., 2020). The atmospheric bound-
ary layer is the layer closest to the Earth’s surface. It exhibits
complex turbulence activities, and its height undergoes sig-
nificant diurnal variation. The boundary layer plays a cru-
cial role in regulating and adjusting the distribution of atmo-
spheric aerosols, such as vertical distribution, concentration
changes, transport, and deposition (Ackerman et al., 1995).
The boundary layer height serves as an approximate measure
of the scale height for aerosols (Zhang et al., 2020).

Compared with observations of 300 stations around the
world from 2012 to 2019, the ERA5 BLH is underestimated
by 131.96 m, and it is closest to the observations when com-
pared with JRA-55 and NECP-2 BLH (Guo et al., 2021).
The hourly BLH data are temporally and spatially matched
with visibility and other meteorological data before calculat-
ing the daily average.

Because the reciprocal of visibility is proportional to the
extinction coefficient and positively related to AOD (Wang
et al., 2009), we calculate the reciprocal of visibility (VISI)
and the reciprocal of dry visibility (VISDI). Due to the influ-
ence of boundary layer height on the vertical distribution of
particles (Zhang et al., 2020), we calculate the product (VIS-
DIB) of VISDI and BLH. Therefore, the predictor (Fig. 2) is

Figure 2. Flowchart for deriving aerosol optical depth (AOD).

composed of 11 variables (TMP, Td, dT, RH, SLP, WS, VIS,
BLH, VISI, VISDI, and VISDIB).

2.4 MODIS AOD products

Satellite daily AOD data are available from the Moderate
Resolution Imaging Spectroradiometer (MODIS) Level 3
Collection 6.1 AOD products of the Aqua (MYD09CMA)
satellite from 2002 to 2021 and the Terra (MOD09CMA)
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satellite from 2000 to 2021 with a spatial resolution of
0.05°× 0.05° at a wavelength of 550 nm (https://ladsweb.
modaps.eosdis.nasa.gov, last access: 9 July 2024). Terra
(passing at 10:30 local time) and Aqua (passing at 13:30
local time) were successfully launched in December 1999
and May 2002, respectively. MODIS, carried on the Terra
and Aqua satellites, is a crucial instrument in the NASA
Earth Observing System program, which is designed to
observe global biophysical processes (Salomonson et al.,
1987). The 2330 km wide swath of the orbit scan can cover
the entire globe every 1–2 d. MODIS has 36 channels and
more spectral channels than previous satellite sensors (such
as AVHRR). The spectrum ranges from 0.41 to 15 µm,
representing three spatial resolutions: 250 m (2 channels),
500 m (5 channels), and 1 km (29 channels). The aerosol re-
trievals use seven of these channels (0.47–2.13 µm) to re-
trieve aerosol characteristics and use additional channels in
other parts of the spectrum to identify clouds and river sedi-
ments. Therefore, it has the ability to characterize the spatial
and temporal characteristics of the global aerosol field.

The MODIS aerosol product actually uses different algo-
rithms to retrieve aerosols over land. The dark target (DT)
algorithm is applied to densely vegetated areas because the
surface reflectance over dark-target areas is lower in the vis-
ible channels and has nearly fixed ratios with the surface re-
flectance in the shortwave and infrared channels (Levy et al.,
2007, 2013). The deep blue (DB) algorithm was originally
applied to bright land surfaces (such as deserts) and later ex-
tended to cover all cloud-free and snow-free land surfaces
(Hsu et al., 2006, 2013). The MODIS Collection 6.1 aerosol
product was released in 2017, incorporating significant im-
provements in radiometric calibration and aerosol retrieval
algorithms.

The aerosol retrievals are usually evaluated by the ex-
pected error. For the DT algorithm, the expected error is
± (0.05± 15 % AODAERONET). The coverage of retrieval
products varies by season based on the DT algorithm over
land. Higher spatial coverage is observed in August and
September, reaching 86 %–88 %. During December and Jan-
uary, due to the presence of permanent ice and snow cover in
high-latitude regions of the Northern Hemisphere, the spa-
tial coverage is 78 %–80 %. Thus, challenges remain in re-
trieving AOD values in high-latitude regions (Wei et al.,
2019). However, visibility observations are available in high-
latitude regions, thereby partially addressing the lack in these
regions. In this study, the Terra and Aqua MODIS AOD data
are temporally and spatially matched with the meteorologi-
cal stations. Aqua MODIS AOD is used as the target when
training the model, and Terra MODIS AOD is used in the
evaluation and validation of the model results, as shown in
the flowchart (Fig. 2).

2.5 Ground-based AOD

Ground-based 15 min AOD observations are available from
the Aerosol Robotic Network (AERONET) Version 3.0
Level 2.0 product at 395 sites (Fig. 1), which can be
downloaded from https://aeronet.gsfc.nasa.gov (last access:
9 July 2024). The AERONET program is a federation of
ground-based remote sensing aerosol networks established
by NASA and PHOTONS, including many subnetworks
(such as AeroSpan, AEROCAN, NEON, and CARSNET).
The sun photometer (CE-318) measures spectral sun and sky
irradiance in the 340–1020 nm spectral range. AERONET
has three levels of AOD products: Level 1.0 (unscreened),
Level 1.5 (cloud screened), and Level 2.0 (cloud screened
and quality assured). Compared with Version 2, the Ver-
sion 3 Level 2.0 database has undergone further cloud screen-
ing and quality assurance, which is generated based on
Level 1.5 data with pre- and post-calibration and tempera-
ture adjustment and is recommended for formal scientific re-
search (Giles et al., 2019). AERONET provides AOD prod-
ucts at wavelengths of 440, 675, 870, and 1020 nm. When
the aerosol loading is low, the error is significant. When
the AOD at 440 nm wavelength is less than 0.2, the error
is 0.01, which is equivalent to the error of the absorption
band in the total optical depth (Dubovik et al., 2002a). The
total uncertainty in AOD under cloud-free conditions is less
than ± 0.01 when the wavelength is more than 440 nm and
± 0.02 when the wavelength is less than 440 nm (Holben
et al., 1998). AERONET AOD is usually considered the
“true” value. The AOD at 440 nm and the Ångström index at
440–675 nm are used to calculate AOD at 550 nm (not pro-
vided by AERONET), as shown in Eq. (3):

τ550 = τ440

(
550
440

)−α
, (3)

where τ440 and τ550 are the AOD at a wavelength of 440 and
550 nm, respectively, and α is the Ångström index.

The daily average AOD requires at least two observations
within 1 h (± 30 min) of Aqua and Terra transit time (Wei
et al., 2019). The matching conditions between AERONET
sites and meteorological stations are (1) a distance of less
than 0.5° and (2) at least 3 years of observations. Finally, a
total of 395 sites are selected.

2.6 AOD reanalysis dataset

The monthly AOD (550 nm) dataset of Modern-Era Retro-
spective Analysis for Research and Applications Version 2
(MERRA-2) from 1980 to 2021 is a NASA reanalysis of
the modern satellite era produced by NASA’s Global Mod-
eling and Assimilation Office with a spatial resolution of
0.5°× 0.625° (Gelaro et al., 2017) and is available at https:
//disc.gsfc.nasa.gov (last access: 9 July 2024). MERRA-
2 AOD uses an analysis splitting technique to assimilate
AOD data at 550 nm. The assimilated AOD observations in-
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clude (1) AOD retrievals from AVHRR (1979–2002) over
global ocean, (2) AOD retrievals from MODIS on Terra
(2000–present) and Aqua (2002–present) over global land
and ocean, (3) AOD retrievals from MISR (2000–2014) over
bright and desert surfaces, and (4) direct AOD measurements
from ground-based AERONET sites (1999–2014) (Gelaro
et al., 2017). The monthly MERRA-2 AOD is used to evalu-
ate the model’s predictive ability before 2000 and after 2000.

2.7 Decision tree regression

2.7.1 Feature selection

Although a multidimensional dataset can provide as much
potential information as possible for AOD, irrelevant and re-
dundant variables can also introduce significant noise in the
model and reduce the model’s accuracy and stability (Kang
et al., 2021; Dong et al., 2023). Therefore, the F test is used
to search for the optimal feature subset in the predictor, aim-
ing to eliminate irrelevant or redundant features and select
truly relevant features, which helps to simplify the model’s
input and improve the model’s prediction ability (Dhanya
et al., 2020). The F test is a statistical test that gives an
f score (=−log(p), p represents the degree to which the
null hypothesis is not rejected) by calculating the ratio of
variances. In this study, we calculate the ratio of variance
between the predictors and the target, and the features are
ranked based on the f -score values. A higher f -score value
means that the distances between the predictors and the tar-
get are less and the relationship is closer; thus, the feature is
more important. We set p= 0.05. When the score is less than
−log(0.05), the variable in the predictors is not considered.

2.7.2 Data balance

When the weather is clear, the AOD value is small
(AOD< 0.5), the variability of AOD is small, and the data
are concentrated near the mean value. When there is heavy
pollution, the AOD value is large (AOD > 0.5). Compared
with clear sky, the AOD sequence will show “abnormal”
large values with low frequency, which is a phenomenon
of imbalanced AOD data. When dealing with imbalanced
datasets, because of the tendency of machine learning algo-
rithms to perform better on the majority class and overlook
the minority class, the model may be underfit (Chuang and
Huang, 2023). Data augmentation techniques are commonly
employed to address the issue in imbalanced data by apply-
ing a series of transformations or expansions to generate new
training data, thereby increasing the diversity and quantity of
the training data of the minority class.

The Adaptive Synthetic Sampling (ADASYN) is a data
augmentation technique specifically designed to address the
data imbalance problem (He et al., 2008; Mitra et al., 2023).
It is an extension of the Synthetic Minority Over-sampling
Technique (SMOTE) algorithm (Fernández et al., 2018). The
goal of ADASYN is to generate synthetic sample data for

the minority class so as to increase its representation in the
dataset. ADASYN, which adaptively adjusts the generation
ratio of synthetic samples based on the density distribution
of sample data, improves the dataset balance and enhances
the performance of machine learning models in dealing with
imbalanced data.

The processing of imbalanced data includes the following:
(1) AOD sequences are classified into three types based on
percentile (0 %–1 %, 2 %–98 %, 99 %). (2) When the mean
of the third type of AOD is greater than 5 times the standard
deviation of the second type, it is considered an imbalanced
sequence. These data, with a total amount of less than 5 % of
the sample, are imbalanced data. (3) Then, synthetic samples
are generated with a 10 % upper limit of the original samples.

2.7.3 Decision tree regression model

The decision tree is a machine learning algorithm based on a
tree-like structure used to solve classification and regression
problems. We use a regression tree algorithm to construct a
regression model by analyzing the mapping relationship be-
tween object attributes (predictor) and object values (target).
The internal nodes have binary tree structures with feature
values of “yes” and “no”. In addition, each leaf node repre-
sents a specific output for a feature space. The advantages
of the regression tree include the ability to handle continu-
ous features and the ease of understanding the tree structure
generated (Teixeira, 2004; Berk, 2008). Before training the
tree model, the variables (input) are normalized to improve
the model performance, and after prediction, the results are
obtained by denormalization. The 10-fold cross-validation
method is employed to improve the generalizability of the
model (Browne, 2000).

The core problems of the regression tree that need to be
solved are to find the optimal split variable and optimal split
point. The optimal split point of predictors is determined by
the minimum MSE, which in turn determines the optimal
tree structure. We set Y = [y1,y2, . . .,yN ] as the target. We
set X = [x1x2, . . .,xN ] as the predictors: xi = (x1

i ,x
2
i , . . .x

n
i ),

i = 1,2,3. . .,N , where n is the feature number and N is
the length of sample. We set a training dataset as D =
[(x1,y1)(x2,y2), . . ., (xN ,yN )].

A regression tree corresponds to a split in the feature
space and the output values on the split domains. Assum-
ing that the input space has been divided into M domains
[R1,R2, . . .,RM ] and there is a fixed output value on each
RM domain, the regression tree model can be represented as
follows:

f (x)=
M∑
m=1

cmI (x ∈ RM ),m= 1,2, . . .,M, (4)

where I is the indicator function, as in Eq. (5):

I =

{
1,x ∈ Rm
0,x 6∈ Rm

. (5)
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When the partition of the input space is determined, the
square error can be used to represent the prediction error of
the regression tree for the training data, and the minimizing
square error is used to solve the optimal output value on each
domain. The optimal value (ĉm) on a domain is the mean of
the outputs corresponding to all input, namely

ĉm = ave(yi |xi ∈ Rm). (6)

A heuristic method is used to split the feature space. Af-
ter each split, all values of all features in the current set
are examined individually, and the optimal one is selected
as the split point based on the principle of the minimum
sum of the square errors. The specific step is described as
follows: for the training dataset, we recursively divide each
region into two subdomains and calculate the output val-
ues of each subdomain; then, we construct a binary decision
tree. For example, the split variable is xj and the split point
is s. Then, in the domain R1(j,s)= [x|xj ≤ s] and domain
R2(j,s)= [x|xj > s], we can solve the loss function L(j,s)
to find the optimal j and s.

L(j,s)=
∑

xi∈R1(j,s)
(yi − c1)2

+

∑
xi∈R2(j,s)

(yi − c2)2. (7)

When L(j,s) is the smallest, xj is the optimal split vari-
able and s is the optimal split point for the xj .

min
j,s

[
min
c1

∑
xi∈R1(j,s)

(yi − c1)2
+min

c2

∑
xi∈R2(j,s)

(yi − c2)2

]
(8)

We use the optimal split variable xj and the optimal split
point s to split the feature space and calculate the correspond-
ing output value:

ĉ1 = ave(yi |xi ∈ R1(j,s)), ĉ2 = ave(yi |xi ∈ R2(j,s)). (9)

We traverse all input variables to find the optimal split vari-
able xj , forming a pair (j,s). We divide the input space into
two regions accordingly. Next, we repeat the above process
for each region until the stop condition is met. The regression
tree is generated.

Therefore, the regression tree model f (x) can be repre-
sented as follows:

f (x)=
M∑
m=1

ĉmI (x ∈ RM ),m= 1,2, . . .,M. (10)

2.8 Evaluation metrics

Evaluation metrics, including root mean square error
(RMSE), mean absolute error (MAE), and Pearson correla-
tion coefficient (R), are used to evaluate the performance and

accuracy of the model results:

RMSE=

√√√√1
n

n∑
i=1

(
yi − ŷi

)2
, (11)

MAE=
1
n

n∑
i=1

∣∣yi − ŷi∣∣ , (12)

R =

n∑
i=1

(yi − y)(ŷi − ŷ)√(
n∑
i=1

(yi − y)2
n∑
i=1

(ŷi − ŷ)2
) , (13)

where yi and y are the predicted value and the average of the
predicted values; ŷi and ŷ are the target and the average of
the target; i = 1,2, . . .,n; and n is the length of sample.

The expected error (EE) is used to evaluate the AOD de-
rived from visibility:

EE=±(0.05+ 0.15 · τtrue), (14)

where τtrue is the AOD at 550 nm from the AERONET, satel-
lite, and reanalysis datasets.

2.9 Workflow

Figure 2 summarizes the flowchart and provides an overview
of the structure of this study, which comprises three main
parts: (1) data preprocessing, (2) model training, and (3) val-
idation and prediction.

3 Results and discussion

3.1 Dependence of model performance on training data
length

We build the models using different lengths of sample data
(5 %–100 %, with a 5 % interval) by random allocation with-
out overlap and evaluate the predictive performance of each
model. Figure 3a–c depict the RMSE, MAE, and R between
the predicted values and the target based on the training data
of 5 %–100 % sample data at a station. As the volume of the
training data increases, the RMSE and MAE values decrease
and the R values increase. Compared with 5 % of the sample
data, the result of 100 % of the sample data shows a decrease
in RMSE by 41.1 %, a decrease in MAE by 50.1 %, and an in-
crease in R by 162.3 %. The relationship between the length
of the sample data and the model’s performance is positive
for each station. Figure 3d shows that the R value of approx-
imately 70 % of the stations is greater than 0.5 at 50 % of
the sample data, while at 75 %, the R value of approximately
80 % of the stations is greater than 0.6. When 100 % of the
sample data is used, theR value of approximately 80 % of the
stations is greater than 0.75, and the R value of about 97 % is
greater than 0.7. This finding indicates that the predictive ca-
pability and robustness of the model increase as the amount
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Figure 3. Boxplots of root mean square error (RMSE) (a), mean absolute error (MAE) (b), and correlation coefficient (R) (c) between the
predicted values and the target using different lengths of sample data (5 % interval) as the training dataset as well as the correlation coefficient
curve (d) of the station number and length of sample data.

of training data increases. It may be attributed to the model’s
ability to capture more complex patterns and relationships
among the input by multi-year data.

3.2 Evaluation of model training performance

Figure 4 shows the spatial distribution (Fig. 4a–c) and the
cumulative frequency (Fig. 4d–f) of RMSE, MAE, and R of
all stations. The mean values of RMSE, MAE, and R are
0.078, 0.044, and 0.750, respectively. The RMSE of 93 %
of the stations is less than 0.11, the MAE of 91 % is less
than 0.06, and the R value of 88 % is greater than 0.7. The
R values in Africa, Asia, Europe, North America, Oceania,
and South America are 0.763, 0.758, 0.736, 0.750, 0.759, and
0.738, respectively. Although the RMSE and MAE of a few
stations are high in America and Asia, theR value is still high
(> 0.6). Therefore, the results of the model’s errors demon-
strate that the model performs well on almost all stations.

3.3 Validation and comparison with MODIS and
AERONET AOD

3.3.1 Validation over global land

To validate the model’s predictive ability, the visibility-
derived AOD (VIS_AOD) is compared with Aqua, Terra,
MERRA-2, and AERONET AOD at 550 nm for the global
scale. Among them, Aqua AOD has been used as training
data, which is not an independent dataset. Terra AOD and
AERONET AOD have not been used as training data and
can be regarded as independent datasets.

First, the relationship between daily MODIS and
AERONET AOD is evaluated, as shown in Fig. 5a, b, d,
e, g, and h. The R values with Aqua AOD and Terra AOD
are 0.643 and 0.637 at the daily scale, 0.668 and 0.658 at
the monthly scale, and 0.658 and 0.665 at the yearly scale.
The RMSE values with Aqua AOD and Terra AOD are 0.158
and 0.163 at the daily scale, 0.122 and 0.127 at the monthly
scale, and 0.101 and 0.103 at the yearly scale. The MAE val-
ues with Aqua AOD and Terra AOD are 0.084 and 0.088
at the daily scale, 0.071 and 0.072 at the monthly scale,
and 0.061 and 0.062 at the yearly scale. The percentages of
sample points falling within the EE envelopes are 64.66 %
and 62.54 % at the daily scale, 69.36 % and 69.08 % at the
monthly scale, and 74.80 % and 75.89 % at the yearly scale.

Figure 6 shows the scatter density plots and the EEs
between VIS_AOD and Aqua AOD, Terra AOD, and
AERONET AOD. Aqua AOD is not an independent valida-
tion dataset, while Terra and AERONET AOD are indepen-
dent validation datasets. For the daily scale, the R, RMSE,
and MAE between VIS_AOD and Aqua AOD (15 962 757
data pairs) are 0.799, 0.079, and 0.044, respectively. The per-
centage of sample points falling within the EE envelopes is
84.12 % at the global scale (Fig. 6a). The R value between
VIS_AOD and Terra AOD (17 145 578 data pairs) is 0.542,
with an RMSE of 0.125 and an MAE of 0.078. The per-
centage of sample points falling within the EE envelopes
is 64.76 % (Fig. 6b). The R value between VIS_AOD and
AERONET AOD (270 240 data pairs) at 395 sites is 0.546,
with an RMSE of 0.186 and an MAE of 0.099. The per-
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Figure 4. Spatial distribution (a–c) of root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R) between
the model results and the target with 100 % of sample data. Station number (bar) and cumulative frequency (curve) (d–f) of RMSE, MAE,
and R.

centage of sample points falling within the EE envelopes is
57.87 % (Fig. 6c).

For the monthly and yearly scales, RMSE and MAE show
a significant decrease between VIS_AOD and Aqua, Terra,
and AERONET AOD, with the R values and percentages
falling within the EE showing a significant increase (Fig. 6e–
g and i–k). The monthly RMSE values are 0.029, 0.051, and
0.135; the monthly MAE values are 0.018, 0.031, and 0.077;
and the monthly R values are 0.936, 0.808, and 0.613, re-
spectively. The percentages falling within the EE envelopes
are 98.34 %, 93.25 %, and 65.77 %. The RMSE values at the
yearly scale are 0.013, 0.024, and 0.116; the MAE values are
0.008, 0.015, and 0.066; and the R values are 0.976, 0.906,
and 0.652, respectively. The percentages falling within the
EE envelopes are 99.82 %, 99.20 %, and 73.79 %, respec-
tively. The percentage falling within the EE envelopes when
compared with AERONET is smaller than when compared
against Terra, which may be related to the elevation of the
AERONET sites, the distance between the AERONET and
meteorological stations, and the observed time. The results
highlighted above demonstrate a clear improvement in per-
formance at the monthly and yearly scales compared with
the daily scale.

To further examine the predictive capability of histori-
cal data, we compare the VIS_AOD with AERONET AOD

before 2000, as shown in Fig. 6d, h, and l. We match 43
AERONET sites, with a total of 5166 daily records. The re-
sult indicates that the daily-scale R is close to the value after
2000 (Fig. 6c), with almost 50 % falling within the EE en-
velopes. The monthly and annual correlation coefficients are
even higher, with 55 % falling within the EE envelopes. De-
spite the small sample size, the model still demonstrates ex-
cellent predictive ability. Compared with AERONET (an in-
dependent validation dataset), the performance of VIS_AOD
is almost unchanged before and after 2000.

We also compare the VIS_AOD with the MERRA-2 re-
analysis AOD at the monthly scale, as shown in Fig. 7. The
correlation coefficient between MERRA-2 and AERONET
is 0.655 before 2000, slightly lower than the correlation co-
efficient (0.657) between VIS_AOD and AERONET. The
correlation coefficient between MERRA-2 and AERONET
is 0.829 after 2000, significantly higher than that before
2000, while the correlation coefficient between VIS_AOD
and AERONET is 0.613. This suggests that VIS_AOD and
MERRA-2 AOD have similar accuracy before 2000. The
correlation coefficient of MERRA-2 after 2000 is higher
and performs even better than MODIS retrievals (as shown
in Fig. 5) when evaluated at AERONET sites. However,
before 2000, the correlation coefficient of MERRA-2 and
AERONET as well as the RMSE and MAE all show signifi-
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Figure 5. Scatter density plots between AERONET AOD (550 nm) and Aqua MODIS AOD, Terra MODIS AOD, and VIS_AOD at the
daily (a–c), monthly (d–f), and yearly (g–i) scale. The solid black line represents the 1 : 1 line and the dashed lines represent expected error
(EE) envelopes. The sample size (N ), correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) are given.
“=EE”, “>EE”, and “<EE” represent the percentage (%) of retrievals falling within, above, and below the EE, respectively. The matching
time for Aqua AOD and VIS_AOD with AERONET AOD is at 13:30 local time (± 30 min), and the matching time between Terra AOD and
AERONET AOD is at 10:30 local time (± 30 min).

cant changes and differences in consistency. The higher cor-
relation between MERRA-2 and AERONET AOD is partly
because MERRA-2 has assimilated AERONET AOD obser-
vations (Gelaro et al., 2017). Compared with AERONET,
VIS_AOD and Aqua and Terra MODIS have a similar cor-
relation coefficient. The correlation coefficient of VIS_AOD
before 2000 is even higher than after 2000, and the changes in
RMSE and MAE are not significant. This indicates the good
consistency of VIS_AOD. In conclusion, the predicted re-
sults have good consistency with AERONET AOD and Terra
AOD at the daily scale. There is a significant improvement in
the monthly and annual results. The model shows good pre-
dictive capabilities before and after 2000, highlighting the
stable accuracy of VIS_AOD.

3.3.2 Validation over regions

Aerosol loading exhibits spatial variability. Evaluation met-
rics for the relationships between visibility-derived AOD and

AERONET AOD and Terra AOD for each region are listed
in Table 1.

In Europe and North America, the results are similar to
those of Terra and AERONET, with a large number of data
pairs, greater than 105 (AERONET) and greater than 107,
except for Eastern Europe (Terra) at the daily scale. Approx-
imately 63 %–70 % data pairs fall within the EE envelopes.
The RMSE is approximately 0.11, except for Western North
America (∼ 0.15); the MAE is approximately 0.07 and the
correlation coefficient is between 0.44 and 0.54.

In Central South America, southern Africa, and Australia,
the data pairs are about 103–4 (AERONET) and 106 (Terra)
at the daily scale; 52 %–60 % fall within the EE envelopes
compared with AERONET and 58 %–67 % compared with
Terra. The RMSE is 0.03–0.05 compared with Terra and
0.11–0.17 compared with AERONET. The correlation coef-
ficient ranges from 0.40 to 0.74, with the highest correlation
coefficient in South America at 0.74.
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Figure 6. Scatter density plots between predicted AOD (VIS_AOD) and Aqua MODIS AOD, Terra MODIS AOD, AERONET AOD, and
AERONET AOD before 2000 at the daily (a–d), monthly (e–h), and yearly (g–i) scale. The solid black line represents the 1 : 1 line and
the dashed lines represent expected error (EE) envelopes. The sample size (N ), correlation coefficient (R), mean absolute error (MAE), and
root mean square error (RMSE) are given. “=EE”, “>EE”, and “<EE” represent the percentage (%) of retrievals falling within, above,
and below the EE, respectively. Note that Aqua AOD is not an independent validation dataset for the predicted results, whereas Terra and
AERONET AOD are independent validation datasets.

In Asia, India, and Western Africa, the data pairs are only
approximately 104 (AERONET); 32 %–50 % fall within the
EE envelopes compared with AERONET. The RMSE value
ranges from 0.20 to 0.50, and the MAE ranges from 0.11 to
0.36. Compared with Terra AOD, 51 %–58 % of data pairs
fall within the EE envelopes; the RMSE is around 0.16, and
the MAE is around 0.11. Compared with AERONET, in these
high aerosol loading regions, RMSE and MAE increase, and
the percentages falling within the EE envelopes decrease, but
the correlation coefficients do not significantly decrease.

Compared with Terra AOD, 55 %–67 % of data fall within
the EE envelopes at the daily scale, 87 %–96 % at the
monthly scale, and over 97 % at the yearly scale. Compared
with AERONET AOD, 32 %–68 % of data fall within the EE
envelopes at the daily scale, 24 %–84 % at the monthly scale,
and 15 %–97 % at the yearly scale. At both the monthly and
yearly scales, all metrics have shown a significant increase in
performance when compared with Terra. However, compared

with AERONET, not all metrics increase in some regions due
to limited data pairs, such as in Western Africa, Northeast
Asia, and India, which may be due to the spatial differences
between AERONET sites and meteorological stations.

3.3.3 Validation at the site scale

Sites, especially AERONET, are not completely uniform
around the world or in any region, and different stations have
different sample sizes, which may lead to some uncertainty.
Therefore, further analysis is conducted on the spatial dis-
tribution of different evaluation metrics. Figure 8 shows the
validation and comparison of daily VIS_AOD against Terra
and AERONET AOD at the site scale.

Compared with Terra daily AOD, the R value of 67 %
of the stations is greater than 0.40, the mean bias of 83 %
of the stations is less than 0.01, the RMSE of 85 % of the
stations is less than 0.15, and the percentage falling within
the EE is greater than 60 %. More than 85 % of the stations
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Figure 7. Scatter density plots between AERONET AOD and the
predicted AOD (VIS_AOD) and MERRA-2 AOD before and af-
ter 2000 at the monthly scale. The solid black line represents the
1 : 1 line and the dashed lines represent the expected error (EE) en-
velopes. The sample size (N ), correlation coefficient (R), mean ab-
solute error (MAE), and root mean square error (RMSE) are given.
“=EE”, “>EE”, and “<EE” represent the percentage (%) of re-
trievals falling within, above, and below the EE, respectively.

falling within the EE is greater than 60 % in Europe, North
America, and Oceania, while 40 %–60 % in South America,
Africa, and Asia. The percentage of expected error is low in
Southeast Asia and Central Africa, with some underestima-
tion. Over 60 % of stations in Africa, Asia, North America,
and Europe have a correlation coefficient greater than 0.40.
The regions with a lower correlation are the coastal regions
of South America, Eastern Africa, Western Australia, North-
eastern North America, and Northern Europe. Over 90 %
of stations in Europe, North America, and Oceania have an
RMSE less than 0.15. Regions with high RMSE values are
Western North America, Asia, Central South America, and
Central Africa.

Compared with AERONET daily AOD, the R value of
74 % of the stations is greater than 0.40, and the spatial dis-
tribution is similar to the Terra daily AOD. The mean bias
in 44 % of the stations is less than 0.01, the RMSE of 68 %
of the stations is less than 0.15, and the percentage falling
within the EE of 53 % of the stations is greater than 60 %.
More than 70 % of sites have a correlation coefficient greater
than 0.40 in Africa, Asia, Europe, and North America. More
than 57 % of sites have an expected error percentage of over
60 % in Europe, North America, and Oceania, except for
Asia. Over 72 % of sites have an RMSE less than 0.15. Ex-
cept for Oceania and South America, over 71 % of sites in
other regions have MAE values less than 0.01. Almost all
sites in Asia show a negative bias, with a significant under-
estimation. However, there is a significant overestimation in

Western North America and Western Australia. The percent-
ages of most sites in Asia falling within the expected error
envelopes are less than 50 %. High RMSE values are found
in areas of high emission and dust, such as Asia, India, and
Africa.

The validation and comparison at the site scale show a lim-
itation similar to the MODIS DT algorithm. In areas with
high vegetation coverage, the AOD from visibility data is
better than that in bright areas. Although the correlation coef-
ficients are high in high aerosol loading areas (Central South
America, Western Africa, India, Eastern China, Northeast
Asia), there are significant differences in these areas with
high RMSE values. As shown in Fig. 6, some stations lo-
cated in dusty and urban areas show overestimations or un-
derestimations. Studies have shown that there is a significant
uncertainty in the MODIS retrievals in these regions, and the
challenges of inversion algorithms are significant with bright
surfaces (desert and snow-covered areas) and urban surfaces
of densely populated complex structures (Chu et al., 2002;
Remer et al., 2005; Levy et al., 2010; Wei et al., 2019, 2020).
In India, the elevation difference between the AERONET
site and the meteorological station reached 0.7 km, which
may be a factor affecting the validation, as aerosol varies
greatly with altitude. In Eastern China, the complex urban
surface, emission sources, and observations in different loca-
tions (AERONET site and meteorological station) may be the
reasons for the underestimation. At the same time, visibility
stations in desert areas are sparse, and the spatial variability
of dust aerosols is large, which also increases the difficulty
in estimating VIS_AOD.

3.3.4 Discussion and uncertainty analysis

Atmospheric visibility is a surface physical quantity, while
AOD is a column-integrated physical quantity. We have
linked the two variables using machine a learning method,
which partially compensates for the scarcity of AOD data.
However, we have to face some limitations. Although the
boundary layer height is considered, it is not sufficient. Pol-
lutants such as smoke from biomass burning, dust, volcanic
ash, and gas–aerosol conversion of sulfur dioxide to sul-
fate aerosols in the upper and lower troposphere can un-
dergo long-range aerosol transport under the influence of
circulation. The pollution transport and aerosol conversion
processes above the boundary layer are still significant and
cannot be ignored (Eck et al., 2023). Compared with sur-
face visibility, bias occurs when the aerosol layer rises and
affects AERONET measurements and MODIS retrievals;
therefore, it should be considered when using these data. If
there are sufficient historical vertical aerosol measurements
with high temporal and spatial resolution, the results of these
data would be greatly improved. Although some studies use
aerosol profiles from pollution transport models or assumed
profiles as substitutes for observed profiles (Li et al., 2020;
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Figure 8. Validation of VIS_AOD against Terra and AERONET AOD at each site: (a, b) correlation (R), (c, d) mean bias (MB), (e, f) root
mean square error (RMSE), and (g, h) percentage (%) of VIS_AOD within the expected error envelopes.

Zhang et al., 2020), the biases introduced by these non-
observed profiles are still significant.

In machine learning, we use MODIS Aqua AOD as the
target value for the model because the validation results for
the MODIS C6.1 product have a correlation coefficient of
0.9 or higher with AERONET AOD at the daily scale (Wei
et al., 2019, 2020). Compared with AERONET, MODIS
AOD provides more sample data with a high global cover-
age. However, apart from modeling errors, the systematic bi-
ases and uncertainties of MODIS Aqua AOD cannot be ig-
nored (Levy et al., 2013, 2018; Wei et al., 2019). Averaging
over time scales can reduce representation errors effectively,
while emission sources and orography can increase represen-
tation errors (Schutgens et al., 2017). Therefore, the strong
correlation at monthly and annual scales indicates a substan-
tial reduction in errors. This is also one of the reasons why
this dataset shows a stronger correlation with Terra AOD and
a weaker correlation with AERONET in the validation.

The spatial matching between meteorological stations and
AERONET sites may cause some biases. AERONET sites
are usually not co-located with meteorological stations in
terms of elevation and horizontal distance, and this is an-

other reason for the weak correlation between VIS_AOD and
AERONET AOD. The meteorological stations are located
at airports. Different horizontal distances may result in me-
teorological stations and AERONET sites being located on
different surfaces (such as urban, forest, or mountainous ar-
eas). Differences in site elevation significantly impact the re-
lationship between AOD and the measured visibility. When
the AERONET site is at a higher elevation than the meteoro-
logical station, there may be fewer measurements of aerosols
over the sea at the AERONET site.

Different pollution levels and station elevations affect the
AOD derived from visibility. The elevation difference and
the distance between meteorological stations and AERONET
sites also have an impact on the validation results. Therefore,
the error and performance of different AERONET AOD val-
ues, station elevations, and distances are analyzed.

As the AOD increases, the variability of bias also increases
in Fig. 9a. Almost all mean bias values are within the EE
envelope, except for 1.1–1.2 and 1.5–1.6. The average bias
is 0.015 (AOD< 0.1), with 83 % of the data within the EE
envelopes. The mean bias is −0.0011 (AOD, 0.1–0.2), with
54 % within the EE envelopes. The mean bias is negative
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Figure 9. Box plots of AOD bias and the percentage of data falling within the EE envelopes (curves): (a) AERONET AOD levels, (b) el-
evation of AERONET sites, (c) elevation difference between meteorological stations and AERONET sites, and (d) distance (km) between
meteorological stations and AERONET sites. The horizontal black line represents the zero bias. For each box, the upper, lower, and middle
horizontal lines and the whiskers represent the AOD bias 75th and 25th percentiles, median, and 1.5 times the interquartile difference, re-
spectively. The solid black lines represent the EE envelopes (± (0.05+ 0.15 ·AODAERONET)). There is no site with a difference of +0.3 km
(x-axis label without 0.3) in (c).

(AOD, 0.3–1.0), with 20 %–40 % falling within the EE en-
velopes. There is a positive bias (AOD at 1.1, 1.4, and> 1.6),
and there is a negative bias at 1.2–1.3 and 1.5–1.6. These re-
sults indicate that as the pollution level increases, the nega-
tive mean bias becomes significant and the underestimation
increases.

The contribution of aerosols near the ground to the column
aerosol loading is significant. The elevation of the site af-
fects the measurement of column aerosol loading in Fig. 9b.
There is a negative bias at low elevation (≤ 0.5 km), with
60 %–64 % falling within the EE envelopes, and a positive
bias at high elevation (0.5–1.2 km), with 50 %–65 % falling
within the EE envelopes. The percentage significantly de-
creases (> 1.2 km) and the average bias increases. Therefore,
the elevation of AERONET sites will cause bias in the valida-
tion, and the uncertainty greatly increases at high elevation.

Due to the elevation difference between the meteorologi-
cal station and the AERONET site in the vertical direction,
the uncertainty caused by elevation differences at the site is
analyzed in Fig. 9c. When the elevation difference is negative
(the elevation of the meteorological station is lower than that
of the AERONET site), there is a significant positive bias.
When the difference is positive, the mean bias approaches
0 or is positive. The percentage is greater than 60 % (−0.5
to 0.5 km). The positive mean bias is greater than the neg-

ative mean bias, and the uncertainty greatly increases when
the elevation of the meteorological stations is lower than that
of the AERONET sites. This indicates that the contribution
of the near-surface aerosol to the column aerosol loading is
significant and cannot be ignored.

The spatial variability of aerosols is significant. Meteoro-
logical stations and AERONET sites are not co-located, re-
sulting in a certain distance in spatial matching. In this study,
the upper limit in distance is 0.5°. Figure 9d shows the error
of the distance between stations, where the degree is con-
verted to the distance at WGS84 coordinates. The bias does
not change significantly with increasing distance. The aver-
age bias is around 0, with the maximum positive mean bias
(0.0322) at a distance of 2 km and the maximum negative
mean deviation (−0.0323) at 6 km. The median is almost
positive, except at 5 and 6 km. The percentage falling within
the EE envelopes is over 50 %, with the maximum percent-
age (66 %) at 3km and the minimum (62 %) at 2 km.

3.4 Interannual variability and trend in visibility-derived
AOD over global land

The multi-year average AOD from 1980 to 2021 over land
is 0.177, as shown in Fig. 10a. The average is 0.178 in the
Northern Hemisphere (NH, 4532 stations) and 0.174 in the
Southern Hemisphere (SH, 500 stations). Due to the influ-
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Figure 10. Map of annual and seasonal mean AOD (left) and global and regional mean time series from 1980 to 2021 (right). Global land
(circle), Northern Hemisphere (NH) (triangle), and Southern Hemisphere (SH) (square) annual and seasonal AOD. The symbol ∗∗ indicates
the trend passed the test at a significance level of 0.01. The symbol ∗ indicates the trend passed the test at a significance level of 0.05. DJF
represents December and the next January and February. MAM represents March, April, and May. JJA represents June, July, and August.
SON represents September, October, and November.

Figure 11. Global land (blue), Northern Hemisphere (red), and Southern Hemisphere (yellow) multi-year average VIS_AOD from 1980 to
2021 in different latitude zones. The latitude range is from −65 to 85° N, with a bin of 5°.
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ence of geography, atmospheric circulation, population, and
emissions, the AOD varies at different latitudes. Figure 11
illustrates the multi-year average AOD at different latitude
ranges from 1980 to 2021. The AOD value in the NH is
higher than that over land and higher than that in the SH.
Within −20 to 20° N, the average AOD reaches its maxi-
mum (0.225), and the maximum AOD in the NH is 0.239 (0–
20° N). The highest AOD in the SH is 0.203 (−15 to 0° N).
The average AOD rapidly decreases from −15 to −35° N in
the SH and from 20 to 50° N in the NH.

There are many regions of high AOD values in the NH
with the distribution of high population density. Approxi-
mately seven-eighths of the global population resides in the
NH, with 50 % concentrated at 20–40° N (Kummu et al.,
2016), indicating a significant impact of human activities on
aerosols. The highest AOD values are observed near 17° N,
including the Sahara Desert, Arabian Peninsula, and India,
suggesting that in addition to anthropogenic sources, deserts
also play a crucial role in aerosol emissions. Lower AOD
regions in the SH are from 25 to 60° S, encompassing Aus-
tralia, southern Africa, and southern South America, indicat-
ing lower aerosol burdens in these areas. Additionally, North
America also exhibits low aerosol loading. Chin et al. (2014)
analyzed the AOD over land from 1980 to 2009 with the
Goddard Chemistry Aerosol Radiation and Transport model,
which is similar to the visibility-derived AOD. The spa-
tial distribution is consistent with the satellite results (Re-
mer et al., 2008; Hsu et al., 2012, 2017; Tian et al., 2023).
The AOD and extinction coefficients retrieved from visibility
show a similar distribution at the global scale, with a correla-
tion coefficient of nearly 0.6 (Mahowald et al., 2007). Simi-
lar global (Husar et al., 2000; Wang et al., 2009) and regional
(Koelemeijer et al., 2006; Wu et al., 2014; Boers et al., 2015;
Zhang et al., 2017, 2020) spatial distributions have been re-
ported.

AOD loadings exhibit significant seasonal variations
worldwide, particularly over land. In this study, a year is di-
vided into four parts – December–January–February (DJF),
March–April–May (MAM), June–July–August (JJA), and
September–October–November (SON) – corresponding to
winter (summer), spring (autumn), summer (winter), and au-
tumn (spring) in the NH (SH), respectively. Figure 10b–e
also depict the spatial distribution of seasonal average AOD
over land from 1980 to 2021. The global AOD in DJF, MAM,
JJA, and SON is 0.161, 0.176, 0.204, and 0.164, respectively.
The standard bias of AOD in JJA and DJF is greater than that
in DJF and SON. AOD exhibits seasonal changes, with the
highest in JJA followed by DJF, MAM, and SON.

In the NH, the AOD ranking is summer (0.210)> spring
(0.176)> autumn (0.163)> winter (0.160). In the SH, the
AOD ranking from high to low in season is spring (0.188)>
summer (0.184)> autumn (0.164)> winter (0.152). The
highest AOD is observed during JJA in the NH, while in the
SH, the peak occurs during SON. The high AOD value is sig-
nificantly associated with the growth in hygroscopic particles

and the photochemical reaction of aerosol precursors under
higher relative humidity in Asia (JJA) (Remer et al., 2008)
and Europe, such as in Russia (JJA), and with biomass burn-
ing in South America (SON), southern Africa (SON), and In-
donesia (SON) (Ivanova et al., 2010; Krylov et al., 2014). On
the other hand, the lowest global AOD values are observed
during winter, which may be attributed to the atmospheric
circulation systems (Li et al., 2016; Zhao et al., 2019).

The temporal variations in AOD have also been of great
interest due to the significant relationship between aerosols
and climate change. Figure 10f shows the trends in annual
average AOD (∗∗ represents passing the significance test,
p< 0.01) over the global land area, the SH, and the NH
during 1980–2021. The global land, NH, and SH demon-
strate a decreasing trend in AOD, with values of−0.0029 per
10 years, −0.0030 per 10 years, and −0.0021 per 10 years,
respectively – all passing the significance test. The declining
trend is much greater in the NH than in the SH.

The seasonal trends in AOD during 1980–2021 at the
global and hemispheric scales are shown in Fig. 10g–j. There
is a decreasing trend over land in DJF, JJA, and SON and an
increasing trend in MAM. The largest declining trend is ob-
served in SON (−0.0055 per 10 years). In the NH, the trends
are−0.0044 per 10 years (DJF), 0.0016 per 10 years (MAM),
−0.0024 per 10 years (JJA), and −0.0064 per 10 years
(SON). In the SH, the trends are 0.0022 per 10 years (DJF),
−0.0044 per 10 years (MAM), −0.0064 per 10 years (JJA),
and 0.0033 per 10 years (SON). The largest declining trend is
in SON in the NH and in JJA in the SH. However, the trends
are positive in MAM in the NH and in DJF and SON in the
SH.

3.5 Interannual variability and trend in visibility-derived
AOD over regions

The distribution of AOD over global land exhibits significant
spatial heterogeneity. Large variations in aerosol concentra-
tions exist among different regions, leading to a non-uniform
spatial distribution of AOD globally. Accurately assessing
the long-term trends in aerosol loading is key for quanti-
fying aerosol climate change and it is crucial for evaluat-
ing the effectiveness of measurements implemented to im-
prove regional air quality and reduce anthropogenic aerosol
emissions. Therefore, we select 12 representative regions to
analyze the variability and trend in AOD which are influ-
enced by various aerosol sources (Wang et al., 2009; Hsu
et al., 2012; Chin et al., 2014), such as desert, industry,
anthropogenic emissions, and biomass burning emissions,
which cover the most land and are densely populated regions
(Kummu et al., 2016). These representative regions are East-
ern Europe, Western Europe, Western North America, East-
ern North America, Central South America, Western Africa,
Southern Africa, Australia, Southeast Asia, Northeast Asia,
Eastern China, and India, as shown in Fig. 1.
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Figure 12. Annual and seasonal mean AOD in 12 regions (Eastern Europe, Western Europe, Western North America, Eastern North America,
Central South America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and India) during the
period 1980–2021.

Figure 13. Annual anomaly of VIS_AOD from 1980 to 2021 in 12 regions (Eastern Europe, Western Europe, Western North America,
Eastern North America, Central South America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China,
and India). The dotted line is the trend line.

The multi-year average and seasonal average AOD
(Fig. 12), the trends in the annual average of monthly anoma-
lies (Fig. 13), and the seasonal trends (Fig. 14) are analyzed
in 12 regions from 1980 to 2021.

The regions with a high aerosol level (AOD > 0.2) are
in Western Africa, Southeast and Northeast Asia, Eastern
China, and India. The AOD values range from 0.15 to 0.2
in Eastern Europe, Western Europe, Eastern North America,
Central South America, and Southern Africa. The AOD val-
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Figure 14. Seasonal mean VIS_AOD from 1980 to 2021 in 12 regions (Eastern Europe, Western Europe, Western North America, Eastern
North America, Central South America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and
India). The dotted line is the trend line.

ues are less than 0.15 in Western North America and Aus-
tralia.

Europe is an industrial region with low aerosol loading,
and the multi-year average AOD in Eastern Europe (0.181)
is higher than that in Western Europe (0.163) during 1980–
2021. Eastern Europe shows a greater downward trend in
AOD (−0.0067 per 10 years) compared with Western Eu-
rope (−0.0026 per 10 years). The highest AOD is observed
in JJA, i.e., the dry period when solar irradiation and bound-
ary layer height increase, with AOD values of 0.201 in East-
ern Europe and 0.162 in Western Europe, which could be
due to increases in secondary aerosols, biomass burning, and
dust transport from the Sahara (Mehta et al., 2016). How-
ever, there are seasonal variations. In Eastern Europe, the
seasonal AOD ranking from high to low is JJA (0.201)>DJF
(0.181)> MAM (0.175)> SON (0.161), while in Western
Europe, it is JJA (0.193)> MAM (0.162)> SON (0.160)>
DJF (0.138). The differences among seasons are larger in
Western Europe. AOD in Eastern Europe shows declining
trends (p< 0.01) in all seasons, and the largest declining
trend is in DJF (−0.0096 per 10 years). In Western Eu-

rope, the AOD in DJF, JJA, and SON exhibits declining
trends, while the AOD in MAM shows a significant increas-
ing trend (0.0019 per 10 years). There is an increasing trend
in MAM in both Western and Eastern Europe from 1995
to 2005, with Western Europe showing a greater increasing
trend. However, after 2005, the declining rates accelerate in
each season. Studies have shown the downward trend in Eu-
rope is attributed to the reduction in biomass burning, an-
thropogenic aerosols, and aerosol precursors (such as sulfur
dioxide) (Wang et al., 2009; Chin et al., 2014; Mortier et al.,
2020).

North America is also an industrial region with low aerosol
loading. The average AOD values in Eastern and Western
North America during 1980–2021 are 0.165 and 0.146, re-
spectively, with the Eastern region being higher than the
western region by 0.019. From 1980 to 2021, both East-
ern (−0.0027 per 10 years) and Western North America
(−0.0017 per 10 years) show a downward trend. The AOD
values in DJF, MAM, JJA, and SON in Western North Amer-
ica are 0.141, 0.148, 0.163, and 0.130, respectively, and in
Eastern North America they are 0.138, 0.156, 0.216, and
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0.149. Specifically, the trends in the Western and Eastern re-
gions increase during MAM and decrease during other sea-
sons. In the western region, the trend increases after 2005,
while in the eastern region, there is no increasing trend. The
increasing trend may be due to low rainfall and increased
wildfire activities (Yoon et al., 2014). The decreasing trend in
Eastern North America is related to the reduction in sulfate
and organic aerosols as well as the decrease in anthropogenic
emissions caused by environmental regulations (Mehta et al.,
2016).

Central South America is a relatively high aerosol load-
ing region, sourced from biomass burning, especially in SON
(Remer et al., 2008; Mehta et al., 2016), with a multi-year
average AOD of 0.198. There is a downward trend (−0.0075
per 10 years) from 1980 to 2021. The trend is slightly lower
than the trend (−0.0090 per 10 years) from 1998 to 2010
(Hsu et al., 2012), and the trend decreases from 1980 to 2006
(Streets et al., 2009) and from 2001 to 2014 (Mehta et al.,
2016). The AOD values in DJF (0.207) and SON (0.228) are
higher compared with the values in MAM (0.185) and JJA
(0.171), and the larger declining trends are observed in MAM
(−0.0100 per 10 years) and JJA (−0.0150 per 10 years). The
result indicates that although AOD has decreased overall, the
aerosol loading is still high, which is caused by deforestation
and biomass burning (Mehta et al., 2016).

Africa is a high aerosol loading region. In Western Africa,
the multi-year average AOD is 0.281, with a decreasing
trend (−0.0062 per 10 years) from 1980 to 2021. The
world’s largest desert (the Sahara) is in Western Africa, with
much dust emission. The AOD values in JJA (0.296), MAM
(0.292), DJF (0.276), and SON (0.261) are over 0.26. The
trends in DJF (−0.0145 per 10 years), MAM (−0.0015 per
10 years), JJA (−0.0019 per 10 years), and SON (−0.0078
per 10 years) are decreasing. For southern Africa, the multi-
year average AOD is 0.182, lower than that of Western
Africa, with a decreasing trend (−0.0016 per 10 years). The
results of AERONET observations and simulation also show
a decreasing trend (Chin et al., 2014). The AOD values range
from 0.12 to 0.20 during 2000–2009 dominated by fine parti-
cle matter from industrial pollution from biomass and fossil
fuel combustion (Hersey et al., 2015). The average AOD val-
ues in DJF, MAM, JJA, and SON are 0.207, 0.173, 0.135,
and 0.21, with trends of 0.0044 per 10 years, −0.0089 per
10 years, −0.0089 per 10 years, and 0.0063 per 10 years,
respectively.

Australia is a region with a low aerosol loading. The multi-
year average AOD is 0.133 during 1980–2021. The AOD
ranges from 0.05 to 0.15 from AERONET during 2000–
2021, and dust and biomass burning are important contrib-
utors to the aerosol loading (Yang et al., 2021a). There is a
downward trend in AOD (−0.0028 per 10 years), which may
be related to a decrease in dust and biomass burning (Yoon
et al., 2016; Yang et al., 2021a). In addition, a study has
shown that the forest area in Australia has increased sharply
since 2000 (Giglio et al., 2013), surpassing the forest fire area

of the past 14 years. The seasonal average AOD in MAM,
JJA, SON, and DJF is 0.130, 0.107, 0.132, and 0.161, respec-
tively. The AOD in JJA is the lowest in all seasons and in all
regions. The trends in DJF and SON are increasing, and the
trends in MAM and JJA are decreasing. Ground-based obser-
vations and satellite retrievals indicate that wildfires, biomass
burning, and sandstorms lead to high AOD in DJF and SON.
The low AOD in MAM and JJA is due to a decrease in the
frequency of sandstorms and wildfires and an increase in pre-
cipitation (Gras et al., 1999; Yang et al., 2021a; Yang et al.,
2021b).

Asia is also a high aerosol loading area with various
sources. In Southeast Asia, the multi-year average AOD is
0.222 during 1980–2021, with a downward trend in AOD
(0.0007 per 10 years). It is also a biomass-burning area.
The seasonal average AOD ranking is MAM (0.251)> DJF
(0.216)> SON (0.212)> JJA (0.209). There is a decreasing
trend in DJF (−0.0018 per 10 years) and an increasing trend
in MAM (0.0330 per 10 years), JJA (0.0008 per 10 years),
and SON (0.0006 per 10 years). However, the trends are
insignificant. Southeast Asia has no clear long-term trend
in estimated AOD or ground-based observations (Streets
et al., 2009). In Northeast Asia, the multi-year average AOD
is 0.244 during 1980–2021, with a trend of −0.0009 per
10 years. The trend increases (0.0018 per 10 years) dur-
ing 1980–2014 and decreases (−0.0213 per 10 years) dur-
ing 2014–2021. The seasonal AOD values are 0.196 in DJF,
0.260 in MAM, 0.287 in JJA, and 0.236 in SON. The high
aerosol level is related to dust and aerosol transportation in
East Asia. There is an increasing trend in DJF (0.0016 per
10 years) and MAM (0.0062 per 10 years) and a decreasing
trend in JJA (−0.0043 per 10 years) and SON (−0.0070 per
10 years). In Eastern China, the multi-year average AOD is
0.241, with an increasing trend (0.0130 per 10 years). The
trend is 0.0196 per 10 years from 1980 to 2014 and −0.0572
per 10 years from 2014 to 2021. The seasonal ranking of
AOD from high to low is JJA (0.287), MAM (0.249), SON
(0.236), and DJF (0.216). The AOD trends in DJF (0.0133
per 10 years), MAM (0.0179 per 10 years), JJA (0.0107
per 10 years), and SON (0.0105 per 10 years) are all posi-
tive. The trend can be divided into three stages: 1980–2005,
2006–2013, and 2014–2021. In the first stage, AOD values
increase steadily. In the second stage, AOD values maintain
a high level. In the third stage, the AOD values experience a
rapid decline, reaching the 1980s level by 2021. The increas-
ing trend in AOD before 2006 may be due to the significant
increase in industrial activity; after 2013 the significant de-
crease is closely related to the implementation of air-quality-
related laws and regulations, along with adjustments in the
energy structure (Hu et al., 2018; Cherian and Quaas, 2020).

India is a high aerosol loading area. The multi-year av-
erage AOD is 0.254, with an increasing trend (0.0119 per
10 years) from 1980 to 2021. Dust and biomass burning have
an influence on AOD. There are three stages in the trend:
1980–1997 (0.0050 per 10 years), 1997–2005 (−0.0393 per

https://doi.org/10.5194/essd-16-3233-2024 Earth Syst. Sci. Data, 16, 3233–3260, 2024



3254 H. Hao et al.: Visibility-derived aerosol optical depth over global land from 1959 to 2021

10 years), and 2005–2021 (0.0446 per 10 years). The sea-
sonal average AOD values are 0.238 in DJF, 0.251 in MAM,
0.271 in JJA, and 0.257 in SON. The largest AOD is in JJA.
In winter and autumn, the aerosol level is affected by biomass
burning, and in spring and summer, it is also affected by dust
transported from the Sahara during the monsoon period (Re-
mer et al., 2008). The trends in DJF (0.0186 per 10 years),
MAM (0.0143 per 10 years), JJA (0.0012 per 10 years), and
SON (0.0129 per 10 years) are positive.

The above results have supplemented the existing esti-
mates of long-term AOD variability and trend over land. The
AOD level at the regional scale shows significant differences
from 1980 to 2021, which is strongly related to the aerosol
emission source types, transportation, and implementation of
laws and regulations for pollution control.

4 Data availability

We provide the daily visibility-derived AOD data at 5032 sta-
tions over global land from 1959 to 2021, which are available
at the National Tibetan Plateau/Third Pole Environment Data
Center, https://doi.org/10.11888/Atmos.tpdc.300822 (Hao
et al., 2023). Due to the small number and sparse visibility
stations prior to 1980, the global and regional analysis in this
study is from 1980 to 2021. The following is a description of
the AOD dataset.

The station-scale AOD files are in “Sta-
tion_Daily_AOD_1959_2021.zip”. The station-scale
AOD files can be directly opened by a text program (such
as Notepad). Details on the station information are in the
file “0A0A-Station_In Information.txt”. There are eight
columns in each text file, separated by commas, and the
column names are Datetime, TEMP (°), DEW (°), RH (%),
WS (ms−1), SLP (hPa), DRYVIS (km), and VIS_AOD
(550 nm). The first column name is the date. The column
“VIS_AOD (550 nm)” is the AOD at 550 nm. The second
through seventh columns are temperature (unit: °), dew
temperature (unit: °), relative humility (unit: %), wind speed
(unit: ms−1), sea level pressure (unit: hPa), and dry visibility
(unit: km). More details are given in “0A0B-ReadMe.txt”.

5 Conclusions

In this study, we employ a machine learning method to derive
daily AOD at 550 nm during 1959–2021 at 5032 land stations
worldwide based on visibility, satellite retrieval, and related
meteorological variables. In the model, Aqua MODIS AOD
(550 nm) is set as the target and visibility and related meteo-
rological variables are set as the predictor. The performance
and predictive ability of the model are evaluated and vali-
dated against AERONET ground-based observations, Terra
MODIS AOD, and MERRA-2 AOD. We provide a long-term
daily AOD (550 nm) dataset at 5032 global land stations from
1959 to 2021. The dataset overcomes the shortcomings of

AOD data in terms of time scale and spatial coverage over
land. Finally, the variability and trend in AOD are analyzed
at the global and regional scales for the past 42 years. Several
key findings are established in this study, as follows:

1. Modeling evaluation. For all stations, the mean RMSE,
MAE, and R of the model are 0.078, 0.044, and 0.75,
respectively. The RMSE of 93 % of the stations is less
than 0.110, the MAE of 91 % of the stations is less than
0.060, and the R of 88 % of the stations is greater than
0.70.

2. Model validation. For the daily scale, theR, RMSE, and
MAE between VIS_AOD and Aqua AOD are 0.799,
0.079, and 0.044, respectively. The percentage of sam-
ple points falling within the EE envelopes is 84.12 %.
TheR between VIS_AOD and Terra AOD is 0.542, with
an RMSE of 0.125 and an MAE of 0.078. The percent-
age of data falling within the EE envelopes is 64.76 %.
The R between VIS_AOD and AERONET AOD is
0.546, with an RMSE of 0.186 and an MAE of 0.099.
The percentage of sample points falling within the
EE envelopes is 57.87 %. For the monthly and annual
scales, RMSE and MAE show a significant decrease
between VIS_AOD and Aqua, Terra, and AERONET
AOD, and the R values and percentage of data falling
within the EE envelopes show a significant increase.
Compared with AERONET AOD and MERRA-2 AOD
prior to 2000, the model has consistent predictive abil-
ity.

3. Error analysis. As the AOD value increases, the av-
erage bias increases. When the pollution level is low
(AOD < 0.1), the average bias is 0.015, with 83 % of
data falling within the EE envelopes. As the pollution
level increases, the negative average bias becomes sig-
nificant and the underestimation increases. The eleva-
tion of the AERONET site also causes a bias. At low el-
evation (≤ 0.5 km), there is a negative bias, with 60 %–
64 % of the data falling within the EE envelopes. At
high elevation (0.5–1.2 km), there is a positive bias,
with 50 %–65 % of data falling within the EE envelopes.
When the elevation difference is negative (the eleva-
tion of the meteorological station is lower than that
of the AERONET site), there is a significant positive
bias. When the difference is positive, the mean bias
approaches 0 or is positive. The influence of distance
between the meteorological station and the AERONET
site on bias is not significant.

4. Global land AOD. The mean AOD from 1980 to 2021
is 0.177 over land, 0.178 in the NH, and 0.174 in the
SH, with a trend of −0.0029 per 10 years, 0.0030
per 10 years, and −0.0021 per 10 years, respectively.
The seasonal AOD rankings are JJA (0.204)> MAM
(0.176)> SON (0.164)> DJF (0.161) over global land,
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JJA (0.210)> MAM (0.176)> SON (0.163)> DJF
(0.160) in the NH, and SON (0.188)> DJF (0.184)>
MAM (0.14)> JJA (0.152) in the SH. The largest de-
creasing trends are in SON in the NH (−0.0064 per
10 years) and in JJA in the SH (−0.0064 per 10 years).
The increasing trends are in MAM in the NH and in DJF
and SON in the SH.

5. Regional AOD. The high aerosol loading (AOD > 0.2)
regions are Western Africa, Southeast and Northeast
Asia, Eastern China, and India, with a trend of−0.0062
per 10 years, 0.0007 per 10 years,−0.0009 per 10 years,
0.0133 per 10 years, and 0.0119 per 10 years, respec-
tively. However, the trends decrease in Eastern China
(−0.0572 per 10 years) and Northeast Asia (−0.0213
per 10 years) after 2014, and the larger increasing trend
is found after 2005 in India (0.0446 per 10 years). The
moderate aerosol loading (AOD between 0.15 and 0.2)
regions are Eastern Europe, Western Europe, Eastern
North America, Central South America, and Southern
Africa, with a trend of −0.0067 per 10 years, −0.0026
per 10 years, −0.0027 per 10 years, −0.0062 per
10 years, and −0.0016 per 10 years, respectively. The
low aerosol loading (AOD < 0.15) regions are Western
North America and Australia, with a trend of −0.0017
per 10 years and −0.0028 per 10 years. However, the
trends in Southern Africa, Southeast Asia, and North-
east Asia are not significant.
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