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Abstract. Many forest cover maps have been generated by using optical and/or microwave images, but these
forest cover maps have large area and spatial discrepancies. To date, few studies have assessed forest cover
maps in terms of two biophysical parameters used in forest definition: canopy height and canopy cover-
age. We generated annual forest cover maps from 2007 to 2010 and evergreen forest cover maps from 2000
to 2021 in the Brazilian Amazon using the images from the Phased Array type L-band Synthetic Aperture
Radar and the time series images from the Moderate Resolution Imaging Spectroradiometer, using the for-
est definition of the Food and Agriculture Organization of the United Nations (> 5 m tree height and > 10 %
canopy coverage) as the reference. We used the canopy height and canopy coverage datasets from the Geo-
science Laser Altimeter System during 2003–2007 to assess annual forest cover maps from 2007 to 2010
and annual evergreen forest cover maps from 2003 to 2007, and the results show high accuracy of these
forest cover and evergreen forest cover maps. These annual forest cover maps and annual evergreen for-
est cover maps provide data support for the analyses of the causes, processes, and consequences of forest
cover changes in the Brazilian Amazon (https://doi.org/10.6084/m9.figshare.21445626; Qin and Xiao, 2022a;
https://doi.org/10.6084/m9.figshare.21445590; Qin and Xiao, 2022b).

1 Introduction

The global forest area is 40.6× 106 km2 and accounts for
∼ 31 % of the total land area, according to the 2020 Global
Forest Resources Assessment (FRA) published by the Food
and Agriculture Organization (FAO) of the United Nations
(FAO, 2020). Forests, especially tropical forests, play major
roles in the carbon cycle (Fan et al., 2019; Mitchard, 2018),
water cycle (Lovejoy and Nobre, 2019), and biodiversity

(Jenkins et al., 2013). Tropical forests contain ∼ 230 Pg C
of aboveground biomass, which is ∼ 40 % to ∼ 60 % of
the carbon stored in the earth’s terrestrial vegetation (Bac-
cini et al., 2012; Saatchi et al., 2011). However, large areas
of forests have been deforested for agriculture, wood, and
charcoal production (FAO, 2020). A total of 1.8× 106 km2

of forests have been lost since 1990 due to human activi-
ties and natural disturbances, although the rate of net forest
loss has declined slightly (FAO, 2020). The extensive for-
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est area loss has caused significant losses of forest carbon
stock (Mitchard, 2018) and biodiversity (Ochoa-Quintero et
al., 2015). Thus, updated and accurate annual maps of forests
are essential for us to track and assess the loss and gain of
forest area and their impacts on carbon, water, climate, and
biodiversity.

Satellite remote sensing can observe large land surface
areas at regular temporal resolutions, which is suitable for
generating annual maps of forests at regional, continental,
and global scales. Substantial progress has been achieved in
identifying and mapping the spatial and temporal changes
of forests across local, regional, and global spatial scales by
using various image datasets and algorithms (Souza et al.,
2020; FAO, 2020; Hansen et al., 2013; Shimada et al., 2014).
The time series optical remote sensing images at coarse and
moderate spatial resolutions, such as the Advanced Very
High Resolution Radiometer (AVHRR, 1000 m) and MODIS
(500 and 250 m), have been widely used to generate global
or continental forest cover maps, which were based on forest
spectral and phenology features (Friedl et al., 2010; Hansen
et al., 2002). Before 2008, optical images at a high spa-
tial resolution (e.g., Landsat) were expensive and often used
to map forests in the hotspots of deforestation, such as the
Brazilian Amazon (Skole and Tucker, 1993; INPE, 2023). In
2008, all the 30 m Landsat images became freely available to
the public (Woodcock et al., 2008). Google Earth Engine was
also developed to process these big datasets (Gorelick et al.,
2017). Continental or global tree cover and forest cover maps
at a high spatial resolution have been generated using Land-
sat images (Sexton et al., 2015; Hansen et al., 2013; Souza et
al., 2020).

In comparison with the optical images, images from mi-
crowave sensors, in particular, L-band synthetic aperture
radar (SAR), have two advantages: (1) they are affected less
by clouds and cloud shadows, and (2) they have stronger pen-
etration capability into forest canopy and interact with tree
branches and trunks, and thus, are more sensitive to forest
structure and aboveground biomass. SAR images have ad-
vantages in forest mapping, especially in the tropical region
where clouds and cloud shadows are frequent (Qin et al.,
2017; Shimada et al., 2014; Y. Qin et al., 2016; Chen et al.,
2018; Reiche et al., 2016). In the Advanced Land Observing
Satellite (ALOS), the Phased Array type L-band Synthetic
Aperture Radar (PALSAR) is the first L-band microwave re-
mote sensing sensor to carry out global land surface obser-
vations (Shimada et al., 2014). The 25 and 50 m ALOS PAL-
SAR data have been used to map regional and global forest
and forest change (Shimada et al., 2014; Qin et al., 2017;
Chen et al., 2018; Thapa et al., 2014). However, some non-
vegetation land cover types, such as rocky land, bare land,
and buildings, have high backscatter signals similar to those
of forests, and they are misclassified as forest, resulting in
commission errors in the forest cover maps. The combina-
tion of microwave and optical images allows us to produce
improved forest cover maps with reduced commission er-

rors. Thus, we developed a simple but robust algorithm to
identify and generate annual forest cover maps using both
ALOS PALSAR and MODIS images, and the algorithm has
been successfully applied to map forest cover in Asia (Qin et
al., 2015; Y. Qin et al., 2016) and South America (Qin et al.,
2017, 2019).

Previous studies suggested that forest definition is one of
the major reasons for the discrepancy of forest cover maps
(Sexton et al., 2015), and our study showed that the valida-
tion data affect the accuracy assessment of forest cover maps,
although these forest cover maps had the same forest defini-
tion (Qin et al., 2017). Accuracy assessments and uncertainty
analyses of the forest cover maps have been carried out using
reference datasets from various approaches, including field
surveys, images with higher spatial resolutions, and previ-
ously available land cover maps (Xiao et al., 2011; Fritz et al.,
2012; Olofsson et al., 2012; Stehman et al., 2012; Tyukavina
et al., 2017). Field surveys are carried out either over a re-
gion or in situ and aim to track long-term forest area and
biomass changes under human activities and natural distur-
bances (Matricardi et al., 2020). These field forest surveys
are time-consuming and have a high labor cost; thus, limited
field samples are collected, which may introduce large bias
and are not suitable to assess the forest cover maps at conti-
nental or global scales (Tang et al., 2019a). The higher spatial
resolution images and land cover maps do not have accurate
canopy height information, which is one of the primary cri-
teria for forest definition.

Canopy height and canopy coverage are two important
characteristics of forests. Airborne lidar observations are be-
ing used to accurately measure canopy height and canopy
coverage, but these measurements are mainly carried out at a
local scale (Tang et al., 2019b; Hudak et al., 2002; Leitold
et al., 2018). The satellite lidar-based canopy height and
canopy coverage monitoring has evolved remarkably, which
provides an opportunity to use them to evaluate the accu-
racy and uncertainty of forest cover maps and improve for-
est cover mapping. Recently, new and reliable canopy height
and canopy cover percentage datasets (Tang et al., 2019a)
were generated using the Geoscience Laser Altimeter Sys-
tem (GLAS) onboard the Ice, Clouds, and Land Elevation
Satellite (ICESat). These new datasets provide a unique op-
portunity to assess annual forest cover maps generated ac-
cording to the FAO FRA forest definition (trees> 5 m height
and 10 % canopy coverage). The recently developed ICE-
Sat/GLAS canopy height and canopy coverage dataset has
four features (Tang et al., 2019a). First, at the footprint level,
the ICESat/GLAS canopy coverage is consistent with the air-
borne lidar estimated with almost no bias. Second, ICESat/-
GLAS shows higher sensitivity to high canopy coverage in
densely forested areas than that of optical remote sensing
images. Third, ICESat/GLAS shows a stronger ability to dif-
ferentiate subtle temporal changes in canopy coverage com-
pared with optical remote sensing. Fourth, ICESat/GLAS
provides unique information about the vertical canopy cover

Earth Syst. Sci. Data, 16, 321–336, 2024 https://doi.org/10.5194/essd-16-321-2024



Y. Qin et al.: Annual maps of forest cover in the Brazilian Amazon 323

and structure, an important variable in defining tree canopy
height.

Tropical forests in the Brazilian Amazon are influenced
by mining, deforestation, fires, severe droughts, wind storms,
and other disturbances (Tyukavina et al., 2017; Espírito-
Santo et al., 2014; Aragão et al., 2018; Sonter et al., 2017;
Li et al., 2019). Because of frequent clouds, cloud shadows,
high aerosols, and limited accessibility of the Amazon, in situ
reference data, field surveys, and very high spatial resolu-
tion images are very limited, which prevents a robust inter-
comparison among these data sources. Here, we selected the
Brazilian Amazon as a hotspot with a large forest area and
extensive forest change. We assessed the annual PALSAR/-
MODIS forest cover maps at 50 m spatial resolution during
2007–2010 (Qin et al., 2017) and the MODIS evergreen for-
est cover maps during 2003–2007 at 500 m spatial resolution
(Qin et al., 2019) using the ICESat/GLAS canopy height and
canopy coverage data. To our knowledge, based on a limited
search of the literature, this is the first study using a large
lidar-based canopy height and canopy coverage dataset to as-
sess the accuracy and uncertainty of annual forest cover maps
in the Brazilian Amazon.

2 Methods

2.1 Study area

The Brazilian Amazon covers an area from 18◦ S to 6◦ N
and 74 to 41◦W, and includes nine states (Acre, Amazonas,
Amapá, Pará, Mato Grosso, Maranhão, Rondônia, Roraima,
and Tocantins). The Brazilian Amazon has the largest trop-
ical forests and most diverse terrestrial ecosystems in the
world (Jenkins et al., 2013). Annual precipitation increases
from ∼ 1500 mm yr−1 in the southeast to > 3000 mm yr−1

in the northwest in normal years (Qin et al., 2019). On av-
erage, the Brazilian Amazon has an annual precipitation of
∼ 2000 mm yr−1 and an annual mean temperature of 27 ◦C
(Almeida et al., 2017). The two major biomes in Brazil are
the Amazon in the north and west, and the Cerrado, i.e.,
a vast ecoregion of tropical savanna, in the south and east.
Rapidly changing land use, disturbances (e.g., fire), climate,
and other human activities have resulted in substantial de-
forestation and degradation over the past decades (Fearnside,
2005; Nepstad et al., 2014; Matricardi et al., 2020). The rapid
expansion of cropland and pasture areas makes Brazil a lead-
ing global exporter of agricultural and livestock commodi-
ties, especially soybean and beef.

2.2 ALOS PALSAR mosaic data and pre-processing

The ALOS PALSAR is an L-band active microwave remote
sensing sensor, and PALSAR images are less affected by
cloud and atmospheric conditions than optical images. The
50 m ALOS PALSAR mosaic data, provided by the Earth
Observation Research Center of the Japan Aerospace Explo-

ration Agency (JAXA), include HH (transmit horizontally
and receive horizontally) gamma-naught and HV (transmit
horizontally and receive vertically) gamma-naught, and three
other layers (mask information, local incidence angle, and to-
tal dates from the ALOS launch date) (Shimada et al., 2014).
Three major pre-processing tasks were carried out to reduce
the noise in the ALOS PALSAR data (Shimada et al., 2014).
The ALOS PALSAR strip data, with the minimum response
to surface moisture, were used to generate the annual ALOS
PALSAR mosaic data. The raw images were calibrated based
on published coefficients, and outputs with 16 looks were
further provided to reduce speckle noise. PALSAR HH and
HV backscatter data were orthorectified and slope corrected
using the digital elevation model (90 m) from the Shuttle
Radar Topography Mission. The digital number (DN, ampli-
tude values) of HH and HV were converted to backscattering
coefficients in decibels (gamma naught, γ ◦; see Eq. 1):

γ ◦ = 10× log10 < DN2 >+CF (1)

where CF is the absolute calibration factor with a value of
−83 (Shimada et al., 2009). We also calculated the difference
(Eq. 2) and ratio (Eq. 3) between HH and HV:

Difference= HH−HV (2)
Ratio= HH/HV. (3)

2.3 MODIS surface reflectance and vegetation indices

The MOD09A1 (collection 006) data product provides land
surface reflectance at a spatial resolution of 500 m (463 m)
after atmospheric correction, including gases, aerosols, and
Rayleigh scattering. The MOD09A1 data product has seven
spectral bands: blue (459–479 nm), green (545–565 nm),
red (620–670 nm), near infrared (NIR, 841–876 and 1230–
1250 nm), shortwave infrared (SWIR, 1628–1652 and 2105–
2155 nm), and two quality layers. For each 8 d composite, the
best-quality value is selected from all the acquisitions within
every 8 d. Although the 8 d MOD09A1 data product has a
spatial resolution of 500 m, it is generated based on daily ob-
servations and has a high opportunity to get cloud-free ob-
servations. Besides, MOD09A1 has a data collection since
2000, which could track long-term forest cover changes due
to frequent policy and environmental changes in the Brazilian
Amazon, especially the different phases of deforestation. We
identified and excluded all observations in each image cov-
ered by cloud (cloud, internal cloud, and high cirrus), cloud
shadow, high aerosols, or snow labeled in the data quality
layers. We also identified and excluded all the observations
with a blue band value larger than 0.2 as an additional cloud
flag. We then calculated three vegetation indices for each
observation in time series (Eqs. 4–6): normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI),
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and land surface water index (LSWI) (Xiao et al., 2002):

NDVI=
NIR−RED
NIR+RED

(4)

EVI= 2.5×
NIR−RED

NIR+ 6×RED− 7.5×BLUE+ 1
(5)

LSWI=
NIR−SWIR
NIR+SWIR

, (6)

where BLUE, RED, NIR, and SWIR represent land surface
reflectance values for, respectively, blue, red, near infrared
(841–876 nm), and shortwave infrared (1628–1652 nm)
bands from MOD09A1.

The MODIS/Terra vegetation index data product
(MOD13Q1) has a spatial resolution of 250 m and a tem-
poral resolution of 16 d. The MOD13Q1 dataset includes
two vegetation index layers (NDVI and EVI). The highest
NDVI and EVI values were chosen from the best daily
observations every 16 d. Although the MOD13Q1 data prod-
uct has a spatial resolution of 250 m, its daily revisit cycle
provided more opportunities for cloud-free observations
in the Brazilian Amazon compared with the high spatial
resolution images, such as the 30 m 16 d Landsat images.
We used the observations with the property of “VI produced
with good quality” based on the MOD13Q1 quality band
(DetailedQA) in time series analysis. In this study, we used
the NDVI layer and calculated the maximum NDVI values
(NDVImax) in a year for each pixel during 2007–2010. To
match the 50 m PALSAR data, we resampled the 250 m
MODIS NDVImax into 50 m spatial resolution using the
nearest sampling approach.

2.4 ICESat canopy height and cover percentage data

The ICESat GLAS, launched in 2003, is the first lidar sen-
sor for global land surface observations. The GLAS sen-
sor recorded the land surface elevations through time at
∼ 65 m footprints, which have an along-track distance of
about 175 m and a maximum between-track distance of about
30 km at the Equator. The GLAS sensor had a revisit cycle
of 91 d. We recently developed a new approach and calcu-
lated the canopy height (meters) and canopy coverage (%)
datasets using the GLA14 lidar datasets during 2003–2007
(Tang et al., 2019a). At each footprint, maximum canopy
height and canopy coverage are calculated from lidar wave-
form signals and screened from several confounding fac-
tors (e.g., cloud, noise, and topographic slope) (Tang et al.,
2019a). The derived canopy coverage showed almost no bias
compared with airborne lidar estimates and was sensitive to
signal dynamics over dense forests, even with canopy cover
exceeding 80 %. The ICESat/GLAS-based canopy height
and canopy coverage estimates could better characterize
footprint-level canopy conditions than the existing data prod-
ucts derived from conventional optical remote sensing (Tang
et al., 2019a). Yet, it cannot be used to generate a wall-to-wall
map of forest structure due to its limited spatial samplings.

In the Brazilian Amazon, there were about 1.1×106 foot-
prints of canopy height and canopy coverage retrieved from
the ICESat/GLAS observations during 2003–2007 (Fig. 1).
Among these footprints, about 1.0× 106 footprints had a
canopy height of more than 5 m, which accounted for about
96 % of all the footprints (Fig. 1c), and about 0.94× 106

(86.7 %) footprints had a canopy coverage of more than 10 %
(Fig. 1d). When considering both canopy height and canopy
coverage, 0.9× 106 footprints (85.1 %) had a canopy height
of > 5 m and canopy coverage of > 10 %, and these foot-
prints were thus identified as forest footprints in terms of
the FAO FRA forest definition. About 27.7 % of the forest
footprints had canopy height larger than 30 m and canopy
coverage larger than 80 %, which suggested that the Brazil-
ian Amazon is an area with largely tall and dense trees. The
ICESat/GLAS canopy height and canopy coverage data had
distinct spatial distributions (Fig. 1a, b). Those tall and dense
forests were mainly located in the north and west of the
Brazilian Amazon, where human activities and natural dis-
turbances are limited. Short and open forests were mainly
located in the Cerrado area, south and east of the Brazilian
Amazon, where extensive agriculture production occurs.

2.5 FAO forest definition

Hundreds of different forest definitions have been used in for-
est management (FAO, 2002). The FAO defines forest as land
with a minimum area of 0.5 hectares with (1) a tree canopy
height of > 5 m and (2) a canopy coverage of > 10 % at the
time of observations, and it also includes lands with trees
that can reach these thresholds at the time of tree maturity
(FRA, 2020). Using the FAO’s forest definition as the ref-
erence (a tree canopy height of > 5 m and a canopy cover-
age of > 10 %), we identified and generated annual PAL-
SAR/MODIS forest cover maps in the Brazilian Amazon
during 2007–2010. We defined evergreen forests as forests
with green leaves year-round, a tree canopy cover more than
10 %, and a tree height larger than 5 m. Then we generated
annual MODIS evergreen forest cover maps from 2000 to
2021. (Note that as we use satellite images to identify and
map forests, we do not consider lands with trees that can
reach these two thresholds at the time of tree maturity.) Due
to various spatial resolutions of satellite images, tree distribu-
tion patterns, and terrains, the minimum forest mapping area
may not be exactly 0.5 ha.

2.6 Algorithm and data of annual PALSAR/MODIS
forest cover maps during 2007–2010

Electromagnetic wave of PALSAR can penetrate the tree
canopy and interact with the tree trunks and branches. Forests
have higher volume backscatter signals in HH and HV com-
pared with croplands, grasslands, and water bodies. Thus,
PALSAR data are sensitive to forest structure and biomass.
However, PALSAR data can be affected by local incidence

Earth Syst. Sci. Data, 16, 321–336, 2024 https://doi.org/10.5194/essd-16-321-2024



Y. Qin et al.: Annual maps of forest cover in the Brazilian Amazon 325

Figure 1. Spatial distribution maps of ICESat/GLAS canopy height (a) and canopy coverage (b) at the footprint scale and their histograms (c,
d) in the Brazilian Amazon from 2003 to 2007.

angle and soil moisture as PALSAR data are acquired at a
different date each year. We calculated the acquisition date
(Fig. 2), the local incidence angle (Fig. S1 in the Supple-
ment), and HH and HV gamma-naught values for each year
and their standard deviations (Fig. S2) during 2007–2010
in the Brazilian Amazon. PALSAR HH and HV data were
mainly acquired in the dry season (from June to October)
and the local incidence angle was stable. About 90 % of the
area has standard deviation values of less than 1 dB for PAL-
SAR HH and HV data. PALSAR data have advantages in
identifying and mapping the spatial and temporal changes
of forests in the tropics with frequent clouds compared with
optical satellite remote sensing. Using the FAO’s forest def-
inition as the reference, we developed a robust decision tree
algorithm to identify and generate forest cover maps by
ALOS PALSAR data: −15≤HV≤−9, 3≤Difference≤ 7,
and 0.35≤Ratio≤ 0.75, based on the forest and non-forest
training samples (Y. Qin et al., 2016; Y. W. Qin et al., 2015,
2017). Several land cover types (e.g., rocks and buildings)
had high backscatter values of HH and HV, which were of-

ten confused with the forests when only HH and HV data
were used. These land cover types usually have low vege-
tation coverage with NDVImax < 0.5 (Y. Qin et al., 2016;
Y. W. Qin et al., 2015, 2017). To reduce the commission er-
rors from these land cover types, we combined both PAL-
SAR and NDVImax from MOD13Q1 to produce annual
forest cover maps (namely PALSAR/MODIS forest cover
maps) at 50 m spatial resolution during 2007–2010 using
these threshold values:−15≤HV≤−9, 3≤Difference≤ 7,
0.35≤Ratio≤ 0.75, and NDVImax ≥ 0.5 (Y. Qin et al.,
2016; Y. W. Qin et al., 2017). We also carried out a 3-
year temporal consistency filter to reduce the effects of noise
(Y. Qin et al., 2016; Y. W. Qin et al., 2017).

2.7 Algorithm and data of annual MODIS evergreen
forest cover maps during 2000–2021

Evergreen forest is the dominant forest cover type in the
Brazilian Amazon (Fanin and Van Der Werf, 2015). Ever-
green forests have a unique biophysical feature in that they
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Figure 2. Spatial distribution maps of ALOS PALSAR acquisition dates during 2007 (a), 2008 (b), 2009 (c), and 2010 (d).

have green leaves year-round. Based on the canopy phenol-
ogy from analyses of time series water-related LSWI and
greenness-related EVI calculated from all MOD09A1 data in
each year, a novel, simple, and robust algorithm was devel-
oped to generate annual maps of evergreen forests using the
FAO’s forest definition as the reference and evergreen for-
est training samples (Xiao et al., 2009; Qin et al., 2019).
We calculated (1) the frequency (percentage) of the num-
ber of observations with LSWI ≥ 0 over all the available
observations (FQLSWI≥0) and (2) the minimum EVI values
(EVImin) in a year after excluding observations of clouds,
cloud shadows, and snow based on the MOD09A1 quality
band (StateQA). We applied the Forest-MODIS algorithm
(FQLSWI≥0 = 100 % and EVImin ≥ 0.2) (Xiao et al., 2009;
Qin et al., 2019) to time series LSWI and EVI data in a year
and generated annual maps of evergreen forest from 2000 to
2021 in the Brazilian Amazon. Small numbers of MODIS
pixels were contaminated by clouds or aerosols, causing a
significant drop in EVI values and no significant change in
LSWI and NDVI values. However, these pixels may not be
detected by the quality layer. Thus, we conducted an addi-
tional criterion and made a minor improvement in evergreen
forest mapping, i.e., FQLSWI≥0 > 90 % and EVImin ≥ 0.2

and LSWImin ≥ 0. We also applied a 3-year temporal con-
sistency filter to reduce the effects of noises on forest cover
mapping. Google Earth Engine was used for MODIS image
processing.

2.8 Spatial and statistical analysis

We overlaid all the ICESat/GLAS footprints to the an-
nual PALSAR/MODIS forest cover maps during 2007–2010
(50 m spatial resolution) and the annual MODIS evergreen
forest cover maps during 2003–2007 (500 m spatial resolu-
tion) and generated a table that records individual ICESat/-
GLAS footprint IDs, canopy height, canopy coverage, forest,
and non-forest. We evaluated the accuracy of these annual
PALSAR/MODIS forest cover maps and annual MODIS ev-
ergreen forest cover maps in terms of canopy height and
canopy coverage for all forest pixels (1.5× 109 pixels for
PALSAR/MODIS forest and 17.5× 106 pixels for MODIS
evergreen forest each year) that contained the information of
ICESat/GLAS footprint data.

For the spatial comparison, to avoid the bias caused by
different spatial resolutions, we aggregated the 50 m annual
PALSAR/MODIS forest cover maps and 500 m (actual spa-
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Figure 3. Spatial distribution maps of annual PALSAR/MODIS forest cover maps during 2007 (a), 2008 (b), 2009 (c), and 2010 (d).

tial resolution: 463 m) MODIS evergreen forest cover maps
into 5 km pixels and calculated their average forest area frac-
tion values within individual 5 km pixels. We then compared
the spatial consistency between the annual PALSAR/MODIS
forest cover maps and the annual MODIS evergreen for-
est cover maps during 2007–2010 at 5 km spatial resolution
based on the linear relationships and significance analyses.

For the forest area comparison, we compared the annual
PALSAR/MODIS forest area and annual MODIS evergreen
forest area with multiple forest area datasets, including the
PALSAR-based forest cover maps developed by JAXA (Shi-
mada et al., 2014), the Landsat-based Global Forest Watch
(GFW) dataset (Hansen et al., 2013), and the PRODES forest
cover maps (INPE, 2023). We also calculated the root mean
square error (RMSE) of forest areas between different forest
cover data products.

3 Results and discussion

3.1 Annual PALSAR/MODIS forest cover maps during
2007–2010

Forest areas estimated by the 50 m PALSAR/MODIS forest
cover maps (Fig. 3) had a small net loss in the Brazil-
ian Amazon, decreasing from 3.77× 106 km2 in 2007 to
3.75× 106 km2 in 2010 under the influence of changing
land-use policies and natural disturbances (Nepstad et al.,
2014). To assess the accuracy of the PALSAR/MODIS
forest cover map, we used two independent reference

datasets. First, we used the land cover maps at the 2 m
spatial resolution from the Global Land Cover Validation
Reference Dataset in 2010, which had land cover maps in
18 blocks (0.15× 106 pixels) in the Brazilian Amazon and
each block covered an area of 5× 5 km2 (Olofsson et al.,
2012; Stehman et al., 2012). Second, we used the land cover
maps from the TREES-3 (Achard et al., 2014) reference
dataset at the 30 m spatial resolution from the European
Commission’s Joint Research Centre (JRC), which had
land cover maps in 416 blocks (17.09× 106 pixels) and
each block covered an area of 10× 10 km2. The Global
Land Cover Validation Reference Dataset was produced
from very high spatial resolution commercial remote
sensing data acquired around 2010 and is freely available
at the https://web.archive.org/web/20161209205946/https:
/landcover.usgs.gov/glc/SitesDescriptionAndDownloads.
php (last access: 25 October 2023). The TREES-3 dataset
was produced from Landsat images and is freely available
at https://forobs.jrc.ec.europa.eu/trees3/data (last access:
25 October 2023). We calculated the error matrices (Ta-
ble S1 in the Supplement) and the overall accuracy of the
PALSAR/MODIS forest cover map in 2010 was about 91 %
(Qin et al., 2019).

We used the ICESat/GLAS canopy height and canopy cov-
erage to evaluate the accuracy of annual PALSAR/MODIS
forest cover maps during 2007–2010 in the Brazilian Ama-
zon. Figure 4 shows the distribution of forest pixels from
the annual PALSAR/MODIS forest cover maps in the 2-
dimensional space of canopy height and canopy coverage.
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Figure 4. Two-dimensional scatter plots and histograms of ICESat/GLAS canopy height (m) and canopy coverage (%) at the footprint scale
for the forest pixels in the annual PALSAR/MODIS forest cover maps during 2007–2010. Scatter plots of ICESat/GLAS canopy height and
canopy coverage for the forest pixels in the annual PALSAR/MODIS forest cover maps during 2007 (a), 2008 (d), 2009 (g), and 2010 (j).
Histograms of ICESat/GLAS canopy height for the forest pixels in the annual PALSAR/MODIS forest cover maps during 2007 (b), 2008 (e),
2009 (h), and 2010 (k). Histograms of ICESat/GLAS canopy coverage for the forest pixels in the annual PALSAR/MODIS forest cover maps
during 2007 (c), 2008 (f), 2009 (i), and 2010 (l).

About 98.5 % of PALSAR/MODIS forest pixels in 2010 had
canopy height > 5 m and about 94.4 % of PALSAR/MODIS
forest pixels in 2010 had canopy coverage > 10 %, respec-
tively (Fig. 4). When considering both canopy height and
canopy coverage, about 93.8 % of PALSAR/MODIS for-
est pixels in 2010 had both canopy height of > 5 m and
canopy coverage of > 10 %. The PALSAR/MODIS forest
cover maps during 2007–2009 had similarly high accuracies
to those in 2010 (Fig. 4). Overall, the PALSAR/MODIS for-
est cover maps showed high accuracies using different vali-
dation datasets.

Geographically, forests were distributed mainly in the
Brazilian Amazon’s north and west. The mixed landscapes of
forest and non-forest were in the south and east (Fig. 3). The
State of Amazonas (1.46×106 km2), Pará (0.99×106 km2),
and Mato Grosso (0.46× 106 km2) had the largest forest ar-
eas, which accounted for about 78 % of the total forest area
in the Brazilian Amazon in 2010. The other six states had a
total forest area of 0.81× 106 km2 in 2010.
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Figure 5. Spatial distribution maps of annual MODIS evergreen forest cover maps in the Brazilian Amazon during 2000–2021. Panels (a–u)
show annual evergreen forest cover maps from 2000 to 2020. Panel (v) shows the annual evergreen forest cover map in 2021.

3.2 Annual MODIS evergreen forest cover maps during
2000–2021

Evergreen forest areas also slightly decreased from 3.73×
106 km2 in 2007 to 3.72× 106 km2 in 2010 in the Brazilian
Amazon (Fig. 5), consistent with the PALSAR/MODIS for-
est area estimated with a root mean square error (RMSE) of
0.03×106 km2. The evergreen forest area was 3.94×106 km2

in 2000 and then declined substantially to 3.66× 106 km2 in
2021 (Fig. 5), with a net forest area loss of 0.28× 106 km2

(7 %). We previously assessed the accuracy of the evergreen
forest cover map in 2010 using 18 blocks with 5× 5 km2

(1.27× 103 pixels) of land cover maps at 2 m spatial res-
olution from the Global Land Cover Validation Reference
Dataset in 2010 and 416 blocks with 10× 10 km2 (0.13×
106 pixels) of land cover maps from the 30 m TREES-3
(Achard et al., 2014) reference dataset. The overall accuracy

of the MODIS evergreen forest cover map in 2010 was about
97 % (Qin et al., 2019).

Here, we used the ICESat/GLAS canopy height and
canopy coverage data to evaluate the accuracy of the ev-
ergreen forest cover maps during 2003–2007 in the Brazil-
ian Amazon. About 98.1 % (0.77× 106 pixels) of evergreen
forest pixels had canopy height of > 5 m and about 93.8 %
(0.73× 106 pixels) of evergreen forest pixels had canopy
coverage of > 10 % in 2003–2007. When considering both
canopy height and canopy coverage, about 93.0 % (0.73×
106 pixels) of evergreen forest pixels during 2003–2007 had
canopy height of > 5 m and canopy coverage of > 10 %
(Fig. 6).
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Figure 6. Two-dimensional scatter plots and histograms of ICESat/GLAS canopy height (m) and canopy coverage (%) for the forest pixels
from the annual MODIS evergreen forest maps during 2003–2007. Scatter plots of ICESat/GLAS canopy height and canopy coverage for
the forest pixels from the annual MODIS evergreen forest maps during 2003 (a), 2004 (d), 2005 (g), 2006 (j), and 2007 (m). Histograms
of ICESat/GLAS canopy height for the forest pixels from the annual MODIS evergreen forest maps during 2003 (b), 2004 (e), 2005 (h),
2006 (k), and 2007 (n). Histograms of ICESat/GLAS canopy coverage for the forest pixels from the annual MODIS evergreen forest maps
during 2003 (c), 2004 (f), 2005 (i), 2006 (l), and 2007 (o).
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Figure 7. Spatial consistency between annual PALSAR/MODIS forest cover maps and annual MODIS evergreen forest cover maps during
2007–2010 at a spatial resolution of 5 km. Panels (a–d) show annual PALSAR/MODIS forest cover maps. Panels (e–h) show annual MODIS
evergreen forest cover maps. Panels (i–l) show linear regression analyses between the area fraction of MODIS evergreen forest and area
fraction of PALSAR/MODIS forest for individual years (2007–2010) at a spatial resolution of 5 km (0.23 million pixels each year at a spatial
resolution of 5 km). The average area fraction of forest was calculated at an interval of 5 %.

3.3 Uncertainties in the accuracy assessment of
PALSAR/MODIS forest cover maps and MODIS
evergreen forest cover maps

The Global Land Cover Validation Reference Dataset and
TREES-3 land cover dataset were produced from optical re-
mote sensing images, which were sensitive to canopy cov-
erage instead of canopy height. Thus, our PALSAR/MODIS
forest cover maps had high user’s and producer’s accuracy
for forest cover type, while the non-forest cover type had rel-
atively low user’s or producer’s accuracy (Table S1), which
may be attributed to the uncertainties in the reference maps.
Unlike the optical remote sensing image, the ICESat-1 data
used in this study had the maximum canopy coverage data
and the maximum canopy height from 2003 to 2007 (Tang
et al., 2019a). As the Brazilian Amazon had high annual pri-
mary forest loss rates of 17 654 km2 yr−1 in the 2000s (INPE,
2023), the maximum canopy height and canopy coverage of
ICESat-1 data may not include the impacts of deforestation.
Thus, ∼ 94 % of PALSAR/MODIS forest cover pixels and
MODIS evergreen forest cover pixels meet the forest defini-
tion.

3.4 Spatial consistency between annual
PALSAR/MODIS forest cover maps and annual
MODIS evergreen forest cover maps during
2007–2010

At the regional scale, we analyzed the reasonability of the
MODIS evergreen forest cover maps in the Brazilian Ama-
zon using the PALSAR/MODIS forest cover maps as the
reference maps. At the 5 km spatial resolution, the annual
PALSAR/MODIS forest cover maps had a good spatial con-
sistency with evergreen forest cover maps, especially for
the dense forest during 2007–2010 (Fig. 7). The PALSAR/-
MODIS forest cover maps had more forest area than that
of MODIS evergreen forest cover maps in the Cerrado area,
south and east of the Brazilian Amazon. There might be some
non-evergreen forest and sparse forest in the Cerrado area,
which are not identified as forest in the MODIS evergreen
forest cover maps. Overall, the forest area fraction between
the PALSAR/MODIS forest cover maps and the MODIS ev-
ergreen forest cover maps was near the 1 : 1 linear relation-
ship at the 5 km spatial resolution (Fig. 7i–l), showing that
the combination of PALSAR and MODIS images, and dense
time series MODIS images, can both generate high-accuracy
forest cover maps. At the site level, PALSAR/MODIS forest
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Figure 8. Zoom-in windows of very high spatial resolution images, PALSAR/MODIS forest cover, and MODIS evergreen forest cover
maps at three sites in the Brazilian Amazon. Panels (a, d, g) show very high spatial resolution images from ArcMap. Panels (b, e, h) show
PALSAR/MODIS forest cover maps. Panels (c, f, i) show MODIS evergreen forest cover maps.

cover and MODIS evergreen forest cover maps showed good
consistency with the very high spatial resolution images in
the Brazilian Amazon (Fig. 8).

3.5 Annual forest area comparison in the Brazilian
Amazon

A number of studies compared several forest cover maps
derived from optical images and/or microwave images and
reported that these forest cover maps have significant dif-
ferences in forest area, spatial distributions, and temporal

changes, which were attributed to the differences in for-
est definitions, satellite data, and forest mapping algorithms
(Sexton et al., 2015; Qin et al., 2017). For example, one study
compared eight previously satellite-based forest cover maps
generated by optical images and found that global forest area
ranged from 32.1× 106 to 41.4× 106 km2, and claimed that
one of the major reasons underlying the large discrepancy
was the ambiguity in the term “forest” (Sexton et al., 2015).
Frequent clouds and cloud shadows substantially reduced the
number of good-quality observations in optical images used
to generate annual forest cover maps (Qin et al., 2019). Our
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Figure 9. Annual forest area estimated in the Brazilian Amazon
during 2000–2021 from five forest cover data products. The PAL-
SAR/MODIS forest areas and MODIS evergreen forest areas were
calculated by this study. GFW forest areas were calculated from the
annual Global Forest Watch forest cover data in 2000 and 2010.
PRODES forest areas were calculated from the annual PRODES
forest cover maps. JAXA forest areas were calculated from the an-
nual JAXA PALSAR-based forest cover maps.

previous studies in Asia (Y. W. Qin et al., 2015, 2016) and
South America (Qin et al., 2017) compared annual forest
maps derived from (1) optical images only, (2) microwave
images only, and (3) optical+microwave images, and con-
cluded that the use of both optical and microwave images
would substantially improve the accuracy of forest maps.

Our results here also show that forest area estimated in the
Brazilian Amazon from the annual PALSAR/MODIS forest
cover maps is consistent with that from the annual MODIS
evergreen forest cover maps and the annual PALSAR-based
forest cover maps developed by JAXA (Shimada et al., 2014)
with both RMSE values of 0.03×106 km2 during 2007–2010
(Fig. 9). Forest area estimated from annual PALSAR/MODIS
forest cover maps and annual MODIS evergreen forest cover
maps is slightly smaller (0.3× 106 km2) than that from the
Landsat-based Global Forest Watch (GFW) dataset (Hansen
et al., 2013) generated using multiple-year Landsat 7 images
around 2010. The forest area estimated from the PRODES
project (INPE, 2023) is much smaller than the area estimated
by GFW, PALSAR/MODIS, and MODIS evergreen forest
cover maps, as the PRODES project is focused on primary
forests and deforestation in primary forest areas. Only one or
two Landsat-like images were as cloud-free as possible in the
dry season and were used to generate annual PRODES forest
cover maps (INPE, 2023). Because of large areas of cloud
coverage, annual estimates of forest areas from the PRODES
showed large interannual variation (Qin et al., 2019). Our
work again demonstrated the importance and potential of
L-band microwave remote sensing and daily optical remote
sensing images in forest cover mapping.

4 Code and data availability

The annual forest and evergreen forest
maps codes are available at the figshare
(https://doi.org/10.6084/m9.figshare.21445626; Qin and
Xiao, 2022a). The annual forest maps (2007–2010) and
evergreen forest maps (2000–2021) in the Brazilian
Amazon have been submitted to the figshare data repos-
itory (https://doi.org/10.6084/m9.figshare.21445590;
Qin and Xiao, 2022b) in a GeoTIFF format.
The data are provided in the spatial reference of
South_America_Albers_Equal_Area_Conic.

5 Conclusion

Accurate forest cover maps are critical for tracking rapid
forest changes and forest resource management. We gener-
ated annual PALSAR/MODIS forest cover maps and annual
evergreen forest cover maps in the Brazilian Amazon from
2000 to 2021 using the FAO’s forest definition as the refer-
ence. We then assessed the accuracy of the PALSAR/MODIS
forest cover maps and evergreen forest cover maps using
1.1 million footprints of canopy height and canopy cover-
age datasets from ICESat/GLAS. We also compared the rea-
sonability of the evergreen forest maps using the PALSAR/-
MODIS forest cover maps, which are little affected by the
frequent clouds. The accurate PALSAR/MODIS forest cover
maps and the evergreen forest cover maps could be used to
understand better the interactions between forest and human
activities and natural disturbances (Qin et al., 2019, 2021),
which is vital to the forest resource management and for-
est conservation. In the future, two recently launched plat-
forms, the ICESat-2 satellite launched on 15 September 2018
(Markus et al., 2017) and the Global Ecosystem Dynamics
Investigation (GEDI) instrument housed on the International
Space Station (Dubayah et al., 2020), will provide data that
can substantially improve forest cover maps by providing
lidar-based canopy height and canopy coverage data to the
public.
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